PICARD CONSTANTS OF FOUR-SHEETED

ALGEBROID SURFACES, II

Mitsuru Ozawa and Kazunari Sawada

§ 1. Introduction

Under the same title we have reported a paper, in which the Picard constant of several four-sheeted algebroid surfaces with $P(y)=7$ has been decided. In this paper we shall continue the same work for four-sheeted algebroid surfaces with $P(y)=6$. Again the discriminant of surfaces with $P(y)=6$ plays a very important role in this paper.

In the first place we decide several four-sheeted algebroid surfaces with $P(y)=6$. We classify into representative surfaces by a linear transformation $\alpha y+\beta$. Next we compute their discriminants of representative surfaces. This process need a little bit hard work. Finally we get theorems, which decide the Picard constant.

§2. Surfaces with $P(y)=6$

Let us consider the four-sheeted algebroid surface defined by

$$
F(z, y) \equiv y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

By Rémoundos' theorem we consider the following equations:
(i)

$$
\left(\begin{array}{l}
F(z, 0) \\
F\left(z, a_{1}\right) \\
F\left(z, a_{2}\right) \\
F\left(z, a_{3}\right) \\
F\left(z, a_{4}\right)
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}}
\end{array}\right),
$$

(iii)

$$
=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{3}}
\end{array}\right), \quad=\left(\begin{array}{c}
c_{1} \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{3}} \\
\beta_{4} e^{H_{4}}
\end{array}\right),
$$

Received November 4, 1993.

$$
\begin{aligned}
& \text { (iv) } \\
& =\left(\begin{array}{c}
\text { (v) } \\
\beta_{1} e^{H_{1}} \\
c_{1} \\
c_{2} \\
c_{3} \\
\beta_{2} e^{H_{2}}
\end{array}\right), \quad=\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
c_{1} \\
c_{2} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{3}}
\end{array}\right), \quad=\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
c_{1} \\
\beta_{2} e^{H_{2}} \\
\beta_{3} e^{H_{3}} \\
\beta_{4} e^{H_{4}}
\end{array}\right),
\end{aligned}
$$

where c_{1}, c_{2}, c_{3} are non-zero constants, $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ non-zero constants and H_{1}, H_{2}, H_{3}, H_{4} are non-constant entire functions satisfying $H_{j}(0)=0$.

CASE (i). Then $S_{4}=c_{1}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+c_{1}=c_{2}, \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{2}-S_{3} a_{2}+c_{1}=c_{3}, \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+c_{1}=\beta_{1} e^{H_{1}}, \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+c_{1}=\beta_{2} e^{H_{2}} .
\end{array}\right.
$$

Let us put

$$
x_{1}=\frac{c_{1}}{a_{1} a_{2} a_{3}}, \quad x_{2}=\frac{c_{2}}{a_{1}\left(a_{1}-a_{2}\right)\left(a_{3}-a_{1}\right)}, \quad x_{3}=\frac{c_{3}}{a_{2}\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)}
$$

and

$$
x_{0}=\frac{\beta_{1}}{a_{3}\left(a_{2}-a_{3}\right)\left(a_{3}-a_{1}\right)} .
$$

Then from the first three equations

$$
\left\{\begin{array}{l}
S_{1}=x_{1}+x_{2}+x_{3}+a_{1}+a_{2}+a_{3}+x_{0} e^{H_{1}}, \\
S_{2}=\left(a_{1}+a_{2}+a_{3}\right) x_{1}+\left(a_{2}+a_{3}\right) x_{2}+\left(a_{1}+a_{3}\right) x_{3}+a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}+\left(a_{1}+a_{2}\right) x_{0} e^{H_{1}}, \\
S_{3}=\left(a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}\right) x_{1}+a_{2} a_{3} x_{2}+a_{1} a_{3} x_{3}+a_{1} a_{2} a_{3}+a_{1} a_{2} x_{0} e^{H_{1}} .
\end{array}\right.
$$

Put these into $F\left(z, a_{4}\right)=\beta_{2} e^{H_{2}}$. Making use of Borel's unicity theorem, we have $H_{1}=H_{2}(=H)$ and

$$
\begin{aligned}
& x_{0}=\frac{\beta_{2}}{a_{4}\left(a_{2}-a_{4}\right)\left(a_{4}-a_{1}\right)}, \\
& \frac{x_{1}}{a_{4}}+\frac{x_{2}}{a_{4}-a_{1}}+\frac{x_{3}}{a_{4}-a_{2}}=1 .
\end{aligned}
$$

We impose the following condition: $F(z, \alpha)=\beta e^{L}$ does not hold excepting $\alpha=$ a_{3}, a_{4}. Now

$$
\begin{aligned}
F(z, \alpha)=\left(\alpha-a_{3}\right)[& -x_{1}\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)-x_{2} \alpha\left(\alpha-a_{2}\right) \\
& \left.-x_{3} \alpha\left(\alpha-a_{1}\right)+\alpha\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)\right] \\
& -x_{0} e^{H} \alpha\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right) .
\end{aligned}
$$

Therefore we have three cases:
(a) $\alpha\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)-x_{1}\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)-x_{2} \alpha\left(\alpha-a_{2}\right)-x_{3} \alpha\left(\alpha-a_{1}\right)=\left(\alpha-a_{4}\right)^{3}$,
(b) $=\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right)^{2}$,
(c) $=\left(\alpha-a_{3}\right)^{2}\left(\alpha-a_{4}\right)$.

Case (a). Then
and

$$
\begin{aligned}
& 3 a_{4}=a_{1}+a_{2}+x_{1}+x_{2}+x_{3}, \\
& 3 a_{4}{ }^{2}=a_{1} a_{2}+\left(a_{1}+a_{2}\right) x_{1}+a_{2} x_{2}+a_{1} x_{3}
\end{aligned}
$$

$$
a_{4}^{3}=x_{1} a_{1} a_{2} .
$$

Thus

$$
c_{1}=a_{3} a_{4}{ }^{3}, \quad c_{2}=\left(a_{3}-a_{1}\right)\left(a_{4}-a_{1}\right)^{3}, \quad c_{3}=\left(a_{3}-a_{2}\right)\left(a_{4}-a_{2}\right)^{3} .
$$

Hence

$$
\left\{\begin{array}{l}
S_{1}=3 a_{4}+a_{3}+x_{0} e^{H}, \\
S_{2}=3 a_{4}\left(a_{4}+a_{3}\right)+\left(a_{1}+a_{2}\right) x_{0} e^{H}, \\
S_{3}=a_{4}{ }^{2}\left(a_{4}+3 a_{3}\right)+a_{1} a_{2} x_{0} e^{H}, \\
S_{4}=c_{1}=a_{3} a_{4}{ }^{3} .
\end{array}\right.
$$

This surface is denoted by R_{1}.
Case (b). Then

$$
\begin{aligned}
& 2 a_{4}+a_{3}=a_{1}+a_{2}+x_{1}+x_{2}+x_{3}, \\
& a_{4}{ }^{2}+2 a_{3} a_{4}=a_{1} a_{2}+\left(a_{1}+a_{2}\right) x_{1}+a_{2} x_{2}+a_{1} x_{3}, \\
& a_{3} a_{4}{ }^{2}=x_{1} a_{1} a_{2}=c_{1} / a_{3} .
\end{aligned}
$$

Hence

$$
c_{1}=a_{3}{ }^{2} a_{4}{ }^{2}, \quad c_{2}=\left(a_{3}-a_{1}\right)^{2}\left(a_{4}-a_{1}\right)^{2}, \quad c_{3}=\left(a_{3}-a_{2}\right)^{2}\left(a_{4}-a_{2}\right)^{2} .
$$

Thus

$$
\left\{\begin{array}{l}
S_{1}=2 a_{3}+2 a_{4}+x_{0} e^{H}, \\
S_{2}=a_{3}{ }^{2}+4 a_{3} a_{4}+a_{4}{ }^{2}+\left(a_{1}+a_{2}\right) x_{0} e^{H}, \\
S_{3}=2 a_{3} a_{4}\left(a_{3}+a_{4}\right)+a_{1} a_{2} x_{0} e^{H}, \\
S_{4}=c_{1}=a_{3}{ }^{2} a_{4}{ }^{2}
\end{array}\right.
$$

This surface is denoted by R_{2}.
Case (c). Then

$$
\begin{aligned}
& 2 a_{3}+a_{4}=a_{1}+a_{2}+x_{1}+x_{2}+x_{3} \\
& a_{3}^{2}+2 a_{3} a_{4}=a_{1} a_{2}+\left(a_{1}+a_{2}\right) x_{1}+a_{2} x_{2}+a_{1} x_{3}
\end{aligned}
$$

and

$$
a_{3}{ }^{2} a_{4}=x_{1} a_{1} a_{2}=c_{1} / a_{3}
$$

Thus

$$
c_{1}=a_{3}{ }^{3} a_{4}, \quad c_{2}=\left(a_{3}-a_{1}\right)^{3}\left(a_{4}-a_{1}\right), \quad c_{3}=\left(a_{3}-a_{2}\right)^{3}\left(a_{4}-a_{2}\right)
$$

Hence

$$
\left\{\begin{array}{l}
S_{1}=3 a_{3}+a_{4}+x_{0} e^{H}, \\
S_{2}=3 a_{3}\left(a_{3}+a_{4}\right)+\left(a_{1}+a_{2}\right) x_{0} e^{H}, \\
S_{3}=3 a_{3}{ }^{2} a_{4}+a_{3}{ }^{3}+a_{1} a_{2} x_{0} e^{H}, \\
S_{4}=c_{1}=a_{3}{ }^{3} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{3}.
CASE (iv). Then $S_{4}=\beta_{1} e^{H_{1}}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+\beta_{1} e^{H_{1}}=c_{1} \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{2}-S_{3} a_{2}+\beta_{1} e^{H_{1}}=c_{2} \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+\beta_{1} e^{H_{1}}=c_{3} \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+\beta_{1} e^{H_{1}}=\beta_{2} e^{H_{2}}
\end{array}\right.
$$

Let us put

$$
x=\frac{c_{1}}{a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)}, \quad y=\frac{c_{2}}{a_{2}\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)}, \quad z=\frac{c_{3}}{a_{3}\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)}
$$

and

$$
x_{0}=\frac{\beta_{1}}{a_{1} a_{2} a_{3}}
$$

Then

$$
\left\{\begin{aligned}
& S_{1}=x_{0} e^{H_{1}}-\left(x-y+z-a_{1}-a_{2}-a_{3}\right) \\
& S_{2}=\left(a_{1}+a_{2}+a_{3}\right) x_{0} e^{H_{1}}-\left\{\left(a_{2}+a_{3}\right) x-\left(a_{1}+a_{3}\right) y+\left(a_{1}+a_{2}\right) z\right. \\
&\left.\quad-a_{1} a_{2}-a_{1} a_{3}-a_{2} a_{3}\right\} \\
& S_{3}=\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{0} e^{H_{1}}-\left\{a_{2} a_{3} x-a_{1} a_{3} y+a_{1} a_{2} z-a_{1} a_{2} a_{3}\right\}
\end{aligned}\right.
$$

We substitute these into $F\left(z, a_{4}\right)=\beta_{2} e^{H_{2}}$. Then Borel's unicity theorem implies that

$$
\begin{aligned}
& H_{1}=H_{2}(=H), \\
& \beta_{2}=x_{0}\left(a_{1}-a_{4}\right)\left(a_{2}-a_{4}\right)\left(a_{3}-a_{4}\right), \\
& \frac{x}{a_{4}-a_{1}}-\frac{y}{a_{4}-a_{2}}+\frac{z}{a_{4}-a_{3}}=-1 .
\end{aligned}
$$

We now impose the following condition: $F(z, \alpha)$ does not have any lacunary value of the second kind excepting at most 0 and a_{4}. Let us put

$$
F(z, \alpha)=-\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right) x_{0} e^{H}+\alpha P(\alpha),
$$

where

$$
\begin{aligned}
P(\alpha)= & \alpha^{3}+\alpha^{2}\left(x-y+z-a_{1}-a_{2}-a_{3}\right) \\
& +\alpha\left\{-\left(a_{2}+a_{3}\right) x+\left(a_{1}+a_{3}\right) y-\left(a_{1}+a_{2}\right) z+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right\} \\
& +a_{2} a_{3} x-a_{1} a_{3} y+a_{1} a_{2} z-a_{1} a_{2} a_{3} .
\end{aligned}
$$

Then there are three possible cases:
(a) $\quad P(\alpha)=\alpha^{2}\left(\alpha-a_{4}\right)$,
(b) $P(\alpha)=\alpha\left(\alpha-a_{4}\right)^{2}$,
(c) $P(\alpha)=\left(\alpha-a_{4}\right)^{3}$.

We now consider Case (a). Then

$$
\left\{\begin{array}{l}
x-y+z-a_{1}-a_{2}-a_{3}=-a_{4} \\
\left(a_{2}+a_{3}\right) x-\left(a_{1}+a_{3}\right) y+\left(a_{1}+a_{2}\right) z=a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}, \\
a_{2} a_{3} x-a_{1} a_{3} y+a_{1} a_{2} z=a_{1} a_{2} a_{3} .
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{4}, \\
S_{2}=\left(a_{1}+a_{2}+a_{3}\right) x_{0} e^{H}, \\
S_{3}=\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{0} e^{H}, \\
S_{4}=a_{1} a_{2} a_{3} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{16}.
Next we consider Case (b). Then

$$
\left\{\begin{array}{l}
x-y+z-a_{1}-a_{2}-a_{3}=-2 a_{4}, \\
-\left(a_{2}+a_{3}\right) x+\left(a_{1}+a_{3}\right) y-\left(a_{1}+a_{2}\right) z+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=a_{4}{ }^{2}, \\
a_{2} a_{3} x-a_{1} a_{3} y+a_{1} a_{2} z-a_{1} a_{2} a_{3}=0 .
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+2 a_{4}, \\
S_{2}=\left(a_{1}+a_{2}+a_{3}\right) x_{0} e^{H}+a_{4}{ }^{2}, \\
S_{3}=\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{0} e^{H}, \\
S_{4}=a_{1} a_{2} a_{3} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{17}.
We finally consider Case (c). Then

$$
\left\{\begin{array}{l}
x-y+z-a_{1}-a_{2}-a_{3}=-3 a_{4}, \\
-\left(a_{2}+a_{3}\right) x+\left(a_{1}+a_{3}\right) y-\left(a_{1}+a_{2}\right) z+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=3 a_{4}{ }^{2}, \\
a_{2} a_{3} x-a_{1} a_{3} y+a_{1} a_{2} z-a_{1} a_{2} a_{3}=-a_{4}{ }^{3} .
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+3 a_{4}, \\
S_{2}=\left(a_{1}+a_{2}+a_{3}\right) x_{0} e^{H}+3 a_{4}{ }^{2}, \\
S_{3}=\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{0} e^{H}+a_{4}^{3}, \\
S_{4}=a_{1} a_{2} a_{3} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{18}.
Let $F(z, y)$ be $y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0$. Let us put $y=\alpha Y+\beta$. Then

$$
\begin{aligned}
& \begin{array}{l}
\alpha^{4} G(z, Y)
\end{array} \quad \equiv F(z, \alpha Y+\beta) \\
& \quad \equiv \alpha^{4}\left(Y^{4}-T_{1} Y^{3}+T_{2} Y^{2}-T_{3} Y+T_{4}\right) . \\
& T_{1}=\frac{1}{\alpha}\left(S_{1}-4 \beta\right), \\
& T_{2}=\frac{1}{\alpha^{2}}\left(S_{2}-3 S_{1} \beta+6 \beta^{2}\right), \\
& T_{3}=\frac{1}{\alpha^{3}}\left(S_{3}-2 S_{2} \beta+3 S_{1} \beta^{2}-4 \beta^{3}\right)
\end{aligned}
$$

and

$$
T_{4}=\frac{1}{\alpha_{4}}\left(S_{4}-S_{3} \beta+S_{2} \beta^{2}-S_{1} \beta^{3}+\beta^{4}\right)
$$

Now we put

$$
\left\{\begin{array}{l}
\alpha A_{1}+\beta=0, \quad \beta=a_{4} \\
\alpha A_{2}=a_{1}-a_{4}, \\
\alpha A_{3}=a_{2}-a_{4}, \\
\alpha A_{4}=a_{3}-a_{4} .
\end{array}\right.
$$

Then we have $R_{1} \sim R_{16}, R_{2} \sim R_{17}, R_{3} \sim R_{18}$.
If we put

$$
\left\{\begin{array}{l}
\alpha A_{1}+\beta=0, \quad \beta=a_{1} \\
\alpha A_{2}=a_{2}-a_{1}, \\
\alpha A_{3}=a_{4}-a_{1}, \\
a A_{4}=a_{3}-a_{1},
\end{array}\right.
$$

then we have $R_{1} \sim R_{3}$.
§ 3. Surfaces with $P(\boldsymbol{y})=6$ (continued.)
We now consider Case (iii). Then $S_{4}=c_{1}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+c_{1}=\beta_{1} e^{H_{1}}, \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{2}-S_{3} a_{2}+c_{1}=\beta_{2} e^{H_{2}}, \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+c_{1}=\beta_{3} e^{H_{3}}, \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+c_{1}=\beta_{4} e^{H_{4}} .
\end{array}\right.
$$

From the first three equations we have

$$
\begin{aligned}
S_{1}= & x_{1} e^{H_{1}}+x_{2} e^{H_{2}}+x_{3} e^{H_{3}}+y_{1}+a_{1}+a_{2}+a_{3}, \\
S_{2}= & \left(a_{2}+a_{3}\right) x_{1} e^{H_{1}}+\left(a_{1}+a_{3}\right) x_{2} e^{H_{2}}+\left(a_{1}+a_{2}\right) x_{3} e^{H_{3}} \\
& +\left(a_{1}+a_{2}+a_{3}\right) y_{1}+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}, \\
S_{3}= & a_{2} a_{3} x_{1} e^{H_{1}}+a_{1} a_{3} x_{2} e^{H_{2}}+a_{1} a_{2} x_{3} e^{H_{3}}+\left(a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}\right) y_{1} \\
& +a_{1} a_{2} a_{3},
\end{aligned}
$$

where

$$
x_{1}=\frac{-\beta_{1}}{a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)}, \quad x_{2}=\frac{\beta_{2}}{a_{2}\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)}, \quad x_{3}=\frac{-\beta_{3}}{a_{3}\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)}
$$

and

$$
y_{1}=\frac{c_{1}}{a_{1} a_{2} a_{3}} .
$$

Substituting these into the fourth equation $F\left(z, a_{4}\right)=\beta_{4} e^{H_{4}}$, we can make use of Borel's unicity theorem. Then we have

$$
\begin{gathered}
H_{1}=H_{2}=H_{3}=H_{4}(\equiv H) \\
a_{4}\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) x_{1}+a_{4}\left(a_{4}-a_{1}\right)\left(a_{4}-a_{3}\right) x_{2}+a_{4}\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right) x_{3}=-\beta_{4}
\end{gathered}
$$

and

$$
y_{1}\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)=a_{4}\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) .
$$

Hence $y_{1}=a_{4}$, that is, $c_{1}=a_{1} a_{2} a_{3} a_{4}$. Therefore

$$
\begin{aligned}
S_{1}= & \left(x_{1}+x_{2}+x_{3}\right) e^{H}+a_{1}+a_{2}+a_{3}+a_{4}, \\
S_{2}= & \left\{\left(a_{2}+a_{3}\right) x_{1}+\left(a_{1}+a_{3}\right) x_{2}+\left(a_{1}+a_{2}\right) x_{3}\right\} e^{H} \\
& +a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}+a_{1} a_{4}+a_{2} a_{4}+a_{3} a_{4}, \\
S_{3}= & \left\{a_{2} a_{3} x_{1}+a_{1} a_{3} x_{2}+a_{1} a_{2} x_{3}\right\} e^{H}+a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4} .
\end{aligned}
$$

Now we impose the following condition:

$$
F(z, \alpha)=\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right)+\alpha P(\alpha) e^{H}
$$

does not reduce to a non-zero constant excepting for $\alpha=0$, where

$$
-P(\alpha)=\left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right) x_{1}+\left(\alpha-a_{1}\right)\left(\alpha-a_{3}\right) x_{2}+\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right) x_{3} .
$$

Then

$$
\begin{aligned}
-P(\alpha)= & \alpha^{2}\left(x_{1}+x_{2}+x_{3}\right)-\alpha\left\{\left(a_{2}+a_{3}\right) x_{1}+\left(a_{1}+a_{3}\right) x_{2}+\left(a_{1}+a_{2}\right) x_{3}\right\} \\
& +a_{2} a_{3} x_{1}+a_{1} a_{3} x_{2}+a_{1} a_{2} x_{3} .
\end{aligned}
$$

By our condition we have three possibilities:
(a) $P(\alpha)=k \alpha^{2}$,
(b) $P(\alpha)=k \alpha$,
(c) $P(\alpha)=k$ with a non-zero nonstant k.

CASE (a). Then $k=-\left(x_{1}+x_{2}+x_{3}\right)$ and

$$
\begin{aligned}
& \left(a_{2}+a_{3}\right) x_{1}+\left(a_{1}+a_{3}\right) x_{2}+\left(a_{1}+a_{2}\right) x_{3}=0, \\
& a_{2} a_{3} x_{1}+a_{1} a_{3} x_{2}+a_{1} a_{2} x_{3}=0 .
\end{aligned}
$$

In this case we can easily prove that

$$
-\frac{\beta_{1}}{a_{1}{ }^{3}}=\frac{\beta_{2}}{a_{2}{ }^{3}}=\frac{\beta_{3}}{a_{3}{ }^{3}}
$$

and

$$
k=\frac{\beta_{1}}{a_{1}^{3}}\left(\equiv-x_{0}\right) .
$$

Hence we have

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{1}+a_{2}+a_{3}+a_{4}, \\
S_{2}=a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{4}+a_{3} a_{4}, \\
S_{3}=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}, \\
S_{4}=c_{1}=a_{1} a_{2} a_{3} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{13}.
CASE (b). Then $x_{1}+x_{2}+x_{3}=0$ and

$$
\begin{aligned}
& a_{2} a_{3} x_{1}+a_{1} a_{3} x_{2}+a_{1} a_{2} x_{3}=0 \\
& k=\left(a_{2}+a_{3}\right) x_{1}+\left(a_{1}+a_{3}\right) x_{2}+\left(a_{1}+a_{2}\right) x_{3}
\end{aligned}
$$

It is easy to prove that

$$
k=\frac{\beta_{1}}{a_{1}{ }^{2}}=\frac{\beta_{2}}{a_{2}{ }^{2}}=\frac{\beta_{3}}{a_{3}{ }^{2}}\left(\equiv x_{0}\right) .
$$

Then

$$
\left\{\begin{array}{l}
S_{1}=a_{1}+a_{2}+a_{3}+a_{4} \\
S_{2}=x_{0} e^{H}+a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{4}+a_{3} a_{4} \\
S_{3}=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}, \\
S_{4}=c_{1}=a_{1} a_{2} a_{3} a_{4}
\end{array}\right.
$$

This surface is denoted by R_{14}.
CASE (c). Then $x_{1}+x_{1}+x_{3}=0$ and

$$
\begin{aligned}
& \left(a_{2}+a_{3}\right) x_{1}+\left(a_{1}+a_{3}\right) x_{2}+\left(a_{1}+a_{2}\right) x_{3}=0 \\
& k=-\left(a_{2} a_{3} x_{1}+a_{1} a_{3} x_{2}+a_{1} a_{2} x_{3}\right)
\end{aligned}
$$

It is easy to prove that

$$
k=\frac{\beta_{1}}{a_{1}}=\frac{\beta_{2}}{a_{2}}=\frac{\beta_{3}}{a_{3}}\left(\equiv x_{0}\right) .
$$

Then

$$
\left\{\begin{array}{l}
S_{1}=a_{1}+a_{2}+a_{3}+a_{4} \\
S_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4} \\
S_{3}=x_{0} e^{H}+a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4} \\
S_{4}=c_{1}=a_{1} a_{2} a_{3} a_{4}
\end{array}\right.
$$

This surface is denoted by R_{15}.
CASE (vi). Then $S_{4}=\beta_{1} e^{H_{1}}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+\beta_{1} e^{H_{1}}=c_{1} \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{2}-S_{3} a_{2}+\beta_{1} e^{H_{1}}=\beta_{2} e^{H_{2}} \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+\beta_{1} e^{H_{1}}=\beta_{3} e^{H_{3}} \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+\beta_{1} e^{H_{1}}=\beta_{4} e^{H_{4}}
\end{array}\right.
$$

Let us put

$$
\begin{aligned}
& x=\frac{\beta_{1}}{a_{2} a_{3} a_{4}}, \quad y=\frac{\beta_{2}}{a_{2}\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)}, \quad z=\frac{\beta_{3}}{a_{3}\left(a_{2}-a_{3}\right)\left(a_{3}-a_{4}\right)}, \\
& u=\frac{\beta_{4}}{a_{4}\left(a_{2}-a_{4}\right)\left(a_{3}-a_{4}\right)} .
\end{aligned}
$$

Then from the last three equations we have

$$
\left\{\begin{aligned}
S_{1}= & x e^{H_{1}}-y e^{H_{2}}+z e^{H_{3}}-u e^{H_{4}}+a_{2}+a_{3}+a_{4}, \\
S_{2}= & \left(a_{2}+a_{3}+a_{4}\right) x e^{H_{1}}-\left(a_{3}+a_{4}\right) y e^{H_{2}}+\left(a_{2}+a_{4}\right) z e^{H_{3}} \\
& -\left(a_{2}+a_{3}\right) u e^{H_{4}}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4} \\
S_{3}= & \left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x e^{H_{1}}-a_{3} a_{4} y e^{H_{2}}+a_{2} a_{4} z e^{H_{3}}-a_{2} a_{3} u e^{H_{4}}+a_{2} a_{3} a_{4}, \\
S_{4}= & a_{2} a_{3} a_{4} x e^{H_{1}} .
\end{aligned}\right.
$$

By the first equation we have

$$
\begin{aligned}
& H_{1}=H_{2}=H_{3}=H_{4}(\equiv H), \\
& \left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) x-a_{1}\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) y \\
& +a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{4}\right) z-a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) u=0
\end{aligned}
$$

and

$$
c_{1}=a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right)
$$

Now we impose the following condition:

$$
F(z, \alpha)=\alpha\left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right)+P(\alpha) e^{H}
$$

does not reduce to a non-zero constant excepting $\alpha=a_{1}$. Hence there appear three possibilities:
(a) $\quad P(\alpha)=k\left(\alpha-a_{1}\right)$,
(b) $\quad P(\alpha)=k\left(\alpha-a_{1}\right)^{2}$,
(c) $P(\alpha)=k\left(\alpha-a_{1}\right)^{3}$
with a non-zero constant k. Here

$$
\begin{aligned}
P(\alpha)= & \alpha^{3}(-x+y-z+u) \\
& +\alpha^{2}\left\{\left(a_{2}+a_{3}+a_{4}\right) x-\left(a_{3}+a_{4}\right) y+\left(a_{2}+a_{4}\right) z-\left(a_{2}+a_{3}\right) u\right\} \\
& +\alpha\left\{-\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x+a_{3} a_{4} y-a_{2} a_{4} z+a_{2} a_{3} u\right\}+a_{2} a_{3} a_{4} x .
\end{aligned}
$$

Case (a). Then

$$
\begin{aligned}
& -x+y-z+u=0, \\
& \left(a_{2}+a_{3}+a_{4}\right) x-\left(a_{3}+a_{4}\right) y+\left(a_{2}+a_{4}\right) z-\left(a_{2}+a_{3}\right) u=0
\end{aligned}
$$

and

$$
-a_{1}\left\{-\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x+a_{3} a_{4} y-a_{2} a_{4} z+a_{2} a_{3} u\right\}=a_{2} a_{3} a_{4} x .
$$

Hence we have

$$
\left\{\begin{array}{l}
S_{1}=a_{2}+a_{3}+a_{4}, \\
S_{2}=a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, \\
S_{3}=\frac{a_{2} a_{3} a_{4}}{a_{1}} x e^{H}+a_{2} a_{3} a_{4}=\frac{\beta_{1}}{a_{1}} e^{H}+a_{2} a_{3} a_{4}, \\
S_{4}=a_{2} a_{3} a_{4} x e^{H}=\beta_{1} e^{H} .
\end{array}\right.
$$

We put $x_{0}=\beta_{1} / a_{1}$. Then

$$
\left\{\begin{array}{l}
S_{1}=a_{2}+a_{3}+a_{4}, \\
S_{2}=a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4} \\
S_{3}=x_{0} e^{H}+a_{2} a_{3} a_{4} \\
S_{4}=a_{1} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{28}.
Case (b). Then

$$
\begin{aligned}
& x-y+z-u=0 \\
& \left(a_{2}+a_{3}+a_{4}\right) x-\left(a_{3}+a_{4}\right) y+\left(a_{2}+a_{4}\right) z-\left(a_{2}+a_{3}\right) u=\frac{a_{2} a_{3} a_{4}}{a_{1}{ }^{2}} x, \\
& -\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x+a_{3} a_{4} y-a_{2} a_{4} z+a_{2} a_{3} u=-2 a_{1} \frac{a_{2} a_{3} a_{4}}{a_{1}{ }^{2}} x .
\end{aligned}
$$

We make use of $a_{2} a_{3} a_{4} x=\beta_{1}$. Then we have with $x_{0}=\beta_{1} / a_{1}{ }^{2}$

$$
\left\{\begin{array}{l}
S_{1}=a_{2}+a_{3}+a_{4}, \\
S_{2}=x_{0} e^{H}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, \\
S_{3}=2 a_{1} x_{0} e^{H}+a_{2} a_{3} a_{4}, \\
S_{4}=a_{1}{ }^{2} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{29}.
Case (c). Then

$$
\begin{aligned}
& -3 a_{1}(-x+y-z+u)=\left(a_{2}+a_{3}+a_{4}\right) x-\left(a_{3}+a_{4}\right) y+\left(a_{2}+a_{4}\right) z-\left(a_{2}+a_{3}\right) u, \\
& 3 a_{1}{ }^{2}(-x+y-z+u)=-\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x+a_{3} a_{4} y-a_{2} a_{4} z+a_{2} a_{3} u, \\
& -a_{1}{ }^{3}(-x+y-z+u)=a_{2} a_{3} a_{4} x \equiv \beta_{1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x-y+z-u=\beta_{1} / a_{1}{ }^{3}, \\
& \left(a_{2}+a_{3}+a_{4}\right) x-\left(a_{3}+a_{4}\right) y+\left(a_{2}+a_{4}\right) z-\left(a_{2}+a_{3}\right) u=\frac{3 \beta_{1}}{a_{1}{ }^{2}}, \\
& \left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x-a_{3} a_{4} y+a_{2} a_{4} z-a_{2} a_{3} u=\frac{3 \beta_{1}}{a_{1}} .
\end{aligned}
$$

Then we have

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{2}+a_{3}+a_{4}, \\
S_{2}=3 a_{1} x_{0} e^{H}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, \\
S_{3}=3 a_{1}{ }^{2} x_{0} e^{H}+a_{2} a_{3} a_{4}, \\
S_{4}=a_{1}{ }^{3} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{30}.

$$
\begin{aligned}
& F(z, \alpha Y+\beta) \equiv \alpha^{4} G(z, Y) \equiv \alpha^{4}\left(Y^{4}-T_{1} Y^{3}+T_{2} Y^{2}-T_{3} Y+T_{4}\right) . \\
& F(z, y) \equiv y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0 . \\
& T_{1}=\frac{1}{\alpha}\left(S_{1}-4 \beta\right), \\
& T_{2}=\frac{1}{\alpha^{2}}\left(S_{2}-3 S_{1} \beta+6 \beta^{2}\right), \\
& T_{3}=\frac{1}{\alpha^{3}}\left(S_{3}-2 S_{2} \beta+3 S_{1} \beta^{2}-4 \beta^{3}\right), \\
& T_{4}=\frac{1}{\alpha^{4}}\left(S_{4}-S_{3} \beta+S_{2} \beta^{2}-S_{1} \beta^{3}+\beta^{4}\right) .
\end{aligned}
$$

Here we put

$$
\left\{\begin{array}{l}
\alpha A_{1}+\beta=0, \quad \beta=a_{1} \\
\alpha A_{2}=a_{2}-a_{1} \\
\alpha A_{3}=a_{3}-a_{1} \\
\alpha A_{4}=a_{4}-a_{1}
\end{array}\right.
$$

Then we have

$$
R_{15} \sim R_{28}, \quad R_{14} \sim R_{29}, \quad R_{13} \sim R_{30} .
$$

§ 4. Surface with $P(y)=6$ (continued. bis)
We now consider the case (ii). Then $S_{4}=c_{1}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+c_{1}=c_{2}, \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{3}-S_{3} a_{2}+c_{1}=\beta_{1} e^{H_{1}}, \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+c_{1}=\beta_{2} e^{H_{2}}, \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+c_{1}=\beta_{3} e^{H_{3}} .
\end{array}\right.
$$

Then

$$
\begin{aligned}
S_{1}= & x_{1} e^{H_{1}}+x_{2} e^{H_{2}}+x_{3} e^{H_{3}}+y+a_{2}+a_{3}+a_{4}, \\
S_{2}= & \left(a_{3}+a_{4}\right) x_{1} e^{H_{1}}+\left(a_{2}+a_{4}\right) x_{2} e^{H_{2}}+\left(a_{2}+a_{3}\right) x_{3} e^{H_{3}} \\
& +\left(a_{2}+a_{3}+a_{4}\right) y+a_{2} a_{3}+a_{3} a_{4}+a_{2} a_{4}, \\
S_{3}= & a_{3} a_{4} x_{1} e^{H_{1}}+a_{2} a_{4} x_{2} e^{H_{2}}+a_{2} a_{3} x_{3} e^{H_{3}}+\left(a_{2} a_{3}+a_{3} a_{4}+a_{2} a_{4}\right) y+a_{2} a_{3} a_{4},
\end{aligned}
$$

where

$$
\begin{array}{ll}
x_{1}=\frac{\beta_{1}}{a_{2}\left(a_{2}-a_{3}\right)\left(a_{4}-a_{2}\right)}, & x_{2}=\frac{\beta_{2}}{a_{3}\left(a_{2}-a_{3}\right)\left(a_{3}-a_{4}\right)}, \\
x_{3}=\frac{\beta_{3}}{a_{4}\left(a_{3}-a_{4}\right)\left(a_{4}-a_{2}\right)}, & y=\frac{c_{1}}{a_{2} a_{3} a_{4}} .
\end{array}
$$

Substituting these into $F\left(z, a_{1}\right)=c_{2}$, we have $H_{1}=H_{2}=H_{3}(\equiv H)$ and

$$
\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) x_{1}+\left(a_{1}-a_{2}\right)\left(a_{1}-a_{4}\right) x_{2}+\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) x_{3}=0
$$

and

$$
c_{2}+y\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right)=a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) .
$$

Let us consider $F(z, \alpha)$. Then

$$
\begin{aligned}
F(z, \alpha)= & \left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right)(\alpha-y) \\
& -\alpha\left(\alpha-a_{1}\right)\left\{\left(\alpha+a_{1}-a_{3}-a_{4}\right) x_{1}+\left(\alpha+a_{1}-a_{2}-a_{4}\right) x_{2}\right. \\
& \left.+\left(\alpha+a_{1}-a_{2}-a_{3}\right) x_{3}\right\} e^{H} \\
= & \left(\alpha-a_{2}\right)\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right)(\alpha-y)-\frac{\alpha\left(\alpha-a_{1}\right)}{a_{2}-a_{3}}\{A \alpha-B\} e^{H},
\end{aligned}
$$

where

$$
A=\frac{\beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)}-\frac{\beta_{2}}{a_{3}\left(a_{1}-a_{3}\right)},
$$

$$
B=\frac{a_{3} \beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)}-\frac{a_{2} \beta_{2}}{a_{3}\left(a_{1}-a_{3}\right)} .
$$

We now impose the conditions: $F(z, \alpha)$ does not reduce to a non-zero constant D except for $\alpha=0, a_{1}$ and further it does not reduce to $D e^{H}$ except for $\alpha=a_{2}$, a_{3}, a_{4}. Hence we have $(\alpha) y=a_{2}$ or $(\beta) y=a_{3}$ or (γ) $y=a_{4}$ and (1) $A=0$ or (2) $B=0$ or (3) $A \neq 0, B=A a_{1}$.

If $A=0$, then $x_{1}+x_{2}+x_{3}=0$ and

$$
\begin{aligned}
& \left(a_{3}+a_{4}\right) x_{1}+\left(a_{2}+a_{4}\right) x_{2}+\left(a_{2}+a_{3}\right) x_{3}=-\frac{\beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)}, \\
& a_{3} a_{4} x_{1}+a_{2} a_{4} x_{2}+a_{2} a_{3} x_{3}=-\frac{a_{1} \beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)} .
\end{aligned}
$$

If $B=0$, then

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=\frac{\beta_{1}}{a_{2}{ }^{2}\left(a_{1}-a_{2}\right)}, \\
& \left(a_{3}+a_{4}\right) x_{1}+\left(a_{2}+a_{4}\right) x_{2}+\left(a_{2}+a_{3}\right) x_{3}=\frac{a_{1} \beta_{1}}{a_{2}^{2}\left(a_{1}-a_{2}\right)}, \\
& a_{3} a_{4} x_{1}+a_{2} a_{4} x_{2}+a_{2} a_{3} x_{3}=0 .
\end{aligned}
$$

If $B=A a_{1}, A \neq 0$, then

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=-\frac{\beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)^{2}}, \\
& \left(a_{3}+a_{4}\right) x_{1}+\left(a_{2}+a_{4}\right) x_{2}+\left(a_{2}+a_{3}\right) x_{3}=-\frac{2 a_{1} \beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)^{2}}, \\
& a_{3} a_{4} x_{1}+a_{2} a_{4} x_{2}+a_{2} a_{3} x_{3}=-\frac{a_{1}^{2} \beta_{1}}{a_{2}\left(a_{1}-a_{2}\right)^{2}} .
\end{aligned}
$$

Case $(\alpha)(1)$. Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=2 a_{2}+a_{3}+a_{4}, \\
S_{2}=x_{0} e^{H}+a_{2}{ }^{2}+2 a_{2} a_{3}+a_{3} a_{4}+2 a_{2} a_{4}, \\
S_{3}=a_{1} x_{0} e^{H}+a_{2}{ }^{2} a_{3}+2 a_{2} a_{3} a_{4}+a_{2}{ }^{2} a_{4} \\
S_{4}=a_{2}{ }^{2} a_{3} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{4}.
CASE (β) (1). Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=a_{2}+2 a_{3}+a_{4}, \\
S_{2}=x_{0} e^{H}+a_{3}{ }^{2}+2 a_{2} a_{3}+a_{2} a_{4}+2 a_{3} a_{4}, \\
S_{3}=a_{1} x_{0} e^{H}+a_{2} a_{3}{ }^{2}+a_{3}{ }^{2} a_{4}+2 a_{2} a_{3} a_{4}, \\
S_{4}=a_{2} a_{3}{ }^{2} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{5}.
CASE $(\gamma)(1)$. Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=a_{2}+a_{3}+2 a_{4}, \\
S_{2}=x_{0} e^{H}+a_{2} a_{3}+2 a_{2} a_{4}+2 a_{3} a_{4}+a_{4}{ }^{2} \\
S_{3}=a_{1} x_{0} e^{H}+a_{3} a_{4}{ }^{2}+a_{2} a_{4}{ }^{2}+2 a_{2} a_{3} a_{4} \\
S_{4}=a_{2} a_{3} a_{4}{ }^{2}
\end{array}\right.
$$

This surface is denoted by R_{6}.
CASE (α) (2). Then with $x_{0}=\beta_{1} / a_{2}{ }^{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+2 a_{2}+a_{3}+a_{4}, \\
S_{2}=a_{1} x_{0} e^{H}+a_{2}{ }^{2}+2 a_{2} a_{3}+a_{3} a_{4}+2 a_{2} a_{4}, \\
S_{3}=a_{2}{ }^{2} a_{3}+2 a_{2} a_{3} a_{4}+a_{2}{ }^{2} a_{4}, \\
S_{4}=a_{2}{ }^{2} a_{3} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{7}.
CASE (β) (2). Then with $x_{0}=\beta_{1} / a_{2}{ }^{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{2}+2 a_{3}+a_{4}, \\
S_{2}=a_{1} x_{0} e^{H}+2 a_{2} a_{3}+a_{3}{ }^{2}+2 a_{3} a_{4}+a_{2} a_{4}, \\
S_{3}=a_{2} a_{3}{ }^{2}+a_{3}{ }^{2} a_{4}+2 a_{2} a_{3} a_{4}, \\
S_{4}=a_{2} a_{3}{ }^{2} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{8}.
CASE $(\gamma)(2)$. Then with $x_{0}=\beta_{1} / a_{2}{ }^{2}\left(a_{1}-a_{2}\right)$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{2}+a_{3}+2 a_{4}, \\
S_{2}=a_{1} x_{0} e^{H}+a_{4}{ }^{2}+2 a_{2} a_{4}+2 a_{3} a_{4}+a_{2} a_{3}, \\
S_{3}=2 a_{2} a_{3} a_{4}+a_{3} a_{4}{ }^{2}+a_{2} a_{4}{ }^{2}, \\
S_{4}=a_{2} a_{3} a_{4}{ }^{2} .
\end{array}\right.
$$

This surface is denoted by R_{9}.
CASE (α) (3). Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)^{2}$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+2 a_{2}+a_{3}+a_{4}, \\
S_{2}=2 a_{1} x_{0} e^{H}+a_{2}{ }^{2}+2 a_{2} a_{3}+a_{3} a_{4}+2 a_{2} a_{4}, \\
S_{3}=a_{1}{ }^{2} x_{0} e^{H}+a_{2}{ }^{2} a_{3}+2 a_{2} a_{3} a_{4}+a_{2}{ }^{2} a_{4}, \\
S_{4}=a_{2}{ }^{2} a_{3} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{10}.
CASE $(\beta)(3)$. Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)^{2}$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{2}+2 a_{3}+a_{4}, \\
S_{2}=2 a_{1} x_{0} e^{H}+2 a_{2} a_{3}+a_{3}{ }^{2}+2 a_{3} a_{4}+a_{2} a_{4}, \\
S_{3}=a_{1}{ }^{2} x_{0} e^{H}+a_{2} a_{3}{ }^{2}+a_{3}{ }^{2} a_{4}+2 a_{2} a_{3} a_{4}, \\
S_{4}=a_{2} a_{3}{ }^{2} a_{4} .
\end{array}\right.
$$

This surface is denoted by R_{11}.
CASE $(\gamma)(3)$. Then with $x_{0}=-\beta_{1} / a_{2}\left(a_{1}-a_{2}\right)^{2}$

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{2}+a_{3}+2 a_{4}, \\
S_{2}=2 a_{1} x_{0} e^{H}+a_{4}{ }^{2}+2 a_{2} a_{4}+2 a_{3} a_{4}+a_{2} a_{3}, \\
S_{3}=a_{1}{ }^{2} x_{0} e^{H}+2 a_{2} a_{3} a_{4}+a_{3} a_{4}{ }^{2}+a_{2} a_{4}{ }^{2}, \\
S_{4}=a_{2} a_{3} a_{4}{ }^{2} .
\end{array}\right.
$$

This surface is denoted by R_{12}.
CASE (v). Then $S_{4}=\beta_{1} e^{H_{1}}$ and

$$
\left\{\begin{array}{l}
a_{1}{ }^{4}-S_{1} a_{1}{ }^{3}+S_{2} a_{1}{ }^{2}-S_{3} a_{1}+\beta_{1} e^{H_{1}}=c_{1} \\
a_{2}{ }^{4}-S_{1} a_{2}{ }^{3}+S_{2} a_{2}{ }^{2}-S_{3} a_{2}+\beta_{1} e^{H_{1}}=c_{2} \\
a_{3}{ }^{4}-S_{1} a_{3}{ }^{3}+S_{2} a_{3}{ }^{2}-S_{3} a_{3}+\beta_{1} e^{H_{1}}=\beta_{2} e^{H_{2}} \\
a_{4}{ }^{4}-S_{1} a_{4}{ }^{3}+S_{2} a_{4}{ }^{2}-S_{3} a_{4}+\beta_{1} e^{H_{1}}=\beta_{3} e^{H_{3}}
\end{array}\right.
$$

Let us put

$$
x_{1}=\frac{\beta_{1}}{a_{1} a_{2} a_{3}}, \quad x_{2}=\frac{\beta_{2}}{a_{2}\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)}
$$

and

$$
y_{1}=\frac{c_{1}}{a_{1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)}, \quad y_{2}=\frac{c_{2}}{a_{2}\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)} .
$$

From the first three equations we have

$$
\begin{aligned}
S_{1}= & x_{1} e^{H_{1}}-x_{2} e^{H_{2}}-y_{1}+y_{2}+a_{1}+a_{2}+a_{3}, \\
S_{2}= & \left(a_{1}+a_{2}+a_{3}\right) x_{1} e^{H_{1}}-\left(a_{1}+a_{2}\right) x_{2} e^{H_{2}}-\left(a_{2}+a_{3}\right) y_{1}+\left(a_{1}+a_{3}\right) y_{2} \\
& +a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}, \\
S_{3}= & \left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{1} e^{H_{1}}-a_{1} a_{2} x_{2} e^{H_{2}}-a_{2} a_{3} y_{1}+a_{1} a_{3} y_{2}+a_{1} a_{2} a_{3} .
\end{aligned}
$$

Substituting these into the fourth equation, we have

$$
\begin{aligned}
& H_{1}=H_{2}=H_{3}(\equiv H) \\
& \left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) x_{1}-\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right) a_{4} x_{2}+\beta_{3}=0 \\
& \left(a_{4}-a_{2}\right) y_{1}-\left(a_{4}-a_{1}\right) y_{2}+\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)=0
\end{aligned}
$$

Now we consider

$$
\begin{aligned}
F(z, \alpha)= & e^{H}\left(\alpha-a_{1}\right)\left(\alpha-a_{2}\right)\left\{-x_{1}\left(\alpha-a_{3}\right)+x_{2} \alpha\right\} \\
& +\alpha\left(\alpha-a_{3}\right) P(\alpha)
\end{aligned}
$$

where

$$
P(\alpha)=\alpha^{2}-\left(a_{1}+a_{2}-y_{1}+y_{2}\right) \alpha+a_{1} a_{2}-a_{2} y_{1}+a_{1} y_{2}
$$

There are several possibilities by the postulate that $F(z, \alpha)$ does not reduce to a non-zero constant D except for $\alpha=a_{1}, \alpha=a_{2}$ and further it does not reduce to $D e^{H}$ except for $\alpha=0, \alpha=a_{3}, \alpha=a_{4}$. Hence

$$
\begin{aligned}
& \text { (} \alpha \text {) } x_{1}=x_{2} \text { or } \quad(\beta) \quad \alpha\left(x_{2}-x_{1}\right)+x_{1} a_{3}=k\left(\alpha-a_{1}\right) \quad \text { or } \\
& \text { (} \gamma \text {) } \alpha\left(x_{2}-x_{1}\right)+x_{1} a_{3}=k\left(\alpha-a_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { (1) } P(\alpha)=\alpha\left(\alpha-a_{4}\right) \quad \text { or } \quad \text { (2) } \quad P(\alpha)=\left(\alpha-a_{4}\right)^{2} \quad \text { or } \\
& \text { (3) } P(\alpha)=\left(\alpha-a_{3}\right)\left(\alpha-a_{4}\right) .
\end{aligned}
$$

CASE (1). Then $a_{1}+a_{2}-y_{1}+y_{2}=a_{4}$ and $a_{1} a_{2}-a_{2} y_{1}+a_{1} y_{2}=0$. Hence

$$
y_{2}=\left(a_{2}^{2}-a_{2} a_{4}\right) /\left(a_{1}-a_{2}\right) \quad \text { and } \quad y_{1}=\left(a_{1}^{2}-a_{1} a_{4}\right) /\left(a_{1}-a_{2}\right)
$$

Thus

$$
\begin{aligned}
& -y_{1}+y_{2}+a_{1}+a_{2}+a_{3}=a_{3}+a_{4} \\
& -\left(a_{2}+a_{3}\right) y_{1}+\left(a_{1}+a_{3}\right) y_{2}+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=a_{3} a_{4}
\end{aligned}
$$

and

$$
-a_{2} a_{3} y_{1}+a_{1} a_{3} y_{2}+a_{1} a_{2} a_{3}=0
$$

CASE (2). Then $a_{1}+a_{2}-y_{1}+y_{2}=2 a_{4}, a_{1} a_{2}-a_{2} y_{1}+a_{1} y_{2}=a_{4}{ }^{2}$. This gives

$$
y_{1}=\left(a_{1}-a_{4}\right)^{2} /\left(a_{1}-a_{2}\right) \quad \text { and } \quad y_{2}=\left(a_{2}-a_{4}\right)^{2} /\left(a_{1}-a_{2}\right) .
$$

Then

$$
\begin{aligned}
& -y_{1}+y_{2}+a_{1}+a_{2}+a_{3}=a_{3}+2 a_{4} \\
& -\left(a_{2}+a_{3}\right) y_{1}+\left(a_{1}+a_{3}\right) y_{2}+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=2 a_{3} a_{4}+a_{4}^{2} \\
& -a_{2} a_{3} y_{1}+a_{1} a_{3} y_{2}+a_{1} a_{2} a_{3}=a_{3} a_{4}^{2}
\end{aligned}
$$

CASE (3). Then $a_{1}+a_{2}-y_{1}+y_{2}=a_{3}+a_{4}, \quad a_{1} a_{2}-a_{2} y_{1}+a_{1} y_{2}=a_{3} a_{4}$. This gives

$$
y_{1}=\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) /\left(a_{1}-a_{2}\right) \quad \text { and } \quad y_{2}=\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right) /\left(a_{1}-a_{2}\right)
$$

Then

$$
\begin{aligned}
& -y_{1}+y_{2}+a_{1}+a_{2}+a_{3}=2 a_{3}+a_{4} \\
& -\left(a_{2}+a_{3}\right) y_{1}+\left(a_{1}+a_{3}\right) y_{2}+a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=a_{3}^{2}+2 a_{3} a_{4} \\
& -a_{2} a_{3} y_{1}+a_{1} a_{3} y_{2}+a_{1} a_{2} a_{3}=a_{3}{ }^{2} a_{4}
\end{aligned}
$$

Case (α). Then $x_{1}=x_{2}$. Hence

$$
\begin{aligned}
& \left(a_{1}+a_{2}+a_{3}\right) x_{1}-\left(a_{1}+a_{2}\right) x_{2}=a_{3} x_{1}=\beta_{1} / a_{1} a_{2} \\
& \left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{1}-a_{1} a_{2} x_{2}=\left(a_{1}+a_{2}\right) a_{3} x_{1}=\left(a_{1}+a_{2}\right) \beta_{1} / a_{1} a_{2}
\end{aligned}
$$

We put $\beta_{1} / a_{1} a_{2}=x_{0}$.
CASE (β). Then $x_{2}=\left(a_{1}-a_{3}\right) x_{1} / a_{1}$. Hence

$$
\begin{aligned}
& x_{1}-x_{2}=a_{3} x_{1} / a_{1}=\beta_{1} / a_{1}^{2} a_{2} \\
& \left(a_{1}+a_{2}+a_{3}\right) x_{1}-\left(a_{1}+a_{2}\right) x_{2}=a_{3}\left(2 a_{1}+a_{2}\right) x_{1} / a_{1}=\left(2 a_{1}+a_{2}\right) \beta_{1} / a_{1}^{2} a_{2} \\
& \left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{1}-a_{1} a_{2} x_{2}=\left(a_{1}+2 a_{2}\right) \beta_{1} / a_{1} a_{2}
\end{aligned}
$$

We put $\beta_{1} / a_{1}{ }^{2} a_{2}=x_{0}$.
CASE (γ). Then $x_{2}=\left(a_{2}-a_{3}\right) x_{1} / a_{2}$. Hence

$$
\begin{aligned}
& x_{1}-x_{2}=\beta_{1} / a_{1} a_{2}^{2} \\
& \left(a_{1}+a_{2}+a_{3}\right) x_{1}-\left(a_{1}+a_{2}\right) x_{2}=\left(a_{1}+2 a_{2}\right) \beta_{1} / a_{1} a_{2}^{2} \\
& \left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x_{1}-a_{1} a_{2} x_{2}=\left(2 a_{1}+a_{2}\right) \beta_{1} / a_{1} a_{2}
\end{aligned}
$$

We put $\beta_{1} / a_{1} a_{2}{ }^{2}=x_{0}$.
CASE (α)(1). Then

$$
\left\{\begin{array}{l}
S_{1}=a_{3}+a_{4} \\
S_{2}=x_{0} e^{H}+a_{3} a_{4} \\
S_{3}=\left(a_{1}+a_{2}\right) x_{0} e^{H} \\
S_{4}=a_{1} a_{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{19}.
CASE (β) (1). Then

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{3}+a_{4} \\
S^{2}=\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+a_{3} a_{4} \\
S_{3}=a_{1}\left(a_{1}+2 a_{2}\right) x_{0} e^{H} \\
S_{4}=a_{1}^{2} a_{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{20}.
Case (γ) (1).

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{3}+a_{4}, \\
S_{2}=\left(a_{1}+2 a_{2}\right) x_{0} e^{H}+a_{3} a_{4}, \\
S_{3}=a_{2}\left(2 a_{1}+a_{2}\right) x_{0} e^{H}, \\
S_{4}=a_{1} a_{2}^{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{21}.
Case ($\boldsymbol{\alpha}$) (2).

$$
\left\{\begin{array}{l}
S_{1}=a_{3}+2 a_{4}, \\
S_{2}=x_{0} e^{H}+2 a_{3} a_{4}+a_{4}{ }^{2}, \\
S_{3}=\left(a_{1}+a_{2}\right) x_{0} e^{H}+a_{3} a_{4}{ }^{2}, \\
S_{4}=a_{1} a_{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{22}.
CASE (β) (2).

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{3}+2 a_{4}, \\
S_{2}=\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+2 a_{3} a_{4}+a_{4}{ }^{2}, \\
S_{3}=a_{1}\left(a_{1}+2 a_{2}\right) x_{0} e^{H}+a_{3} a_{4}{ }^{2}, \\
S_{4}=a_{1}{ }^{2} a_{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{23}.
CASE (γ) (2).

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{3}+2 a_{4}, \\
S_{2}=\left(a_{1}+2 a_{2}\right) x_{0} e^{H}+2 a_{3} a_{4}+a_{4}{ }^{2}, \\
S_{3}=a_{2}\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+a_{3} a_{4}{ }^{2}, \\
S_{4}=a_{1} a_{2}{ }^{2} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{24}.
CASE (α) (3).

$$
\left\{\begin{array}{l}
S_{1}=2 a_{3}+a_{4}, \\
S_{2}=x_{0} e^{H}+a_{3}{ }^{2}+2 a_{3} a_{4}, \\
S_{3}=\left(a_{1}+a_{2}\right) x_{0} e^{H}+a_{3}{ }^{2} a_{4}, \\
S_{4}=a_{1} a_{2} x_{0} e^{H} .
\end{array}\right.
$$

This surface is denoted by R_{25}.
CASE (β) (3).

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+2 a_{3}+a_{4}, \\
S_{2}=\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+a_{3}{ }^{2}+2 a_{3} a_{4}, \\
S_{3}=a_{1}\left(a_{1}+2 a_{2}\right) x_{0} e^{H}+a_{3}{ }^{2} a_{4}, \\
S_{4}=a_{1}{ }^{2} a_{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by R_{26}.
Case (γ) (3).

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+2 a_{3}+a_{4} \\
S_{2}=\left(a_{1}+2 a_{2}\right) x_{0} e^{H}+a_{3}{ }^{2}+2 a_{3} a_{4}, \\
S_{3}=a_{2}\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+a_{3}{ }^{2} a_{4}, \\
S_{4}=a_{1} a_{2}{ }^{2} x_{0} e^{H}
\end{array}\right.
$$

This surface is denoted by $R_{2 \tau}$.
How many different surfaces are there among eighteen surfaces listed up in this section? As in $\S 2$, $\S 3$ we put

$$
\left\{\begin{array}{l}
\alpha A_{1}+\beta=0, \quad \beta=a_{2} \\
\alpha A_{2}=a_{1}-a_{2}, \\
\alpha A_{3}=a_{3}-a_{2}, \\
\alpha A_{4}=a_{4}-a_{2} .
\end{array}\right.
$$

Then we can prove that

$$
\begin{array}{lll}
R_{4} \sim R_{19}, & R_{5} \sim R_{25}, & R_{6} \sim R_{22}, \\
R_{7} \sim R_{20}, & R_{8} \sim R_{26}, & R_{9} \sim R_{23}, \\
R_{10} \sim R_{21}, & R_{11} \sim R_{27}, & R_{12} \sim R_{24} .
\end{array}
$$

Further we put

$$
\left\{\begin{array}{l}
\alpha A_{1}=-\beta, \quad \beta=a_{:} \\
\alpha A_{3}=a_{2}-a_{1}, \\
\alpha A_{4}=a_{3}-a_{1}, \\
\alpha A_{2}=a_{4}-a_{1} .
\end{array}\right.
$$

Then we can prove that $R_{4} \sim R_{5}, R_{7} \sim R_{8}$ and $R_{10} \sim R_{11}$.

If we put

$$
\left\{\begin{array}{l}
\alpha A_{4}+\beta=0, \quad \beta=a_{3} \\
\alpha A_{3}=a_{4}-a_{3}, \\
\alpha A_{1}=a_{1}-a_{3}, \\
\alpha A_{2}=a_{2}-a_{3},
\end{array}\right.
$$

then we can prove that $R_{22} \sim R_{25}, R_{23} \sim R_{26}$ and $R_{24} \sim R_{27}$.
If we put

$$
\left\{\begin{array}{l}
\alpha A_{2}+\beta=0, \quad \beta=a_{2} \\
\alpha A_{3}=a_{3}-a_{2}, \\
\alpha A_{4}=a_{4}-a_{2} \\
\alpha A_{1}=a_{1}-a_{2}
\end{array}\right.
$$

then $R_{7} \sim R_{21}$ is able to prove.
Hence we have only two different surfaces in the sense of \sim in the cases (ii) and (v).

§ 5. Discriminant

We shall first decide the form of discriminant of R_{13}, which is defined by

$$
y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

with

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+x_{1} \\
S_{2}=x_{2} \\
S_{3}=x_{3} \\
S_{4}=x_{4}
\end{array}\right.
$$

where $x_{1}=a_{1}+a_{2}+a_{3}+a_{4}, x_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, x_{3}=a_{1} a_{2} a_{3}+$ $a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}, \quad x_{4}=a_{1} a_{2} a_{3} a_{4}$.

For simplicity's sake we put $X=x_{0} e^{H}$. Then

$$
\begin{aligned}
& L=-\frac{3}{8} S_{1}{ }^{2}+S_{2}=-\left(\frac{3}{8} X^{2}+\alpha_{1} X+\alpha_{2}\right) \\
& M=-\frac{1}{8} S_{1}{ }^{3}+\frac{1}{2} S_{1} S_{2}-S_{3}=-\left(\frac{1}{8} X^{3}+\beta_{1} X^{2}+\beta_{2} X+\beta_{3}\right), \\
& N=-\frac{3}{256} S_{1}{ }^{4}+\frac{1}{16} S_{1}{ }^{2} S_{2}-\frac{1}{4} S_{1} S_{3}+S_{4}
\end{aligned}
$$

$$
=-\left(\frac{3}{256} X^{4}+\gamma_{1} X^{3}+\gamma_{2} X^{2}+\gamma_{3} X+\gamma_{4}\right)
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{3}{4} x_{1}, \quad \alpha_{2}=\frac{3}{8} x_{1}{ }^{2}-x_{2}, \\
& \beta_{1}=\frac{3}{8} x_{1}, \quad \beta_{2}=\frac{3}{8} x_{1}{ }^{2}-\frac{1}{2} x_{2}, \quad \beta_{3}=\frac{1}{8} x_{1}{ }^{3}-\frac{1}{2} x_{1} x_{2}+x_{3}, \\
& \gamma_{1}=\frac{3}{64} x_{1}, \quad \gamma_{2}=\frac{9}{128} x_{1}{ }^{2}-\frac{1}{16} x_{2}, \quad \gamma_{3}=\frac{3}{64} x_{1}{ }^{3}-\frac{1}{8} x_{1} x_{2}+\frac{1}{4} x_{3}, \\
& \gamma_{4}=\frac{3}{256} x_{1}{ }^{4}-\frac{1}{16} x_{1}{ }^{2} x_{2}+\frac{1}{4} x_{1} x_{3}-x_{4} .
\end{aligned}
$$

Hence we evidently have

$$
2 \beta_{1}=\alpha_{1}, \quad 16 \gamma_{1}=\alpha_{1}, \quad \alpha_{2}=4 \beta_{2}-16 \gamma_{2}
$$

Further we have
and

$$
\beta_{2}-8 \gamma_{2}=-3 x_{1}{ }^{2} / 16=-\alpha_{1}^{2} / 3
$$

$$
\beta_{3}-4 \gamma_{3}=-x_{1}{ }^{3} / 16=-4 \alpha_{1}{ }^{3} / 27 .
$$

The discriminant D of R_{13} is at most sixth degree for X, which was prowed in $\S 3$ in [1]. The coefficient of X^{6} is given in $\S 3$ in [1]. Then we have

$$
-\frac{27}{16} \cdot \frac{16}{27 \cdot 27} \alpha_{1}{ }^{6}+\frac{9}{2} \alpha_{1} \frac{\alpha_{1}{ }^{2}}{3} \cdot \frac{4}{27} \alpha_{1}{ }^{3}+\alpha_{1}{ }^{3} \cdot \frac{-4}{27} \alpha_{1}{ }^{3}+4 \frac{-\alpha_{1}{ }^{6}}{27}+\alpha_{1}{ }^{2} \cdot \frac{\alpha_{1}{ }^{4}}{9}=0 .
$$

Hence the coefficient of X^{6} is equal to zero.
Next we consider the coefficient of X^{5}, which is given in § 3 in [1]. Firstly we consider the coefficient of γ_{4}, which is equal to

$$
\frac{27}{2}\left(\beta_{3}-4 \gamma_{3}\right)-18 \alpha_{1}\left(\beta_{2}-8 \gamma_{2}\right)-4 \alpha_{1}{ }^{3} .
$$

This is equal to

$$
-\frac{27}{2} \cdot \frac{4}{27} \alpha_{1}{ }^{3}+18 \alpha_{1} \frac{\alpha_{1}{ }^{3}}{3}-4 \alpha_{1}{ }^{3}=0
$$

Then the remaining terms are equal to

$$
\begin{aligned}
& -\frac{9}{2} \alpha_{1}\left(3 \beta_{3}-8 \gamma_{3}\right)\left(\beta_{3}-4 \gamma_{3}\right)+\frac{9}{2} \beta_{3}\left(\beta_{2}+8 \gamma_{2}\right)\left(\beta_{2}-8 \gamma_{\mathrm{o}}\right) \\
& -6\left(11 \beta_{2}-40 \gamma_{2}\right)\left(\beta_{2}-8 \gamma_{2}\right) \gamma_{3} \\
& +30 \alpha_{1}{ }^{2} \beta_{2} \beta_{3}-24 \cdot 8 \alpha_{1}{ }^{2} \gamma_{2} \beta_{3}-32 \cdot 4 \alpha_{1}{ }^{2} \beta_{2} \gamma_{3}
\end{aligned}
$$

$$
\begin{aligned}
& +26 \cdot 32 \alpha_{1}{ }^{2} \gamma_{2} \gamma_{3}+4 \alpha_{1}{ }^{4}\left(\beta_{3}-4 \gamma_{3}\right) \\
& +2 \alpha_{1}\left(\beta_{2}-8 \gamma_{2}\right)^{2}\left(13 \beta_{2}-88 \gamma_{2}\right)+4 \alpha_{1}{ }^{3}\left(\beta_{2}-8 \gamma_{2}\right)^{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& -\frac{9}{2} \alpha_{1}\left(3 \beta_{3}-8 \gamma_{3}\right)\left(\beta_{3}-4 \gamma_{3}\right) \\
& =\frac{9}{2} \alpha_{1} \cdot \frac{4}{27} \alpha_{1}{ }^{3}\left(\beta_{3}-\frac{8}{27} \alpha_{1}{ }^{3}\right)=\frac{2}{3} \alpha_{1}{ }^{4} \beta_{3}-\frac{16}{81} \alpha_{1}{ }^{7}, \\
& \frac{9}{2} \beta_{3}\left(\beta_{2}+8 \gamma_{2}\right)\left(\beta_{2}-8 \gamma_{2}\right)-6\left(11 \beta_{2}-40 \gamma_{2}\right)\left(\beta_{2}-8 \gamma_{2}\right) \gamma_{3} \\
& =\frac{9}{2} \beta_{3}\left(2 \beta_{2}+\frac{1}{3} \alpha_{1}{ }^{2}\right) \frac{-1}{3} \alpha_{1}{ }^{2}-6\left(6 \beta_{2}-\frac{5}{3} \alpha_{1}{ }^{2}\right) \frac{-1}{3} \alpha_{1}{ }^{2} \frac{1}{4}\left(\beta_{3}+\frac{4}{27} \alpha_{1}{ }^{3}\right) \\
& =-\frac{4}{3} \alpha_{1}{ }^{4} \beta_{3}+\frac{4}{9} \alpha_{1}{ }^{5} \beta_{2}-\frac{10}{81} \alpha_{1}{ }^{7}
\end{aligned}
$$

and

$$
\begin{aligned}
& 30 \alpha_{1}{ }^{2} \beta_{2} \beta_{3}-3 \cdot 64 \alpha_{1}{ }^{2} \gamma_{2} \beta_{3}-32 \cdot 4 \alpha_{1}{ }^{2} \beta_{2} \gamma_{3}+26 \cdot 32 \alpha_{1}{ }^{2} \gamma_{2} \gamma_{3}+4 \alpha_{1}{ }^{4}\left(\beta_{3}-4 \gamma_{3}\right) \\
& =\frac{2}{3} \alpha_{1}{ }^{4} \beta_{3}-\frac{8}{9} \alpha_{1}{ }^{5} \beta_{2}+\frac{56}{81} \alpha_{1}{ }^{7} .
\end{aligned}
$$

The last two terms are equal to

$$
\frac{4}{9} \alpha_{1}{ }^{5} \beta_{2}-\frac{22}{27} \alpha_{1}{ }^{7}+\frac{4}{9} \alpha_{1}{ }^{7} .
$$

Summing up all these terms, we have that the coefficients of $\alpha_{1}{ }^{4} \beta_{3}, \alpha_{1}{ }^{5} \beta_{2}$ and $\alpha_{1}{ }^{7}$ vanish. Hence we have that the coefficient of X^{5} vanishes. Hence

$$
D_{R_{13}}=A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}+A_{0}
$$

with non-zero constants A_{0}, A_{4}. Why $A_{0} \neq 0$ and $A_{4} \neq 0$? This is due to UllrichSelberg's remification theorem. See [1] in $\S 3$. From now on we shall not repeat this reason.

Next we shall consider the discriminant of R_{16}, which is defined by y^{4} $S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0$ with

$$
\begin{aligned}
& S_{1}=y_{0} e^{H}+a_{4} \equiv X+a_{4}, \\
& S_{2}=\left(a_{1}+a_{2}+a_{3}\right) y_{0} e^{H} \equiv y_{1} X, \\
& S_{3}=\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) y_{0} e^{H} \equiv y_{2} X . \\
& S_{4}=a_{1} a_{2} a_{3} y_{0} e^{H} \equiv y_{3} X .
\end{aligned}
$$

Then

$$
\begin{aligned}
L & =-\frac{3}{8} S_{1}{ }^{2}+S_{2}=-\left(\frac{3}{8} X^{2}+\alpha_{1} X+\alpha_{2}\right) \\
M & =-\frac{1}{8} S_{1}{ }^{3}+\frac{1}{2} S_{1} S_{2}-S_{3}=-\left(\frac{1}{8} X^{3}+\beta_{1} X^{2}+\beta_{2} X+\beta_{3}\right) \\
N & =-\frac{3}{256} S_{1}{ }^{4}+\frac{1}{16} S_{1}{ }^{2} S_{2}-\frac{1}{4} S_{1} S_{3}+S_{4} \\
& =-\left\{\frac{3}{256} X^{4}+\gamma_{1} X^{3}+\gamma_{2} X^{2}+\gamma_{3} X+\gamma_{4}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{6}{8} a_{4}-y_{1}, \quad \alpha_{2}=\frac{3}{8} a_{4}{ }^{2}, \\
& \beta_{1}=\frac{3}{8} a_{4}-\frac{1}{2} y_{1}, \quad \beta_{2}=\frac{3}{8} a_{4}{ }^{2}-\frac{1}{2} a_{4} y_{1}+y_{2}, \quad \beta_{3}=\frac{a_{4}{ }^{3}}{8}, \\
& \gamma_{1}=\frac{3}{64} a_{4}-\frac{1}{16} y_{1}, \quad \gamma_{2}=\frac{9}{128} a_{4}{ }^{2}-\frac{1}{8} a_{4} y_{1}+\frac{1}{4} y_{2}, \\
& \gamma_{3}=\frac{3}{64} a_{4}{ }^{3}-\frac{1}{16} a_{4}{ }^{2} y_{1}+\frac{1}{4} a_{4} y_{2}-y_{3}, \quad \gamma_{4}=\frac{3}{256} a_{4}{ }^{4} .
\end{aligned}
$$

Evidently we have $2 \beta_{1}=\alpha_{1}, 16 \gamma_{1}=\alpha_{1}$ and $\alpha_{2}=4 \beta_{2}-16 \gamma_{2}$. Hence the discriminant $D_{R_{16}}$ is a polynomial of X of sixth degree. The constant term of $D_{R_{16}}$ is equal to

$$
-27 \beta_{3}{ }^{4}+144 \alpha_{2} \beta_{3}{ }^{2} \gamma_{4}-128 \alpha_{2}{ }^{2} \gamma_{4}{ }^{2}-256 \gamma_{4}{ }^{3}+4 \alpha_{2}{ }^{3} \beta_{3}{ }^{2}-16 \alpha_{2}{ }^{4} \gamma_{4}=0 .
$$

Let us consider the coefficient of X of $D_{R_{16}}$. Then it is just the following expression :

$$
\begin{aligned}
& -27 \cdot 4 \beta_{2} \beta_{3}{ }^{3}+144 \cdot 16 \gamma_{1} \beta_{3}{ }^{2} \gamma_{4}+144 \alpha_{2} \gamma_{3} \beta_{3}{ }^{2}+144 \cdot 2 \alpha_{2} \beta_{2} \beta_{3} \gamma_{4}-128 \cdot 32 \gamma_{1} \gamma_{4}{ }^{2} \alpha_{2} \\
& -128 \cdot 2 \alpha_{2}{ }^{2} \gamma_{3} \gamma_{4}-256 \cdot 3 \gamma_{3} \gamma_{4}{ }^{2}+8 \alpha_{2}{ }^{3} \beta_{2} \beta_{3}+3 \cdot 64 \gamma_{1} \alpha_{2}{ }^{2} \beta_{3}{ }^{2}-16 \alpha_{2}{ }^{4} \gamma_{3} \\
& -16 \cdot 64 \gamma_{1} \alpha_{2}{ }^{3} \gamma_{4} .
\end{aligned}
$$

It is very easy to prove that $144 \alpha_{2} \gamma_{3} \beta_{3}{ }^{2}-128 \cdot 2 \alpha_{2}{ }^{2} \gamma_{3} \gamma_{4}-256 \cdot 3 \gamma_{3} \gamma_{4}{ }^{2}-16 \alpha_{2}{ }^{4} \gamma_{3}=0$, $-27 \cdot 4 \beta_{2} \beta_{3}{ }^{3}+144 \cdot 2 \alpha_{2} \beta_{2} \beta_{3} \gamma_{4}+8 \alpha_{2}{ }^{3} \beta_{2} \beta_{3}=0$ and $144 \alpha_{1} \beta_{3}{ }^{2} \gamma_{4}-128 \cdot 2 \alpha_{1} \gamma_{4}{ }^{2} \alpha_{2}+3 \cdot 4 \alpha_{1} \alpha_{2}{ }^{2} \beta_{3}{ }^{2}$ $-16 \cdot 4 \alpha_{1} \alpha_{2}{ }^{3} \gamma_{4}=0$. Therefore

$$
D_{R_{16}}=A_{6} y_{0}{ }^{6} e^{6 H}+A_{5} y_{0}{ }^{5} e^{5 H}+A_{4} y_{0}{ }^{4} e^{4 H}+A_{3} y_{0}{ }^{3} e^{3 H}+A_{2} y_{0}{ }^{2} e^{2 H}
$$

with non-zero constants A_{2}, A_{6}.
Now we shall consider the discriminant of R_{17}, which is defined by $y^{4}-$ $S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0$, with

$$
\left\{\begin{array}{l}
S_{1}=y_{0} e^{H}+2 a_{4} \equiv X+2 a_{4}, \\
S_{2}=y_{1} y_{0} e^{H}+a_{4} \equiv y_{1} X+a_{4}{ }^{2}, \\
S_{3}=y_{2} y_{0} e^{H} \equiv y_{2} X, \\
S_{4}=y_{3} y_{0} e^{H} \equiv y_{3} X,
\end{array}\right.
$$

where $y_{1}=a_{1}+a_{2}+a_{3}, y_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}$ and $y_{3}=a_{1} a_{2} a_{3}$. Then

$$
\begin{aligned}
& L=-\left(\frac{3}{8} X^{2}+\alpha_{1} X+\alpha_{2}\right), \\
& M=-\left(\frac{1}{8} X^{3}+\beta_{1} X^{2}+\beta_{2} X\right), \\
& N=-\left(\frac{3}{256} X^{4}+\gamma_{1} X^{3}+\gamma_{2} X^{2}+\gamma_{3} X+\gamma_{4}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{3}{2} a_{3}-y_{1}, \quad \alpha_{2}=\frac{1}{2} a_{4}{ }^{2}, \\
& \beta_{1}=\frac{3}{4} a_{4}-\frac{1}{2} y_{1}, \quad \beta_{2}=a_{4}{ }^{2}-a_{4} y_{1}+y_{2}, \\
& \gamma_{1}=\frac{3}{32} a_{4}-\frac{1}{16} y_{1}, \quad \gamma_{2}=\frac{7}{32} a_{4}{ }^{2}-\frac{1}{4} a_{4} y_{1}+\frac{1}{4} y_{2}, \\
& \gamma_{3}=-\frac{1}{16} a_{4}{ }^{3}-\frac{1}{4} a_{4}{ }^{2} y_{1}+\frac{1}{2} a_{4} y_{2}-y_{3}, \quad \gamma_{4}=-\frac{1}{16} a_{4}{ }^{4} .
\end{aligned}
$$

Evidently $2 \beta_{1}=\alpha_{1}, 16 \gamma_{1}=\alpha_{1}$ and $\alpha_{2}=4 \beta_{2}-16 \gamma_{2}$. Hence the degree of $D_{R_{17}}$ is at most six. The constant term of $D_{R_{17}}$ is just equal to

$$
\begin{aligned}
& -128 \alpha_{2}{ }^{2} \gamma_{4}{ }^{2}-256 \gamma_{4}{ }^{3}-16 \alpha_{2}{ }^{4} \gamma_{4} \\
& =a_{4}{ }^{8} \gamma_{4}(2-1-1)=0 .
\end{aligned}
$$

The coefficient of X of $D_{R_{17}}$ is equal to the following expression:

$$
-256 \alpha_{1} \gamma_{4}{ }^{2} \alpha_{2}-256 \alpha_{2}{ }^{2} \gamma_{3} \gamma_{4}-256 \cdot 3 \gamma_{3} \gamma_{4}{ }^{2}-16 \alpha_{2}{ }^{4} \gamma_{3}-64 \alpha_{1} \alpha_{2}{ }^{3} \gamma_{4} .
$$

This is equal to zero, which is very easy to prove. Hence

$$
D_{R_{17}}=A_{6} y_{0}{ }^{6} e^{6 H}+A_{5} y_{0}{ }^{5} e^{5 H}+A_{4} y_{0}{ }^{4} e^{4 H}+A_{3} y_{0}{ }^{3} e^{3 H}+A_{2} y_{0}{ }^{2} e^{2 H}
$$

with non-zero coefficients A_{2}, A_{6}.
We consider the discriminant of $R_{20} . \quad R_{20}$ is defined by $y^{4}-S_{1} y^{3}+S_{2} y^{2}-$ $S_{3} y+S_{4}=0$ with

$$
\left\{\begin{array}{l}
S_{1}=x_{0} e^{H}+a_{3}+a_{4} \equiv X+x_{1}, \\
S_{2}=\left(2 a_{1}+a_{2}\right) x_{0} e^{H}+a_{3} a_{4} \equiv\left(2 a_{1}+a_{2}\right) X+x_{2}, \\
S_{3}=\left(a_{1}{ }^{2}+2 a_{1} a_{2}\right) x_{0} e^{H} \equiv\left(a_{1}{ }^{2}+2 a_{1} a_{2}\right) X, \\
S_{4}=a_{1}{ }^{2} a_{2} x_{0} e^{H} \equiv a_{1}{ }^{2} a_{2} X .
\end{array}\right.
$$

Then

$$
\begin{aligned}
& L=-\left(\frac{3}{8} X^{2}+\alpha_{1} X+\alpha_{2}\right), \\
& M=-\left(\frac{1}{8} X^{3}+\beta_{1} X^{2}+\beta_{2} X+\beta_{3}\right), \\
& N=-\left(\frac{3}{256} X^{4}+\gamma_{1} X^{3}+\gamma_{2} X^{2}+\gamma_{3} X+\gamma_{4}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \quad \alpha_{1}=\frac{3}{4} x_{1}-2 a_{1}-a_{2}, \quad \alpha_{2}=\frac{3}{8} x_{1}{ }^{2}-x_{2}, \\
& \beta_{1}=\frac{3}{8} x_{1}-\frac{1}{2}\left(2 a_{1}+a_{2}\right), \quad \beta_{2}=\frac{3}{8} x_{1}{ }^{2}-\frac{1}{2}\left(2 a_{1}+a_{2}\right) x_{1}-\frac{1}{2} x_{2}+a_{1}{ }^{2}+2 a_{1} a_{2}, \\
& \beta_{3}=\frac{1}{8} x_{1}{ }^{3}-\frac{1}{2} x_{1} x_{2}, \\
& \gamma_{1}=\frac{3}{64} x_{1}-\frac{1}{16}\left(2 a_{1}+a_{2}\right), \quad \gamma_{2}=\frac{9}{128} x_{1}{ }^{2}-\frac{1}{8}\left(2 a_{1}+a_{2}\right) x_{1}-\frac{1}{16} x_{2}+\frac{1}{4}\left(a_{1}{ }^{2}+2 a_{1} a_{2}\right), \\
& \gamma_{3}=\frac{3}{64} x_{1}{ }^{3}-\frac{1}{16}\left(2 a_{1}+a_{2}\right) x_{1}{ }^{2}-\frac{1}{8} x_{1} x_{2}+\frac{1}{4}\left(a_{1}{ }^{2}+2 a_{1} a_{2}\right) x_{1}-a_{1}{ }^{2} a_{2}, \\
& \gamma_{4}=\frac{3}{256} x_{1}{ }^{4}-\frac{1}{16} x_{1}{ }^{2} x_{2} .
\end{aligned}
$$

Evidently $2 \beta_{1}=\alpha_{1}, 16 \gamma_{1}=\alpha_{1}, \alpha_{2}=4 \beta_{2}-16 \gamma_{2}$. Hence the discriminant $D_{R_{20}}$ is of at most sixth degree of X. The coefficient of X^{6} is given in $\S 3$ in [1]. This is just the following form:

$$
\begin{aligned}
& -\frac{27}{1 \overline{6}}\left(\beta_{3}-4 \gamma_{3}\right)^{2}+\frac{9}{2} \alpha_{1}\left(\beta_{2}-8 \gamma_{2}\right)\left(\beta_{3}-4 \gamma_{3}\right)+\alpha_{1}{ }^{3}\left(\beta_{3}-4 \gamma_{3}\right) \\
& +4\left(\beta_{2}-8 \gamma_{2}\right)^{3}+\alpha_{1}{ }^{2}\left(\beta_{2}-8 \gamma_{2}\right)^{2} .
\end{aligned}
$$

We have

$$
\beta_{2}-4 \gamma_{2}=-\frac{3}{16} x_{1}^{2}+\frac{1}{2}\left(2 a_{1}+a_{2}\right) x_{1}-\left(a_{1}^{2}+2 a_{1} a_{2}\right)
$$

$$
\equiv-\frac{3}{16} x_{1}{ }^{2}+\frac{1}{2} y_{1} x_{1}-y_{2}
$$

and

$$
\beta_{3}-4 \gamma_{3}=-\frac{1}{16} x_{1}{ }^{3}+\frac{1}{4} y_{1} x_{1}{ }^{2}-y_{2} x_{1}+y_{3}, \quad y_{3}=4 a_{1}{ }^{2} a_{2}
$$

and

$$
\alpha_{1}=\frac{3}{4} x_{1}-y_{1} .
$$

Hence the coefficient of X^{6} is equal to

$$
\begin{aligned}
& -\frac{27}{16}\left(\frac{1}{16} x_{1}{ }^{3}-\frac{1}{4} y_{1} x_{1}{ }^{2}+y_{2} x_{1}-y_{3}\right)^{2} \\
& +\frac{9}{2}\left(\frac{3}{4} x_{1}-y_{1}\right)\left(\frac{3}{16} x_{1}{ }^{2}-\frac{1}{2} y_{1} x_{1}+y_{2}\right)\left(\frac{1}{16} x_{1}{ }^{3}-\frac{1}{4} y_{1} x_{1}{ }^{2}+y_{2} x_{1}-y_{3}\right) \\
& +\left(\frac{3}{4} x_{1}-y_{1}\right)^{3}\left(-\frac{1}{16} x_{1}{ }^{3}+\frac{1}{4} y_{1} x_{1}{ }^{2}-y_{2} x_{1}+y_{3}\right) \\
& -4\left(\frac{3}{16} x_{1}{ }^{2}-\frac{1}{2} y_{1} x_{1}+y_{2}\right)^{3}+\left(\frac{3}{4} x_{1}-y_{1}\right)^{2}\left(\frac{3}{16} x_{1}{ }^{2}-\frac{1}{2} y_{1} x_{1}+y_{2}\right)^{2} .
\end{aligned}
$$

It is easy to prove that the above expression vanishes identically. The constant term of $D_{R_{20}}$ is

$$
-27 \beta_{3}{ }^{4}+144 \alpha_{2} \gamma_{4} \beta_{3}{ }^{2}-128 \alpha_{2}{ }^{2} \gamma_{4}{ }^{2}-256 \gamma_{4}{ }^{3}+4 \alpha_{2}{ }^{3} \beta_{3}{ }^{2}-16 \alpha_{2}{ }^{4} \gamma_{4} .
$$

By a simple computation we can prove that this is equal to zero. Hence we have

$$
D_{R_{20}}=A_{5} x_{0}{ }^{5} e^{5 H}+A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}
$$

with non-zero coefficients A_{1}, A_{5}.
We consider the case R_{22}, which is defined by

$$
y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

with

$$
\left\{\begin{array}{l}
S_{1}=y_{1}, \\
S_{2}=y_{0} e^{H}+y_{2} \equiv X+y_{2}, \\
S_{3}=\left(a_{1}+a_{2}\right) y_{0} e^{H}+y_{3} \equiv\left(a_{1}+a_{2}\right) X+y_{3}, \\
S_{4}=a_{1} a_{2} y_{0} e^{H} \equiv a_{1} a_{2} X .
\end{array}\right.
$$

Here $y_{1}=a_{3}+2 a_{4}, y_{2}=2 a_{3} a_{4}+a_{4}{ }^{2}$ and $y_{3}=a_{3} a_{4}{ }^{2}$.
Then

$$
L=X+\alpha_{1},
$$

$$
\begin{aligned}
& M=\beta_{0} X+\beta_{1}, \\
& N=\gamma_{0} X+\gamma_{1},
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{1}=-\frac{3}{8} y_{1}{ }^{2}+y_{2}, \quad \beta_{0}=\frac{1}{2} y_{1}-a_{1}-a_{2}, \\
& \beta_{1}=-\frac{1}{8} y_{1}{ }^{3}+\frac{1}{2} y_{1} y_{2}-y_{3}, \quad \gamma_{0}=\frac{1}{16} y_{1}{ }^{2}-\frac{1}{4}\left(a_{1}+a_{2}\right) y_{1}+a_{1} a_{2}, \\
& \gamma_{1}=-\frac{3}{256} y_{1}{ }^{4}+\frac{1}{16} y_{1}{ }^{2} y_{2}-\frac{1}{4} y_{1} y_{3} .
\end{aligned}
$$

In this case $D_{R_{22}}$ is

$$
-27 M^{4}+144 L M^{2} N-128 L^{2} N^{2}+256 N^{3}-4 L^{3} M^{2}+16 L^{4} N
$$

Hence $D_{R_{22}}$ is a polynomial of X of at most fifth degree. The coefficient of X^{5} is

$$
-4 \beta_{0}{ }^{2}+16 \gamma_{0}=-4\left(a_{1}-a_{2}\right)^{2} \neq 0
$$

We shall compute the constant term of $D_{R_{22}}$. This is

$$
-27 \beta_{1}{ }^{4}+144 \alpha_{1} \beta_{1}{ }^{2} \gamma_{1}-128 \alpha_{1}^{2} \gamma_{1}^{2}+256 \gamma_{1}{ }^{3}-4 \alpha_{1}{ }^{3} \beta_{1}{ }^{2}+16 \alpha_{1}^{4} \gamma_{1}
$$

Hence we should compute the following expression:

$$
\begin{aligned}
& -27\left(-\frac{1}{8} y_{1}{ }^{3}+\frac{1}{2} y_{1} y_{2}-y_{3}\right)^{4} \\
& +144\left(-\frac{3}{8} y_{1}{ }^{2}+y_{2}\right)\left(-\frac{3}{256} y_{1}{ }^{4}+\frac{1}{16} y_{1}{ }^{2} y_{2}-\frac{1}{4} y_{1} y_{3}\right)\left(-\frac{1}{8} y_{1}{ }^{3}+\frac{1}{2} y_{1} y_{2}-y_{3}\right)^{2} \\
& -128\left(\frac{3}{8} y_{1}{ }^{2}-y_{2}\right)^{2}\left(\frac{3}{256} y_{1}{ }^{4}-\frac{1}{16} y_{1}{ }^{2} y_{2}+\frac{1}{4} y_{1} y_{3}\right)^{2} \\
& -256\left(\frac{3}{256} y_{1}{ }^{4}-\frac{1}{16} y_{1}{ }^{2} y_{2}+\frac{1}{4} y_{1} y_{3}\right)^{3} \\
& +4\left(\frac{3}{8} y_{1}{ }^{2}-y_{2}\right)^{3}\left(\frac{1}{8} y_{1}{ }^{3}-\frac{1}{2} y_{1} y_{2}+y_{3}\right)^{2} \\
& -16\left(\frac{3}{8} y_{1}{ }^{2}-y_{2}\right)^{4}\left(\frac{3}{256} y_{1}{ }^{2}-\frac{1}{16} y_{1}{ }^{2} y_{2}+\frac{1}{4} y_{1} y_{3}\right)^{2} .
\end{aligned}
$$

We can prove that coefficients of $y_{1}{ }^{12}, y_{1}{ }^{10} y_{2}, y_{1}{ }^{9} y_{3}, y_{1}{ }^{8} y_{2}{ }^{2}, y_{1}{ }^{7} y_{2} y_{3}, y_{1}{ }^{6} y_{3}{ }^{2}, y_{1}{ }^{6} y_{2}{ }^{3}$, $y_{1}{ }^{3} y_{2}{ }^{2} y_{3}, y_{1}{ }^{4} y_{2}{ }^{4}$ and $y_{1}{ }^{4} y_{2} y_{3}{ }^{2}$ are all equal to zero. Hence the above expression reduce to

$$
B_{1} y_{1}{ }^{3} y_{2}{ }^{3} y_{3}+B_{2} y_{1}{ }^{2} y_{2}{ }^{2} y_{3}{ }^{2}+B_{3} y_{1} y_{2} y_{3}{ }^{3}+B_{4} y_{1}{ }^{3} y_{3}{ }^{3}+B_{5} y_{2}{ }^{3} y_{3}{ }^{2}+B_{6} y_{3}{ }^{4}
$$

with $B_{1}=0, B_{2}=1, B_{3}=18, B_{4}=-4, B_{5}=-4, B_{6}=-27$. Hence we have

$$
y_{3}{ }^{2}\left(y_{1}{ }^{2} y_{2}{ }^{2}+18 y_{1} y_{2} y_{3}-4 y_{1}{ }^{3} y_{3}-4 y_{2}{ }^{3}-27 y_{3}{ }^{2}\right) .
$$

Let us put $y_{1}=a_{3}+2 a_{4}, y_{2}=\left(2 a_{3}+a_{4}\right) a_{4}, y_{3}=a_{3} a_{4}{ }^{2}$. Then

$$
\begin{aligned}
& y_{1}{ }^{2} y_{2}{ }^{2}-18 y_{1} y_{2} y_{3}-4 y_{1}{ }^{3} y_{3}-4 y_{2}{ }^{3}-27 y_{3}{ }^{2} \\
&=\left(a_{3}+2 a_{4}\right)^{2} a_{4}{ }^{2}\left(2 a_{3}+a_{4}\right)^{2}+18\left(a_{3}+2 a_{4}\right)\left(2 a_{3}+a_{4}\right) a_{3} a_{4}{ }^{3} \\
&-4\left(a_{3}+2 a_{4}\right)^{3} a_{3} a_{4}{ }^{2}-4\left(2 a_{3}+a_{4}\right)^{3} a_{4}{ }^{3}-27 a_{3}{ }^{2} a_{4}{ }^{4} \\
&= 0 .
\end{aligned}
$$

Therefore

$$
D_{R_{22}}=-4\left(a_{1}-a_{2}\right)^{2} y_{0}{ }_{0}{ }^{5}{ }^{5 H}+A_{4} y_{0}{ }^{4} e^{4 H}+A_{3} y_{0}{ }^{3} e^{3 H}+A_{2} y_{0}{ }^{2} e^{2 H}+A_{1} y_{0} e^{H}
$$

with non-zero coefficient A_{1}.
We consider $D_{R_{28}} . R_{28}$ is defined by

$$
y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

with

$$
\left\{\begin{array}{l}
S_{1}=y_{1}, \\
S_{2}=y_{2}, \\
S_{3}=y_{0} e^{H}+y_{3} \equiv X+y_{3}, \\
S_{4}=a_{1} y_{0} e^{H} \equiv a_{1} X
\end{array}\right.
$$

Here $y_{1}=a_{2}+a_{3}+a_{4}, y_{2}=a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, y_{3}=a_{2} a_{3} a_{4}$. Then

$$
\begin{aligned}
& L=-\frac{3}{8} y_{1}^{2}+y_{2} \equiv \alpha_{1}, \\
& M=-X+\beta_{1} \\
& N=\gamma_{0} X+\gamma_{1},
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{1}=-\frac{1}{8} y_{1}{ }^{3}+\frac{1}{2} y_{1} y_{2}-y_{3}, \quad \gamma_{0}=-\frac{1}{4} y_{1}+a_{1}, \\
& \gamma_{1}=-\frac{3}{256} y_{1}{ }^{4}+\frac{1}{16} y_{1}{ }^{2} y_{2}-\frac{1}{4} y_{1} y_{3} .
\end{aligned}
$$

Therefore $D_{R_{28}}$ is equal to

$$
\begin{aligned}
& -27\left(X-\beta_{1}\right)^{4}+144 \alpha_{1}\left(X-\beta_{1}\right)^{2}\left(\gamma_{0} X+\gamma_{1}\right)-128 \alpha_{1}{ }^{2}\left(\gamma_{0} X+\gamma_{1}\right)^{2} \\
& +256\left(\gamma_{0} X+\gamma_{1}\right)^{3}-4 \alpha_{1}^{3}\left(X-\beta_{1}\right)^{2}+16 \alpha_{1}^{4}\left(\gamma_{0} X+\gamma_{1}\right) .
\end{aligned}
$$

Hence

$$
D_{R_{28}}=-27 X^{4}+A_{3} X^{3}+A_{2} X^{2}+A_{1} X+A_{0}
$$

with $X=y_{0} e^{H}$ and a non-zero coefficient A_{0}.
Finally we consider $D_{R_{29}} . \quad R_{29}$ is defined by

$$
y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

with

$$
\left\{\begin{array}{l}
S_{1}=y_{1} \\
S_{2}=y_{0} e^{H}+y_{2} \equiv X+y_{2} \\
S_{3}=2 a_{1} y_{0} e^{H}+y_{3} \equiv 2 a_{1} X+y_{3} \\
S_{4}=a_{1}^{2} y_{0} e^{H} \equiv a_{1}^{2} X
\end{array}\right.
$$

Here $y_{1}=a_{2}+a_{3}+a_{4}, y_{2}=a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}, y_{3}=a_{2} a_{3} a_{4}$. Then

$$
\begin{aligned}
& L=X+\alpha_{1} \\
& M=\beta_{0} X+\beta_{1} \\
& N=\gamma_{0} X+\gamma_{1}
\end{aligned}
$$

with

$$
\begin{aligned}
& \alpha_{1}=-\frac{3}{8} y_{1}^{2}+y_{2}, \quad \beta_{0}=\frac{1}{2} y_{1}-2 a_{1}, \quad \beta_{1}=-\frac{1}{8} y_{1}^{3}+\frac{1}{2} y_{1} y_{2}-y_{3} \\
& \gamma_{0}=\frac{1}{16} y_{1}^{2}-\frac{a_{1}}{2} y_{1}+a_{1}^{2}, \quad \gamma_{1}=-\frac{3}{256} y_{1}^{4}+\frac{1}{16} y_{1}^{2} y_{2}-\frac{1}{4} y_{1} y_{3}
\end{aligned}
$$

Then the coefficient of X^{5} of $D_{R_{29}}$ is equal to

$$
\begin{aligned}
-4 \beta_{0}{ }^{2}+\gamma_{0} & =-4\left(\frac{1}{4} y_{1}^{2}-2 a_{1} y_{1}+4{a_{1}}^{2}\right)+16\left(\frac{1}{16} y_{1}^{2}-\frac{a_{1}}{2} y_{1}+a_{1}^{2}\right) \\
& =0
\end{aligned}
$$

Therefore $D_{R_{29}}$ is a polynomial of X of fourth degree, Hence

$$
D_{R_{29}}=A_{4} y_{0}{ }^{4} e^{4 H}+A_{3} y_{0}{ }^{3} e^{3 H}+A_{2} y_{0}{ }^{2} e^{2 H}+A_{1} y_{0} e^{H}+A_{0}
$$

with non-zero coefficients A_{0}, A_{4}.
§ 6. Remarks
Let us put

$$
F(z, y) \equiv y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0
$$

and

$$
\begin{aligned}
\alpha^{4} G(z, Y) & \equiv F(z, \alpha Y+\beta) \\
& \equiv \alpha^{4}\left[Y^{4}-T_{1} Y^{3}+T_{2} Y^{2}-T_{3} Y+T_{4}\right] .
\end{aligned}
$$

Evidently

$$
\begin{aligned}
& \left\{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{1}-y_{4}\right)\left(y_{2}-y_{3}\right)\left(y_{2}-y_{4}\right)\left(y_{3}-y_{4}\right)\right\}^{2} \\
& =\alpha^{12}\left\{\left(Y_{1}-Y_{2}\right)\left(Y_{1}-Y_{3}\right)\left(Y_{1}-Y_{4}\right)\left(Y_{2}-Y_{3}\right)\left(Y_{2}-Y_{4}\right)\left(Y_{3}-Y_{4}\right)\right\}^{2} .
\end{aligned}
$$

Hence $R_{1} \sim R_{2}$ implies $D_{R_{1}}=\alpha^{12} D_{R_{2}}$. Therefore the non-vanishing property or the vanishing property of coefficients is completely preserved. Hence the forms of discriminants of all surfaces listed in $\S 2,3$ and 4 are completely determind.

We shall not give any proof of the following fact: Let R be the Riemann surface R_{13}. Let F be a regular function on R. Then F is representable as

$$
F=f_{1}+f_{2} y+f_{3} y^{2}+f_{4} y^{3}
$$

where f_{1}, f_{2}, f_{3} and f_{4} are meromorphic functions in $|z|<+\infty$, all of which are regular at any points satisfying $H^{\prime}(z) \neq 0$.

We can prove this quite similarly as in $\S 6$ in [1]. And the similar facts for $R_{16}, R_{17}, R_{20}, R_{22}, R_{28}$ and R_{29} hold.

Further we can make use of transformation formula of discriminants established in § 7 in [1].

§ 7. Theorems

We now introduce an assumption that $H(z)$ is a polynomial.
Let R be the surface $R_{13}: y^{4}-S_{1} y^{3}+S_{2} y^{2}-S_{3} y+S_{4}=0$ with $S_{1}=x_{0} e^{H}+x_{1}$, $S_{2}=x_{2}, S_{3}=x_{3}$ and $S_{4}=x_{4}$, where $x_{1}=a_{1}+a_{2}+a_{3}+a_{4}, x_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}$ $+a_{2} a_{4}+a_{3} a_{4}, x_{3}=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}, x_{4}=a_{1} a_{2} a_{3} a_{4}$. Then $P(y)=6$. Suppose that $P\left(R_{13}\right)>6$.

If $P\left(R_{13}\right)=7$, then there is non-constant regular function F on R_{13} such that $P(F)=7$ and

$$
F=f_{1}+f_{2} y+f_{3} y^{2}+f_{4} y^{3}
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ are meromorphic in $|z|<\infty$ and regular excepting at most at points satisfying $H^{\prime}=0$. We assume that F defines the surface $R_{4}{ }^{*}: F^{4}-$ $U_{1} F^{3}+U_{2} F^{2}-U_{3} F+U_{4}=0$ with $U_{1}=y_{1}, \quad U_{2}=y_{0} e^{L}+y_{2}, \quad U_{3}=b_{1} y_{0} e^{L}+y_{3}, \quad U_{4}=y_{4}$, where $y_{1}=b_{2}+b_{3}+b_{4}+b_{5}, \quad y_{2}=b_{2} b_{3}+b_{2} b_{4}+b_{2} b_{5}+b_{3} b_{4}+b_{3} b_{5}+b_{4} b_{5}, \quad y_{3}=b_{2} b_{3} b_{4}+b_{2} b_{3} b_{5}$ $+b_{2} b_{4} b_{5}+b_{3} b_{4} b_{5}$ and $y_{4}=b_{2} b_{3} b_{4} b_{5}$. Let us denote the discriminants of R_{13} and R_{4} * by Δ and D, respectively. Then we have

$$
D=\Delta \cdot G^{2}
$$

where G may have poles, whose number is finite. Let us denote

$$
D=-4 b_{1}{ }^{2}\left(y_{0} e^{L}-\delta_{1}\right)\left(y_{0} e^{L}-\delta_{2}\right)\left(y_{0} e^{L}-\delta_{3}\right)\left(y_{0} e^{L}-\delta_{4}\right)\left(y_{0} e^{L}-\delta_{5}\right)
$$

and

$$
\Delta=A_{4}\left(x_{0} e^{H}-\gamma_{1}\right)\left(x_{0} e^{H}-\gamma_{2}\right)\left(x_{0} e^{H}-\gamma_{3}\right)\left(x_{0} e^{H}-\gamma_{4}\right) .
$$

CASE 1). The counting function of simple zeros of Δ satisfies

$$
N_{2}(r, 0, \Delta) \sim 4 T\left(r, e^{H}\right)
$$

that is, $\gamma_{i} \neq \gamma_{\text {, }}$ for $i \neq \jmath$. Then

$$
N_{2}(r, 0, \Delta)=N_{2}(r, 0, D) \sim m \cdot T\left(r, e^{L}\right)
$$

with $m=1,2,3,5$. Then L should be a polynomial such that $\operatorname{deg} L=\operatorname{deg} H$. In this case we can return back y from F. Then we have

$$
\Delta=D \cdot I^{2} .
$$

The number of poles of I is finite again. Hence $G^{2} \cdot I^{2}=1$. The zeros of G coincides with poles of I. Hence $G=\beta e^{M}$ with rational β and M entire with $M(0)=0 . \quad M$ may reduce to constant 0 . In this case $\delta_{i} \neq \delta_{j}$ for $i \neq \jmath$.

CASE 2). $N_{2}(r, 0, \Delta) \sim 2 T\left(r, e^{H}\right)$, that is, $\gamma_{1} \neq \gamma_{2}, \gamma_{1} \neq \gamma_{3}, \gamma_{2} \neq \gamma_{3}$ but $\gamma_{3}=\gamma_{4}$. Then $N_{2}(r, 0, \Delta)=N_{2}(r, 0, D) \sim m \cdot T\left(r, e^{L}\right)$ with $m=1,2,3,5$. Then L should be a polynomial such that $\operatorname{deg} L=\operatorname{deg} H$. We can return back y from F. Then $\Delta=D \cdot I^{2}$. Then number of poles of I is finite. Hence $G^{2} \cdot I^{2}=1$. The zeros of G conincides with poles of I. Then we can count the multiple zeros. The counting function of multiple zeros

$$
N_{0}(r, 0, \Delta)=(1+o(1)) N_{0}(r, 0, D),
$$

where $N_{0}(r, 0, \Delta)=N(r, 0, \Delta)-N_{2}(r, 0, \Delta)$. Hence

$$
N_{1}(r, 0, \Delta)=2 \cdot T\left(r, e^{H}\right)
$$

and

$$
N(r, 0, \Delta)=(1+o(1))(5-m) T\left(r, e^{L}\right)
$$

Then $m=5 / 2$, which is absurd, since m is an integer.
CASE 3). $N_{0}(r, 0, \Delta) \sim T\left(r, e^{H}\right)$, that is, $\gamma_{1} \neq \gamma_{2}=\gamma_{3}=\gamma_{4}$. Then $N_{0}(r, 0, D) \sim$ $2 \cdot T\left(r, e^{L}\right)$ and the counting functions of triple zeros $N_{3}(r, 0, \Delta), N_{3}(r, 0, D)$ satisfies $N_{3}(r, 0, \Delta)=N_{3}(r, 0, D)$ and $N_{3}(r, 0, \Delta)=3 \cdot T\left(r, e^{H}\right), N_{3}(r, 0, D)=3 \cdot T(r$, $\left.e^{L}\right)$. This is a contradiction.

CaSE 4). Δ does not have any simple zero. Then either

$$
N_{2}(r, 0, D) \sim T\left(r, e^{L}\right) \quad \text { or } \quad N_{3}(r, 0, D) \sim 3 \cdot T\left(r, e^{L}\right)
$$

but

$$
N_{3}(r, 0, \Delta)=o(1) \quad \text { or } \quad N_{5}(r, 0, D) \sim 5 \cdot T\left(r, e^{L}\right)
$$

where N_{5} is the counting function of multiplicity 5 . All of these lead to a contradiction.

Therefore we have

$$
D=\Delta \beta^{2} e^{2 M}
$$

with a rational function β. Further D, Δ must have only simple factors. Hence we have

$$
5 \cdot T\left(r, e^{L}\right) \sim N(r, 0, D)=N(r, 0, \Delta) \sim 4 T\left(r, e^{H}\right) .
$$

Hence

$$
T\left(r, e^{L}\right) \sim \frac{4}{5} T\left(r, e^{H}\right)
$$

We have

$$
\begin{aligned}
& -4 b_{1}{ }^{2} y_{0}{ }^{5} e^{5 L}+B_{4} y_{0}{ }^{4} e^{4 L}+B_{3} y_{0}{ }^{3} e^{3 L}+B_{2} y_{0}{ }^{2} e^{2 L}+B_{1} y_{0} e^{L}+B_{0} \\
& =\left(A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}+A_{0}\right) \beta^{2} e^{2 M}
\end{aligned}
$$

with non-zero constants B_{0}, A_{4}, A_{0}. By Borel's unicity theorem we have only two possibilities: either

$$
\begin{aligned}
& M \equiv 0,-4 b_{1}{ }^{2} y_{0}{ }^{5}=A_{4} x_{0}^{4} \beta^{2}, B_{0}=A_{0} \beta^{2}, 5 L=4 H \text { and } B_{4}=B_{3}=B_{2}=B_{1}=A_{3} \\
& =A_{2}=A_{1}=0
\end{aligned}
$$

or

$$
\begin{aligned}
& M=-2 H, 5 L=-4 H,-4 b_{1}{ }^{2} y_{0}{ }^{5}=A_{0} \beta^{2}, B_{0}=A_{4} x_{0}{ }^{4} \beta^{2} \text { and } B_{4}=B_{3}=B_{2}=B_{1} \\
& =A_{3}=A_{2}=A_{1}=0 .
\end{aligned}
$$

If F defines the surface $R_{6}{ }^{*}$, then the same proof does work. So we shall omit its detail.

We assume that F defines the surface $R_{7}^{*}: F^{4}-U_{1} F^{3}+U_{2} F^{2}-U_{3} F+U_{4}=0$ with $U_{1}=y_{0} e^{L}+y_{1}, U_{2}=\alpha_{1} y_{0} e^{L}+y_{2}, U_{3}=\alpha_{2} y_{0} e^{L}, U_{4}=\alpha_{3} y_{0} e^{L}$, where $y_{1}=b_{4}+b_{5}$, $y_{2}=b_{4} b_{5}, \alpha_{1}=b_{1}+b_{2}+b_{3}, \alpha_{2}=b_{1} b_{2}+b_{1} b_{3}+b_{2} b_{3}, \alpha_{3}=b_{1} b_{2} b_{3}$. Then we have

$$
D_{R_{7} *}=\Delta_{R_{13}} \cdot G^{2}
$$

where G may have poles, whose number is finite. Let us denote

$$
\begin{aligned}
D_{R_{7}} & =B_{6}\left(y_{0} e^{L}-\delta_{1}\right)\left(y_{0} e^{L}-\delta_{2}\right)\left(y_{0} e^{L}-\delta_{3}\right)\left(y_{0} e^{L}-\delta_{4}\right)\left(y_{0} e^{L}-\delta_{5}\right) y_{0} e^{L} \\
& \equiv B_{6} y_{0}{ }^{6} e^{6 L}+B_{5} y_{0}{ }^{5} e^{5 L}+B_{4} y_{0}{ }^{4} e^{4 L}+B_{3} y_{0}{ }^{3} e^{3 L}+B_{2} y_{0}{ }^{2} e^{2 L}+B_{1} y_{0} e^{L}
\end{aligned}
$$

with non-zero coefficients B_{1}, B_{6}. Quite similarly we have

$$
D_{R_{7} *}=\Delta_{R_{13}} \cdot \beta^{2} e^{2 M}
$$

wtih a rational function β. Further $D_{R_{7} *}$ and $\Delta_{R_{13}}$ must have only simple factors. Therefore

$$
5 T\left(r, e^{L}\right) \sim 4 T\left(r, e^{H}\right)
$$

By

$$
\begin{aligned}
& B_{6} y_{0}{ }^{6} e^{6 L}+B_{5} y_{0}{ }^{5} e^{6 L}+B_{4} y_{0}{ }^{4} e^{4 L}+B_{3} y_{0}{ }^{3} e^{3 L}+B_{2} y_{0}{ }^{2} e^{2 L}+B_{1} y_{0} e^{L} \\
& =\left(A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}+A_{0}\right) \beta^{2} e^{2 M}
\end{aligned}
$$

and by Borel's unicity theorem we have two possibilities:

$$
\begin{aligned}
& 2 M-L=0,5 L=4 H, B_{6} y_{0}{ }^{6}=A_{4} x_{0}{ }^{4} \beta^{2}, B_{1} y_{0}=A_{0} \beta^{2} \text { and } B_{5}=B_{4}=B_{3}=A_{3}=A_{2} \\
& =A_{1}=0
\end{aligned}
$$

or

$$
\begin{aligned}
& 4 H+2 M-L=0,2 M-L=5 L(5 L=-4 H), A_{0} \beta^{2}=B_{6} y_{0}{ }^{6}, A_{4} x_{0}{ }^{4} \beta^{2}=B_{1} y_{0} \\
& \text { and } B_{5}=B_{4}=B_{3}=B_{2}=A_{3}=A_{2}=A_{1}=0 .
\end{aligned}
$$

If $P\left(R_{13}\right)=8$, then there is a non-constant regular function F on R_{13} such that $P(F)=8$ and $F=f_{1}+f_{2} y+f_{3} y^{2}+f_{4} y^{3}$ defines the surface X_{1}. Then

$$
D_{X_{1}}=\Delta_{R_{13}} \cdot G^{2} .
$$

And we can prove that

$$
D_{X_{1}}=\Delta_{R_{13}} \cdot \beta^{2} e^{2 M}
$$

with a rational function β. Then Borel's unicity theorem implies that $A_{3}=A_{2}$ $=A_{1}=0$. Hence we have the following result. In the following theorems we always assume that e^{H} is an entire function of finite order.

Theorem 1. Let us denote the discriminant of R_{13}

$$
\Delta_{R_{13}}=A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}+A_{0}
$$

with non-zero coefficients A_{0}, A_{4}. If at least one of coefficients A_{3}, A_{2}, A_{1} does not vanish. Then $P\left(R_{13}\right)=6$.

Theorem 2. Let us denote the discriminant of R_{16}

$$
\Delta_{R_{16}}=A_{6} x_{0}{ }^{6} e^{6 H}+A_{5} x_{0}{ }^{5} e^{5 H}+A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}
$$

with non-zero coefficients A_{6}, A_{2}. If at least one of coefficients A_{5}, A_{4}, A_{3} does not vanish, then $P\left(R_{16}\right)=6$.

Theorem 3. Let us denote the discriminant of R_{17}

$$
\Delta_{R_{17}}=A_{6} x_{0}{ }^{6} e^{6 H}+A_{5} x_{0}{ }^{5} e^{5 H}+A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}
$$

with non-zero coefficients A_{6}, A_{2}. If at least one of coefficients A_{5}, A_{4}, A_{3} does not vanish, then $P\left(R_{17}\right)=6$.

Theorem 4. Let us put the discriminant of R_{20}

$$
\Delta_{R_{20}}=A_{5} x_{0}{ }^{5} e^{5 H}+A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}
$$

with non-zero coefficients A_{5}, A_{1}. If at least one of coefficients A_{4}, A_{3}, A_{2} does not vanish, then $P\left(R_{20}\right)=6$.

The same holds for R_{22}.
Theorem 5. Let us put the discriminant of R_{28}

$$
\Delta_{R_{28}}=A_{4} x_{0}{ }^{4} e^{4 H}+A_{3} x_{0}{ }^{3} e^{3 H}+A_{2} x_{0}{ }^{2} e^{2 H}+A_{1} x_{0} e^{H}+A_{0}
$$

with $A_{4}=-27$ and $A_{0} \neq 0$. If at least one of coefficients A_{3}, A_{2}, A_{1} does not vanish, then $P\left(R_{28}\right)=6$.

The same holds for R_{29}.

References

[1] M. Ozawa and K. Sawada, Picard constants of four-sheeted algebroid surfaces, I, Kodai Math. J., 18 (1995), 99-141.

Department of Mathematics
Science University of Tokyo
Noda, Chiba, Japan
Department of Mathematics
Tokyo Metropolitan College of Technology
Shinagawa, Tokyo, Japan

