M. OZAWA AND K. SAWADA KODAI MATH. J. 18 (1995). 199-233

PICARD CONSTANTS OF FOUR-SHEETED ALGEBROID SURFACES, II

MITSURU OZAWA AND KAZUNARI SAWADA

§1. Introduction

Under the same title we have reported a paper, in which the Picard constant of several four-sheeted algebroid surfaces with P(y)=7 has been decided. In this paper we shall continue the same work for four-sheeted algebroid surfaces with P(y)=6. Again the discriminant of surfaces with P(y)=6 plays a very important role in this paper.

In the first place we decide several four-sheeted algebroid surfaces with P(y)=6. We classify into representative surfaces by a linear transformation $\alpha y + \beta$. Next we compute their discriminants of representative surfaces. This process need a little bit hard work. Finally we get theorems, which decide the Picard constant.

§2. Surfaces with P(y)=6

Let us consider the four-sheeted algebroid surface defined by

$$F(z, y) \equiv y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0.$$

By Rémoundos' theorem we consider the following equations:

(i) (ii) (iii) (iii)

$$\begin{pmatrix}
F(z, 0) \\
F(z, a_1) \\
F(z, a_2) \\
F(z, a_3) \\
F(z, a_4)
\end{pmatrix} = \begin{pmatrix}
c_1 \\
c_2 \\
c_3 \\
\beta_1 e^{H_1} \\
\beta_2 e^{H_2}
\end{pmatrix}, = \begin{pmatrix}
c_1 \\
c_2 \\
\beta_1 e^{H_1} \\
\beta_2 e^{H_2} \\
\beta_3 e^{H_3}
\end{pmatrix}, = \begin{pmatrix}
c_1 \\
\beta_1 e^{H_1} \\
\beta_2 e^{H_2} \\
\beta_3 e^{H_3} \\
\beta_4 e^{H_4}
\end{pmatrix},$$

Received November 4, 1993.

(iv) (v) (vi)

$$= \begin{pmatrix} \beta_1 e^{H_1} \\ c_1 \\ c_2 \\ c_3 \\ \beta_2 e^{H_2} \end{pmatrix}, = \begin{pmatrix} \beta_1 e^{H_1} \\ c_1 \\ c_2 \\ \beta_2 e^{H_2} \\ \beta_3 e^{H_3} \end{pmatrix}, = \begin{pmatrix} \beta_1 e^{H_1} \\ c_1 \\ \beta_2 e^{H_2} \\ \beta_3 e^{H_3} \\ \beta_4 e^{H_4} \end{pmatrix},$$

where c_1 , c_2 , c_3 are non-zero constants, β_1 , β_2 , β_3 , β_4 non-zero constants and H_1 , H_2 , H_3 , H_4 are non-constant entire functions satisfying $H_j(0)=0$.

CASE (i). Then $S_4 = c_1$ and

$$\begin{cases} a_1^4 - S_1 a_1^3 + S_2 a_1^2 - S_3 a_1 + c_1 = c_2, \\ a_2^4 - S_1 a_2^3 + S_2 a_2^2 - S_3 a_2 + c_1 = c_3, \\ a_3^4 - S_1 a_3^3 + S_2 a_3^2 - S_3 a_3 + c_1 = \beta_1 e^{H_1}, \\ a_4^4 - S_1 a_4^3 + S_2 a_4^2 - S_3 a_4 + c_1 = \beta_2 e^{H_2}, \end{cases}$$

Let us put

$$x_1 = \frac{c_1}{a_1 a_2 a_3}, \quad x_2 = \frac{c_2}{a_1 (a_1 - a_2)(a_3 - a_1)}, \quad x_3 = \frac{c_3}{a_2 (a_1 - a_2)(a_2 - a_3)}$$

and

$$x_0 = \frac{\beta_1}{a_3(a_2 - a_3)(a_3 - a_1)}.$$

Then from the first three equations

$$\begin{cases} S_1 = x_1 + x_2 + x_3 + a_1 + a_2 + a_3 + x_0 e^{H_1}, \\ S_2 = (a_1 + a_2 + a_3)x_1 + (a_2 + a_3)x_2 + (a_1 + a_3)x_3 + a_1a_2 + a_2a_3 + a_1a_3 + (a_1 + a_2)x_0 e^{H_1}, \\ S_3 = (a_1a_2 + a_2a_3 + a_1a_3)x_1 + a_2a_3x_2 + a_1a_3x_3 + a_1a_2a_3 + a_1a_2x_0 e^{H_1}. \end{cases}$$

Put these into $F(z, a_4) = \beta_2 e^{H_2}$. Making use of Borel's unicity theorem, we have $H_1 = H_2(=H)$ and

$$x_{0} = \frac{\beta_{2}}{a_{4}(a_{2} - a_{4})(a_{4} - a_{1})},$$
$$\frac{x_{1}}{a_{4}} + \frac{x_{2}}{a_{4} - a_{1}} + \frac{x_{3}}{a_{4} - a_{2}} = 1.$$

We impose the following condition: $F(z, \alpha) = \beta e^L$ does not hold excepting $\alpha = a_3$, a_4 . Now

FOUR-SHEETED ALGEBROID SURFACES

$$F(z, \alpha) = (\alpha - a_3) [-x_1(\alpha - a_1)(\alpha - a_2) - x_2\alpha(\alpha - a_2) - x_3\alpha(\alpha - a_1) + \alpha(\alpha - a_1)(\alpha - a_2)] - x_0 e^H \alpha(\alpha - a_1)(\alpha - a_2).$$

Therefore we have three cases:

(a)
$$\alpha(\alpha-a_1)(\alpha-a_2)-x_1(\alpha-a_1)(\alpha-a_2)-x_2\alpha(\alpha-a_2)-x_3\alpha(\alpha-a_1)=(\alpha-a_4)^3$$
,

(b) =
$$(\alpha - a_3)(\alpha - a_4)^2$$
,

(c) =
$$(\alpha - a_3)^2(\alpha - a_4)$$
.

CASE (a). Then

$$3a_4 = a_1 + a_2 + x_1 + x_2 + x_3,$$

$$3a_4^2 = a_1a_2 + (a_1 + a_2)x_1 + a_2x_2 + a_1x_3$$

and

$$a_4^3 = x_1 a_1 a_2$$
.

Thus Hence

$$c_{1} = a_{3}a_{4}^{3}, \quad c_{2} = (a_{3} - a_{1})(a_{4} - a_{1})^{3}, \quad c_{3} = (a_{3} - a_{2})(a_{4} - a_{2})^{3}.$$

$$\begin{cases}
S_{1} = 3a_{4} + a_{3} + x_{0}e^{H}, \\
S_{2} = 3a_{4}(a_{4} + a_{3}) + (a_{1} + a_{2})x_{0}e^{H}, \\
S_{3} = a_{4}^{2}(a_{4} + 3a_{3}) + a_{1}a_{2}x_{0}e^{H}, \\
S_{4} = c_{1} = a_{3}a_{4}^{3}.
\end{cases}$$

This surface is denoted by R_1 .

CASE (b). Then

$$2a_4 + a_3 = a_1 + a_2 + x_1 + x_2 + x_3,$$

$$a_4^2 + 2a_3a_4 = a_1a_2 + (a_1 + a_2)x_1 + a_2x_2 + a_1x_3,$$

$$a_3a_4^2 = x_1a_1a_2 = c_1/a_3.$$

Hence

$$c_1 = a_3^2 a_4^2$$
, $c_2 = (a_3 - a_1)^2 (a_4 - a_1)^2$, $c_3 = (a_3 - a_2)^2 (a_4 - a_2)^2$.

Thus

$$\begin{cases} S_1 = 2a_3 + 2a_4 + x_0e^H, \\ S_2 = a_3^2 + 4a_3a_4 + a_4^2 + (a_1 + a_2)x_0e^H, \\ S_3 = 2a_3a_4(a_3 + a_4) + a_1a_2x_0e^H, \\ S_4 = c_1 = a_3^2a_4^2 \end{cases}$$

This surface is denoted by R_2 .

CASE (c). Then

$$2a_3 + a_4 = a_1 + a_2 + x_1 + x_2 + x_3,$$

$$a_3^2 + 2a_3a_4 = a_1a_2 + (a_1 + a_2)x_1 + a_2x_2 + a_1x_3$$

and

$$a_3^2 a_4 = x_1 a_1 a_2 = c_1 / a_3$$
.

Thus

$$c_1 = a_3^{3}a_4$$
, $c_2 = (a_3 - a_1)^{3}(a_4 - a_1)$, $c_3 = (a_3 - a_2)^{3}(a_4 - a_2)$.

Hence

$$\begin{cases} S_1 = 3a_3 + a_4 + x_0e^H, \\ S_2 = 3a_3(a_3 + a_4) + (a_1 + a_2)x_0e^H, \\ S_3 = 3a_3^2a_4 + a_3^3 + a_1a_2x_0e^H, \\ S_4 = c_1 = a_3^3a_4. \end{cases}$$

This surface is denoted by R_3 .

CASE (iv). Then $S_4 = \beta_1 e^{H_1}$ and $\begin{vmatrix} a_1^4 - S_1 a_1^3 + S_2 a_1^2 - S_3 a_1 + \beta_1 e^{H_1} = c_1 \\ a_2^4 - S_2 a_3^3 + S_2 a_2^2 - S_3 a_2 + \beta_2 e^{H_1} = c_2 \end{vmatrix}$

$$\begin{vmatrix} a_{2} - S_{1}a_{2} + S_{2}a_{2} - S_{3}a_{2} + \beta_{1}e^{-1} = c_{2} \\ a_{3}^{4} - S_{1}a_{3}^{3} + S_{2}a_{3}^{2} - S_{3}a_{3} + \beta_{1}e^{H_{1}} = c_{3} \\ a_{4}^{4} - S_{1}a_{4}^{3} + S_{2}a_{4}^{2} - S_{3}a_{4} + \beta_{1}e^{H_{1}} = \beta_{2}e^{H_{2}}. \end{cases}$$

Let us put

$$x = \frac{c_1}{a_1(a_1 - a_2)(a_1 - a_3)}, \quad y = \frac{c_2}{a_2(a_1 - a_2)(a_2 - a_3)}, \quad z = \frac{c_3}{a_3(a_1 - a_3)(a_2 - a_3)}$$

and

$$x_0 = \frac{\beta_1}{a_1 a_2 a_3}$$

Then

$$S_{1} = x_{0}e^{H_{1}} - (x - y + z - a_{1} - a_{2} - a_{3}),$$

$$S_{2} = (a_{1} + a_{2} + a_{3})x_{0}e^{H_{1}} - \{(a_{2} + a_{3})x - (a_{1} + a_{3})y + (a_{1} + a_{2})z - a_{1}a_{2} - a_{1}a_{3} - a_{2}a_{3}\},$$

$$S_{3} = (a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3})x_{0}e^{H_{1}} - \{a_{2}a_{3}x - a_{1}a_{3}y + a_{1}a_{2}z - a_{1}a_{2}a_{3}\}.$$

We substitute these into $F(z, a_4) = \beta_2 e^{H_2}$. Then Borel's unicity theorem implies that

$$H_1 = H_2(=H),$$

$$\beta_2 = x_0(a_1 - a_4)(a_2 - a_4)(a_3 - a_4),$$

$$\frac{x}{a_4 - a_1} - \frac{y}{a_4 - a_2} + \frac{z}{a_4 - a_3} = -1.$$

We now impose the following condition: $F(z, \alpha)$ does not have any lacunary value of the second kind excepting at most 0 and a_4 . Let us put

$$F(z, \alpha) = -(\alpha - a_1)(\alpha - a_2)(\alpha - a_3)x_0e^H + \alpha P(\alpha),$$

where

$$P(\alpha) = \alpha^{3} + \alpha^{2}(x - y + z - a_{1} - a_{2} - a_{3})$$

+ $\alpha \{ -(a_{2} + a_{3})x + (a_{1} + a_{3})y - (a_{1} + a_{2})z + a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3} \}$
+ $a_{2}a_{3}x - a_{1}a_{3}y + a_{1}a_{2}z - a_{1}a_{2}a_{3}.$

Then there are three possible cases:

(a)
$$P(\alpha) = \alpha^2(\alpha - a_4)$$
, (b) $P(\alpha) = \alpha(\alpha - a_4)^2$, (c) $P(\alpha) = (\alpha - a_4)^3$.

We now consider Case (a). Then

$$\begin{cases} x - y + z - a_1 - a_2 - a_3 = -a_4, \\ (a_2 + a_3)x - (a_1 + a_3)y + (a_1 + a_2)z = a_1a_2 + a_1a_3 + a_2a_3, \\ a_2a_3x - a_1a_3y + a_1a_2z = a_1a_2a_3. \end{cases}$$

Hence

$$\begin{cases} S_1 = x_0 e^H + a_4, \\ S_2 = (a_1 + a_2 + a_3) x_0 e^H, \\ S_3 = (a_1 a_2 + a_1 a_3 + a_2 a_3) x_0 e^H, \\ S_4 = a_1 a_2 a_3 x_0 e^H. \end{cases}$$

This surface is denoted by R_{16} . Next we consider Case (b). Then

$$\begin{cases} x-y+z-a_1-a_2-a_3=-2a_4, \\ -(a_2+a_3)x+(a_1+a_3)y-(a_1+a_2)z+a_1a_2+a_1a_3+a_2a_3=a_4^2, \\ a_2a_3x-a_1a_3y+a_1a_2z-a_1a_2a_3=0. \end{cases}$$

Hence

$$\begin{cases} S_1 = x_0 e^H + 2a_4, \\ S_2 = (a_1 + a_2 + a_3) x_0 e^H + a_4^2, \\ S_3 = (a_1 a_2 + a_1 a_3 + a_2 a_3) x_0 e^H, \\ S_4 = a_1 a_2 a_3 x_0 e^H. \end{cases}$$

This surface is denoted by R_{17} .

We finally consider Case (c). Then

$$\begin{cases} x - y + z - a_1 - a_2 - a_3 = -3a_4, \\ -(a_2 + a_3)x + (a_1 + a_3)y - (a_1 + a_2)z + a_1a_2 + a_1a_3 + a_2a_3 = 3a_4^2, \\ a_2a_3x - a_1a_3y + a_1a_2z - a_1a_2a_3 = -a_4^3. \end{cases}$$

Hence

$$\begin{cases}
S_{1} = x_{0}e^{H} + 3a_{4}, \\
S_{2} = (a_{1} + a_{2} + a_{3})x_{0}e^{H} + 3a_{4}^{2}, \\
S_{3} = (a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3})x_{0}e^{H} + a_{4}^{3}, \\
S_{4} = a_{1}a_{2}a_{3}x_{0}e^{H}.
\end{cases}$$

This surface is denoted by R_{18} . Let F(z, y) be $y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$. Let us put $y = \alpha Y + \beta$. Then

$$\begin{aligned} \alpha^{4}G(z, Y) &\equiv F(z, \alpha Y + \beta) \\ &\equiv \alpha^{4}(Y^{4} - T_{1}Y^{3} + T_{2}Y^{2} - T_{3}Y + T_{4}) \, . \\ T_{1} &= \frac{1}{\alpha}(S_{1} - 4\beta) \, , \\ T_{2} &= \frac{1}{\alpha^{2}}(S_{2} - 3S_{1}\beta + 6\beta^{2}) \, , \\ T_{3} &= \frac{1}{\alpha^{3}}(S_{3} - 2S_{2}\beta + 3S_{1}\beta^{2} - 4\beta^{3}) \end{aligned}$$

and

$$T_{4} = \frac{1}{\alpha_{4}} (S_{4} - S_{3}\beta + S_{2}\beta^{2} - S_{1}\beta^{3} + \beta^{4}).$$

Now we put

$$\begin{cases} \alpha A_{1} + \beta = 0, & \beta = a_{4} \\ \alpha A_{2} = a_{1} - a_{4}, \\ \alpha A_{3} = a_{2} - a_{4}, \\ \alpha A_{4} = a_{3} - a_{4}. \end{cases}$$

Then we have $R_1 \sim R_{16}$, $R_2 \sim R_{17}$, $R_3 \sim R_{18}$. If we put

$$\begin{cases} \alpha A_{1} + \beta = 0, & \beta = a_{1} \\ \alpha A_{2} = a_{2} - a_{1}, \\ \alpha A_{3} = a_{4} - a_{1}, \\ a A_{4} = a_{3} - a_{1}, \end{cases}$$

then we have $R_1 \sim R_3$.

§3. Surfaces with P(y)=6 (continued.)

We now consider Case (iii). Then $S_4 = c_1$ and

$$\begin{cases} a_1^4 - S_1 a_1^3 + S_2 a_1^2 - S_3 a_1 + c_1 = \beta_1 e^{H_1}, \\ a_2^4 - S_1 a_2^3 + S_2 a_2^2 - S_3 a_2 + c_1 = \beta_2 e^{H_2}, \\ a_3^4 - S_1 a_3^3 + S_2 a_3^2 - S_3 a_3 + c_1 = \beta_3 e^{H_3}, \\ a_4^4 - S_1 a_4^3 + S_2 a_4^2 - S_3 a_4 + c_1 = \beta_4 e^{H_4}. \end{cases}$$

From the first three equations we have

$$\begin{split} S_1 &= x_1 e^{H_1} + x_2 e^{H_2} + x_3 e^{H_3} + y_1 + a_1 + a_2 + a_3, \\ S_2 &= (a_2 + a_3) x_1 e^{H_1} + (a_1 + a_3) x_2 e^{H_2} + (a_1 + a_2) x_3 e^{H_3} \\ &+ (a_1 + a_2 + a_3) y_1 + a_1 a_2 + a_1 a_3 + a_2 a_3, \\ S_3 &= a_2 a_3 x_1 e^{H_1} + a_1 a_3 x_2 e^{H_2} + a_1 a_2 x_3 e^{H_3} + (a_1 a_2 + a_2 a_3 + a_1 a_3) y_1 \\ &+ a_1 a_2 a_3, \end{split}$$

where

$$x_1 = \frac{-\beta_1}{a_1(a_1 - a_2)(a_1 - a_3)}, \quad x_2 = \frac{\beta_2}{a_2(a_1 - a_2)(a_2 - a_3)}, \quad x_3 = \frac{-\beta_3}{a_3(a_1 - a_3)(a_2 - a_3)}$$

and

$$y_1 = \frac{c_1}{a_1 a_2 a_3}.$$

Substituting these into the fourth equation $F(z, a_4) = \beta_4 e^{H_4}$, we can make use of Borel's unicity theorem. Then we have

$$H_1 = H_2 = H_3 = H_4 (\equiv H)$$

$$a_4(a_4-a_2)(a_4-a_3)x_1+a_4(a_4-a_1)(a_4-a_3)x_2+a_4(a_4-a_1)(a_4-a_2)x_3=-\beta_4$$

and

$$y_1(a_4-a_1)(a_4-a_2)(a_4-a_3) = a_4(a_4-a_1)(a_4-a_2)(a_4-a_3)$$

Hence $y_1 = a_4$, that is, $c_1 = a_1 a_2 a_3 a_4$. Therefore

$$S_{1} = (x_{1} + x_{2} + x_{3})e^{H} + a_{1} + a_{2} + a_{3} + a_{4},$$

$$S_{2} = \{(a_{2} + a_{3})x_{1} + (a_{1} + a_{3})x_{2} + (a_{1} + a_{2})x_{3}\}e^{H} + a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3} + a_{1}a_{4} + a_{2}a_{4} + a_{3}a_{4},$$

$$S_{2} = \{(a_{2} + a_{3})x_{1} + (a_{3} + a_{2})x_{3} + a_{3}a_{4}, a_$$

$$S_{3} = \{a_{2}a_{3}x_{1} + a_{1}a_{3}x_{2} + a_{1}a_{2}x_{3}\}e^{H} + a_{1}a_{2}a_{3} + a_{1}a_{2}a_{4} + a_{1}a_{3}a_{4} + a_{2}a_{3}a_{4} + a_{3}a_{4} + a_{3}$$

Now we impose the following condition:

$$F(z, \alpha) = (\alpha - a_1)(\alpha - a_2)(\alpha - a_3)(\alpha - a_4) + \alpha P(\alpha)e^H$$

does not reduce to a non-zero constant excepting for $\alpha = 0$, where

$$-P(\alpha) = (\alpha - a_2)(\alpha - a_3)x_1 + (\alpha - a_1)(\alpha - a_3)x_2 + (\alpha - a_1)(\alpha - a_2)x_3.$$

Then

$$-P(\alpha) = \alpha^{2}(x_{1}+x_{2}+x_{3}) - \alpha \{(a_{2}+a_{3})x_{1}+(a_{1}+a_{3})x_{2}+(a_{1}+a_{2})x_{3}\} + a_{2}a_{3}x_{1}+a_{1}a_{3}x_{2}+a_{1}a_{2}x_{3}.$$

By our condition we have three possibilities:

(a) $P(\alpha) = k\alpha^2$, (b) $P(\alpha) = k\alpha$, (c) $P(\alpha) = k$ with a non-zero nonstant k.

CASE (a). Then $k = -(x_1 + x_2 + x_3)$ and

$$(a_2+a_3)x_1+(a_1+a_3)x_2+(a_1+a_2)x_3=0,$$

$$a_2a_3x_1+a_1a_3x_2+a_1a_2x_3=0.$$

In this case we can easily prove that

$$\frac{\beta_1}{a_1^3} = \frac{\beta_2}{a_2^3} = \frac{\beta_3}{a_3^3}$$

and

$$k = \frac{\beta_1}{a_1^3} (\equiv -x_0).$$

Hence we have

$$\begin{cases} S_1 = x_0 e^H + a_1 + a_2 + a_3 + a_4, \\ S_2 = a_1 a_2 + a_2 a_3 + a_1 a_3 + a_1 a_4 + a_2 a_4 + a_3 a_4, \\ S_3 = a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4, \\ S_4 = c_1 = a_1 a_2 a_3 a_4. \end{cases}$$

This surface is denoted by R_{13} .

CASE (b). Then $x_1 + x_2 + x_3 = 0$ and $a_2a_3x_1 + a_1a_3x_2 + a_1a_2x_3 = 0$, $k = (a_2 + a_3)x_1 + (a_1 + a_3)x_2 + (a_1 + a_2)x_3$.

It is easy to prove that

$$k = \frac{\beta_1}{a_1^2} = \frac{\beta_2}{a_2^2} = \frac{\beta_3}{a_3^2} (\equiv x_0).$$

Then

$$\begin{cases} S_1 = a_1 + a_2 + a_3 + a_4, \\ S_2 = x_0 e^H + a_1 a_2 + a_2 a_3 + a_1 a_3 + a_1 a_4 + a_2 a_4 + a_3 a_4, \\ S_3 = a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4, \\ S_4 = c_1 = a_1 a_2 a_3 a_4. \end{cases}$$

This surface is denoted by R_{14} .

CASE (c). Then $x_1 + x_1 + x_3 = 0$ and

$$(a_2+a_3)x_1+(a_1+a_3)x_2+(a_1+a_2)x_3=0$$
,
 $k=-(a_2a_3x_1+a_1a_3x_2+a_1a_2x_3)$.

It is easy to prove that

$$k = \frac{\beta_1}{a_1} = \frac{\beta_2}{a_2} = \frac{\beta_3}{a_3} (\equiv x_0).$$

Then

$$\begin{cases}
S_1 = a_1 + a_2 + a_3 + a_4, \\
S_2 = a_1 a_2 + a_1 a_3 + a_1 a_4 + a_2 a_3 + a_2 a_4 + a_3 a_4, \\
S_3 = x_0 e^H + a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4, \\
S_4 = c_1 = a_1 a_2 a_3 a_4.
\end{cases}$$

This surface is denoted by R_{15} .

CASE (vi). Then $S_4 = \beta_1 e^{H_1}$ and

MITSURU OZAWA AND KAZUNARI SAWADA

$$\begin{cases} a_1^4 - S_1 a_1^3 + S_2 a_1^2 - S_3 a_1 + \beta_1 e^{H_1} = c_1, \\ a_2^4 - S_1 a_2^3 + S_2 a_2^2 - S_3 a_2 + \beta_1 e^{H_1} = \beta_2 e^{H_2}, \\ a_3^4 - S_1 a_3^3 + S_2 a_3^2 - S_3 a_3 + \beta_1 e^{H_1} = \beta_3 e^{H_3}, \\ a_4^4 - S_1 a_4^3 + S_2 a_4^2 - S_3 a_4 + \beta_1 e^{H_1} = \beta_4 e^{H_4}. \end{cases}$$

Let us put

$$x = \frac{\beta_1}{a_2 a_3 a_4}, \quad y = \frac{\beta_2}{a_2 (a_2 - a_3)(a_2 - a_4)}, \quad z = \frac{\beta_3}{a_3 (a_2 - a_3)(a_3 - a_4)},$$
$$u = \frac{\beta_4}{a_4 (a_2 - a_4)(a_3 - a_4)}.$$

Then from the last three equations we have

$$\begin{cases} S_1 = xe^{H_1} - ye^{H_2} + ze^{H_3} - ue^{H_4} + a_2 + a_3 + a_4, \\ S_2 = (a_2 + a_3 + a_4)xe^{H_1} - (a_3 + a_4)ye^{H_2} + (a_2 + a_4)ze^{H_3} \\ -(a_2 + a_3)ue^{H_4} + a_2a_3 + a_2a_4 + a_3a_4, \\ S_3 = (a_2a_3 + a_2a_4 + a_3a_4)xe^{H_1} - a_3a_4ye^{H_2} + a_2a_4ze^{H_3} - a_2a_3ue^{H_4} + a_2a_3a_4, \\ S_4 = a_2a_3a_4xe^{H_1}. \end{cases}$$

By the first equation we have

$$H_{1} = H_{2} = H_{3} = H_{4} (\equiv H),$$

$$(a_{1} - a_{2})(a_{1} - a_{3})(a_{1} - a_{4})x - a_{1}(a_{1} - a_{3})(a_{1} - a_{4})y$$

$$+ a_{1}(a_{1} - a_{2})(a_{1} - a_{4})z - a_{1}(a_{1} - a_{2})(a_{1} - a_{3})u = 0$$

and

$$c_1 = a_1(a_1 - a_2)(a_1 - a_3)(a_1 - a_4)$$
.

Now we impose the following condition:

$$F(z, \alpha) = \alpha(\alpha - a_2)(\alpha - a_3)(\alpha - a_4) + P(\alpha)e^H$$

does not reduce to a non-zero constant excepting $\alpha = a_1$. Hence there appear three possibilities:

(a)
$$P(\alpha) = k(\alpha - a_1)$$
, (b) $P(\alpha) = k(\alpha - a_1)^2$, (c) $P(\alpha) = k(\alpha - a_1)^3$

with a non-zero constant k. Here

$$P(\alpha) = \alpha^{3}(-x+y-z+u)$$

+ $\alpha^{2} \{(a_{2}+a_{3}+a_{4})x-(a_{3}+a_{4})y+(a_{2}+a_{4})z-(a_{2}+a_{3})u\}$
+ $\alpha \{-(a_{2}a_{3}+a_{2}a_{4}+a_{3}a_{4})x+a_{3}a_{4}y-a_{2}a_{4}z+a_{2}a_{3}u\}+a_{2}a_{3}a_{4}x.$

CASE (a). Then

$$-x+y-z+u=0,$$

$$(a_2+a_3+a_4)x-(a_3+a_4)y+(a_2+a_4)z-(a_2+a_3)u=0$$

and

$$-a_1\{-(a_2a_3+a_2a_4+a_3a_4)x+a_3a_4y-a_2a_4z+a_2a_3u\}=a_2a_3a_4x.$$

Hence we have

$$\begin{pmatrix}
S_1 = a_2 + a_3 + a_4, \\
S_2 = a_2 a_3 + a_2 a_4 + a_3 a_4, \\
S_3 = \frac{a_2 a_3 a_4}{a_1} x e^H + a_2 a_3 a_4 = \frac{\beta_1}{a_1} e^H + a_2 a_3 a_4, \\
S_4 = a_2 a_3 a_4 x e^H = \beta_1 e^H.
\end{cases}$$

,

We put $x_0 = \beta_1/a_1$. Then

$$\begin{cases} S_1 = a_2 + a_3 + a_4, \\ S_2 = a_2 a_3 + a_2 a_4 + a_3 a_4, \\ S_3 = x_0 e^H + a_2 a_3 a_4, \\ S_4 = a_1 x_0 e^H. \end{cases}$$

This surface is denoted by R_{28} .

CASE (b). Then

$$\begin{aligned} x - y + z - u &= 0 \\ (a_2 + a_3 + a_4)x - (a_3 + a_4)y + (a_2 + a_4)z - (a_2 + a_3)u &= \frac{a_2 a_3 a_4}{a_1^2} x , \\ - (a_2 a_3 + a_2 a_4 + a_3 a_4)x + a_3 a_4 y - a_2 a_4 z + a_2 a_3 u &= -2a_1 \frac{a_2 a_3 a_4}{a_1^2} x . \end{aligned}$$

We make use of $a_2a_3a_4x=\beta_1$. Then we have with $x_0=\beta_1/a_1^2$

$$\begin{cases}
S_1 = a_2 + a_3 + a_4, \\
S_2 = x_0 e^H + a_2 a_3 + a_2 a_4 + a_3 a_4, \\
S_3 = 2a_1 x_0 e^H + a_2 a_3 a_4, \\
S_4 = a_1^2 x_0 e^H.
\end{cases}$$

This surface is denoted by R_{29} .

CASE (c). Then

MITSURU OZAWA AND KAZUNARI SAWADA

$$-3a_{1}(-x+y-z+u) = (a_{2}+a_{3}+a_{4})x - (a_{3}+a_{4})y + (a_{2}+a_{4})z - (a_{2}+a_{3})u,$$

$$3a_{1}^{2}(-x+y-z+u) = -(a_{2}a_{3}+a_{2}a_{4}+a_{3}a_{4})x + a_{3}a_{4}y - a_{2}a_{4}z + a_{2}a_{3}u,$$

$$-a_{1}^{3}(-x+y-z+u) = a_{2}a_{3}a_{4}x \equiv \beta_{1}.$$

Hence

$$\begin{aligned} x - y + z - u &= \beta_1 / a_1^3, \\ (a_2 + a_3 + a_4) x - (a_3 + a_4) y + (a_2 + a_4) z - (a_2 + a_3) u &= \frac{3\beta_1}{a_1^2}, \\ (a_2 a_3 + a_2 a_4 + a_3 a_4) x - a_3 a_4 y + a_2 a_4 z - a_2 a_3 u &= \frac{3\beta_1}{a_1}. \end{aligned}$$

Then we have

$$\begin{cases} S_1 = x_0 e^H + a_2 + a_3 + a_4, \\ S_2 = 3a_1 x_0 e^H + a_2 a_3 + a_2 a_4 + a_3 a_4, \\ S_3 = 3a_1^2 x_0 e^H + a_2 a_3 a_4, \\ S_4 = a_1^3 x_0 e^H. \end{cases}$$

This surface is denoted by R_{30} .

$$\begin{split} F(z, \alpha Y + \beta) &\equiv \alpha^4 G(z, Y) \equiv \alpha^4 (Y^4 - T_1 Y^3 + T_2 Y^2 - T_3 Y + T_4) \,. \\ F(z, y) &\equiv y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0 \,. \\ T_1 &= \frac{1}{\alpha} (S_1 - 4\beta) \,, \\ T_2 &= \frac{1}{\alpha^2} (S_2 - 3S_1 \beta + 6\beta^2) \,, \\ T_3 &= \frac{1}{\alpha^3} (S_3 - 2S_2 \beta + 3S_1 \beta^2 - 4\beta^3) \,, \\ T_4 &= \frac{1}{\alpha^4} (S_4 - S_3 \beta + S_2 \beta^2 - S_1 \beta^3 + \beta^4) \,. \end{split}$$

Here we put

$$\begin{cases} \alpha A_{1} + \beta = 0, & \beta = a_{1}, \\ \alpha A_{2} = a_{2} - a_{1}, \\ \alpha A_{3} = a_{3} - a_{1}, \\ \alpha A_{4} = a_{4} - a_{1}. \end{cases}$$

Then we have

$$R_{15} \sim R_{28}, \qquad R_{14} \sim R_{29}, \qquad R_{13} \sim R_{30}.$$

§4. Surface with P(y)=6 (continued. bis)

We now consider the case (ii). Then $S_4 = c_1$ and

$$\begin{cases} a_{1}^{4} - S_{1}a_{1}^{3} + S_{2}a_{1}^{2} - S_{3}a_{1} + c_{1} = c_{2}, \\ a_{2}^{4} - S_{1}a_{2}^{3} + S_{2}a_{2}^{3} - S_{3}a_{2} + c_{1} = \beta_{1}e^{H_{1}}, \\ a_{3}^{4} - S_{1}a_{3}^{3} + S_{2}a_{3}^{2} - S_{3}a_{3} + c_{1} = \beta_{2}e^{H_{2}}, \\ a_{4}^{4} - S_{1}a_{4}^{3} + S_{2}a_{4}^{2} - S_{3}a_{4} + c_{1} = \beta_{3}e^{H_{3}}. \end{cases}$$

Then

$$S_{1} = x_{1}e^{H_{1}} + x_{2}e^{H_{2}} + x_{3}e^{H_{3}} + y + a_{2} + a_{3} + a_{4},$$

$$S_{2} = (a_{3} + a_{4})x_{1}e^{H_{1}} + (a_{2} + a_{4})x_{2}e^{H_{2}} + (a_{2} + a_{3})x_{3}e^{H_{3}} + (a_{2} + a_{3} + a_{4})y + a_{2}a_{3} + a_{3}a_{4} + a_{2}a_{4},$$

$$S_{3} = a_{3}a_{4}x_{1}e^{H_{1}} + a_{2}a_{4}x_{2}e^{H_{2}} + a_{2}a_{3}x_{3}e^{H_{3}} + (a_{2}a_{3} + a_{3}a_{4} + a_{2}a_{4})y + a_{2}a_{3}a_{4},$$

where

$$x_{1} = \frac{\beta_{1}}{a_{2}(a_{2} - a_{3})(a_{4} - a_{2})}, \qquad x_{2} = \frac{\beta_{2}}{a_{3}(a_{2} - a_{3})(a_{3} - a_{4})},$$
$$x_{3} = \frac{\beta_{3}}{a_{4}(a_{3} - a_{4})(a_{4} - a_{2})}, \qquad y = \frac{c_{1}}{a_{2}a_{3}a_{4}}.$$

Substituting these into $F(z, a_1) = c_2$, we have $H_1 = H_2 = H_3 (\equiv H)$ and

$$(a_1-a_3)(a_1-a_4)x_1+(a_1-a_2)(a_1-a_4)x_2+(a_1-a_2)(a_1-a_3)x_3=0$$

and

$$c_2 + y(a_1 - a_2)(a_1 - a_3)(a_1 - a_4) = a_1(a_1 - a_2)(a_1 - a_3)(a_1 - a_4).$$

Let us consider $F(z, \alpha)$. Then

$$F(z, \alpha) = (\alpha - a_2)(\alpha - a_3)(\alpha - a_4)(\alpha - y)$$

- $\alpha(\alpha - a_1) \{ (\alpha + a_1 - a_3 - a_4)x_1 + (\alpha + a_1 - a_2 - a_4)x_2$
+ $(\alpha + a_1 - a_2 - a_3)x_3 \} e^H$
= $(\alpha - a_2)(\alpha - a_3)(\alpha - a_4)(\alpha - y) - \frac{\alpha(\alpha - a_1)}{a_2 - a_3} \{ A\alpha - B \} e^H$,

where

$$A = \frac{\beta_1}{a_2(a_1 - a_2)} - \frac{\beta_2}{a_3(a_1 - a_3)},$$

$$B = \frac{a_{3}\beta_{1}}{a_{2}(a_{1}-a_{2})} - \frac{a_{2}\beta_{2}}{a_{3}(a_{1}-a_{3})}.$$

We now impose the conditions: $F(z, \alpha)$ does not reduce to a non-zero constant D except for $\alpha=0$, a_1 and further it does not reduce to De^H except for $\alpha=a_2$, a_3 , a_4 . Hence we have $(\alpha)y=a_2$ or $(\beta)y=a_3$ or $(\gamma) y=a_4$ and (1) A=0 or (2) B=0 or (3) $A\neq 0$, $B=Aa_1$.

If A=0, then $x_1+x_2+x_3=0$ and

$$(a_3+a_4)x_1+(a_2+a_4)x_2+(a_2+a_3)x_3=-\frac{\beta_1}{a_2(a_1-a_2)},$$

$$a_3a_4x_1+a_2a_4x_2+a_2a_3x_3=-\frac{a_1\beta_1}{a_2(a_1-a_2)}.$$

If B=0, then

$$x_1 + x_2 + x_3 = \frac{\beta_1}{a_2^{2}(a_1 - a_2)},$$

$$(a_3 + a_4)x_1 + (a_2 + a_4)x_2 + (a_2 + a_3)x_3 = \frac{a_1\beta_1}{a_2^{2}(a_1 - a_2)},$$

$$a_3a_4x_1 + a_2a_4x_2 + a_2a_3x_3 = 0.$$

If $B = Aa_1$, $A \neq 0$, then

$$x_{1}+x_{2}+x_{3}=-\frac{\beta_{1}}{a_{2}(a_{1}-a_{2})^{2}},$$

$$(a_{3}+a_{4})x_{1}+(a_{2}+a_{4})x_{2}+(a_{2}+a_{3})x_{3}=-\frac{2a_{1}\beta_{1}}{a_{2}(a_{1}-a_{2})^{2}},$$

$$a_{3}a_{4}x_{1}+a_{2}a_{4}x_{2}+a_{2}a_{3}x_{3}=-\frac{a_{1}^{2}\beta_{1}}{a_{2}(a_{1}-a_{2})^{2}}.$$

Case (α) (1). Then with $x_0 = -\beta_1/a_2(a_1-a_2)$

$$\begin{cases}
S_1 = 2a_2 + a_3 + a_4, \\
S_2 = x_0 e^H + a_2^2 + 2a_2 a_3 + a_3 a_4 + 2a_2 a_4, \\
S_3 = a_1 x_0 e^H + a_2^2 a_3 + 2a_2 a_3 a_4 + a_2^2 a_4, \\
S_4 = a_2^2 a_3 a_4.
\end{cases}$$

This surface is denoted by R_4 .

CASE (
$$\beta$$
) (1). Then with $x_0 = -\beta_1/a_2(a_1 - a_2)$

$$\begin{cases}
S_1 = a_2 + 2a_3 + a_4, \\
S_2 = x_0e^H + a_3^2 + 2a_2a_3 + a_2a_4 + 2a_3a_4, \\
S_3 = a_1x_0e^H + a_2a_3^2 + a_3^2a_4 + 2a_2a_3a_4, \\
S_4 = a_2a_3^2a_4.
\end{cases}$$

This surface is denoted by R_{5} .

CASE (
$$\gamma$$
) (1). Then with $x_0 = -\beta_1/a_2(a_1 - a_2)$

$$\begin{cases}
S_1 = a_2 + a_3 + 2a_4, \\
S_2 = x_0 e^H + a_2 a_3 + 2a_2 a_4 + 2a_3 a_4 + a_4^2, \\
S_3 = a_1 x_0 e^H + a_3 a_4^2 + a_2 a_4^2 + 2a_2 a_3 a_4, \\
S_4 = a_2 a_3 a_4^2.
\end{cases}$$

This surface is denoted by R_6 .

CASE (
$$\alpha$$
) (2). Then with $x_0 = \beta_1 / a_2^2 (a_1 - a_2)$

$$\begin{cases}
S_1 = x_0 e^H + 2a_2 + a_3 + a_4, \\
S_2 = a_1 x_0 e^H + a_2^2 + 2a_2 a_3 + a_3 a_4 + 2a_2 a_4, \\
S_3 = a_2^2 a_3 + 2a_2 a_3 a_4 + a_2^2 a_4, \\
S_4 = a_2^2 a_3 a_4.
\end{cases}$$

This surface is denoted by R_{γ} .

CASE (
$$\beta$$
) (2). Then with $x_0 = \beta_1/a_2^2(a_1 - a_2)$

$$\begin{cases}
S_1 = x_0 e^H + a_2 + 2a_3 + a_4, \\
S_2 = a_1 x_0 e^H + 2a_2 a_3 + a_3^2 + 2a_3 a_4 + a_2 a_4, \\
S_3 = a_2 a_3^2 + a_3^2 a_4 + 2a_2 a_3 a_4, \\
S_4 = a_2 a_3^2 a_4.
\end{cases}$$

This surface is denoted by R_8 .

CASE (
$$\gamma$$
) (2). Then with $x_0 = \beta_1 / a_2^2 (a_1 - a_2)$

$$\begin{cases}
S_1 = x_0 e^H + a_2 + a_3 + 2a_4, \\
S_2 = a_1 x_0 e^H + a_4^2 + 2a_2 a_4 + 2a_3 a_4 + a_2 a_3, \\
S_3 = 2a_2 a_3 a_4 + a_3 a_4^2 + a_2 a_4^2, \\
S_4 = a_2 a_3 a_4^2.
\end{cases}$$

This surface is denoted by R_9 .

CASE (a) (3). Then with
$$x_0 = -\beta_1/a_2(a_1-a_2)^2$$

$$\begin{cases}
S_1 = x_0 e^H + 2a_2 + a_3 + a_4, \\
S_2 = 2a_1 x_0 e^H + a_2^2 + 2a_2 a_3 + a_3 a_4 + 2a_2 a_4, \\
S_3 = a_1^2 x_0 e^H + a_2^2 a_3 + 2a_2 a_3 a_4 + a_2^2 a_4, \\
S_4 = a_2^2 a_3 a_4.
\end{cases}$$

This surface is denoted by R_{10} .

CASE (
$$\beta$$
) (3). Then with $x_0 = -\beta_1/a_2(a_1 - a_2)^2$

$$\begin{cases}
S_1 = x_0 e^H + a_2 + 2a_3 + a_4, \\
S_2 = 2a_1 x_0 e^H + 2a_2 a_3 + a_3^2 + 2a_3 a_4 + a_2 a_4, \\
S_3 = a_1^2 x_0 e^H + a_2 a_3^2 + a_3^2 a_4 + 2a_2 a_3 a_4, \\
S_4 = a_2 a_3^2 a_4.
\end{cases}$$

This surface is denoted by R_{11} .

CASE (γ)(3). Then with $x_0 = -\beta_1/a_2(a_1-a_2)^2$

$$\begin{cases} S_1 = x_0 e^H + a_2 + a_3 + 2a_4, \\ S_2 = 2a_1 x_0 e^H + a_4^2 + 2a_2 a_4 + 2a_3 a_4 + a_2 a_3, \\ S_3 = a_1^2 x_0 e^H + 2a_2 a_3 a_4 + a_3 a_4^2 + a_2 a_4^2, \\ S_4 = a_2 a_3 a_4^2. \end{cases}$$

This surface is denoted by R_{12} .

CASE (v). Then $S_4 = \beta_1 e^{H_1}$ and $\begin{cases}
a_1^4 - S_1 a_1^3 + S_2 a_1^2 - S_3 a_1 + \beta_1 e^{H_1} = c_1, \\
a_2^4 - S_1 a_2^3 + S_2 a_2^2 - S_3 a_2 + \beta_1 e^{H_1} = c_2, \\
a_3^4 - S_1 a_3^3 + S_2 a_3^2 - S_3 a_3 + \beta_1 e^{H_1} = \beta_2 e^{H_2}, \\
a_4^4 - S_1 a_4^3 + S_2 a_4^2 - S_3 a_4 + \beta_1 e^{H_1} = \beta_3 e^{H_3}.
\end{cases}$

Let us put

$$x_1 = \frac{\beta_1}{a_1 a_2 a_3}, \qquad x_2 = \frac{\beta_2}{a_2 (a_1 - a_3)(a_2 - a_3)}$$

and

$$y_1 = \frac{c_1}{a_1(a_1 - a_2)(a_1 - a_3)}, \qquad y_2 = \frac{c_2}{a_2(a_1 - a_2)(a_2 - a_3)}.$$

From the first three equations we have

$$\begin{split} S_1 &= x_1 e^{H_1} - x_2 e^{H_2} - y_1 + y_2 + a_1 + a_2 + a_3, \\ S_2 &= (a_1 + a_2 + a_3) x_1 e^{H_1} - (a_1 + a_2) x_2 e^{H_2} - (a_2 + a_3) y_1 + (a_1 + a_3) y_2 \\ &\quad + a_1 a_2 + a_1 a_3 + a_2 a_3, \\ S_3 &= (a_1 a_2 + a_1 a_3 + a_2 a_3) x_1 e^{H_1} - a_1 a_2 x_2 e^{H_2} - a_2 a_3 y_1 + a_1 a_3 y_2 + a_1 a_2 a_3. \end{split}$$

Substituting these into the fourth equation, we have

$$\begin{split} H_1 &= H_2 = H_3 (\equiv H), \\ (a_4 - a_1)(a_4 - a_2)(a_4 - a_3)x_1 - (a_4 - a_1)(a_4 - a_2)a_4x_2 + \beta_3 = 0, \\ (a_4 - a_2)y_1 - (a_4 - a_1)y_2 + (a_4 - a_1)(a_4 - a_2) = 0. \end{split}$$

Now we consider

$$F(z, \alpha) = e^{H}(\alpha - a_{1})(\alpha - a_{2}) \{-x_{1}(\alpha - a_{3}) + x_{2}\alpha\} + \alpha(\alpha - a_{3})P(\alpha),$$

where

$$P(\alpha) = \alpha^2 - (a_1 + a_2 - y_1 + y_2)\alpha + a_1a_2 - a_2y_1 + a_1y_2.$$

There are several possibilities by the postulate that $F(z, \alpha)$ does not reduce to a non-zero constant D except for $\alpha = a_1$, $\alpha = a_2$ and further it does not reduce to De^H except for $\alpha = 0$, $\alpha = a_3$, $\alpha = a_4$. Hence

(
$$\alpha$$
) $x_1 = x_2$ or (β) $\alpha(x_2 - x_1) + x_1 a_3 = k(\alpha - a_1)$ or

$$(\gamma) \quad \alpha(x_2 - x_1) + x_1 a_3 = k(\alpha - a_2)$$

and

(1)
$$P(\alpha) = \alpha(\alpha - a_4)$$
 or (2) $P(\alpha) = (\alpha - a_4)^2$ or

(3)
$$P(\alpha) = (\alpha - a_3)(\alpha - a_4)$$
.

CASE (1). Then
$$a_1+a_2-y_1+y_2=a_4$$
 and $a_1a_2-a_2y_1+a_1y_2=0$. Hence

$$y_2 = (a_2^2 - a_2 a_4)/(a_1 - a_2)$$
 and $y_1 = (a_1^2 - a_1 a_4)/(a_1 - a_2)$.

Thus

$$-y_1+y_2+a_1+a_2+a_3=a_3+a_4$$
,

 $-a_2a_3y_1+a_1a_3y_2+a_1a_2a_3=0.$

$$-(a_2+a_3)y_1+(a_1+a_3)y_2+a_1a_2+a_1a_3+a_2a_3=a_3a_4$$

and

CASE (2). Then
$$a_1 + a_2 - y_1 + y_2 = 2a_4$$
, $a_1a_2 - a_2y_1 + a_1y_2 = a_4^2$. This gives

$$y_1 = (a_1 - a_4)^2 / (a_1 - a_2)$$
 and $y_2 = (a_2 - a_4)^2 / (a_1 - a_2)$.

Then

$$-y_1 + y_2 + a_1 + a_2 + a_3 = a_3 + 2a_4,$$

$$-(a_2 + a_3)y_1 + (a_1 + a_3)y_2 + a_1a_2 + a_1a_3 + a_2a_3 = 2a_3a_4 + a_4^2,$$

$$-a_2a_3y_1 + a_1a_3y_2 + a_1a_2a_3 = a_3a_4^2.$$

CASE (3). Then $a_1+a_2-y_1+y_2 = a_3+a_4$, $a_1a_2-a_2y_1+a_1y_2 = a_3a_4$. This gives

$$y_1 = (a_1 - a_3)(a_1 - a_4)/(a_1 - a_2)$$
 and $y_2 = (a_2 - a_3)(a_2 - a_4)/(a_1 - a_2)$.

Then

$$\begin{aligned} &-y_1 + y_2 + a_1 + a_2 + a_3 = 2a_3 + a_4, \\ &-(a_2 + a_3)y_1 + (a_1 + a_3)y_2 + a_1a_2 + a_1a_3 + a_2a_3 = a_3^2 + 2a_3a_4, \\ &-a_2a_3y_1 + a_1a_3y_2 + a_1a_2a_3 = a_3^2a_4. \end{aligned}$$

CASE (α). Then $x_1 = x_2$. Hence

$$(a_1+a_2+a_3)x_1-(a_1+a_2)x_2=a_3x_1=\beta_1/a_1a_2,$$

$$(a_1a_2+a_1a_3+a_2a_3)x_1-a_1a_2x_2=(a_1+a_2)a_3x_1=(a_1+a_2)\beta_1/a_1a_2.$$

We put $\beta_1/a_1a_2 = x_0$.

CASE (
$$\beta$$
). Then $x_2 = (a_1 - a_3)x_1/a_1$. Hence
 $x_1 - x_2 = a_3 x_1/a_1 = \beta_1/a_1^2 a_2$,
 $(a_1 + a_2 + a_3)x_1 - (a_1 + a_2)x_2 = a_3(2a_1 + a_2)x_1/a_1 = (2a_1 + a_2)\beta_1/a_1^2 a_2$,
 $(a_1a_2 + a_1a_3 + a_2a_3)x_1 - a_1a_2x_2 = (a_1 + 2a_2)\beta_1/a_1a_2$.

We put $\beta_1/a_1^2a_2 = x_0$.

CASE (
$$\gamma$$
). Then $x_2 = (a_2 - a_3)x_1/a_2$. Hence
 $x_1 - x_2 = \beta_1/a_1a_2^2$.

$$(a_1 + a_2 + a_3)x_1 - (a_1 + a_2)x_2 = (a_1 + 2a_2)\beta_1/a_1a_2^2,$$

$$(a_1a_2 + a_1a_3 + a_2a_3)x_1 - a_1a_2x_2 = (2a_1 + a_2)\beta_1/a_1a_2.$$

We put $\beta_1/a_1a_2^2 = x_0$.

CASE $(\alpha)(1)$. Then

$$\begin{cases} S_1 = a_3 + a_4, \\ S_2 = x_0 e^H + a_3 a_4, \\ S_3 = (a_1 + a_2) x_0 e^H, \\ S_4 = a_1 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{19} .

CASE $(\beta)(1)$. Then

$$\begin{cases} S_1 = x_0 e^H + a_3 + a_4, \\ S^2 = (2a_1 + a_2) x_0 e^H + a_3 a_4, \\ S_3 = a_1 (a_1 + 2a_2) x_0 e^H, \\ S_4 = a_1^2 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{20} .

CASE $(\gamma)(1)$.

$$\begin{cases} S_1 = x_0 e^H + a_3 + a_4, \\ S_2 = (a_1 + 2a_2) x_0 e^H + a_3 a_4, \\ S_3 = a_2 (2a_1 + a_2) x_0 e^H, \\ S_4 = a_1 a_2^2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{21} .

CASE $(\alpha)(2)$.

$$\begin{cases} S_1 = a_3 + 2a_4, \\ S_2 = x_0 e^H + 2a_3 a_4 + a_4^2, \\ S_3 = (a_1 + a_2) x_0 e^H + a_3 a_4^2, \\ S_4 = a_1 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{22} .

CASE $(\beta)(2)$.

$$\begin{cases} S_1 = x_0 e^H + a_3 + 2a_4, \\ S_2 = (2a_1 + a_2) x_0 e^H + 2a_3 a_4 + a_4^2, \\ S_3 = a_1 (a_1 + 2a_2) x_0 e^H + a_3 a_4^2, \\ S_4 = a_1^2 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{23} .

CASE $(\gamma)(2)$.

$$\begin{cases} S_1 = x_0 e^H + a_3 + 2a_4, \\ S_2 = (a_1 + 2a_2) x_0 e^H + 2a_3 a_4 + a_4^2, \\ S_3 = a_2 (2a_1 + a_2) x_0 e^H + a_3 a_4^2, \\ S_4 = a_1 a_2^2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{24} .

CASE $(\alpha)(3)$.

$$\begin{cases} S_1 = 2a_3 + a_4, \\ S_2 = x_0 e^H + a_3^2 + 2a_3 a_4, \\ S_3 = (a_1 + a_2) x_0 e^H + a_3^2 a_4, \\ S_4 = a_1 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{25} .

CASE $(\beta)(3)$.

$$\begin{cases} S_1 = x_0 e^H + 2a_3 + a_4, \\ S_2 = (2a_1 + a_2) x_0 e^H + a_3^2 + 2a_3 a_4, \\ S_3 = a_1 (a_1 + 2a_2) x_0 e^H + a_3^2 a_4, \\ S_4 = a_1^2 a_2 x_0 e^H. \end{cases}$$

This surface is denoted by R_{26} .

CASE $(\gamma)(3)$.

$$S_{1} = x_{0}e^{H} + 2a_{3} + a_{4},$$

$$S_{2} = (a_{1} + 2a_{2})x_{0}e^{H} + a_{3}^{2} + 2a_{3}a_{4},$$

$$S_{3} = a_{2}(2a_{1} + a_{2})x_{0}e^{H} + a_{3}^{2}a_{4},$$

$$S_{4} = a_{1}a_{2}^{2}x_{0}e^{H}.$$

This surface is denoted by R_{27} .

How many different surfaces are there among eighteen surfaces listed up in this section? As in §2, §3 we put

$$\begin{cases} \alpha A_{1} + \beta = 0, & \beta = a_{2} \\ \alpha A_{2} = a_{1} - a_{2}, \\ \alpha A_{3} = a_{3} - a_{2}, \\ \alpha A_{4} = a_{4} - a_{2}. \end{cases}$$

Then we can prove that

$$\begin{array}{ll} R_4 \sim R_{19}, & R_5 \sim R_{25}, & R_6 \sim R_{22}, \\ R_7 \sim R_{20}, & R_8 \sim R_{26}, & R_9 \sim R_{23}, \\ R_{10} \sim R_{21}, & R_{11} \sim R_{27}, & R_{12} \sim R_{24}. \end{array}$$

Further we put

$$\left(\begin{array}{ccc} \alpha A_{1}=-\beta, & \beta=a_{1}\\ \alpha A_{3}=a_{2}-a_{1}, \\ \alpha A_{4}=a_{3}-a_{1}, \\ \alpha A_{2}=a_{4}-a_{1}. \end{array}\right)$$

Then we can prove that $R_4 \sim R_5$, $R_7 \sim R_8$ and $R_{10} \sim R_{11}$.

If we put

$$\begin{cases} \alpha A_{4} + \beta = 0, & \beta = a_{3} \\ \alpha A_{3} = a_{4} - a_{3}, \\ \alpha A_{1} = a_{1} - a_{3}, \\ \alpha A_{2} = a_{2} - a_{3}, \end{cases}$$

then we can prove that $R_{22} \sim R_{25}$, $R_{23} \sim R_{26}$ and $R_{24} \sim R_{27}$. If we put

$$\begin{cases} \alpha A_{2} + \beta = 0, & \beta = a_{2} \\ \alpha A_{3} = a_{3} - a_{2}, \\ \alpha A_{4} = a_{4} - a_{2}, \\ \alpha A_{1} = a_{1} - a_{2}, \end{cases}$$

then $R_7 \sim R_{21}$ is able to prove.

Hence we have only two different surfaces in the sense of \sim in the cases (ii) and (v).

§5. Discriminant

We shall first decide the form of discriminant of R_{13} , which is defined by

$$y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$$

with

$$\begin{cases} S_1 = x_0 e^H + x_1, \\ S_2 = x_2, \\ S_3 = x_3, \\ S_4 = x_4, \end{cases}$$

where $x_1 = a_1 + a_2 + a_3 + a_4$, $x_2 = a_1a_2 + a_1a_3 + a_1a_4 + a_2a_3 + a_2a_4 + a_3a_4$, $x_3 = a_1a_2a_3 + a_1a_2a_3 + a_1a_2a_3 + a_1a_2a_3a_4 + a_2a_3a_4$, $x_4 = a_1a_2a_3a_4$.

For simplicity's sake we put $X = x_0 e^H$. Then

$$L = -\frac{3}{8}S_{1}^{2} + S_{2} = -\left(\frac{3}{8}X^{2} + \alpha_{1}X + \alpha_{2}\right),$$

$$M = -\frac{1}{8}S_{1}^{3} + \frac{1}{2}S_{1}S_{2} - S_{3} = -\left(\frac{1}{8}X^{3} + \beta_{1}X^{2} + \beta_{2}X + \beta_{3}\right),$$

$$N = -\frac{3}{256}S_{1}^{4} + \frac{1}{16}S_{1}^{2}S_{2} - \frac{1}{4}S_{1}S_{3} + S_{4}$$

$$=-\left(\frac{3}{256}X^4+\gamma_1X^3+\gamma_2X^2+\gamma_3X+\gamma_4\right),$$

where

$$\begin{aligned} \alpha_{1} &= \frac{3}{4} x_{1}, \quad \alpha_{2} &= \frac{3}{8} x_{1}^{2} - x_{2}, \\ \beta_{1} &= \frac{3}{8} x_{1}, \quad \beta_{2} &= \frac{3}{8} x_{1}^{2} - \frac{1}{2} x_{2}, \quad \beta_{3} &= \frac{1}{8} x_{1}^{3} - \frac{1}{2} x_{1} x_{2} + x_{3}, \\ \gamma_{1} &= \frac{3}{64} x_{1}, \quad \gamma_{2} &= \frac{9}{128} x_{1}^{2} - \frac{1}{16} x_{2}, \quad \gamma_{3} &= \frac{3}{64} x_{1}^{3} - \frac{1}{8} x_{1} x_{2} + \frac{1}{4} x_{3}, \\ \gamma_{4} &= \frac{3}{256} x_{1}^{4} - \frac{1}{16} x_{1}^{2} x_{2} + \frac{1}{4} x_{1} x_{3} - x_{4}. \end{aligned}$$

Hence we evidently have

$$2\beta_1=\alpha_1,$$
 $16\gamma_1=\alpha_1,$ $\alpha_2=4\beta_2-16\gamma_2.$

Further we have

and

$$\beta_2 - 8\gamma_2 = -3x_1^2 / 16 = -\alpha_1^2 / 3$$

$$\beta_3 - 4\gamma_3 = -x_1^3 / 16 = -4\alpha_1^3 / 27$$

The discriminant D of R_{13} is at most sixth degree for X, which was prowed in §3 in [1]. The coefficient of X^6 is given in §3 in [1]. Then we have

$$-\frac{27}{16} \cdot \frac{16}{27 \cdot 27} \alpha_1^6 + \frac{9}{2} \alpha_1 \frac{\alpha_1^2}{3} \cdot \frac{4}{27} \alpha_1^3 + \alpha_1^3 \cdot \frac{-4}{27} \alpha_1^3 + 4 \frac{-\alpha_1^6}{27} + \alpha_1^2 \cdot \frac{\alpha_1^4}{9} = 0.$$

Hence the coefficient of X^6 is equal to zero.

Next we consider the coefficient of X^{5} , which is given in §3 in [1]. Firstly we consider the coefficient of γ_{4} , which is equal to

$$\frac{27}{2}(\beta_3 - 4\gamma_3) - 18\alpha_1(\beta_2 - 8\gamma_2) - 4\alpha_1^3.$$

This is equal to

$$-\frac{27}{2} \cdot \frac{4}{27} \alpha_1^3 + 18 \alpha_1 \frac{\alpha_1^3}{3} - 4 \alpha_1^3 = 0.$$

Then the remaining terms are equal to

$$-\frac{9}{2}\alpha_{1}(3\beta_{3}-8\gamma_{3})(\beta_{3}-4\gamma_{3})+\frac{9}{2}\beta_{3}(\beta_{2}+8\gamma_{2})(\beta_{2}-8\gamma_{2})(\beta_{2}-8\gamma_{2})(\beta_{2}-8\gamma_{2})(\beta_{2}-8\gamma_{2})\gamma_{3}$$

+30\alpha_{1}^{2}\beta_{2}\beta_{3}-24\cdot 8\alpha_{1}^{2}\alpha_{2}\beta_{3}-32\cdot 4\alpha_{1}^{2}\beta_{2}\alpha_{3}

$$+26 \cdot 32\alpha_{1}^{2}\gamma_{2}\gamma_{3}+4\alpha_{1}^{4}(\beta_{3}-4\gamma_{3})$$

+2\alpha_{1}(\beta_{2}-8\gamma_{2})^{2}(13\beta_{2}-88\gamma_{2})+4\alpha_{1}^{3}(\beta_{2}-8\gamma_{2})^{2}.

We have

.

$$\begin{aligned} &-\frac{9}{2}\alpha_{1}(3\beta_{3}-8\gamma_{3})(\beta_{3}-4\gamma_{3}) \\ &=\frac{9}{2}\alpha_{1}\cdot\frac{4}{27}\alpha_{1}{}^{3}\left(\beta_{3}-\frac{8}{27}\alpha_{1}{}^{3}\right)=\frac{2}{3}\alpha_{1}{}^{4}\beta_{3}-\frac{16}{81}\alpha_{1}{}^{7}, \\ &\frac{9}{2}\beta_{3}(\beta_{2}+8\gamma_{2})(\beta_{2}-8\gamma_{2})-6(11\beta_{2}-40\gamma_{2})(\beta_{2}-8\gamma_{2})\gamma_{3} \\ &=\frac{9}{2}\beta_{3}\left(2\beta_{2}+\frac{1}{3}\alpha_{1}{}^{2}\right)\frac{-1}{3}\alpha_{1}{}^{2}-6\left(6\beta_{2}-\frac{5}{3}\alpha_{1}{}^{2}\right)\frac{-1}{3}\alpha_{1}{}^{2}\frac{1}{4}\left(\beta_{3}+\frac{4}{27}\alpha_{1}{}^{3}\right) \\ &=-\frac{4}{3}\alpha_{1}{}^{4}\beta_{3}+\frac{4}{9}\alpha_{1}{}^{5}\beta_{2}-\frac{10}{81}\alpha_{1}{}^{7} \end{aligned}$$

and

$$30\alpha_{1}^{2}\beta_{2}\beta_{3}-3\cdot64\alpha_{1}^{2}\gamma_{2}\beta_{3}-32\cdot4\alpha_{1}^{2}\beta_{2}\gamma_{3}+26\cdot32\alpha_{1}^{2}\gamma_{2}\gamma_{3}+4\alpha_{1}^{4}(\beta_{3}-4\gamma_{3})$$

= $\frac{2}{3}\alpha_{1}^{4}\beta_{3}-\frac{8}{9}\alpha_{1}^{5}\beta_{2}+\frac{56}{81}\alpha_{1}^{7}.$

The last two terms are equal to

$$\frac{4}{9}\alpha_{1}{}^{5}\beta_{2}-\frac{22}{27}\alpha_{1}{}^{7}+\frac{4}{9}\alpha_{1}{}^{7}.$$

Summing up all these terms, we have that the coefficients of $\alpha_1^4 \beta_3$, $\alpha_1^5 \beta_2$ and α_1^7 vanish. Hence we have that the coefficient of X^5 vanishes. Hence

$$D_{R_{13}} = A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H} + A_1 x_0 e^{H} + A_0^2 e^{2H} + A_1 x_0^2 e^{2H} + A_1 x_0^2 e^{2H} + A_0^2 e^{2H} +$$

with non-zero constants A_0 , A_4 . Why $A_0 \neq 0$ and $A_4 \neq 0$? This is due to Ullrich-Selberg's remification theorem. See [1] in §3. From now on we shall not repeat this reason.

Next we shall consider the discriminant of R_{16} , which is defined by $y^4 - S_1y^3 + S_2y^2 - S_3y + S_4 = 0$ with

$$S_{1} = y_{0}e^{H} + a_{4} \equiv X + a_{4},$$

$$S_{2} = (a_{1} + a_{2} + a_{3})y_{0}e^{H} \equiv y_{1}X,$$

$$S_{3} = (a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3})y_{0}e^{H} \equiv y_{2}X.$$

$$S_{4} = a_{1}a_{2}a_{3}y_{0}e^{H} \equiv y_{3}X.$$

Then

$$L = -\frac{3}{8}S_{1}^{2} + S_{2} = -\left(\frac{3}{8}X^{2} + \alpha_{1}X + \alpha_{2}\right)$$

$$M = -\frac{1}{8}S_{1}^{3} + \frac{1}{2}S_{1}S_{2} - S_{3} = -\left(\frac{1}{8}X^{3} + \beta_{1}X^{2} + \beta_{2}X + \beta_{3}\right)$$

$$N = -\frac{3}{256}S_{1}^{4} + \frac{1}{16}S_{1}^{2}S_{2} - \frac{1}{4}S_{1}S_{3} + S_{4}$$

$$= -\left\{\frac{3}{256}X^{4} + \gamma_{1}X^{3} + \gamma_{2}X^{2} + \gamma_{3}X + \gamma_{4}\right\},$$

where

$$\begin{aligned} \alpha_{1} &= \frac{6}{8} a_{4} - y_{1}, \quad \alpha_{2} &= \frac{3}{8} a_{4}^{2}, \\ \beta_{1} &= \frac{3}{8} a_{4} - \frac{1}{2} y_{1}, \quad \beta_{2} &= \frac{3}{8} a_{4}^{2} - \frac{1}{2} a_{4} y_{1} + y_{2}^{'}, \quad \beta_{3} &= \frac{a_{4}^{3}}{8}, \\ \gamma_{1} &= \frac{3}{64} a_{4} - \frac{1}{16} y_{1}, \quad \gamma_{2} &= \frac{9}{128} a_{4}^{2} - \frac{1}{8} a_{4} y_{1} + \frac{1}{4} y_{2}, \\ \gamma_{3} &= \frac{3}{64} a_{4}^{3} - \frac{1}{16} a_{4}^{2} y_{1} + \frac{1}{4} a_{4} y_{2} - y_{3}, \quad \gamma_{4} &= \frac{3}{256} a_{4}^{4}. \end{aligned}$$

Evidently we have $2\beta_1 = \alpha_1$, $16\gamma_1 = \alpha_1$ and $\alpha_2 = 4\beta_2 - 16\gamma_2$. Hence the discriminant $D_{R_{16}}$ is a polynomial of X of sixth degree. The constant term of $D_{R_{16}}$ is equal to

$$-27\beta_{3}^{4}+144\alpha_{2}\beta_{3}^{2}\gamma_{4}-128\alpha_{2}^{2}\gamma_{4}^{2}-256\gamma_{4}^{3}+4\alpha_{2}^{3}\beta_{3}^{2}-16\alpha_{2}^{4}\gamma_{4}=0.$$

Let us consider the coefficient of X of $D_{R_{16}}$. Then it is just the following expression:

$$\begin{split} &-27\cdot 4\beta_{2}\beta_{3}{}^{3}+144\cdot 16\gamma_{1}\beta_{3}{}^{2}\gamma_{4}+144\alpha_{2}\gamma_{3}\beta_{3}{}^{2}+144\cdot 2\alpha_{2}\beta_{2}\beta_{3}\gamma_{4}-128\cdot 32\gamma_{1}\gamma_{4}{}^{2}\alpha_{2}\\ &-128\cdot 2\alpha_{2}{}^{2}\gamma_{3}\gamma_{4}-256\cdot 3\gamma_{3}\gamma_{4}{}^{2}+8\alpha_{2}{}^{3}\beta_{2}\beta_{3}+3\cdot 64\gamma_{1}\alpha_{2}{}^{2}\beta_{3}{}^{2}-16\alpha_{2}{}^{4}\gamma_{3}\\ &-16\cdot 64\gamma_{1}\alpha_{2}{}^{3}\gamma_{4}.\end{split}$$

It is very easy to prove that $144\alpha_2\gamma_3\beta_3^2 - 128 \cdot 2\alpha_2^2\gamma_3\gamma_4 - 256 \cdot 3\gamma_3\gamma_4^2 - 16\alpha_2^4\gamma_3 = 0$, $-27 \cdot 4\beta_2\beta_3^3 + 144 \cdot 2\alpha_2\beta_2\beta_3\gamma_4 + 8\alpha_2^3\beta_2\beta_3 = 0$ and $144\alpha_1\beta_3^2\gamma_4 - 128 \cdot 2\alpha_1\gamma_4^2\alpha_2 + 3 \cdot 4\alpha_1\alpha_2^2\beta_3^2 - 16 \cdot 4\alpha_1\alpha_2^3\gamma_4 = 0$. Therefore

$$D_{R_{16}} = A_6 y_0^6 e^{6H} + A_5 y_0^5 e^{5H} + A_4 y_0^4 e^{4H} + A_3 y_0^3 e^{3H} + A_2 y_0^2 e^{2H}$$

with non-zero constants A_2 , A_6 .

Now we shall consider the discriminant of R_{17} , which is defined by $y^4 - S_1y^3 + S_2y^2 - S_3y + S_4 = 0$, with

$$\begin{cases} S_{1} = y_{0}e^{H} + 2a_{4} \equiv X + 2a_{4}, \\ S_{2} = y_{1}y_{0}e^{H} + a_{4}^{2} \equiv y_{1}X + a_{4}^{2}, \\ S_{3} = y_{2}y_{0}e^{H} \equiv y_{2}X, \\ S_{4} = y_{3}y_{0}e^{H} \equiv y_{3}X, \end{cases}$$

where $y_1 = a_1 + a_2 + a_3$, $y_2 = a_1a_2 + a_1a_3 + a_2a_3$ and $y_3 = a_1a_2a_3$. Then

$$L = -\left(\frac{3}{8}X^{2} + \alpha_{1}X + \alpha_{2}\right),$$

$$M = -\left(\frac{1}{8}X^{3} + \beta_{1}X^{2} + \beta_{2}X\right),$$

$$N = -\left(\frac{3}{256}X^{4} + \gamma_{1}X^{3} + \gamma_{2}X^{2} + \gamma_{3}X + \gamma_{4}\right),$$

where

$$\begin{aligned} \alpha_{1} &= \frac{3}{2} a_{3} - y_{1}, \qquad \alpha_{2} = \frac{1}{2} a_{4}^{2}, \\ \beta_{1} &= \frac{3}{4} a_{4} - \frac{1}{2} y_{1}, \qquad \beta_{2} = a_{4}^{2} - a_{4} y_{1} + y_{2}, \\ \gamma_{1} &= \frac{3}{32} a_{4} - \frac{1}{16} y_{1}, \qquad \gamma_{2} = \frac{7}{32} a_{4}^{2} - \frac{1}{4} a_{4} y_{1} + \frac{1}{4} y_{2}, \\ \gamma_{3} &= -\frac{1}{16} a_{4}^{3} - \frac{1}{4} a_{4}^{2} y_{1} + \frac{1}{2} a_{4} y_{2} - y_{3}, \qquad \gamma_{4} = -\frac{1}{16} a_{4}^{4}. \end{aligned}$$

Evidently $2\beta_1 = \alpha_1$, $16\gamma_1 = \alpha_1$ and $\alpha_2 = 4\beta_2 - 16\gamma_2$. Hence the degree of $D_{R,\gamma}$ is at most six. The constant term of $D_{R_1\gamma}$ is just equal to

$$-128\alpha_{2}^{2}\gamma_{4}^{2}-256\gamma_{4}^{3}-16\alpha_{2}^{4}\gamma_{4}$$
$$=a_{4}^{8}\gamma_{4}(2-1-1)=0.$$

The coefficient of X of $D_{R_{17}}$ is equal to the following expression:

$$-256\alpha_{1}\gamma_{4}{}^{2}\alpha_{2}-256\alpha_{2}{}^{2}\gamma_{3}\gamma_{4}-256\cdot 3\gamma_{3}\gamma_{4}{}^{2}-16\alpha_{2}{}^{4}\gamma_{3}-64\alpha_{1}\alpha_{2}{}^{3}\gamma_{4}.$$

This is equal to zero, which is very easy to prove. Hence

$$D_{R_{17}} = A_{6} y_{0}^{6} e^{6H} + A_{5} y_{0}^{5} e^{5H} + A_{4} y_{0}^{4} e^{4H} + A_{3} y_{0}^{3} e^{3H} + A_{2} y_{0}^{2} e^{2H}$$

with non-zero coefficients A_2 , A_6 .

We consider the discriminant of R_{20} . R_{20} is defined by $y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$ with

$$\begin{cases} S_1 = x_0 e^H + a_3 + a_4 \equiv X + x_1, \\ S_2 = (2a_1 + a_2) x_0 e^H + a_3 a_4 \equiv (2a_1 + a_2) X + x_2, \\ S_3 = (a_1^2 + 2a_1 a_2) x_0 e^H \equiv (a_1^2 + 2a_1 a_2) X, \\ S_4 = a_1^2 a_2 x_0 e^H \equiv a_1^2 a_2 X. \end{cases}$$

Then

$$L = -\left(\frac{3}{8}X^{2} + \alpha_{1}X + \alpha_{2}\right),$$

$$M = -\left(\frac{1}{8}X^{3} + \beta_{1}X^{2} + \beta_{2}X + \beta_{3}\right),$$

$$N = -\left(\frac{3}{256}X^{4} + \gamma_{1}X^{3} + \gamma_{2}X^{2} + \gamma_{3}X + \gamma_{4}\right),$$

where

$$\begin{aligned} \alpha_{1} &= \frac{3}{4} x_{1} - 2a_{1} - a_{2}, \qquad \alpha_{2} = \frac{3}{8} x_{1}^{2} - x_{2}, \\ \beta_{1} &= \frac{3}{8} x_{1} - \frac{1}{2} (2a_{1} + a_{2}), \quad \beta_{2} = \frac{3}{8} x_{1}^{2} - \frac{1}{2} (2a_{1} + a_{2})x_{1} - \frac{1}{2} x_{2} + a_{1}^{2} + 2a_{1}a_{2}, \\ \beta_{3} &= \frac{1}{8} x_{1}^{3} - \frac{1}{2} x_{1}x_{2}, \\ \gamma_{1} &= \frac{3}{64} x_{1} - \frac{1}{16} (2a_{1} + a_{2}), \quad \gamma_{2} = \frac{9}{128} x_{1}^{2} - \frac{1}{8} (2a_{1} + a_{2})x_{1} - \frac{1}{16} x_{2} + \frac{1}{4} (a_{1}^{2} + 2a_{1}a_{2}), \\ \gamma_{3} &= \frac{3}{64} x_{1}^{3} - \frac{1}{16} (2a_{1} + a_{2})x_{1}^{2} - \frac{1}{8} x_{1}x_{2} + \frac{1}{4} (a_{1}^{2} + 2a_{1}a_{2})x_{1} - a_{1}^{2}a_{2}, \\ \gamma_{4} &= \frac{3}{256} x_{1}^{4} - \frac{1}{16} x_{1}^{2}x_{2}. \end{aligned}$$

Evidently $2\beta_1 = \alpha_1$, $16\gamma_1 = \alpha_1$, $\alpha_2 = 4\beta_2 - 16\gamma_2$. Hence the discriminant $D_{R_{20}}$ is of at most sixth degree of X. The coefficient of X^6 is given in §3 in [1]. This is just the following form:

$$-\frac{27}{16}(\beta_{3}-4\gamma_{3})^{2}+\frac{9}{2}\alpha_{1}(\beta_{2}-8\gamma_{2})(\beta_{3}-4\gamma_{3})+\alpha_{1}^{3}(\beta_{3}-4\gamma_{3})\\+4(\beta_{2}-8\gamma_{2})^{3}+\alpha_{1}^{2}(\beta_{2}-8\gamma_{2})^{2}.$$

We have

$$\beta_2 - 4\gamma_2 = -\frac{3}{16}x_1^2 + \frac{1}{2}(2a_1 + a_2)x_1 - (a_1^2 + 2a_1a_2)$$

$$\equiv -\frac{3}{16}x_1^2 + \frac{1}{2}y_1x_1 - y_2$$

and

$$\beta_3 - 4\gamma_3 = -\frac{1}{16}x_1^3 + \frac{1}{4}y_1x_1^2 - y_2x_1 + y_3, \quad y_3 = 4a_1^2a_2$$

and

$$\alpha_1 = \frac{3}{4} x_1 - y_1.$$

Hence the coefficient of X^6 is equal to

$$-\frac{27}{16} \left(\frac{1}{16} x_1^3 - \frac{1}{4} y_1 x_1^2 + y_2 x_1 - y_3\right)^2 + \frac{9}{2} \left(\frac{3}{4} x_1 - y_1\right) \left(\frac{3}{16} x_1^2 - \frac{1}{2} y_1 x_1 + y_2\right) \left(\frac{1}{16} x_1^3 - \frac{1}{4} y_1 x_1^2 + y_2 x_1 - y_3\right) + \left(\frac{3}{4} x_1 - y_1\right)^3 \left(-\frac{1}{16} x_1^3 + \frac{1}{4} y_1 x_1^2 - y_2 x_1 + y_3\right) - 4 \left(\frac{3}{16} x_1^2 - \frac{1}{2} y_1 x_1 + y_2\right)^3 + \left(\frac{3}{4} x_1 - y_1\right)^2 \left(\frac{3}{16} x_1^2 - \frac{1}{2} y_1 x_1 + y_2\right)^2.$$

It is easy to prove that the above expression vanishes identically. The constant term of $D_{R_{20}}$ is

$$-27\beta_{3}{}^{4}+144\alpha_{2}\gamma_{4}\beta_{3}{}^{2}-128\alpha_{2}{}^{2}\gamma_{4}{}^{2}-256\gamma_{4}{}^{3}+4\alpha_{2}{}^{3}\beta_{3}{}^{2}-16\alpha_{2}{}^{4}\gamma_{4}.$$

By a simple computation we can prove that this is equal to zero. Hence we have

$$D_{R_{20}} = A_5 x_0^5 e^{5H} + A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H} + A_1 x_0 e^{H}$$

with non-zero coefficients A_1 , A_5 .

We consider the case R_{22} , which is defined by

$$y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$$

with

$$\begin{cases} S_1 = y_1, \\ S_2 = y_0 e^H + y_2 \equiv X + y_2, \\ S_3 = (a_1 + a_2) y_0 e^H + y_3 \equiv (a_1 + a_2) X + y_3, \\ S_4 = a_1 a_2 y_0 e^H \equiv a_1 a_2 X. \end{cases}$$

Here $y_1 = a_3 + 2a_4$, $y_2 = 2a_3a_4 + a_4^2$ and $y_3 = a_3a_4^2$. Then

$$L = X + \alpha_1$$
,

$$M = \beta_0 X + \beta_1$$
,
 $N = \gamma_0 X + \gamma_1$,

where

$$\begin{aligned} \alpha_{1} &= -\frac{3}{8} y_{1}^{2} + y_{2}, \qquad \beta_{0} = \frac{1}{2} y_{1} - a_{1} - a_{2}, \\ \beta_{1} &= -\frac{1}{8} y_{1}^{3} + \frac{1}{2} y_{1} y_{2} - y_{3}, \quad \gamma_{0} = \frac{1}{16} y_{1}^{2} - \frac{1}{4} (a_{1} + a_{2}) y_{1} + a_{1} a_{2}, \\ \gamma_{1} &= -\frac{3}{256} y_{1}^{4} + \frac{1}{16} y_{1}^{2} y_{2} - \frac{1}{4} y_{1} y_{3}. \end{aligned}$$

In this case $D_{R_{22}}$ is

$$-27M^4 + 144LM^2N - 128L^2N^2 + 256N^3 - 4L^3M^2 + 16L^4N$$

Hence $D_{R_{22}}$ is a polynomial of X of at most fifth degree. The coefficient of $X^{\mathfrak{s}}$ is

$$-4\beta_0^2 + 16\gamma_0 = -4(a_1 - a_2)^2 \neq 0.$$

We shall compute the constant term of $D_{R_{22}}$. This is

$$-27 \beta_1{}^4+144 \alpha_1 \beta_1{}^2 \gamma_1-128 \alpha_1{}^2 \gamma_1{}^2+256 \gamma_1{}^3-4 \alpha_1{}^3 \beta_1{}^2+16 \alpha_1{}^4 \gamma_1\,.$$

Hence we should compute the following expression:

$$-27\left(-\frac{1}{8}y_{1}^{3}+\frac{1}{2}y_{1}y_{2}-y_{3}\right)^{4}$$

$$+144\left(-\frac{3}{8}y_{1}^{2}+y_{2}\right)\left(-\frac{3}{256}y_{1}^{4}+\frac{1}{16}y_{1}^{2}y_{2}-\frac{1}{4}y_{1}y_{3}\right)\left(-\frac{1}{8}y_{1}^{3}+\frac{1}{2}y_{1}y_{2}-y_{3}\right)^{2}$$

$$-128\left(\frac{3}{8}y_{1}^{2}-y_{2}\right)^{2}\left(\frac{3}{256}y_{1}^{4}-\frac{1}{16}y_{1}^{2}y_{2}+\frac{1}{4}y_{1}y_{3}\right)^{2}$$

$$-256\left(\frac{3}{256}y_{1}^{4}-\frac{1}{16}y_{1}^{2}y_{2}+\frac{1}{4}y_{1}y_{3}\right)^{3}$$

$$+4\left(\frac{3}{8}y_{1}^{2}-y_{2}\right)^{3}\left(\frac{1}{8}y_{1}^{3}-\frac{1}{2}y_{1}y_{2}+y_{3}\right)^{2}$$

$$-16\left(\frac{3}{8}y_{1}^{2}-y_{2}\right)^{4}\left(\frac{3}{256}y_{1}^{2}-\frac{1}{16}y_{1}^{2}y_{2}+\frac{1}{4}y_{1}y_{3}\right)^{2}.$$

We can prove that coefficients of y_1^{12} , $y_1^{10}y_2$, $y_1^9y_3$, $y_1^8y_2^2$, $y_1^7y_2y_3$, $y_1^6y_3^2$, $y_1^6y_2^3$, $y_1^3y_2^2y_3$, $y_1^4y_2^4$ and $y_1^4y_2y_3^2$ are all equal to zero. Hence the above expression reduce to

$$B_1y_1^3y_2^3y_3 + B_2y_1^2y_2^2y_3^2 + B_3y_1y_2y_3^3 + B_4y_1^3y_3^3 + B_5y_2^3y_3^2 + B_6y_3^4$$

with
$$B_1=0$$
, $B_2=1$, $B_3=18$, $B_4=-4$, $B_5=-4$, $B_6=-27$. Hence we have
 $y_3^2(y_1^2y_2^2+18y_1y_2y_3-4y_1^3y_3-4y_2^3-27y_3^2)$.
Let us put $y_1=a_3+2a_4$, $y_2=(2a_3+a_4)a_4$, $y_3=a_3a_4^2$. Then
 $y_1^2y_2^2-18y_1y_2y_3-4y_1^3y_3-4y_2^3-27y_3^2$
 $=(a_3+2a_4)^2a_4^2(2a_3+a_4)^2+18(a_3+2a_4)(2a_3+a_4)a_3a_4^3$
 $-4(a_3+2a_4)^3a_3a_4^2-4(2a_3+a_4)^3a_4^3-27a_3^2a_4^4$

Therefore

$$D_{R_{22}} = -4(a_1 - a_2)^2 y_0^5 e^{5H} + A_4 y_0^4 e^{4H} + A_3 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^{H}$$

with non-zero coefficient A_1 . We consider $D_{R_{28}}$. R_{28} is defined by

$$y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$$

with

$$\begin{cases} S_1 = y_1, \\ S_2 = y_2, \\ S_3 = y_0 e^H + y_3 \equiv X + y_3, \\ S_4 = a_1 y_0 e^H \equiv a_1 X. \end{cases}$$

Here $y_1 = a_2 + a_3 + a_4$, $y_2 = a_2a_3 + a_2a_4 + a_3a_4$, $y_3 = a_2a_3a_4$. Then

$$L = -\frac{3}{8}y_1^2 + y_2 \equiv \alpha_1,$$

$$M = -X + \beta_1,$$

$$N = \gamma_0 X + \gamma_1,$$

where

$$\beta_{1} = -\frac{1}{8} y_{1}^{3} + \frac{1}{2} y_{1} y_{2} - y_{3}, \qquad \gamma_{0} = -\frac{1}{4} y_{1} + a_{1},$$

$$\gamma_{1} = -\frac{3}{256} y_{1}^{4} + \frac{1}{16} y_{1}^{2} y_{2} - \frac{1}{4} y_{1} y_{3}.$$

Therefore $D_{R_{28}}$ is equal to

$$\begin{split} &-27(X-\beta_1)^4+144\alpha_1(X-\beta_1)^2(\gamma_0X+\gamma_1)-128\alpha_1^2(\gamma_0X+\gamma_1)^2\\ &+256(\gamma_0X+\gamma_1)^3-4\alpha_1^3(X-\beta_1)^2+16\alpha_1^4(\gamma_0X+\gamma_1)\,. \end{split}$$

Hence

$$D_{R_{22}} = -27X^4 + A_3X^3 + A_2X^2 + A_1X + A_0$$

with $X = y_0 e^H$ and a non-zero coefficient A_0 . Finally we consider $D_{R_{29}}$. R_{29} is defined by

$$y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$$

with

$$\begin{cases} S_1 = y_1, \\ S_2 = y_0 e^H + y_2 \equiv X + y_2, \\ S_3 = 2a_1 y_0 e^H + y_3 \equiv 2a_1 X + y_3, \\ S_4 = a_1^2 y_0 e^H \equiv a_1^2 X. \end{cases}$$

Here $y_1 = a_2 + a_3 + a_4$, $y_2 = a_2a_3 + a_2a_4 + a_3a_4$, $y_3 = a_2a_3a_4$. Then

$$L = X + \alpha_1,$$

$$M = \beta_0 X + \beta_1,$$

$$N = \gamma_0 X + \gamma_1$$

with

$$\alpha_{1} = -\frac{3}{8}y_{1}^{2} + y_{2}, \quad \beta_{0} = \frac{1}{2}y_{1} - 2a_{1}, \quad \beta_{1} = -\frac{1}{8}y_{1}^{3} + \frac{1}{2}y_{1}y_{2} - y_{3},$$

$$\gamma_{0} = \frac{1}{16}y_{1}^{2} - \frac{a_{1}}{2}y_{1} + a_{1}^{2}, \quad \gamma_{1} = -\frac{3}{256}y_{1}^{4} + \frac{1}{16}y_{1}^{2}y_{2} - \frac{1}{4}y_{1}y_{3}.$$

Then the coefficient of X^5 of $D_{R_{29}}$ is equal to

$$-4\beta_0{}^2+\gamma_0=-4\left(\frac{1}{4}y_1{}^2-2a_1y_1+4a_1{}^2\right)+16\left(\frac{1}{16}y_1{}^2-\frac{a_1}{2}y_1+a_1{}^2\right)$$

=0.

Therefore $D_{R_{29}}$ is a polynomial of X of fourth degree, Hence

$$D_{R_{29}} = A_4 y_0^{4} e^{4H} + A_3 y_0^{3} e^{3H} + A_2 y_0^{2} e^{2H} + A_1 y_0 e^{H} + A_0$$

with non-zero coefficients A_0 , A_4 .

§6. Remarks

Let us put

$$F(z, y) \equiv y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$$

and

FOUR-SHEETED ALGEBROID SURFACES

$$\begin{aligned} \alpha^4 G(z, Y) &\equiv F(z, \alpha Y + \beta) \\ &\equiv \alpha^4 [Y^4 - T_1 Y^3 + T_2 Y^2 - T_3 Y + T_4]. \end{aligned}$$

Evidently

$$\{ (y_1 - y_2)(y_1 - y_3)(y_1 - y_4)(y_2 - y_3)(y_2 - y_4)(y_3 - y_4) \}^2$$

= $\alpha^{12} \{ (Y_1 - Y_2)(Y_1 - Y_3)(Y_1 - Y_4)(Y_2 - Y_3)(Y_2 - Y_4)(Y_3 - Y_4) \}^2$

Hence $R_1 \sim R_2$ implies $D_{R_1} = \alpha^{12} D_{R_2}$. Therefore the non-vanishing property or the vanishing property of coefficients is completely preserved. Hence the forms of discriminants of all surfaces listed in §2, 3 and 4 are completely determind.

We shall not give any proof of the following fact: Let R be the Riemann surface R_{13} . Let F be a regular function on R. Then F is representable as

$$F = f_1 + f_2 y + f_3 y^2 + f_4 y^3$$

where f_1 , f_2 , f_3 and f_4 are meromorphic functions in $|z| < +\infty$, all of which are regular at any points satisfying $H'(z) \neq 0$.

We can prove this quite similarly as in §6 in [1]. And the similar facts for R_{16} , R_{17} , R_{20} , R_{22} , R_{28} and R_{29} hold.

Further we can make use of transformation formula of discriminants established in §7 in [1].

§7. Theorems

We now introduce an assumption that H(z) is a polynomial.

Let R be the surface R_{13} : $y^4 - S_1 y^3 + S_2 y^2 - S_3 y + S_4 = 0$ with $S_1 = x_0 e^H + x_1$, $S_2 = x_2$, $S_3 = x_3$ and $S_4 = x_4$, where $x_1 = a_1 + a_2 + a_3 + a_4$, $x_2 = a_1 a_2 + a_1 a_3 + a_1 a_4 + a_2 a_3 + a_2 a_4 + a_3 a_4$, $x_3 = a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4$, $x_4 = a_1 a_2 a_3 a_4$. Then P(y) = 6. Suppose that $P(R_{13}) > 6$.

If $P(R_{13})=7$, then there is non-constant regular function F on R_{13} such that P(F)=7 and

$$F = f_1 + f_2 y + f_3 y^2 + f_4 y^3$$
,

where f_1 , f_2 , f_3 , f_4 are meromorphic in $|z| < \infty$ and regular excepting at most at points satisfying H'=0. We assume that F defines the surface R_4^* : $F^4 - U_1F^3 + U_2F^2 - U_3F + U_4=0$ with $U_1 = y_1$, $U_2 = y_0e^L + y_2$, $U_3 = b_1y_0e^L + y_3$, $U_4 = y_4$, where $y_1 = b_2 + b_3 + b_4 + b_5$, $y_2 = b_2b_3 + b_2b_4 + b_2b_5 + b_3b_4 + b_3b_5 + b_4b_5$, $y_3 = b_2b_3b_4 + b_2b_3b_5$ $+ b_2b_4b_5 + b_3b_4b_5$ and $y_4 = b_2b_3b_4b_5$. Let us denote the discriminants of R_{13} and R_4^* by Δ and D, respectively. Then we have

$$D = \Delta \cdot G^2$$
,

where G may have poles, whose number is finite. Let us denote

$$D = -4b_1^2(y_0e^L - \delta_1)(y_0e^L - \delta_2)(y_0e^L - \delta_3)(y_0e^L - \delta_4)(y_0e^L - \delta_5)(y_0e^L - \delta_5)(y_$$

and

$$\Delta = A_4(x_0 e^H - \gamma_1)(x_0 e^H - \gamma_2)(x_0 e^H - \gamma_3)(x_0 e^H - \gamma_4).$$

CASE 1). The counting function of simple zeros of Δ satisfies

$$N_2(r, 0, \Delta) \sim 4T(r, e^H)$$
,

that is, $\gamma_i \neq \gamma_j$ for $i \neq j$. Then

$$N_2(r, 0, \Delta) = N_2(r, 0, D) \sim m \cdot T(r, e^L)$$

with m=1, 2, 3, 5. Then L should be a polynomial such that deg L= deg H. In this case we can return back y from F. Then we have

$$\Delta = D \cdot I^2$$

The number of poles of I is finite again. Hence $G^2 \cdot I^2 = 1$. The zeros of G coincides with poles of I. Hence $G = \beta e^M$ with rational β and M entire with M(0)=0. M may reduce to constant 0. In this case $\delta_i \neq \delta_j$ for $i \neq j$.

CASE 2). $N_2(r, 0, \Delta) \sim 2T(r, e^H)$, that is, $\gamma_1 \neq \gamma_2$, $\gamma_1 \neq \gamma_3$, $\gamma_2 \neq \gamma_3$ but $\gamma_3 = \gamma_4$. Then $N_2(r, 0, \Delta) = N_2(r, 0, D) \sim m \cdot T(r, e^L)$ with m=1, 2, 3, 5. Then L should be a polynomial such that deg L=deg H. We can return back y from F. Then $\Delta = D \cdot I^2$. Then number of poles of I is finite. Hence $G^2 \cdot I^2 = 1$. The zeros of G conincides with poles of I. Then we can count the multiple zeros. The counting function of multiple zeros

$$N_0(r, 0, \Delta) = (1 + o(1))N_0(r, 0, D),$$

where $N_0(r, 0, \Delta) = N(r, 0, \Delta) - N_2(r, 0, \Delta)$. Hence

$$N_1(r, 0, \Delta) = 2 \cdot T(r, e^H)$$

and

$$N(r, 0, \Delta) = (1 + o(1))(5 - m)T(r, e^{L}).$$

Then m=5/2, which is absurd, since m is an integer.

CASE 3). $N_0(r, 0, \Delta) \sim T(r, e^H)$, that is, $\gamma_1 \neq \gamma_2 = \gamma_3 = \gamma_4$. Then $N_0(r, 0, D) \sim 2 \cdot T(r, e^L)$ and the counting functions of triple zeros $N_3(r, 0, \Delta)$, $N_3(r, 0, D)$ satisfies $N_3(r, 0, \Delta) = N_3(r, 0, D)$ and $N_3(r, 0, \Delta) = 3 \cdot T(r, e^H)$, $N_3(r, 0, D) = 3 \cdot T(r, e^L)$. This is a contradiction.

CASE 4). Δ does not have any simple zero. Then either

$$N_2(r, 0, D) \sim T(r, e^L)$$
 or $N_3(r, 0, D) \sim 3 \cdot T(r, e^L)$

but

$$N_{3}(r, 0, \Delta) = o(1)$$
 or $N_{5}(r, 0, D) \sim 5 \cdot T(r, e^{L})$

where N_5 is the counting function of multiplicity 5. All of these lead to a contradiction.

Therefore we have

 $D = \Delta \beta^2 e^{2M}$

with a rational function β . Further *D*, Δ must have only simple factors. Hence we have

5.
$$T(r, e^L) \sim N(r, 0, D) = N(r, 0, \Delta) \sim 4T(r, e^H)$$
.

Hence

$$T(r, e^{L}) \sim \frac{4}{5} T(r, e^{H}).$$

We have

$$-4b_{1}^{2}y_{0}^{5}e^{5L} + B_{4}y_{0}^{4}e^{4L} + B_{3}y_{0}^{3}e^{3L} + B_{2}y_{0}^{2}e^{2L} + B_{1}y_{0}e^{L} + B_{0}$$

= $(A_{4}x_{0}^{4}e^{4H} + A_{3}x_{0}^{3}e^{3H} + A_{2}x_{0}^{2}e^{2H} + A_{1}x_{0}e^{H} + A_{0})\beta^{2}e^{2M}$

with non-zero constants B_0 , A_4 , A_0 . By Borel's unicity theorem we have only two possibilities: either

$$M \equiv 0, -4b_1^2 y_0^5 = A_4 x_0^4 \beta^2, B_0 = A_0 \beta^2, 5L = 4H \text{ and } B_4 = B_3 = B_2 = B_1 = A_3$$
$$= A_2 = A_1 = 0$$

or

$$M = -2H, 5L = -4H, -4b_1^2 y_0^5 = A_0 \beta^2, B_0 = A_4 x_0^4 \beta^2 \text{ and } B_4 = B_3 = B_2 = B_1$$
$$= A_3 = A_2 = A_1 = 0.$$

If F defines the surface R_6^* , then the same proof does work. So we shall omit its detail.

We assume that F defines the surface $R_7^*: F^4 - U_1F^3 + U_2F^2 - U_3F + U_4 = 0$ with $U_1 = y_0e^L + y_1$, $U_2 = \alpha_1y_0e^L + y_2$, $U_3 = \alpha_2y_0e^L$, $U_4 = \alpha_3y_0e^L$, where $y_1 = b_4 + b_5$, $y_2 = b_4b_5$, $\alpha_1 = b_1 + b_2 + b_3$, $\alpha_2 = b_1b_2 + b_1b_3 + b_2b_3$, $\alpha_3 = b_1b_2b_3$. Then we have

$$D_{R_{7}*} = \Delta_{R_{13}} \cdot G^{2}$$
,

where G may have poles, whose number is finite. Let us denote

$$D_{R_{7}*} = B_{6}(y_{0}e^{L} - \delta_{1})(y_{0}e^{L} - \delta_{2})(y_{0}e^{L} - \delta_{3})(y_{0}e^{L} - \delta_{4})(y_{0}e^{L} - \delta_{5})y_{0}e^{L}$$

$$\equiv B_{6}y_{0}^{6}e^{6L} + B_{5}y_{0}^{5}e^{5L} + B_{4}y_{0}^{4}e^{4L} + B_{3}y_{0}^{3}e^{3L} + B_{2}y_{0}^{2}e^{2L} + B_{1}y_{0}e^{L}$$

with non-zero coefficients B_1 , B_6 . Quite similarly we have

$$D_{R_7*} = \Delta_{R_{13}} \cdot \beta^2 e^{2M}$$

with a rational function β . Further D_{R_7*} and $\Delta_{R_{13}}$ must have only simple factors. Therefore

$$5T(r, e^L) \sim 4T(r, e^H)$$
.

MITSURU OZAWA AND KAZUNARI SAWADA

By

$$B_{6}y_{0}^{6}e^{6L} + B_{5}y_{0}^{5}e^{5L} + B_{4}y_{0}^{4}e^{4L} + B_{3}y_{0}^{3}e^{3L} + B_{2}y_{0}^{2}e^{2L} + B_{1}y_{0}e^{L}$$

= $(A_{4}x_{0}^{4}e^{4H} + A_{3}x_{0}^{3}e^{3H} + A_{2}x_{0}^{2}e^{2H} + A_{1}x_{0}e^{H} + A_{0})\beta^{2}e^{2M}$

and by Borel's unicity theorem we have two possibilities:

$$2M - L = 0, 5L = 4H, B_6 y_0^6 = A_4 x_0^4 \beta^2, B_1 y_0 = A_0 \beta^2$$
 and $B_5 = B_4 = B_3 = A_3 = A_2$
= $A_1 = 0$

or

$$4H+2M-L=0, 2M-L=5L(5L=-4H), A_0\beta^2=B_6y_0^6, A_4x_0^4\beta^2=B_1y_0$$

and $B_5=B_4=B_3=B_2=A_3=A_2=A_1=0.$

If $P(R_{13})=8$, then there is a non-constant regular function F on R_{13} such that P(F)=8 and $F=f_1+f_2y+f_3y^2+f_4y^3$ defines the surface X_1 . Then

$$D_{X_1} = \Delta_{R_{13}} \cdot G^2$$
.

And we can prove that

$$D_{X_1} = \Delta_{R_{13}} \cdot \beta^2 e^{2M}$$

with a rational function β . Then Borel's unicity theorem implies that $A_3 = A_2 = A_1 = 0$. Hence we have the following result. In the following theorems we always assume that e^H is an entire function of finite order.

THEOREM 1. Let us denote the discriminant of R_{13}

$$\Delta_{R_{13}} = A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H} + A_1 x_0 e^{H} + A_0$$

with non-zero coefficients A_0 , A_4 . If at least one of coefficients A_3 , A_2 , A_1 does not vanish. Then $P(R_{13})=6$.

THEOREM 2. Let us denote the discriminant of R_{16}

$$\Delta_{R_{16}} = A_6 x_0^6 e^{6H} + A_5 x_0^5 e^{5H} + A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H}$$

with non-zero coefficients A_6 , A_2 . If at least one of coefficients A_5 , A_4 , A_3 does not vanish, then $P(R_{16})=6$.

THEOREM 3. Let us denote the discriminant of R_{17}

$$\Delta_{R_{17}} = A_6 x_0^6 e^{6H} + A_5 x_0^5 e^{5H} + A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H}$$

with non-zero coefficients A_6 , A_2 . If at least one of coefficients A_5 , A_4 , A_3 does not vanish, then $P(R_{17})=6$.

THEOREM 4. Let us put the discriminant of R_{20}

 $\Delta_{R_{20}} = A_5 x_0^{5} e^{5H} + A_4 x_0^{4} e^{4H} + A_3 x_0^{3} e^{3H} + A_2 x_0^{2} e^{2H} + A_1 x_0 e^{H}$

with non-zero coefficients A_5 , A_1 . If at least one of coefficients A_4 , A_3 , A_2 does not vanish, then $P(R_{20})=6$.

The same holds for R_{22} .

THEOREM 5. Let us put the discriminant of R_{28}

$$\Delta_{R_{28}} = A_4 x_0^4 e^{4H} + A_3 x_0^3 e^{3H} + A_2 x_0^2 e^{2H} + A_1 x_0 e^{H} + A_0$$

with $A_4 = -27$ and $A_0 \neq 0$. If at least one of coefficients A_3 , A_2 , A_1 does not vanish, then $P(R_{28})=6$.

The same holds for R_{29} .

References

[1] M. OZAWA AND K. SAWADA, Picard constants of four-sheeted algebroid surfaces, I, Kodai Math. J., 18 (1995), 99-141.

> Department of Mathematics Science University of Tokyo Noda, Chiba, Japan

Department of Mathematics Tokyo Metropolitan College of Technology Shinagawa, Tokyo, Japan