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NEF LINE BUNDLES ON ALGEBRAIC SURFACES

HlDETOSHI MAEDA

§ 0. Introduction

In this paper we assume throughout that the ground field k is algebraically
closed and of characteristic p^O.

Let X be a projective surface and L a line bundle on X. When L is nef
(i.e., LC^O for all integral curves C on X), the pair (X, L) will be called a
semipolarized surface. We say that two semipolarized surfaces (Xu Lλ) and
(X2, L2) are birationally equivalent if there is a projective surface W with bira-
tional morphisms ft: W-*Xt (*=1, 2) such that f*L1=f^L2. Moreover, if X is
normal, the sectional genus g(X, L) of the semipolarized normal surface {X, L)
is given by the formula 2g(X, L)—2—(ωx-\-L)L, where ωx is the canonical
sheaf of X.

Lanteri and Palleschi proved the following on the assumption that L is an
ample line bundle on a smooth complex projective surface X.

THEOREM 0.1 ([LP], Remark 1.3). Let L be an ample line bundle on a
smooth complex projective surface X. Then one of the following holds.

(1) Kx-\-L is nef for the canonical bundle Kx of X.
(2) (X, L)=*(p; oP(D).
(3) (X, L)^(P\ OP(2)).
(4) (X, L) is a scroll over a smooth curve (For the definition of a scroll,

see § 1.).

THEOREM 0.2 ([LP], Remark 1.1 and Corollary 2.3). Let L be an ample
line bundle on a smooth complex projective surface X. Then g(X, L)^0. More-
over, if g(X, L)=0, then (X, L) is one of the following.

(1) {X, L)^{P\ OP(D).

(2) (X, L)^(P\ OP(2)).
(3) (X, L) is a scroll over P\

THEOREM 0.3 ([LP], Corollary 2.4). Let L be an ample line bundle on a
smooth complex projective surface X. If g(X, L)=l, then (X, L) is one of the
following.
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(1) (X, L) is a scroll over an elliptic curve.
(2) X is a Del Pezzo surface and L — — Kx.

It seems very natural to carry out similar research in the case when L is
simply supposed to be a nef line bundle because the nefness is the degenerate
condition of ampleness. The purpose of this paper is to generalize these results
to semipolarized surfaces over an algebraically closed field of arbitrary charac-
teristic. The precise statements of our results are as follows:

THEOREM 1. Let (X, L) be a semipolarized surface. Then there exist a
smooth projective surface Y and a nef line bundle M on Y such that the semi-
polarized surface (Y, M) is birationally equivalent to (X, L) and satisfies one of
the following.

(1) Kγ+M is nef.
(2) (F, M)^{P\ OP).
(3) (F, M)^(P\ Op{l)).
(4) (F, M)~(P\ OP{2)).

(5) (F, M) is a scroll over a smooth curve.
(6) Y is a Pι-bundle over a smooth curve C and M is the pull-back of a

line bundle of non-negative degree on C.

THEOREM 2. Let (X, L) be a semipolarized normal surface. Then g(X, L)
^ 0 unless Y is a P1-bundle over a smooth curve C and M=π*B for some line
bundle B on C with deg B^2, where (F, M) is as in the Theorem 1 and π is
the projection Y~-*C. Moreover , if g(X, L)=0, then the pair (Y, M) as in the
Theorem 1 is one of the following.

(l) ( r , M)^(P\ OP(D).

(2) (F, M)^(P\ Op{2)).
(3) (Y, M) is a scroll over P\
(4) Y is a Pι-bundle over a smooth curve C and M=π*B for some line

bundle B on C with deg B—l.

THEOREM 3. Let (X, L) be a semipolarized normal surface with g(X, L ) = l .
Then the pair (F, M) as in the Theorem 1 is one of the following unless (0) M
is numerically trivial.

(1) F is a minimal surface with Kodaira dimension 1 and KYM=M2=0.
(2) Kγ is numerically trivial and M 2 =0.
(3) There is an indecomposable vector bundle 6 on an elliptic curve C with

Ci(£)=l ^ch that Y^Pc{β). M=aH+π*B for some line bundle B of
degree —a/2 on C and a^2, where H is the tautological line bundle on
Y and π is the projection Y—*C.

(4) There is a vector bundle β on an elliptic curve C with c1(<f?)=O such that
Y = PC(£). M—aH-\-π*B for some line bundle B of degree 0 on C and
α^2, where H and π are as in (3).
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(5) Y is a weak Del Pezzo surface and M=—Kγ.
(6) Y is the blow-up of Z at a point, where Z is a weak Del Pezzo surface

with (-KZ)*=L M=-aKY and α ^ l .
(7) (Y, M) is a scroll over an elliptic curve.

This type of Theorems have been obtained by Fujita [F] for the case in
which L is a nef and big line bundle on a projective variety of dimension ^ 3
defined over an algebraically closed field of characteristic zero.

I would like to thank Professor Antonio Lanteri for his encouragement dur-
ing the preparation of this paper. I would also like to express my gratitude
to the referee for useful comments.

§ 1. Preliminaries

Let I be a projective surface defined over an algebraically closed field k
of characteristic p^O. The group of line bundles on X is denoted by Pic {X).
The tensor products of line bundles are denoted additively. Let ZX{X) be the
free abelian group generated by integral curves on X. The intersection pair-
ing gives a bilinear map Pic(X)xZ1(X)~^Z and the numerical equivalence = is
defined so that the pairing ((Pic(Λ')/=)®Q)x((Z1(Λ')/=)(g)Q)->Q is non-degene-
rate. The closed cone of curves NE(X) is the closed convex cone generated by
effective 1-cycles in the /^-vector space (Zι(X)/=)®R. LePic(X) is called nef
if the numerical class of L in (Pic(X)/=)®R gives a non-negative function on
NE(X)-{0\. A nef line bundle L is called big if L2>0.

Let X be a smooth projective surface. The canonical bundle of X is denoted
by Kx. Let Z be a 1-cycle on X. We denote by [Z] the numerical class of
Z in (Zi(X)/==)(g)R. A half line R = R+[Z'](R+ = {xeR\x^O}) in ΉE(X) is
called an extremal ray if

(1) KxZ<0, and

(2) if zu z2^NE(X) satisfy z1+z2^R, then zu z2^R.
A rational curve / on X is called an extremal rational curve if (—Kx)l^3 and
R+W] is an extremal ray. Let

NE(X)+= {z(ΞNE(X) I Kxz^o}.

Then we have the following basic theorem.

THEOREM 1.1 (Cone Theorem). Let X be a smooth projective surface. Then

NE(X) is the smallest closed convex cone containing NE(X)+ and all the extremal

rays:

where the Rj are extremal rays of NE(X) for X. Furthermore, every extremal
ray is spanned by a numerical class of an extremal rational curve.
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For the proof, we refer to [Mo], Theorem 1.5. We need also the follow-
ing theorem.

THEOREM 1.2. Let X be a smooth projective surface. Then an irreducible
curve I on X is an extremal rational curve if and only if

(1) X^P2 and I is a straight line,
(2) X is a P1-bundle over a smooth curve C and I is a fiber of X—>C, or
(3) I is a (—l)-curve.

For the proof, we refer to [Mo], Theorem 2.1.

(1.3) Let F be a Px-bundle over a smooth curve C of genus g. Then
there exists a vector bundle 8 of rank two on C such that Y = PC(8). We may
assume that h°(8)Φθ and that Λ°(£(g)L)=0 for all line bundles L on C with
degL<0. In this case 8 is said to be normalized. Of course 8 is not neces-
sarily determined uniquely, but the integer e= — c1(8) is an invariant of Y. If
8 is decomposable, then 8=0c@L for some line bundle L on C with deg L^O.
Therefore e^O. All values of e^O are possible. If 8 is indecomposable, then
—g^e^2g—2. Let H be the tautological line bundle on Y. Then there is a
section Co such that C o e | / / | . Let π be the projection Y—>C and F a fiber of
π. Then every line bundle M on Y is numerically equivalent to aC^+bF for
some integers a, b. For details we refer to [H]. A necessary and sufficient
condition for M to be nef is stated as follows.

LEMMA 1.4. Let Y be a Pι-bundle over a smooth curve C with invariant
e^O. Then a line bundle M=aC0-{-bF is nef if and only if α;Ξ>0 and b^ae.

For the proof, we refer to [Ma], Lemma 1.3.

LEMMA 1.5. Let Y be a Pι-bundle over a smooth curve C of genus g with
invariant e<0. Assume furthermore either char &=0 or g<l. Then a line
bundle M~aC0+bF is nef if and only if a^O and b^(l/2)ae.

For the proof, we refer to [Ma], Lemma 1.4.

A semipolanzed surface is a pair (X, L) consisting of a projective surface
X and a nef line bundle L on X. A semipolarized surface (X, L) is said to be
a scroll over a smooth curve C if X is a /"-bundle over C and LF—\ for any
fiber F of X—»C. A smooth projective surface X is called weak Del Pezzo if
—Kx is nef and big; it is well-known (see for example [D]) that X is then
either PιxPι or Σ2 or isomorphic to P2 blown up ^ 8 times in weakly general
position, where Σ2 is the second Hirzebruch surface.
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§ 2. Proof of the Theorem 1

Let g: Z-+X be a desingularization of X. Considering the pull-back g*L,
we may assume from the start that X is smooth because two semipolarized
surfaces (X, L) and (Z, g*L) are birationally equivalent.

If Kx+L is nef, then we set (Y, M)=(X, L).
Assume that Kx+L is not nef. Then, since Kx+L is not non-negative

on NE(X)—{0\, by the cone Theorem 1.1 we can find an extremal rational
curve / with (Kx+L)l<0, and so

From Theorem 1.2 there are three cases:
(1) X^P2 and / is a straight line.
(2) X is a P^bundle over a smooth curve C and / is a fiber F of π : X—>C.
(3) / is a (-l)-curve E.

In case (1) L^OP, ΘP(1) or 0p(2), since (—Kx)l=3. In case (2) we can write

L = aH+π*B

for some line bundle B on C, where H is the tautological line bundle on X.
Since (—KX)F=2, we have

If a~\, then (X, L) is a scroll over C; assume that a=0. Then L — π*B, so
deg B~Ξ>0 because L is nef. In every case we set (Y, M)=(X, L).

Now we consider the case (3). The contraction criterion of Castelnuovo
and Enriques says that E can be contracted to a point of another smooth pro-
jective surface X' with the Picard number p(X')~ρ(X)—1 let / : X-*Xf be the
blow-down of E. Since (—KX)E=1, we have LE=0; thus L — f*U for some
line bundle Lf on X''. Note that U is nef because L is nef and / is surjective.
Consequently {X, L) and (Xf, L') are birationally equivalent. In this case we
go back to the starting point, apply the same argument as above to (X', U)
and continue in this manner.

This procedure must come to an end after a finite number of repetitions,
since the Picard number ρ{X) is finite. Therefore starting with an arbitrary
semipolarized surface (X, L), we end up with a semipolarized smooth surface
(Y, M) which is birationally equivalent to {X, L) and satisfies one of the six
conditions in the Theorem 1. This completes the proof.

§ 3. Proof of the Theorem 2

Let L be a nef line bundle on a projective normal surface X. The sectional
genus g(X, L) of the semipolarized normal surface (X, L) is given by the
formula 2g{X, L)—2=(ωx

JrL)L, where ωx is the canonical sheaf of X.
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We begin with the following

DEFINITION. Let (X, L) be a semipolarized surface. A semipolarized smooth
surface (F, M) is called an adjointly minimal model of (X, L) if (F, M) is bira-
tionally equivalent to (X, L) and satisfies one of the six conditions in the Theo-
rem 1.

To prove the Theorem 2, we need the following two lemmas.

LEMMA 3.1. Let f:X—>Y be a birational morphism of projective normal
surfaces. Then g{Y, M)—g(X, f*M) for any line bundle M on Y.

For the proof, we refer to [F], Lemma 1.8.

LEMMA 3.2. Let Y be a Pι-bundle over a smooth curve C of genus g and
M a nef line bundle on Y.

(3.2.1) // (F, M) is a scroll over C, then g(Y} M)=g.
(3.2.2) // M is the pull-back of a line bundle B of non-negative degree on

C, then g(Y, M)=l-άegB.

Proof. With the same notation as in (1.3), we have

For any nef line bundle M on F, we can write M—aH+π*B for some line
bundle B on C. Set b=άegB. Then

M==aC0+bF

and an easy calculation shows that

2g(Y, M)-2=(Kγ+M)M=2a(g-ϊ)+(a-l)(2b-ae).

(3.2.1) If fl = l, then g(Y, M)=g.

(3.2.2) If α=0, then g(Y, M)=l-b, and we are done. D

Proof of the Theorem 2. Let (X, L) be a semipolarized normal surface.
First of all, by virtue of Lemma 3.1 it suffices to consider an adjointly minimal
model (F, M) of (X, L).

Assume that
g(X, L)=g(Y,M)£0.

Then
(KY+M)M=2g(Y, M)-2£-2,

so that Kγ+M is not nef. In case (2) of the Theorem 1,

g(Y, M)=g(P\ OP)=l,
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a contradiction. In case (3) or (4) of the Theorem 1 we see that

g(Y, M ) = 0 .

In case (5), if we let (Y, M) be a scroll over a smooth curve C of genus g,
then

by (3.2.1). Consequently C^P1 and g(Y, Af)=0. In case (6) we can write

for some line bundle B of non-negative degree on C, where π is the projection
Y-+C. Then (3.2.2) tells us that

l-degB=g(Y,

so d e g β ^ l .
Thus, in sum, g(X, L)=g(Y, M)>0 unless Y is a /"-bundle over a smooth

curve C and M^π*B for some line bundle 5 on C with degJ9^2. Moreover,
if g(X, L)=0, then (F, M) is one of the following.

(1) (Y,M)^(P\OP(D).

(2) (F, M ) s ( P 2 , OP(2)).

(3) (F, M) is a scroll over P 1 .
(4) F is a /^-bundle over a smooth curve C and M^π^B for some line

bundle B on C with d e g β = l.
This completes the proof.

§ 4. Proof of the Theorem 3

Let (X, L) be a semipolarized normal surface of sectional genus one. By
Lemma 3.1 it suffices to consider an adjointly minimal model (Y, M) of (X, L).
Since g(Y, M)=g(X, L ) = l , we have

(KY+M)M=2g(Y, M)-2=0.

First of all, if M is numerically trivial, then g(Y, M ) = l thus we may
assume from the start that M is not numerically trivial.

(4.1) Clearly (Y, M) is neither (P 2 , OP), nor (P 2 , (?P(1)), nor (P 2 , OP(2)).
Thus, if ZCr+M is not nef, then from Theorem 1 one of the following holds.

(1) (Y, M) is a scroll over a smooth curve C.
(2) Y is a P ^bundle over a smooth curve C and M is the pull-back of a

line bundle B of non-negative degree on C.
In case (1) we see that C is an elliptic curve since the genus of C is

g(Y, M) by virtue of Lemma 3.2. Assume that case (2) holds. Then it follows
from Lemma 3.2 that l-degB=g(Y, M), and hence that degB=0. Thus M
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is numerically trivial, contrary to assumption.
So, from now on, we assume that Kγ+M is nef.

(4.2) Since M is nef, we have M 2 ^ 0 . Assume that M 2 >0. Then M is
big. Since (KY+M)M=O, we use the Hodge index theorem to see that

KY+M=O,

and hence Y is a weak Del Pezzo surface. Thus the numerical equivalence
implies the linear equivalence, and so M——Kγ.

From now on, we suppose that M2=0, so that KYM—^. Note that since
Kγ+M is nef,

We claim that Kγ=0. To see this, suppose that Kγ>0. Then we have M=0
by the Hodge index theorem since KYM=O, a contradiction. Thus Kγ=0. We
shall have to use two different approaches, depending on whether Kγ is nef or
not.

(4.3) Suppose first that Kγ is nef. Then, unless Kγ=0, Y is a minimal
surface with Kodaira dimension 1.

(4.4) From now on, we suppose that Kγ is not nef. Then Theorem 1.1
tells us that Y has an extremal ray R which is spanned by an extremal rational
curve /. By Theorem 1.2, since K£=0, one of the following holds.

(i) Y is a i3^bundle over a smooth curve C.
(ii) There exists at least one (—l)-curve.

(4.5) In case (i), since K£=0, C must be an elliptic curve. With the same
notation as in (1.3), we have Kγ= —2C0—eF. Now write M=aC0+bF. Then

KY+M=(a-2)C0+(b-e)F.

Since Kγ-\-M is nef,

i.e., α^2. Moreover,

0=M2

and so 2b— ae=0. Now we know e^ — 1. If e^O, then we have by Lemma 1.4

so that b=e=O. On the other hand, if β= —1, then b— — a/2 and β is inde-
composable. Conversely, if e=0 (resp. = — 1) and α^2, we use Lemma 1.4
(resp. Lemma 1.5) to see that M=aC0 (resp. ~aC0—(a/2)F) is nef.

(4.6) Assume that case (ii) holds. The argument now splits up into two
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cases, depending on whether 2KY+M is nef or not.

(4.7) If 2Kγ+M is not nef, then by the cone Theorem 1.1 there exists an
extremal rational curve E such that (2KY+M)E<0. Since Y is not a P^bundle
over a smooth curve, Theorem 1.2 tells us that E must be a (—l)-curve; thus
ME<2. On the other hand, since Kγ+M is nef, we have

i.e., ME>1. Thus ME=1.

Let / : Y-^Z be the blow-down of E. Then M+Θγ(E)=f*N for some line
bundle N on Z because (M+OY(E))E=0. Let C be an integral curve on Z, r
the multiplicity of C at the point /(£), and C the proper transform of C in F.
Then

C=f*C-rE ,
so

M C=(/*ΛΓ- Oγ(E))(f* C - rE)

= NC-r.

Since M is nef, we deduce that

Thus N is nef. Moreover,

N2=(M+OY(E))2=1,

and so N is big. Note that since Kγ=f*Kz+Oγ(E),

KY+M=f*(Kz+N).

Consequently Kz+N is nef and we obtain

0=(Kγ+M)M

so that by the Hodge index theorem,

N=-Kz,

i.e., Z is a weak Del Pezzo surface with (—Kz)
2—l. Thus

M=f*N-Qγ(E)

= f*(-KZ)-Oy(E)=-Kγ.

(4.8) Assume that 2KY-\-M is nef. Let
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c=mm{t<^N\tKγ+M is not nef}.

Then c^3. Set A=(c~2)Kγ+M. Then A is nef and we have

(Kγ+A)A=((c-l)Kγ+M)((c-2)Ky+M)=0,

and of course

KY=KYA=A2=0.

Since Kγ+A is nef and 2Kγ

Jt-A is not nef, we deduce that the semipolarized
smooth surface (Y,A) satisfies the condition (4.7). Thus A=—Kγ, i.e., M =
— (c—l)Kγ with c —1^2. Combining this with (4.7), we conclude that in case
(ii), Y is the blow-up of Z at a point, where Z is a weak Del Pezzo surface
with (—Kz)

2=l. Moreover, we have M— — aKγ with α ^ l . This completes
the proof.

Remark. Finally, we give three examples of type (1), (2) and (6) in the
Theorem 3 respectively.

(1) Let F be a minimal elliptic surface with Kodaira dimension 1 and
p : Y-^B the elliptic fibration. Let M be the line bundle associated to a smooth
elliptic fiber of p. Then KYM^M2=O and M is nef.

(2) Let Y be the product of two elliptic curves C and D. Then Kγ—Oγ.
Let M be the line bundle associated to a fiber of Y-*C. Then M2=0 and M
is nef.

(6) Let Z be a weak Del Pezzo surface with (—Kz)
2=l. Then it follows

from [D], p. 39, Theoreme 1 that \—Kz\ contains a smooth irreducible curve
C. Take an arbitrary point p of C. Let / : Y-^Z be the blow-up of Z at p,
E—f~ι(p) the (—l)-curve of the blow-up, and C the proper transform of C in
Y. Then

i.e., —Kγ is represented by the irreducible curve C with C 2 =0. Thus — Kγ

is nef and consequently M= — aKγ is nef for any α^>l.
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