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Introduction

Throughout this paper G denotes a compact Lie group. For a point x of
a G -space X we set

Gx:=igxeX\g<=G}, and Gx : = {g^G\gx = x\.

Gx is called the orbit through x, and Gx the isotropy subgroup at x. Its con-
jugacy class (Gx) is called the orbit type (or isotropy type) of x. We denote by
3{X) the set of all orbit types on X.

Let M be a closed G-manifold, or more generally a paracompact Banach
G-manifold of class at least C1, i.e., M is a paracompact C1 Banach manifold
and G acts differentiably by diffeomorphisms. Let / : M~>R be a C1 G-function,
i.e., / is of class C1 and satisfies f{gx)—f{x) for all X G M and g^G. If I G M
is a critical point of /, i.e., dfx=O, then its orbit Gx is called a critical orbit
and its orbit type (Gx) is called a critical orbit type. Let /£"= ( X G M | d / ^ 0 }
be the critical point set of /, and set Kc~Kr\f~\c) and Mc~{x^M\f(x)<c)
for any c^R.

The number of critical points alone has been discussed in the nonequivariant
setting. We should, however in the equivariant setting, discuss the types of
critical orbits as well as the number of them. There also arises a new problem
to estimate the number of critical orbit types. In this paper we will define the
set-valued genus and the numerical genus of a G-space, and obtain some ine-
qualities for the genus and the number of critical values and orbit types for
G-functions.

Let J. be the set of G-homeomorphism classes of compact G-ANR's (G-
equivariant Absolute Neighborhood Retract). For a G-space X we define a subset
a{X) of JL to be the set of those S^Jί for which there is a G-map X-^S. We
call a(X) the set-valued genus of X. For two subsets «i and a2 of Jί, we define
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where S*T denotes the join of S and T.
Suppose / : M->R is bounded below and satisfies the Palais-Smale condition

or the conditions (R0)-(R2) stated below. If the critical values of / are cu

cm, then we will obtain

(0.1) a(Kei)*-*a(Ken)Sa(M).

For a G-space X and a subset S of Jί, we define βs(X) to be the smallest
number n such that Λi* ••• *An^a(X) for Au •••, An^S. We call βs(X) the
numerical S-genus of X. Since a homogeneous space G/H with // a closed
subgroup of G is a G-ANR, we may take as S the following subset M or
Of J Ϊ ,

M~{GIH\H is a proper closed subgroup of G),

O(X)={G/H\(H)€ΞJ(X)}.

Then under some conditions on / : M—+R we will obtain from (0.1),

and

(see Theorem 3.1 bslow), where #f(K) is the number of critical values and
#S{K) the number of critical orbit types.

The author thanks the referee for his or her comments which lead to the
improvement of the earlier draft of this paper.

1. Set-valued genera

A G-ANR is a metrizable G-space S such that every G-map Z—>S from a
G-invariant closed subspace Z of a metrizable G-space Y into S has a G-exten-
sion U-^S to a G-neighborhood U of Z in Y. Any point of the join S*T of
two G-ANS's S and T is represented by the form [(Λ, x), (μ, y)~] with the usual
identification, where I G S , y^T, O^λ, μ^l and λ+μ=l. Then S*T becomes
a G-space via the action

gί(l x), (μ, >)] = [«, 5r^), (^ gy)3

for any ^ E G . Moreover S*T is a G-ANR (see Murayama [4; Corollary 12.3]).
This implies that the join α x*α 2 of subsets ax and a2 of Jί is also a subset of Jί.

Convention 1.1. We make the following conventions concerning the empty
set 0 and the set-valued genus a{X) of a G-space X.

( i ) The empty set 0 is assumed to belong to Jί.
(ii) If X=Q then we assume a(X)=Jlf and if Xφ® then 0£a(X).
(iii) X*$—X—$*X for any space X. Then we see d g ^ j fOr any subset
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a of Jl, since 0 e j ϊ .
(iv) Considering 0 as the empty subset of Jl, α*0=0=0*α for any subset

a of Jl.

The set-valued genus possesses the following simple properties.

PROPOSITION 1.2. ( i ) Monotonicity: If there is a G-map X-*Y, then
a(Y)Ga(X).

(ii) Subadditivity: // X=Λ\JB is a metrizable G-space and A, B are G-
invariant closed subsets of X, then a(A)*a(B)Qa(X).

(iii) Subcontinuity: Let X be a metrizable G-space and A a G-invariant
closed subset of X. For any finite subset 9" of a(A), there is a G-neighborhood
Όq of A in X such that $Qa(U)g=a(A) for any G-neighborhood U of A with

Proof, ( i ) Easy.
(ii) Assume a(A)ΦQ and a(B)Φ9, and take S<Ξa(A) and T(Ξa(B). There

are G-maps φ: A—>S and φ: B-*T. Since S and T are G-ANR's, we have
their G-extensions φ: NA—*S and φ: NB~*T, where NA and NB are open G-
neighborhood of A and B in X, respectively. There is a function λ: X-*[0, 1]
such that λ—0 on X—NA and λ=l on X—NB. We may assume that λ is G-
invariant since we may integrate it over G if necessary. We may define a G-
map 7j: X-+S*T by

for X G X Thus S*TGα(Z).
(iii) ϊf £F is empty, then ίϊ£«(£/)gα(^4) for all G-neighborhood U of A.

So assume ff^0, and take S<^$ and a G-map φ: A-+S. Then ^ has a G-
extension /7,s->S to a G-neighborhood ί/5 of 4̂, and thus Sea(Us). Set ί/ff:
— ΠsesfUs. Then ί/gr is a G-neighborhood of A since 9 is finite. For any Se£F
and G-neighborhood U of A with UQUz, we see a(Us)^a(UcF)Qa(U) by the
monotonicity property. Thus ^^{Js^(x(Us)Q(x(U). •

2. The genera of critical point sets

Throughout this paper M denotes a paracompact C1 Banach G-manifold
and f:M-+R a C1 G-function with the critical point set K. Consider the
following conditions (R0)-(R2) for / : M->R at c<=R:

(Ro) T/zβrβ are an ε>0 αnrf α G-map Mc+ε~^Mc.
(Rx) /ίc /s compact.
(R2) For βz βr ;̂ G-neighborhood U of Kc there are an ε>0 ẑ /ί/z ε < l α ^ a

G-map φ: Mc+ε—U -+ Mc_ε (with 0>|Λίc_i = id if f is unbounded above and c>
sup f(K)).
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The conditions (R0)-(R2) are weaker than the conditions (D0)-(D2) in Clapp-
Puppe [2; 3.1]. As is shown in Clapp-Puppe [2; Appendix A] and Krawcewicz-
Marzantowicz [3; Lemma 1.9], the conditions (RO and (R2) at any c e β is a
consequence of the Palais-Smale condition under suitable assumptions on dif-
ferentiability and completeness. [2; Appendix A] shows that if c is a regular
value of / then (Ro) is also a consequence of the Palais-Smale condition. Even
if c is not a regular value we can see that (Ro) follows from the Palais-Smale
condition under the assumption c is an isolated critical value.

LEMMA 2.1. Suppose that a Cι G-function f: M->R satisfies (Rx) and (R2)
at c. For a given finite subset SF of a(Kc) there is an ε — ε(2r)>0 such that

In particular, if Kc is empty then α(Mc_ ε)=α(Mc + e).

Proof. By the assumption, Kc is compact and thus closed. M is metrizable
by Palais [5; Corollary 3.4]. By the subcontinuity property of a there is a
G-neighborhood Ug of Kc in M such that %Qa(U)Qa(Kc) for any G-neighbor-
hood U of Kc with U^Ug. Take an open G-neighborhood V of Kc such that

and take an ε>0 satisfying (R2) for this V. Then we see

If Kc is empty, then there are an inclusion map Mc-ε-~*Mc+ε and a G-map Mc + ε-*
Mc_ε by (R2). Using the monotonicity property twice, we see α(Mc_ ε)=α(Mc + ε).

α
Consider an interval (a, δ]={fe/2| a<t<b\ for — o o < β < ^ ^ o o . A C1 G-

function / : M-*R is said to satisfy R(α, b) if f satisfies (Ro) at a and (Ri),
(R2) at every cG(α, b~\.

THEOREM 2.2. Suppose that a C1 G-function f: M-^R satisfies R(α, b) for
— oo < a <b < oo, and that f(K) is bounded above if b = oo. Given a family
{£Fc|ce(α, ft]} of finite subsets 3C of a(Kc) such that 3C=W if KC=Q, there are
a finite number of critical values cu •••, ck<a(a, b~] such that

Proof. First assume ft<oo. Let ε(α) be such an ε>0 as in (Ro) at a. For
any cG(α, ft] let ε(c) be such an ε>0 as in Lemma 2.1, i.e.,

Let Vc denote the open interval (c—ε(c), c+ε(c)) for any c e [ α , ft]. Then
{F c |cG[α, ft]} is an open covering of [α, ft]. Since [α, ft] is compact, there
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are a finite number of du •••, dm<^[_a, b~\ such that

By the monotonicity property and the assumption for ε(b) we have

b—εφ) is contained in Vd for some d^{dlf •••, dm}. Since b—ε(b)<d-\-ε(d)
we have

Thus we have

Repeating this argument, we have

(2.3)

for some d, •••, ck^(a, b~\. If c is not a critical value then £FC={0} and so we
may assume that cu •••, c* in (2.3) are all critical values. Thus the theorem
is proved for the case &<°°.

Now assume b—oo. Take an r > 0 such that sup f(K)<r<°°. By the above
argument we see that there are a finite number of critical values clf •••,
(a, r] such that

Since there are no critical values in [r, oo) we can see by (R2) that there is a
G-map Mh — M-*Mr. Thus a(Mr) = a(Mb) = a(M). Thus the theorem is also
proved for the case b=oo. •

COROLLARY 2.4. //, m Theorem 2.2, fAβ critical values of f are clf ~ , cm

in (a, fe], ί/zβn

α(Aίβ)*α(/Cβl)* - *α(^ C m )gα(M 6 ) .

P r ^ / . Let £Fj be an arbitrary finite subset of a(KCi) for l£i£m. By
Theorem 2.2 we have

for some I ^ J Ί , •••, ΰ ^ m . This implies

tf(MJ*2^* -*!?

Since 2r

ι is an arbitrary finite subset of a(KCi), we have

•
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If, in Corollary 2.4, we take b=oo and if / : M-*R is bounded below,
then we have

This means that if there are G-maps KCi-»Si(Si&Jl, l<i^m), then there is a
G-mapM-* 5 x* *S m . The special case in which G is finite and its action on
M is free is discussed in R.-Nowakowska [6].

3. Numerical genera

Let cS be a subset of Jί. As in Introduction, the numerical cS-genus βs(X)
of a G-space X is defined to be the smallest number n such that there exists
a G-mapX->i4i* *Aι for At^S (l^i^n). If there does not exist such a G-
map we define βs(X)=oo, and if X=$ then define βs(X)=zO.

Clapp-Puppe [2 § 2] defined the S-category denoted <S-cat(/) for a G-map
/ : (X, X')-*(y, Y'). If cx : X->pt is the constant map, then cS-cat(cz) coincides
with our βs(X) (see [2; Proposition 2.4]).

If we take as S the set M or tf(^Q given in Introduction, we have two
genera βst{X) and βotx)(X) Let γ(X) denote βcκx)(X)- We easily see that if
XG=Q then βM(X)<γ(X), and if Z G ^ 0 then £*(*)=«> Γ ( ^ ) = l .

THEOREM 3.1. Suppose that a C1 G-function f: M—>R satisfies R(α, /?) /or
— c^<fl<^^oo. // K(a>bl=Knf~\a, b~] consists of a finite number of orbits,
then

γ(Mb)-γ(Ma)<#f(K(atbl) #J(K(a,bl).

If, moreover, K?a,bi=®> then

βjc(M>)-βjc(Afa)£#f(K(aι H ) #<3{K{a, H ) .

//ere /ffα.w denotes the G-fixed point set of K{a,bi'

Proof. By the assumption, m=#f(K(atbl)<oo and n — #j(K(atbl)<<yD. Let
£i> •••, ̂ m be the critical values in (α, b~\. We obtain from Corollary 2.4,

γ(Mb)-γ(Ma)<ίγ(KCl)+. +γ(KcJ,
and

We see for each l^ i^m, γ(Kc.)^n, and β<κ(KCi)<n if / ^ ^ = 0 , and obtain

and
if K?α,&3=0. D

We conclude with some remarks. Our genera βsc(X) and γ(X) are respecti-
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vely the same as fe(X) and ^ ( 1 ) in his notation of Bartsch [1]. There he
gives lower bounds for these genera of some G-spaces where G is a cyclic
group Zn. Clapp-Puppe [2] also gives lower bounds for some G-spaces and
the exact values for representation spheres of G where G is a ^-torus Zvx
XZP with p a prime, or a real torus S1X- xS1.
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