T. H. KIM AND E. S. KIM KODAI MATH. J. 18 (1995), 275-283

ITERATIVE FIXED POINTS OF NON-LIPSCHITZIAN SELF-MAPPINGS

TAE HWA KIM* AND EUN SUK KIM

Abstract

In this paper, we shall establish iterative fixed points of non-Lipschitzian continuous self-mappings on Banach spaces with weak uniform normal structure.

1. Introduction

Let C be a nonempty subset of a real Banach space X and let N be the set of natural numbers. A mapping $T: C \rightarrow C$ is said to be Lipschitzian if for each $n \in \mathbb{N}$, there exists a real number k(n) such that

$$||T^n x - T^n y|| \leq k(n) ||x - y|| \quad \text{for all} \quad x, y \in C.$$

In particular, T is said to be asymptotically nonexpansive [7] if $\lim_{n\to\infty} k(n)=1$ and it is said to be nonexpansive if k(n)=1 for any $n \in \mathbb{N}$. We now consider a non-Lipschitzian self-mapping on C, that is to say, a mapping of weakly asymptotically nonexpansive type. We say that a mapping $T: C \to C$ is said to be weakly asymptotically nonexpansive type (simply, w.a.n.t.) on C (see [10]) if, for each $x \in C$ and each bounded subset D of C,

$$\limsup_{n \to \infty} (\sup \{ [\|T^n x - T^n y\| - \|x - y\|] : y \in D \}) \leq 0.$$

Immediately, we can see that all mappings of w.a.n.t. include all mappings of asymptotically nonexpansive type (see [11]). In particular, if $T: C \rightarrow C$ is a Lipschitzian mapping with an additional condition, i.e., $\limsup_{n\to\infty} k(n) \leq 1$ (see [12] and [14]), then it is obviously a continuous mapping of w.a.n.t. Further if C is bounded, then any mapping of w.a.n.t. is asymptotically nonexpansive type.

¹⁹⁹¹ AMS Subject Classification. 47H09, 47H20.

Key words and phrases. Weakly asymptotically nonexpansive type, weak uniform normal structure and iterative fixed points.

^{*} Supported by the Research Institute Attached to University Program, Korea Research Foundation, 1993.

Received February 18, 1994; revised July 21, 1994.

In this paper, we first give new sharp expressions of the weak convergent sequence coefficient WCS(X) of a non-Schur space X according to G. L. Zhang [16]. Finally, we shall present an iterative fixed point of a non-Lipschitzian continuous self-mapping on a Banach space X with weak uniform normal structure (see Theorem 3.3), which improves the result due to T.D. Benavides, G.L. Acedo and H.K. Xu [2].

2. Expressions of the WCS(X)

Let X be a Banach space which is not Schur and let $\{x_n\}$ be a sequence of X. For $x \in X$, set $r(x, \{x_n\}) = \limsup_{n \to \infty} \|x_n - x\|$. $A(\{x_n\}) = \limsup_{n \to \infty} \{\|x_i - x_j\| : i, j \ge n\}$ and $r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in \overline{co}(\{x_n\})\}$ are called the asymptotic diameter of $\{x_n\}$ and the Chebyshev radius of $\{x_n\}$ relative to $\overline{co}(\{x_n\})$, respectively, where $\overline{co}(\{x_n\})$ denotes the closed convex hull of $\{x_n\}$. The weakly convergent sequence coefficient of X, denoted by WCS(X), is the supremum of the set of all numbers M with the property that for each weakly convergent sequence $\{x_n\}$ with asymptotic diameter $A(\{x_n\})$, there is some $y \in \overline{co}(\{x_n\})$ such that $M \cdot \limsup_{n \to \infty} \|x_n - y\| \le A(\{x_n\})$. Equivalently,

$$WCS(X) = \inf \{A(\{x_n\})/r(\{x_n\})\},\$$

where the first infimum is taken over all sequences $\{x_n\}$ in X which are weakly (not strongly) convergent (see [3] and [13]). It is well-known (see [3]) that if WCS(X)>1, then X has weak normal structure. This means that any weakly compact convex subset C of X with diam(C)>0 has a nondiametral point, i.e., an $x \in C$ such that

$$\sup\{||x-y||: y \in C\} < \operatorname{diam}(C).$$

The coefficients WCS(X) play important roles in fixed point theory (cf. [4], [9], [15]). A space X such that WCS(X)>1 is said to have weak uniform normal structure.

Recently, G. L. Zhang [16] has proved the following improvement of expression of the WCS(X):

(2.1)
$$WCS(X) = \sup\{M: x_n \to u \Rightarrow M \cdot \limsup \|x_n - u\| \leq A(\{x_n\})\},$$

where " \rightarrow " means the weak convergence.

For a sequence $\{x_n\}$ of a Banach space X, we set

$$D(\lbrace x_n \rbrace) := \limsup (\limsup \sup (\limsup \|x_n - x_m\|).$$

We easily see that $D(\{x_n\}) \leq A(\{x_n\})$. However, $D(\{x_n\}) \neq A(\{x_n\})$ in general. For example, consider the James' quasi-reflexive space J consisting of all real sequences $x := \{x_n\} = \sum_{n=1}^{\infty} x_n e_n$ for which $\lim_{n \to \infty} x_n = 0$ and $\|x\|_J < \infty$, where

276

ITERATIVE FIXED POINTS

$$\|x\|_{J} = \sup \{ [(x_{p_{1}} - x_{p_{2}})^{2} + \dots + (x_{p_{m-1}} - x_{p_{m}})^{2} + (x_{p_{m}} - x_{p_{1}})^{2}]^{1/2} \}$$

and the supremum is taken over all choices of m and $p_1 < p_2 < \cdots < p_m$. Then J is a Banach space with the norm $\|\cdot\|_J$ and the sequence $\{e_n\}$ given by $e_n = (0, \dots, 0, 1, 0, \dots)$ where the 1 is in the *n*th position, is a Schauder basis for J (see [5]).

Take $x_n = e_n - e_{n+1}$ for each $n \in \mathbb{N}$. Since $||x_n||_J = \sqrt{6}$ for each $n \in \mathbb{N}$, we have $x_n \in J$ and we now show that

$$D(\{x_n\}) = 2\sqrt{3} < A(\{x_n\}) = 2\sqrt{5}$$

Indeed, for each fixed $n \in \mathbb{N}$, it is obvious that $||x_n - x_m||_J = 2\sqrt{3}$ for all $m \ge n+3$ and so $D(\{x_n\}) = \limsup_{m \to \infty} (\limsup_{n \to \infty} ||x_n - x_m||_J) = 2\sqrt{3}$. On the other hand, for each $k \in \mathbb{N}$, if we take n = k and $m = n+1 \ge k$, then $||x_n - x_m||_J = 2\sqrt{5}$ and so

$$\sup\{\|x_n - x_m\|_J: n, m \ge k\} = 2\sqrt{5} \quad \text{for each } k \in \mathbb{N},$$

which gives $A(\{x_n\})=2\sqrt{5}$.

We now give a sharp expression of WCS(X) which improves the result due to G. H. Zhang [16; Theorem 1].

We begin with the following easy lemma.

LEMMA 2.1. If $z_n = y_n / ||y_n||$, $\alpha := \lim_{n \to \infty} ||y_n|| \neq 0$, then

$$D(\{z_n\}) = \frac{1}{\alpha} D(\{y_n\}).$$

Proof. For each $n, m \in N$, we easily get

$$||z_{n}-z_{m}|| = \left\|\frac{1}{\alpha}(y_{n}-y_{m}) + \left(\frac{1}{||y_{n}||} - \frac{1}{\alpha}\right)y_{n} - \left(\frac{1}{||y_{m}||} - \frac{1}{\alpha}\right)y_{m}\right\|$$

$$\leq \frac{1}{\alpha}||y_{n}-y_{m}|| + \left|\frac{1}{||y_{n}||} - \frac{1}{\alpha}\right| \cdot ||y_{n}|| + \left|\frac{1}{||y_{m}||} - \frac{1}{\alpha}\right| \cdot ||y_{m}||.$$

Taking at first $\limsup_{m\to\infty}$ and next $\limsup_{n\to\infty}$ in both sides, we obtain

$$D(\{z_n\}) \leq \frac{1}{\alpha} D(\{y_n\}).$$

The converse inequality is similarly obtained.

LEMMA 2.2. Let M>0. Then the following statements are equivalent:

- (a) $M \cdot \limsup \|x_n x\| \leq A(\{x_n\})$ for any $x_n \rightarrow x$ (not strongly convergent).
- (b) $M \cdot \limsup \|x'_n x'\| \leq D(\{x'_n\})$ for any $x'_n \rightarrow x'$ (not strongly convergent).

Proof. Since $D(\{x_n\}) \leq A(\{x_n\})$, it is obvious that $(b) \Rightarrow (a)$.

To show (a) \Rightarrow (b), let $x'_n \rightarrow x'$ (not strongly convergent) and $\alpha := \limsup_{n \rightarrow \infty} \sup_{m \rightarrow \infty} \|x'_n - x'\| \neq 0$. Then we can choose a subsequence $\{x'_m\}$ of $\{x'_n\}$ such that $\alpha = \lim_{m \rightarrow \infty} \|x'_m - x'\|$. Setting $z_m := (x'_m - x')/\alpha$, we have $z_m \rightarrow 0$ and $\|z_m\| \rightarrow 1$, by using a diagonal method as in [1], we can choose a subsequence $\{z_{m_k}\}$ of $\{z_m\}$ such that $\lim_{k, l \rightarrow \infty} |k \neq l| \|z_{m_k} - z_{m_l}\|$ exists. Then (a) and Lemma 2.1 yield that

$$M = M \cdot \lim_{k \to \infty} ||z_{m_k}|| \le A(\{z_{m_k}\}) = D(\{z_{m_k}\})$$
$$\le D(\{z_m\}) = \frac{1}{\alpha} D(\{x'_m\}) \le \frac{1}{\alpha} D(\{x'_n\})$$

and hence $M \cdot \lim \sup_{m \to \infty} ||x'_m - x'|| = M\alpha \leq D(\{x'_n\})$, which completes the proof. As a direct consequence of Lemma 2.2 and (2.1), we can obtain the following

THEOREM 2.3.

$$WCS(X) = \sup \{M: x_n \rightarrow u \Rightarrow M \cdot \limsup_{n \rightarrow \infty} \|x_n - u\| \leq D(\{x_n\})\}.$$

As a direct consequence of Theorem 2.3, by using a similar method as in G. H. Zhang [16], we can easily obtain the following expressions of WCS(X).

$$WCS(X) = \inf \left\{ \frac{D(\{x_n\})}{r(u, \{x_n\})} : \{x_n\} \text{ weakly (not strongly) converges to } u \right\}$$
$$= \inf \left\{ D(\{x_n\}) : \{x_n\} \subset S(X) \text{ and } x_n \rightarrow 0 \right\}$$
$$= \inf \left\{ D(\{x_n\} : x_n \rightarrow 0 \text{ and } \lim_{n \rightarrow \infty} \|x_n\| = 1 \right\},$$

where S(X) denotes the unit sphere of X, i.e., $S(X) = \{x \in X : ||x|| = 1\}$.

3. Iterative fixed points of non-Lipschitzian mappings

Let C be a nonempty subset of a Banach space X. In this section, we recall that a mapping $T: C \rightarrow C$ is said to be *weakly asymptotically nonexpansive type* (simply, w.a.n.t.) on C (see [10]) if, for each $x \in C$ and each bounded subset D of C,

$$\limsup_{n \to \infty} (\sup \{ [\|T^n x - T^n y\| - \|x - y\|] : y \in D \}) \leq 0.$$

Here we give an example of a continuous mapping which is of w.a.n.t. and not Lipschitz.

Example. Let $X = \mathbf{R}$, $C = [0, \infty)$ and let |k| < 1. For each $n \in \mathbf{N}_0 = \mathbf{N} \cup \{0\}$, we define

$$T^{n+1}x = \begin{cases} kT^n x \left| \sin \frac{1}{T^n x} \right|, & \text{if } x \in C - Z(T^n); \\ 0, & \text{if } x \in Z(T^n). \end{cases}$$

We denote by $Z(T^n)$ the set of all zeros of T^n and by T^0 the identy mapping I on C. We see that $Z(T) = \{1/m\pi : m \in N\} \cup \{0\}, Z(T^n) = Z(T^{n-1}) \cup \{z \in C : T^{n-1}z = (1/m\pi) \text{ for some } m \in N\}$ for $n \in N$, and $\{Z(T^n) : n \in N\}$ is nondecreasing. Since $\{T^nx\}$ converges uniformly to zero on any closed bounded interval of C, $T \equiv T^1: C \to C$ is really a continuous mapping of w.a.n.t. Indeed, for each $x \in C$ and each bounded subset D of C, there is a closed bounded interval I_D containing D. For each $n \in N$, the map $h_n(y) = |T^nx - T^ny| - |x-y|$ achieves its maximum on I_D , say $y_n \in I_D$. Then,

$$\lim_{n \to \infty} \sup \{ |T^n x - T^n y| - |x - y| : y \in I_D \}$$

=
$$\lim_{n \to \infty} \sup (|T^n x - T^n y_n| - |x - y_n|)$$

$$\leq \lim_{n \to \infty} |T^n x - T^n y_n| - \liminf_{n \to \infty} |x - y_n|$$

=
$$-\liminf_{n \to \infty} |x - y_n| \leq 0.$$

Therefore $T: C \rightarrow C$ is of w.a.n.t. However, it is obviously not Lipschitz.

Recall that $T: C \rightarrow C$ is said to be asymptotically regular on C if

$$\lim_{n\to\infty} ||T^n x - T^{n+1} x|| = 0 \qquad \forall x \in C.$$

DEFINITION 3.1. A mapping $T: C \rightarrow X$ is said to be *weakly demicompact* if whenever $\{x_n\} \subset C$ is a bounded sequence and $\{x_n - Tx_n\}$ is a convergent sequence, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which is weakly convergent.

It is clear that every demicompact mappings are weakly demicompact, and also that if C is weakly compact, then $T: C \rightarrow X$ is weakly demicompact.

LEMMA 3.2. Let C be a nonempty closed convex separable subset of a Banach space X and let $T: C \rightarrow C$ be a mapping of w.a.n.t. Let $x_0 \in C$ such that $\{T^n x_0\}$ is bounded. If T is weakly demicompact and asymptotically regular on C, then there exists a subsequence $\{n_j\}$ of positive integers such that

 $\{T^{n_j}x\}$ converges weakly for every $x \in C$.

Proof. Since T is a mapping of w.a.n.t., it is obvious that for each $x \in C$, $\{T^n x\}$ is bounded. For each $x \in C$, we set $x_n = T^n x$ for $n \in \mathbb{N}$. Since T is asymptotically regular on C, by the weak demicompactness of T, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which converges weakly.

Let *E* be a countable dense subset of *C*. By using a usual diagonal method, we can choose a subsequence $\{n_j\}$ of *N* such that $\{T^{n_j}z\}$ converges weakly to $u_z \in C$ for every $z \in E$. Given $\varepsilon > 0$, $x \in C$ and $x^*(\neq 0) \in X^*$, where X^* is a dual space of *X*, there is a $z \in E$ such that $||x-z|| < \varepsilon/3 ||x^*||$. Since *T* is a mapping of w.a.n.t., it follows that, for each *x*, $z \in C$ and for any subsequence $\{n_i\}$ of *N*,

$$\limsup_{i\to\infty} \|T^{n_i}x - T^{n_i}z\| \leq \|x - z\|,$$

in particular, there exists $j'_0 \in N$ such that

$$\sup_{j \ge j'_0} \|T^{n_j} x - T^{n_j} z\| \le \|x - z\| + \frac{\varepsilon}{3\|x^*\|} < \frac{2\varepsilon}{3\|x^*\|}.$$

On the other hand, since $\{T^{n_j}z\}$ converges weakly to $u_z \in C$, there also exists $j''_0 \in \mathbb{N}$ such that

$$\|x^*(T^{n_j}z-u_z)\| < \frac{\varepsilon}{3}$$
 for $j \ge j_0''$,

By taking $j_0 = \max\{j'_0, j''_0\}$, we obtain that, for $j \ge j_0$,

$$\|x^{*}(T^{n_{j}}x-u_{z})\| \leq \|x^{*}\|\|T^{n_{j}}x-T^{n_{j}}z\|+\|x^{*}(T^{n_{j}}z-u_{z})\| < \varepsilon.$$

which completes the proof.

If C is a closed convex subset of a Banach space X and if $T: C \rightarrow C$ is a mapping, we can easily construct a separable subspace X_{∞} of X and a closed convex subset C_{∞} of X_{∞} which is T-invariant. This shows that in many cases, i.e., when the other assumptions on C are inherited by C_{∞} , it suffices to formulate fixed point problems in a separable setting (see [7; pp. 35-36]).

By using an iterative method, we show a fixed point theorem of a continuous self-mapping of w.a.n.t. on a Banach space X with weak uniform normal structure, i.e., WCS(X)>1. We employ the method of the proof of [2].

THEOREM 3.3. Suppose X is a Banach space such that WCS(X)>1, C is a nonempty closed convex subset of X, and a continuous mapping $T: C \to C$ of w.a.n.t. is weakly demicompact. Suppose in addition that T is asymptotically regular on C and $\{T^n x_0\}$ is bounded for some $x_0 \in C$. Then T has an iterative fixed point in C.

Proof. By above argument, we may assume that C is separable. By Lemma 3.2, we can choose a subsequence $\{n_j\}$ of positive integers such that

 $\{T^n, x\}$ converges weakly for every $x \in C$.

Now we can construct a sequence $\{x_n\}$ in C in the following way:

$$x_0 \in C$$
 arbitrary
 $x_m = w - \lim_{j \to \infty} T^{n_j} x_{m-1}, \quad \forall m \ge 1.$

Note that the asymptotic regularity of T on C ensures that

$$x_m = w - \lim_{j \to \infty} T^{n_j + p} x_{m-1}, \qquad \forall p \ge 0.$$

We now show that $\{x_m\}$ converges strongly to a fixed point of T. To this

280

end, for each integer $m \ge 0$,

$$B_m := \limsup_{j \to \infty} \|T^{n_j} x_m - x_{m+1}\|.$$

Then, by Theorem 2.3, we have

(3.1)
$$B_{m} \leq \frac{1}{WCS(X)} D(\{T^{n_{j}} x_{m}\}).$$

Since T is a mapping of w.a.n.t., for each fixed $m \in N$ and bounded subset $D_m = \{T^n x_m : n \in N\}$ of C

(3.2)
$$\limsup_{j \to \infty} \{ \sup [\|T^{n_j} x_m - T^{n_j} z\| - \|x_m - z\|] : z \in D_m \} \leq 0,$$

and by asymptotic regularity of T on C, it follows that, for each $j \in N$ and $p \ge 0$,

(3.3)
$$\limsup_{\iota \to \infty} \|T^{n_{\iota}+p}u - T^{n_{\iota}}v\| = \limsup_{\iota \to \infty} \|T^{n_{\iota}}u - T^{n_{\iota}}v\| \quad \forall u, v \in C.$$

Replacing p and u, v in (3.3) by n_j and x_m respectively, it follows that

$$D(\{T^{n_j}x_m\}) = \limsup_{j \to \infty} (\limsup_{i \to \infty} \|T^{n_i}x_m - T^{n_j}x_m\|)$$
$$= \limsup_{j \to \infty} (\limsup_{i \to \infty} \|T^{n_i + n_j}x_m - T^{n_i}x_m\|).$$

Noting also that, for each $j \in N$,

$$\begin{split} &\limsup_{i \to \infty} \|T^{n_{i}+n_{j}} x_{m} - T^{n_{j}} x_{m}\| \\ &\leq &\sup_{i \in N} [\|T^{n_{j}} x_{m} - T^{n_{j}} (T^{n_{i}} x_{m})\| - \|x_{m} - T^{n_{i}} x_{m}\|] \\ &+ &\lim_{i \to \infty} \sup \|x_{m} - T^{n_{i}} x_{m}\| \\ &\leq &\sup_{z \in D} [\|T^{n_{j}} x_{m} - T^{n_{j}} z\| - \|x_{m} - z\|] \\ &+ &\lim_{i \to \infty} \sup \|x_{m} - T^{n_{i}} x_{m}\|, \end{split}$$

it follows from (3.2) that

$$D(\{T^{n_j}x_m\}) \leq \limsup_{i \to \infty} \|x_m - T^{n_i}x_m\|.$$

On the other hand, by the w-l.s.c. of the norm of X and with the same method as before, we easily obtain

(3.4)
$$\limsup_{\iota \to \infty} \|x_m - T^{n_\iota} x_m\| \leq \limsup_{\iota \to \infty} (\liminf_{j \to \infty} \|T^{n_\iota} x_m - T^{n_j} x_{m-1}\|)$$
$$\leq \limsup_{\iota \to \infty} (\limsup_{j \to \infty} \|T^{n_\iota} x_m - T^{n_j + n_\iota} x_{m-1}\|)$$
$$\leq \limsup_{j \to \infty} \|x_m - T^{n_j} x_{m-1}\| = B_{m-1},$$

which immediately gives that $D(\{T^n_j x_m\}) \leq B_{m-1}$. Hence, by (3.1),

$$B_m \leq \frac{1}{WCS(X)} B_{m-1},$$

and since WCS(X)>1, we have $\lim_{m\to\infty} B_m=0$. Now using the w-l.s.c. of the norm of X and (3.4) again, we deduce that

$$\|x_{m} - x_{m+1}\| \leq \limsup_{i \to \infty} \|x_{m} - T^{n_{i}}x_{m}\| + \limsup_{i \to \infty} \|T^{n_{i}}x_{m} - x_{m+1}\|$$

$$\leq B_{m-1} + B_{m},$$

which implies that $\{x_m\}$ is Cauchy. Let $v := \lim_{m \to \infty} x_m$. Then, for each $j \in N$,

$$\|v - T^{n_{j}}v\| \leq \|v - x_{m+1}\| + \|x_{m+1} - T^{n_{j}}x_{m}\| + \|T^{n_{j}}x_{m} - T^{n_{j}}v\|.$$

Since T is of w.a.n.t., by taking the $\limsup_{j\to\infty}$ in both sides we obtain that

$$\limsup_{j \to \infty} \|v - T^{n_j}v\| \le \|v - x_{m+1}\| + B_m + \|x_m - v\| \to 0$$

as $m \to \infty$. Hence $T^{n_{1}}v \to v$ and Tv = v by the continuity and asymptotic regularity of T at v. This completes the proof.

COROLLARY 3.4. Suppose X is a Banach space such that WCS(X)>1, C is a nonempty weakly compact convex subset of X, and $T: C \rightarrow C$ is a continuous mapping of asymptotically nonexpansive type. Suppose in addition that T is asymptotically regular on C. Then T has an iterative fixed point in C.

Finally, as a direct consequence of Corollary 3.4, we give an iterative fixed point for a nonexpansive mapping on a Banach space. Let $T: C \rightarrow C$ be a nonexpansive mapping. For a fixed $\lambda \in (0, 1)$, we set

$$S_{\lambda} := \lambda I + (1 - \lambda)T$$
,

where I is the identity operator of X. Then it is obvious that $S_{\lambda}: C \to C$ is also nonexpansive with the same fixed point set of T. Moreover, it is wellknown (see [6]) that S_{λ} is asymptotically regular on C. Therefore, we obtain the following result due to T. D. Benavides, G. L. Acedo and H. K. Xu [2].

COROLLARY 3.5. Suppose X is a Banach space such that WCS(X)>1, C is a nonempty weakly compact convex subset of X, and $T: C \rightarrow C$ is a nonexpansive mapping. Then T has an iterative fixed point in C.

References

[1] T.D. BENAVIDES, Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc., 34 (1986), 120-128.

282

ITERATIVE FIXED FOINTS

- [2] T.D. BENAVIDES, G.L. ACEDO AND H.K. XU, Weak uniform normal structure and iterative fixed points of nonexpansive mappings, Colloq. Math. (to appear).
- [3] W.L. BYNUM, Normal structure coefficient for Banach spaces, Pacific J. Math., 86 (1980), 427-436.
- [4] E. CASINI AND E. MALUTA, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal., 9 (1985), 103-108.
- [5] J. DIESTEL, Sequences and Series in Banach Spaces, Graduate Texts in Math., 92, Springer-Verlag, New York, 1984.
- [6] M. EDELSTEIN AND R.C. OBRIEN, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc., 17 (1978), 547-554.
- [7] K. GOEBEL AND W.A. KIRK, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
- [8] K. GOEBEL AND W.A. KIRK, Topics in metric fixed point theory, Cambridge Univ. Press., 1990, pp. 34-35, 73-74.
- [9] A. JIMÉNEZ-MELADO, Stability of weak normal structure in James quasi reflexive space, Bull. Austral. Math. Soc., 46 (1992), 367-372.
- [10] T.H. KIM, Nonlinear ergodic theorems of almost-orbits of non-Lipschitzian semigroups, Kodai Math. J., 15 (1992), 296-309.
- [11] W.A. KIRK, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17 (1976), 339-346.
- [12] W.A. KIRK AND R. TORREJON, Asymptotically nonexpansive semigroups in Banach spaces, Nonlinear Anal., 3 (1979), 111-121.
- [13] T.C. LIM, On the normal structure coefficient and the bounded sequence coefficient, Proc. Amer. Math. Soc., 88 (1983), 262-264.
- [14] W. TAKAHASHI AND P. J. ZHANG, Asymptotic behavior of almost-orbits of semigroups of Lipschitzian mappings in Banach spaces, Kodai Math. J., 11 (1988), 129-140.
- [15] D. TINGLEY, The normal structure of James quasi reflexive space, Bull. Austral. Math. Soc., 42 (1990), 95-100.
- [16] G.L. ZHANG, Weakly convergent sequence coefficient of product space, Proc. Amer. Math. Soc., 117 (1993), 637-643.

DEPARTMENT OF APPLIED MATHEMATICS NATIONAL FISHERIES UNIVERSITY OF PUSAN PUSAN 608-737 Korea