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Introduction

Throughout this paper G denotes a compact Lie group. For a point x of
a G-space X we set

Gx:={gxeX|geG}, and G.:={geCG|gx=x}.

Gx is called the orbit through x, and G, the isotropy subgroup at x. Its con-
jugacy class (G.) is called the orbit type (or isotropy type) of x. We denote by
J(X) the set of all orbit types on X.

Let M be a closed G-manifold, or more generally a paracompact Banach
G-manifold of class at least C!, i.e., M is a paracompact C! Banach manifold
and G acts differentiably by diffeomorphisms. Let f: M—R be a C' G-function,
i.e., f is of class C'and satisfies f(gx)=/f(x) for all x&M and g=G. If xeM
is a critical point of f, i.e., df,=0, then its orbit Gx is called a critical orbit
and its orbit type (G,.) is called a critical orbit type. Let K={xeM|df,.=0}
be the critical point set of f, and set K,=KNf'(¢) and M.={xeM|f(x)<c}
for any c=R.

The number of critical points alone has been discussed in the nonequivariant
setting. We should, however in the equivariant setting, discuss the types of
critical orbits as well as the number of them. There also arises a new problem
to estimate the number of critical orbit fypes. In this paper we will define the
set-valued genus and the numerical genus of a G-space, and obtain some ine-
qualities for the genus and the number of critical values and orbit types for
G-functions.

Let A be the set of G-homeomorphism classes of compact G-ANR’s (G-
equivariant Absolute Neighborhood Retract). For a G-space X we define a subset
a(X) of A to be the set of those S for which there is a G-map X—S. We
call a(X) the set-valued genus of X. For two subsets a; and a, of A, we define

axa, .= {S*T|S€a;,, T€a,}.
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where SxT denotes the join of S and 7.

Suppose f: M—R is bounded below and satisfies the Palais-Smale condition
or the conditions (R,)-(R,) stated below. If the critical values of f are ¢, -,
¢m, then we will obtain

0.1) a(K. )* - xa(K,, ) Sa(M).

For a G-space X and a subset & of A, we define 85(X) to be the smallest
number n such that A - *A4A,€a(X) for A, -, A.€S8. We call f5(X) the
numerical S-genus of X. Since a homogeneous space G/H with H a closed
subgroup of G is a G-ANR, we may take as S the following subset 4 or O(X)
of A,

H={G/H|H is a proper closed subgroup of G},
O0(X)={G/H|(H)eI(X)}.
Then under some conditions on f: M—R we will obtain from (0.1),

Ba(M)=#f(K)-#I(K),
and
Boan(M)=#f(K)-#I(K),

(see Theorem 3.1 bzlow), where #f(K) is the number of critical values and
#J9(K) the number of critical orbit types.

The author thanks the referee for his or her comments which lead to the
improvement of the earlier draft of this paper.

1. Set-valued genera

A G-ANR is a metrizable G-space S such that every G-map Z—S from a
G-invariant closed subspace Z of a metrizable G-space Y into S has a G-exten-
sion U—S to a G-neighborhood U of Z in Y. Any point of the join S*T of
two G-ANS’s S and T is represented by the form [(4, x), (¢, )] with the usual
identification, where xS, yeT, 04, p<1 and A+p=1. Then S*T becomes
a G-space via the action

gL, x), (o, Y)1=[(4, gx), (¢, g¥)]

for any g&G. Moreover S*T is a G-ANR (see Murayama [4; Corollary 12.3]).
This implies that the join a;*a, of subsets @, and a, of A is also a subset of .

Convention 1.1. We make the following conventions concerning the empty
set @ and the set-valued genus a(X) of a G-space X.

(i) The empty set @ is assumed to belong to .

(ii) If X=0 then we assume a(X)=J, and if X+#0 then 0&a(X).

(ili) X#0=X=0+X for any space X. Then we see aSaxJ for any subset
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a of 4, since f=A.
(iv) Considering @ as the empty subset of A, ax0=0=0+a for any subset

a of A.
The set-valued genus possesses the following simple properties.

PROPOSITION 1.2. (1) Monotonicity: If there is a G-map X —Y, then
a(Y)Sa(X).

(ii) Subadditivity: If X=A\UB is a metrizable G-space and A, B are G-
invariant closed subsets of X, then a(A)*xa(B)Sa(X).

(iii) Subcontinuity: Let X be a metrizable G-space and A a G-invariant
closed subset of X. For any finite subset F of a(A), there is a G-neighborhood
Ug of A in X such that $Sa(U)Sa(A) for any G-neighborhood U of A with
UcUsg.

Proof. (i) Easy.

(ii) Assume a(A)+#0 and a(B)+#0, and take S€a(A) and Tea(B). There
are G-maps ¢: A—S and ¢: B—T. Since S and T are G-ANR’s, we have
their G-extensions ¢: N,—S and §: Nz—T, where N, and Njp are open G-
neighborhood of A and B in X, respectively. There is a function 4: X—[0, 1]
such that A=0 on X—N, and A=1 on X—Nj3. We may assume that 4 is G-
invariant since we may integrate it over G if necessary. We may define a G-
map 7: X—SxT by

7(¥)=[A®), (x)), 1—A(x), §(x))]

for x&X. Thus S¥Tea(X).

(iii) If & is empty, then FSa(U)Sa(A) for all G-neighborhood U of A.
So assume F#0, and take S=g and a G-map ¢: A—S. Then ¢ has a G-
extension Ug—S to a G-neighborhood Us of A, and thus Sea(Us). Set Ug:
=NsegUs. Then Ug is a G-neighborhood of A since & is finite. For any Seg
and G-neighborhood U of A with USUg, we see a(Us)Sa(Usz)Sa(U) by the
monotonicity property. Thus FS\Usesa(Us)Sa(U). O

2. The genera of critical point sets

Throughout this paper M denotes a paracompact C! Banach G-manifold
and f: M— R a C!' G-function with the critical point set K. Consider the
following conditions (Ry)-(R,) for f: M—R at ccR:

(Ry) There are an ¢>0 and a G-map M,,.—M,.

(Ry) K. is compact.

(R.) For every G-neighborhood U of K, there are an ¢>0 with e<1 and a
G-map ¢: Me,.—U — M,_. (with ¢| M., =1id if f is unbounded above and c¢>
sup f(K)).
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The conditions (R,)-(R;) are weaker than the conditions (D,)-(D,) in Clapp-
Puppe [2; 3.1]. As is shown in Clapp-Puppe [2; Appendix A] and Krawcewicz-
Marzantowicz [3; Lemma 1.9], the conditions (R,) and (R;) at any c=R is a
consequence of the Palais-Smale condition under suitable assumptions on dif-
ferentiability and completeness. [2; Appendix A] shows that if ¢ is a regular
value of f then (R,) is also a consequence of the Palais-Smale condition. Even
if ¢ is not a regular value we can see that (R,) follows from the Palais-Smale
condition under the assumption ¢ is an isolated critical value.

LEMMA 2.1. Suppose that a C' G-function f: M—R satisfies (R,) and (R,)
at ¢. For a given finite subset F of a(K,) there is an e=¢e(F)>0 such that

aM._)xFca(M...).
In particular, if K, is empty then a(M,_.)=a(M.,.).

Proof. By the assumption, K, is compact and thus closed. M is metrizable
by Palais [5; Corollary 3.4]. By the subcontinuity property of a there is a
G-neighborhood Ug of K. in M such that FSa(U)Sa(K,) for any G-neighbor-
hood U of K, with USUgs. Take an open G-neighborhood V of K, such that
V SUg, and take an ¢>0 satisfying (R,) for this V. Then we see

a(Mc+s):a((Mc+e - V)UV)
2a(M,,.—V)xa(V)
2a(M,_)*F .

If K. is empty, then there are an inclusion map M,_.—M.,,. and a G-map M,,.—
M._. by (R,). Using the monotonicity property twice, we see a(M._)=a(M,..).
]
Consider an interval (@, b]={tcR|a<t<b} for —co<a<bhb<Loo. A C! G-
function f: M—R is said to satisfy R(a, b) if f satisfies (R,) at a and (R,),
(R,) at every c<(a, b].

THEOREM 2.2. Suppose that a C' G-function f: M—R satisfies R(a, b) for
—oco < a<bx o, and that f(K) is bounded above if b= . Given a family
{Fclce(a, b]} of finite subsets F. of a(K,) such that F.= {0} if K.=0, there are
a finite number of critical values ¢y, -+, c,E(a, b] such that

a(Ma)*gcl* *gck SalM,).

Proof. First assume b<<co. Let ¢(a) be such an ¢>0 asin (R,) at a. For
any ce(a, b] let e(¢) be such an ¢>0 as in Lemma 2.1, i.e.,

a(Mc—e(c))*gc.g_—a(MHe(c)) .

Let V. denote the open interval (c—e(c), c+e(c)) for any c<[a, b]. Then
{V.lcela, b]} is an open covering of [a, b]. Since [a, b] is compact, there



348 KATSUHIRO KOMIYA
are a finite number of d,, -+, d,<[a, b] such that
La, b1V, \ UV,
By the monotonicity property and the assumption for e(b) we have
a(Mp)2a(Mp.c00) 2F ¥ a(My_c ) .

b—e(b) is contained in V, for some d={d,, -, dn}. Since b—e(b)<d+¢(d)
we have

aMy_cry)20(Myiea))2F axa(My_cay) -
Thus we have
a(Mp)2F i+ F g¥a(Ma_ecay) -
Repeating this argument, we have
2.3) a(Mp)2F % xF va(M,)

for some ¢, -, cx=(a, b]. If ¢ is not a critical value then ¥,= {0} and so we
may assume that ¢, -+, ¢, in (2.3) are all critical values. Thus the theorem
is proved for the case b<oo.

Now assume b=oo, Take an »>0 such that sup f(K)<r<co. By the above
argument we see that there are a finite number of critical values c;, -, ¢ &
(a, r] such that

a(Ma)*gcl* *Er’ckgoz(Mr) .

Since there are no critical values in [7, co) we can see by (R;) that there is a
G-map My=M — M,. Thus a(M,)=a(M,;)=a(M). Thus the theorem is also
proved for the case b=co. O

COROLLARY 2.4. If, in Theorem 2.2, the critical values of f are ci, -+, Cn
in (a, b], then

a(My)xa(K. ) -+ xa(K.,)Sa(M,).

Proof. Let &, be an arbitrary finite subset of a(K.) for 1<i<m. By
Theorem 2.2 we have

a(Mo)xF, x--xF,, Sa(M,)
for some 1<z, -, 7, <m. This implies
a(M)*F x5 F , S (M) .
Since &, is an arbitrary finite subset of a(K,), we have

a(Mxa(K. )*+a(K,,)Sa(M,). ]
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If, in Corollary 2.4, we take b=oo and if f: M—R is bounded below,
then we have

a(Kcl)*"'*a(Kcm)ga(M) .

This means that if there are G-maps K., —S;(S;€4, 1<i<m), then there is a
G-map M — S;x---xS,. The special case in which G is finite and its action on
M is free is discussed in R.-Nowakowska [6].

3. Numerical genera

Let S be a subset of A. As in Introduction, the numerical S-genus Bs(X)
of a G-space X is defined to be the smallest number n such that there exists
a G-map X—Ax--%A, for A;&S(1=:<n). If there does not exist such a G-
map we define Bs(X)=o0, and if X=0 then define Bs(X)=0.

Clapp-Puppe [2; §2] defined the S-category denoted S-cat(f) for a G-map
f: (X, X)—>X,Y"). If cy: X—pt is the constant map, then S-cat(cy) coincides
with our Bs(X) (see [2; Proposition 2.4]).

If we take as S the set 4 or O(X) given in Introduction, we have two
genera B4(X) and Box)(X). Let y(X) denote Bocx,(X). We easily see that if
X¢=0 then Bu(X)Sy(X), and if X9#0 then Bu(X)=c0 7(X)=1.

THEOREM 3.1. Suppose that a C* G-function f: M— R satisfies R(a, b) for
—ocoLa<b=Zoo, If K oy=KNfa, b] consists of a finite number of orbits,
then

7(Mp)—r(Ma)=# f(K(a,01) #I(K(a,01) -
If, moreover, K% ,1=0, then
Ba(Mp)—Bau(M)=# f(Ka,07) #I(K(a,51) -
Here K¢, 4, denotes the G-fixed point set of Ka, b3

Proof. By the assumption, m=# (K, ;)< and n=#JI(K(q, 5)<cc. Let
¢1, *+, cm be the critical values in (@, b]. We obtain from Corollary 2.4,

T(Mb)_T(Ma)gr(Kcl)“‘ . +T(Kcm) s
and
Ba(My)—Ba(M)=Ba(Ke )+ +Ba(Ke,,) .

We see for each 1=<i<m, y(K.)=<n, and Bu(K.)<n if K§=0, and obtain

7(Mp)—y(Mz)=mn,
and
Ba(Mp)—Ba(M)=mn if K n=0. ]

We conclude with some remarks. Our genera B4«(X) and y(X) are respecti-
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vely the same as 7g(X) and 74(X) in his notation of Bartsch [1]. There he
gives lower bounds for these genera of some G-spaces where G is a cyclic
group Z,. Clapp-Puppe [2] also gives lower bounds for some G-spaces and
the exact values for representation spheres of G where G is a p-torus Z,X--
X Zp, with p a prime, or a real torus S'X---XS*.

(1]
[2]
£3]
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