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PICARD CONSTANTS OF FOUR-SHEETED
ALGEBROID SURFACES, I

MITSURU OZAWA AND KAZUNARI SAWADA

§1. Introduction

The notion of Picard constant of a Riemann surface R was introduced in
[2]. Let HM(R) be the class of non-constant meromorphic functions on R. Let
P(f) be the number of values which are not taken by f in H(R). Now we
put

P(R)=sup{P(f); fEeMR)}.

This P(R) is evidently a conformal invariant of R and is called the Picard
constant of R. If R is open, then P(R)=2. If R is an n-sheeted algebroid
surface, which is the proper existence domain of an n-valued algebroid function,
then P(R)<2n by Selberg’s theory of algebroid functions [6]. In general it is
very difficult to decide P(R) of a given open Riemann surface R.

In our previous paper [4] we discussed the following problem: Is there any
method to prove P(R)=5 for a three-sheeted algebroid surface R, which is
defined by

Y4 —=S51924S,y—S,=0

with P(y)=FE? Its discriminant is denoted by A. Then A has the following
form: either
Asyoaeaﬂ+Cz}'oz€2H+C1yoeﬂ+Ao
or
YoeH(Asy® e +Lyo* e +Liyoe™ 4 Ay)

with non-zero constants A, A;. Then we have the following result: If either
Z,#0 or {+#0, then P(R)=5 under an additional condition that H is a poly-

nomial.
In this paper we consider a similar problem for a four-sheeted algebroid

surface R, which is defined by
¥ =519+ S,y —Ssy+S,=0
with P(y)=7. Is there any method to prove P(R)=7 then? Again the discri-
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minant A of R plays a role firstly. We need quite hard computation in order
to determine the form of A. In a subsequent paper II with the same title we
shall consider a similar problem for four-sheeted algebroid surfaces R with
P(y)=6.

§2. Surfaces with P(R)=8
Let us consider
F(Z¢ V)Ey4—31y3+52y2—53y+54=0,

which defines a four-sheeted algebroid surface R. Consider

F(z, 0) y (1) C (ii) ( Bie™
F(z, a)) € €
F(z, a,) s 2
F(z, a;)| =| Bief1 |, =| ¢ |,
F(z, a,) Boe®e Boe™e
F(z, ag) Bse™s Bses
F(z, ae) Bie™ Baies

where ¢,, 8, are non-zero constants and H, are non-constant entire functions
satisfying H;(0)=0.

CASE (i). Then S,=¢, and
a,*—a,*S,+a,2S;—a,S;+c,=c:,
' —a,*S,+a,°S,— a,S;+¢,=c¢s,
a5 —a,*Si+a:°S;— a;Ss+ci=pie”1,
as—a’S\+asS,—a,Ss+ci=p.e"2,
as*—a5°S,+ a2 S, —asSs+c1 =P,
as*—as* S+ a2S;— aeSs+ e =P
From the first three equations we have
Si=xpe¥ 1+ x,— X+ X5+ a,+as+as,
Sy=(a1+ as)xee¥1+(a1+ o+ as)x1 — (a4 a,)x,
+(a,+as)xs+a,a,+a,a;+aza,,
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Ss=a,a: %0714 (a1a,+ 0105+ A,05)%,— €30, X,+ A, 05%,+ a1 a0,

Si=c¢1=0,8:0,x,,
where
Xo8y(@1—as)(a— a3)=— P, X10:05,05=Cy,

%201(a;,—az)a1— ay)=c,, ¥305(a1— @) — a5)=c;.

Substituting these into the remaining three equations and making use of Borel’s
unicity theorem [1], [3] we have

Hy=H,=H,=H, (=H), Be=—a4a:—a)a,— az)x,.

Hence we have finally

181 — ,32 __ ﬂg
ay(a1—as)a,—a;) aa;—a)a—a,)  asa—as)a,—as)
_ Bs
a¢la,—as)a.—as)
and

X X X,

L T,

a, a,—a; a,—a,

X1 X X3

e LIS

Then we have

o= @l (@i~ ai)(a—ai)(as—ay)
-t a.a; ’ ? a(a,—a,)

,

(a,—a,)(as—a;)as—a,)
a(a,—ay) '

Xy=
Further x,—x,+x,=a,+as+as—a,—a,. Therefore
=xe?+as+a,+asta;
Se=(a:14 a:)xee" + a3a,+ 305+ a,a,+ 405+ a,a+ asa,,
Ss=a,a: %007+ 030,405+ 030,405+ 02050+ a4Q5a,
S,=c1=asa.a;a,.

We denote this surface by X,.

CASE (ii). Then S,=p,e": and
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a,*~a,°S14 a,*S,— a1 S5+ Biei=c,,
024“02351'*‘02252—02534’,31@”‘:02,
a5'—as’S1+a4*S;— ;S + Bie1=cs,
044"‘043sx+04252—a4sa+ﬁ10H1=,823H2;
a5 —as*S1+a5"S;— a5Ss+ Bre” 1= e,
@' —as*Si+ ae’S;— aeSs+ fre 1= 4.

By the first three equations we have

1=%oeT1— x4+ X, — X3+ a1+ 0.+ as,
Se=(a:1+ ar+as)xie"1—(as+as)x,+(a1+ as)x,
—(a,+a)x3+a,a,+a,a:4 a,a,,
Ss=(a1a:+ 0,05+ 0,a5)X0e"1— 0,05%,4 0,03X,— 0,02 X3+ 014,04,

Si=pie1=a,a,a;x0e"1
with

— B: C1 Cs

Xi= Xo=
a.a,a;’ ! a(a,—a,)a,—a;)’ as(a,—a,)a,—as)’

Xy= Cs
T aya—as)a—as)

Substituting these into the remaining three equations and making use of Borel’s
unicity theorem we have

ﬁz————(ad' a,)(as— az)as— as)x,,
Bs=—(as— a,)(a5— a,)(as— as)x,,
Bi=—(as—a,)(as—a:)as—as)x,

and H,=H,=H,=H, (=H),

BT T L1-0, ;=4,56.
a;—a, Qa;—a, a;—a;

Then
x(a;—a ) as—a)=—(a,— a,)as—a,)a,—a,),
(@ —a1)(@5—a2)=—(a,— @:)(a5—a;)(as—a,),

xy(@s—a)(as—az)=—(a,—as)a;—a,)as—a,).
Further
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— X1t X=X+ a1+ QG+ as=a,+ a5+ a,,
—(as+as)x+(a1+as)x—(a,+az)x,s
+aa,+a,a3+a,a;=a,as+asas+ asa,,
—@2Q3X1+ Q103X —A103X3+ Q10,03 = Q40505

Hence we have

Si=x.e+a+as+a,
Se=(a:+a,+ay)xoe”+a.a5+ a.ae+asa,,

Ss=(a1a,+ @105+ a,a,) %007 +aasa.,

Si=a,a,a;x,e".

We denote this surface by X,. If ¢¥ is commonly used, then X, and X, are
conformally equivalent by a suitable linear transformation Y=ay+4 (. See the
end of §4.

§3. Discriminant of X,

Let y*—S,y°+S,y?—S;y+S,=0 define the surface X,. Now we abbreviate
S, in the following manner: S,=X+x,, S;=(a;+a;)X+x,, S;=a,a,X+x,,
S,=x, with X=ux,e?, x,=as+a,+as+as *=0:a,+0a:a;+a:a:+a,a;+a.a:+
A5Q6, X3=0A30,05+ Q30,06+ 030506+ A,0505, X,=030,a5a,. Let us put

3
L=— ‘8"sz+52,
1 1 .
M=— §513+ 55152_53;
3

1 1
_2’,‘56514‘4' ESIZSZ" Z‘S1sa+s4~

Then the discriminant D of X, is

—2TM*+144 LM*N—128 L*N*4-256 N*—4 L°M*+16L*N.

N=

In this case we have

L:—(%XH—mX—{-az),

M=—(3 X"+ BX+5X+4),

3
N= "<§‘5€X4+}’1X3+ T2X2+7’3X+7’4)
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with

a 3 —a,—a a—ix2-x

=7 1— Qs =gt 2
3 1 3 1 1

ﬁlz—g—xr‘?(aﬁ‘az). ﬁz:gx12—§x1(01+a2)_'§x2+alaz’
1 1

Bs gxls—’z—xlxz‘i'xs,
3 1 9 l

71 éé—lxl—-i?i(al+a2)’ Tz—@xx xi(ai+a,)— x2+ a,az,
3 1 1 1

7’3:6—47513—§xlxz"Ex12(¢11+az)+Zalale‘{‘zxz,
3 1 1

T4:§S—6 16x12x2+ X1X3—X4.

In this case we have 28,=16y,=«a; and a,=48,—16y,. Then D looks like a
polynomial of X of twelve degree at a glance but it reduces really to a poly-
nomial of six degree. In order to prove this we need somewhat hard computa-
tion. It is comparatively easy to prove that coefficients of X', X', X'° are
equal to zero. And the coefficient of X® is equal to the following expression :

2y + gt 3 5]
+144] (3ot 47,80 + (B + o riret 3217
o) )
12 (s g (gt et 161
—256] o ps gt 1
+4[ 29,367+ 2567+ (G o — 2 iyt 9-647. )
o n(gheroir) g (g8 16n8)

81 27
16[67171(/32—472)+9'87’13+ 3B,

27 81
. L I .
218+ gyt 64~6473]'
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All the coefficients of B, 13, 7182, 717 and 7,° reduce to zero. Hence the co-
efficient of X° is equal to zero. Next the coefficient of X® has the following
expression :

3 3 3
—27[1'6'.81.83+3“2,322+—2‘[312,32—1—[‘314]
3 2
+144[64( 3 74 +167175+4 By, — 16752 )+ZTIT3+87'1 B:
34,43 1 9 /1
+<6:1,82+ié72+16712)(z,32+647’12>+16T;(Zﬁs-l- 167lﬁ2)
9 2
+ 31678+ 827
9 /3
128 e e 677 4By = 1678+ g (S 74 e)

( 452 67’2+16)’1 ) ]

27
259Gy i1 s 4<27173+72 3727

9 ;
4] (B30 16(B,— A7)y -+ 327, /(98— 367+ 2567,

27 2 1 ,
+<Iéﬂz—z7’z+9'327’12>(Z,82+64}’1 )
27 /1 27
57 (T Bo 167 8a) + o (16780 827
1 ,
‘16[§§(ﬂ2-472)2+27‘2(,32—47‘2)712+3'2567’14‘*'27'4({32_‘4]’2)7’12

27 81
+3.256- 8r1‘+32(52—472)72+27‘871272+§T‘73+ MV]

Then all the coefficients of y4, 7185, 7173, B2%, Bere, 72% 71°Be 71’72 and y,* vanish.,
Hence the coefficient of X® reduces to zero. Next we consider the coefficient
of X7, which has the following expression :

~21[ 20,80+ 5 B3 8.8:° 45,8,

3
+144[4 717at 6[’327’3 i 7’27’3+ 1 T17’4+327"27‘34"87‘1‘827’2"‘32717’22
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3 1 1
+<—8‘7’3+47’1,@z>(z‘ﬁz+647’1 ) ( 4,32 67’2+167’1 )(‘4—,33+167’1,32)
9 9
+ T 167 B Ba) g Bofs
9 9 9 9 3 .
——128[@]’1744‘25—6‘827’3 _@7273+§T1 (‘8— T4+16)’17‘3+4‘3272—167’2 )
3 3 3
+<é§[32+§7’2+32712)(§Ts+4rxﬁz)i|
9 2 2
—256[@(7’17’44‘7’273)"*'37’1 T3+3)’1)’2 :l
4 12728 — 47"+ 36(B,—472)'71+3-256-8(8— A7y’
2 ]‘ 2 27 2
+167’1(9}32—367’2+2567’1 )(Zﬁz+647'1 >+Z‘T1(167’1/93+ﬁ2 )

(1652 4 7’2+9 327’1 )(%1‘}93‘*‘167’1/32)'{‘%,82/93]

27 27
—16[571(,82“47’2)24‘3'2567’13(}92'—47’2) + 7T1(ﬁz“47‘2)2+1647’16
+9‘5127’13([32‘47’2)‘*'27'4717’2(,32_472)+3'256‘8')’13)’2
27 27
5 B 2T Britr g rir

Then all the coefficients of 7174 ,32‘33, ‘)’2}93, ,Bz)’a, 7273 leﬁs, 7’127’3, TI‘BZZ; 7’1/32)’2,
71725 71°Bs, 7:°7. and 7,° vanish and hence the coefficient of X' reduces to zero.
We did not use any speciality of 74, Bs, 75, B2 72 @ and ai, B;, 71 excepting
2B1=a,=16y,, a;=4B,—16y, in order to prove that the degree of D is six.
Anyway we have

D=A;x,5¢* "+ Asx P’ H 4+ A x o' e H 4 Agx 2 e® + Ay x 20 + A xge 4+ A,

with non-zero coefficients A, and A;,. Why A,#0, A:+0?

Suppose As=0. Then firstly 47(r, v)=140(1))T(r, ) for X,. Now by
Ullrich-Selberg’s ramification theorem or exactly speaking, by an analogue of
the proof of Ullrich-Selberg’s ramification theorem [6], [7] we have

4N (r, X))SN(r, 0, D)S5(1+0(1)T(r, ef).
Hence
N, X)=5(1+o(I)T(r, v),
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¢= lim N(r, Xy)

Tow T(V ) _5

Therefore Selberg’s deficiency relation [6] gives
Jo(w,)=2+4e<7,

where 6(w,) is Nevanlinna-Selberg’s deficiency at w, of y. We have just 8
lacunary values of y for X;,. Thus we have > d(w,)=8. This is a contradic-
tion. Similarly A,=0 gives the same contradiction. By the way we give an
explicit form of the coefficients of X¢ and X°:

The coefficient of X° is just the following form:

1
2[5 80 3B BuBH 4. o 6276816
32 2
9 3 3 3 3
+144[2_5—6—-8‘832+<2_55a‘+§h)2‘82'[33+(2_5€_5a2+a‘71+—8—T2)(zﬁlﬁa+522)
+ a27’1+417’2+‘3—)’s l,83+2,81/32 + a27’2+a1)’3+§“2’4 “];,Bz+,812
8 4 8 4
1 1
+(a27’3+a1r4>—4—ﬁl+6—4a274]
9 3 3 3 2
-128[:.?’"5'6'—4a27’4+<a’174+a2)’3)(1”2*gaz+Z7’1>+(’§2’3+a17’2+027’1>
3 3 3
+2(a27’z+0'12’3 87’4)(256az+0117’1 g;’z)]
6 6 6
—256[(%7’24'7’12)74 +(2—5‘67’3+27’1]’2>7’3 +(2”5‘67’4+22’17’3+722>72
+@riret 2yt gt ot |
7174 T2Vs)T1 256)’27’4 2567’3
+4[—1~ozs+iozﬂar2 (9a2+3a a)( B+ )+ 2a,B:53
gate T MP ke g & NP 1 64 19203
9 1 27 9 27
+<z‘axolz+als)<zﬂs+2ﬁlﬁz)+<6—40(2+§a12)(2ﬂx,83+ﬂzz)‘f'mﬁsz]

_16[<6272a2+§;a12) 74 +<%alaz+ gal )73+<§;a22+ gal -t )

(gt +dacas)n +(barat+ 5 ar )oss).

which is equal to
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B tr 5 B8 B+ (B 1)

+4(B2—8y2)’+a:* (B —872)° .

The coefficients of 7, vanish in this case.
Next we consider the cofficient of X°. The following form of the coeffici-
ent of X° is used in II (not in I).

2] Bub g BBu 128, B 45,5+

+144[ 4 e +(%+ BNyt )+ ( Bt 28,8 et anrot o)
(281 Bt ﬁ;)(am+a172+%rs)+2;32;a3(é»g’-6az+a.rl+—g—n)
REIES)

128 (et S et it ang (gt 2t S
+2(a2rz+a173+%r4)<a271+a,72+%7’3)]

—256[1%8r3r4+6r1rzr4+3rnrsz+3rzzrs]

+4[2—Za1,932+( 2l et S )26: ;33+( Saatan’)2Bifat B
+(-Z—a22+3a12a2)(%,33+2/91 B.)+ 3a1a22(%,82+ ,Bﬁ)%—%az“ﬁ,}

18] (it o)+ (et yaratal)n

9 3
+<7011a'22+4413a2>7’2 +("2‘azs+6a12322)7’1 +64a1a2 ]
This is equal to the following expression:

27
7 (,83'“47'3)7’4— 9. zal(ﬁz ‘“82’2)7’4 —‘4a’137’4

o a(3Bs— B o)+ o (Bet 1) Bo—Bre)fs

—6(118,—407:)(B:—8r2)1s
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+30a12‘82ﬁ3_24‘8“12)’253—32‘4“12‘827'3+26'32“127’27’3+4a14(33—47’3)
+2a1(ﬁz—87'2)2(13'{92‘887’2)+4a'13([32"87’2)2 .

These expressions shall play an important role later,

§4. Surfaces with P(y)=7
Let us consider
F(z, y)=9*—Sy°+S:9*—Ssy+5,

and the following equations

) (ii) (iii) (iv)
F(z, 0) iR 1 Bie®1 Bie™
F(z, b) Cs o I I3
F(z, by) s Bie™ o o
Fa by | Biett |’ - Boete | P Boc¥2 |
F(z, b,) Bee™2 Bes Bae™2 Bae™s
F(z, bs) Bae®s Bie®e B3 B

where ¢, and 8, are non-zero constants and H, are non-constant entire functions
satisfying H,;(0)=0.

CASE (i). We have S,=c¢, and
by*—S:1b:2 4 S:0.2—Ssb+c1=c,

be* —S16:°+ Seby* —Ssby+c1=¢y,

by* —S1b3®+ Seby? — Seby+ =B,
b* —S1b.°+S:b,2— Syb,+ 1= P2,
bg* —S1b5°+ S2bs® — Ssbs+c1=Bse™s .

Then by the first three equations
Si=x+y+z+bi+botbst-xe"1,
Se=(b1+ba+b3) x+ (bo+bs) y+ (b1 +b3)z+ b1bo+ Dby + b1 by +-(by + by) x 071,
Ss=(b1by+ bobs+b1b3)x +bobsy + b1b32 + b1bobs 4010, x 0271

with
xb1bby=c, , Yb1(b1—bs)(bs—b1)=C¢s ,
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2by(by— by )(ba—bs)=cs , xobs(bz—ba)(bs_bl):ﬁl .

Substituting these into two remaining equations we have by Borel’s unicity
theorem
H2:H3=H1 (EH), ‘Bzz—xOb4(b4—b1)(b.—'bz),

Bs=—X,bs(bs—b1)(bs—bz),

XY L2
b4 + b4_b1 + b4‘—b2 l
and

T I
b5 + b5'_b1 + bs—bz

Now we impose the following condition: y does not have any other lacunary
value, that is, excepting bs, b, b; there is no lacunary value of the second
kind. Hence

1.

F(z, a)=(a—bs){a*—(bi+by+x+ y+2)a?
+(b1by+(by+bg)x+ by y+b12)a— b, by x}
—ala—b)a—by)x.e?

should be one of the following three forms:

(1) (a—by) a—b)(a—bs)—ala—b,Ya—bs)x.e¥ ,

(2) (a—bgla—b) a—bs)—a(a—b)a—b,)x.e” ,

(3) (a—bg)a—bs)a—bs)*—ala—b)a—b,)x.e .

CASE (1). Then
a®—(b,+by+x+y+2z)at+ (bibo+(by+by)x + by y+bi2)a— by by x
=a®—(bs+b,+bs)a®+(bsby+bsbs+bibs)a—bsb.bs .

Hence
bi+b,+x+y+z=bs+by+bs,
bibo4-(b1+b2)x + b,y +b12=byb,+bsbs+bsbs ,
b1b2x=b3b4b5 .
Therefore
x= b3b4b5 y= (bx“ba)(bl"b4)(b1—bs)
blbz ’ bl(bz_bl) ’

_ (b —b5)(bs—b4)(b,—bs)
- by(be—b1) '
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Then
1= xb1b2b3= b32b4b5 )

2= yby(b;—b2)(by—b1)=(by—b1)*(by—bs)(b1—b5)
¢3=2by(b1—b2)(be— bs)=(by —b3)*(by — by )(boa—bs) .
Thus we have
( Si=x0e" +2bs+bs+bs ,
J Se=(b1+bs)x 0™ +-by+2b5bs+2b3b5+bsbs
Ss=b1bs %06 4-b3%b, 4 by®bs+-2bsbsbs |
Ss=¢1=b,%b.b; .

We denote the surface y*—S;y*+S,y*—S,y+S,=0 with the above S,, S;, S;, S,
by R,*.

CASE (2). Then
at—(b,+ b+ x4+ y+z)at+(biby+(bi+bs)x 4+ be y+-b12)a — b1 b, x
=a®—(2b,+bs)a?+(b . 2+2b,bs)oc—b,*bs .

Hence
b1+b2+x+y+z=2b4+b5 ,
(b1+b2)x+byy+ 012+ b1b:=0,"4-2b,bs ,
b1b2x=b42b5 .
Then
b Bimb)bi=by) (bbb
bbby’ bi(by—b)) ba(b1—b2)
and

C=bibitbs,  co=(by—ba)(by— by by—bs) ,
Co=(by —ba)(by—b)*(by—bs).
Thus we have
Sy=x00H +by+2b,+bs ,
J So=(by+bs) %™ + b+ 2b,b5 -+ 2bsby+bybs ,
] Sy=bybyxoe™+b,2bs+byb *+2b5bbs ,
Si=c1=bybb; .

We denote the surface y*—S,;y°+S,y*—S;y+S,=0 with the above Si, S;, S, S,
by Rz*.
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CASE (3). Then
a®—(by+by+x+y+z)a?+(b1by+(by+by)x + by y+biz)a—bib, x
=a’— (b4 2b5)a®+(2b,bs+ bs*)a—b,bs® .

Similarly we have
[ Si=bs+by+2bs+ x,0" ,

Sz———'(bl+bg)xoeH+2b3b5+b3b4+2b4b5+b52 N
1 Ss=b,b,xce™ +bsbs?+b,bs+2b5b,bs »
S4=CI=b3b4b52 .

We denote the surface y*—S;y*+S,y2—S;y+S,=0 with the above S;, S, Ss, S,
by R:*.

CASE (ii). Then S,=c¢, and
b*—S1b:*+S:b.2—Ssb+c1=c, ,

by* —S1by* + Spbs® — Seby+-c,=Pie™1
by*—S1b5°+ Spbs?— Ssbs+ ¢, = Bee”?
bt —S1b.+S2b,2—Ssby+¢1= 073,
bg* —S1bs>+ Sabst— Sebs+c1=P.e¥ 4 .

From the second, third and fourth equations we have
Si=xef14+x,0¥2 4 x,0%3+ x+by+by+ by,
J Se=(bs+b,)x1e"14(by+by)x,e724(by+ bg) xs072
\ - (B-bytb) %+ baby+bbi+babs ,
Ss=bsb, X107 14byb, X005 24-bybyx s 8+ (boby+ b3by+boby) X +bobsb,

with  B1=2x10a(bs—b:)(bs—b2), Bo=2%2b5(bs—bs)(bs—b.), Bs=x3bi(bs—b)(bs—b,) and
c1=xbsbsb,. Substituting these into remaining two equations we have

H,=H,=H,=H, (=H),

X Xq Xy

bl—bg + bl—bg + b;"‘b4 —0’
s ¢
=b,,

b —ba)br—b) | babsbs

X1 X2 X3 B

=0

Bo—bs " Bo—bs " Be—bs " by(ba—bs)be—bu)(bs—b0)

and
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(x—bs)(bs—b2)(bs—bs)(bs—b)=0.

Hence x:bs, Which implies 61:b2b3b4b5 and ng(bl‘_bz)(bl‘—‘b3)(b1_b4)(b1_b5). NOW
we impose the following condition: y does not have any other lacunary value,
that is, excepting 0, b,, there is no lacunary value of the first kind. Hence

F(z, a)=(a—by)(a—bs)a—b,)a—bs)
—a(a—by)e™ {a(x+ xy+ x5)4(by—bs—by)x,
+(by—by—by)xy+(by—by—bg) %y}

satisfies one of the following conditions:
(@) {}==Fk (const.)+0,
() {}=ka (k+0),
(¢ {}=kla—b).
CASE (a). Then x,+x,+x,=0. Therefore

Sx=b2+b3+b4+ba y
Sy= DX ot byt bybuct bbb -bibt bibs
1 2
B bt bybit-bobit bubet-bobs-Hbubs
Balbr—5)

53:——bl‘—‘B'l—eH+b2b3b4+b2b3b5+b2b4b5+b3b4b5 3,
Balb—b)

54':(:1:b2b3b4b5 .

The surface defined by y*—S,y*+S,y?*—S;y+S,=0 with the above S,, S,, S,
and S, is denoted by R,*,

CASE (b). Then

(by+by—by)x 1+ (by+by—b1) X, +(by+-by— b)) x3 =0,
that is,

(bs+b)x1+(bo+by)xe+(bo+bs)x3=by(x,+ X2+ x4) .
By

X Xs Xs

bty T oty T hi—b,

b\ (%1 X0+ x4)—b1((bs+b0) X1 4 (bo+b0) X5+ (by4-b5) x 5)

0,

+bsbsx,+byby X2+ bobyx ;=0
Hence
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b3b4x1+b2b4x2+b2b3x3:0 .
Eliminating x, we have

(bs+bs—b1)x1+(by+by—b1)x,

_betby—b,

babs (bsbsx,+bybyx5)=0.
Hence

o Dby —=ba)(ba— 1)
BT by(bi—bp)(by— b))

Now we have

b b,

Xt Xgt Xe= Xy Xo— - Xy — - Xy
bz b3
_ bz—"b4 bs_b4

=5 X1+ b, X

bz_b4 bs"bq (bs_bl)(bZ'—b4)

R U S o o b
_Ge=bdbi—bitb—b) B,
ba(bs—bs) bk —by)
Further
b
(Btbo)T14 (bat- b xe+ by +b)Ta=by(x 1 Kok xa)= B
b2 (bx_"bz)
Therefore

__ B
S1——b22(bl_b2)e +bz+b3+b4+b5,

b
52: 2 lﬁl_@”‘*‘bzbs‘f‘bab4+b2b4+b2b5+bab5+b4b5 ’
by*(by—bs)
S3=0byb3bys~4b2bsbs+b2b,bs+bsbabs ’
54:01:b2b3b4b5 .

The surface defined by y*—S,y°+S,y2—S,y+S,=0 with the above S,, S., S,
and S, is denoted by R*.

CASE (¢). Then k=x,+x,+x; and

2b,(x14 x5+ x5)==(bs+be) X1+ (by+by) Xo (b4 bs) x5 .
By
X1(b1—b3)(b1—b.)+ X2(b1 — b3 )(b1—ba)+ % 5(by— by )(by — bs)=0
we have
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b (%14 %5+ %) — by (bs+b4) X1+ (by+b4) X2+ (by+bs) %)
+b3bya x4 bobyxa+bobyx =0 .

Hence

b2 (x4 Xa+ x5)=bsbyx1+byby X+ bbsxs .
Further

Zbl(x1+x2+x3)=2b1< Z::zz X+ Z‘::Z; xz)
and
(bs+b) %14 (bo+b4) X o+ (ba+b3)xs
=(b3+b4)x1+(b2+b4)xz+(bg+ba)( buzby 4 Dby x)
by—b, bi—b,

Hence

(by—bs)(bs—bs) Xy — (by—bs)(bs—b2) 2.

by—bs b,—b,

Therefore

b,—b b,—b
X1+ X+ X=X+ X, — bl—-b4 Xy— bl——-b4 X2
10z 1—bs

br“bz br‘bs __ (ba—bz)(b-t'—bz)

Tty T =5 T by O
— =k
bz(bl—bz)z )
Hence we have
—_:_&._ H
S‘_bz(bl-—bg)”e +b2+bs+b4+b5;

— 2,81

Zmeﬂ'l‘bzba+b3b4+bzb4+b2b5+bsbs+b4bs »

Se

—b 2
S3:[72(Tl_lt‘%;—)2eﬁ +b2bab4+bzbabs+bzb4b5+bsb4b5 »

L S4:C1:b2b3b4b5 .

The surface defined by y*—S,y*+S,y*—S;y+S,=0 with the above S,, S,, S,
and S, is denoted by R¢*.

CASE (iii). In this case S,=p,e”t and
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bt —S:1b,*+ 826, —Siby + Su=01

byt — 810, + Seby® — Syby+ S =

by*— 165>+ S20:2— Syby+ Ss=c¢;

bt —S1b,°+Seby*— Seby+Ss=Bre™?

bt —S1bs*+ Spbs2— Ssbs+ S =Bse¥s .

We have Hi=H,—H, (=H) and

B _ B: _ 8
bbby (by—by)(ba—b)(bs—by)  (by—bs)(ba—bs)(bs—bs)’

x y z
— =1
b4"b1 b4"b2 + b4‘_‘b3

and
X Y + z 1

bs—bl bs_bz bs—ba -

with
x0,(by—by)(by—bs)=c. , Ybo(br—bo)(boa—bs)=c, ,

2b3(by—b3)(by—bs)=c, .

We now impose a condition that F(z, a)=a*—S,a*+S,a?—S;a-+S,; does not
reduce to the form

. H
bfz:zi (@ —by)a—by)a—by)

with the exception of a=0, b, and b, that is, there is no lacunary value of the
second kind excepting «=0, b, and b;. Now we have

F —Bie”
(z, &)= “bibabe (a—b)a—b)a—b:)+aP(a),

where
P(a)=a*+a*(x—y-+z—b,—by—b,)

Fa(—(by+bs)x 4+ (b +b3)y — (b1 +bs)z+b1b,+ b, by +babs)
+bobsx —bibsy+b1bez—b1bybs .
Hence we have three cases:
(a) Pl@)=ala—b)(a—bs),
(b) Pl(a)=(a—b)a—bs),
() Pla)=(a—b)a—bs)*.
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CASE (a). Then we have
X—y+z—b—by—b;=—b,—bs,
—(be+b3)x+(by+b3)y — (b1 +bs)z+b1bs +b1by+bbs=b,bs

bzng—b1b3y+b1bzz=b1b2b3 .
Hence
_ B
Sl—blbzbse +b4+b5 ’

(b +betbs) o
Sz_m_b;bzbg [319 +b.bs,

_b1b2+b1bs+b2b3 H
Sa— blbgbs ,Ble ’

S4=‘819H .

This surface is denoted by R.*.

CASE (b). Then we have
x_y+2—b1—‘b2—b3='—2b4—b5 N
—(by+b3)x+(by+b3) y — (b1 +b2)z+ b1 b+ 010y +bobs =04+ 2b,b5

bgb;;x—b1b3y+b1b22:b1bgb3~b42b5 .
Hence

— _A@_l__ H
Sr—blbzbse +2b4+b5 ’
S _ (by+by+bs)

T bbb,
_ (biby by tbyby)

N Te L ToTe Tl H 2
S.= Bibabs }912 +0,%b; ,

S4=‘812H .

}919”+b42+2b4b5 ,

We denote this surface by Rg*.

CASE (c). Then we have
x—y+z—by—by—by=—bs—2b;,
—(b;+bs)x +(b,+b3)y——(b1 +bz)2+b1bz+b1bs+bzb3=2b4b5+b52 ’

bgbsx *blbsy +b1b22=b1b2b3—-b4b52 .
Hence
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_ Be”
Sl—blb2b8+b4+2b5r
52=M_L3)‘81—9H+2b4b5+b52,
b1bybs
 (bibotbibstbob)By g i
Ss= bbabs e +-b.bs?,
S4=ﬂleH .

This surface is denoted by R,*.

CASE (iv). We have S,=p,e”! and
bt —S1b:°+ S2b,*— Ssby+ Bre¥i=c, ,
byt —S1b5°+ Seby® —Ssby+ Brefi=c, ,
b3 — S0+ S2by®— Ssby+ Bre? 1=BreH 2,
bt —S1b3+Seb P —Sabs+ Bret1=Bse"s
bs* —S1bs*+ Spbs® — Ssbs+ Bre1=Peef 1.

Then from the first three equations we have

_ Bt Boe™: .
1= bibabs bl ba)(ba—by)* T Tt htbs,
_ (b1+by+b3) Hy (bl"r'bz)ﬁzeﬂz _
S e P T hbi—bo)ba—by  LeTO%
+(b1+bs)y+b1bz+b1bs+b2bs ’
S =b1b2+b1b3+bzb3‘8 eﬂl— b1b2‘82€”2
: bibybs ! by(by—b3)(by—bs)
—bzng +b1b3y +blb2b3 »
54=/31€H"

With xbl(bl"bz)(bl—“ba)zcl and ybg(bl_bz)(bz—bg):C2. Substitutlng these into
remaining two equations and using Borel’s unicity theorem we have

H,=H,=H,=H, (=H),

B _ B: N B: —0
blb2b3b4 bs(bl“’ba)(bz—bsxbc—ba) b4(b4—b,)(b4—b2)(b4—b3) ’
,31 ,32 ,83 0 ,

b1b2b3b4 _ba(bx'—bs)(bz“bs)(bs‘—bs) +bs(b5_b1)(bs_b2)(bs-‘b3) -
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x y

biob, bt T170

and
X y

bs—b,  bs—b,
Let us consider F(z, a)=a*—S,a*+S,a?-—-S;a+S,. Then
F(z, a)=e"(Aa+ B)a—b)a—b,)+ala—b)P(a),

+1=0.

where A, B are constants:

b
Ae B B4 g Bibs
ba(by—b)Ba—bs)  bibyhy bibabs’

and P(a) is equal to
at—(b+b,—x+y)atbb,—byx+b,y .
P(a) satisfies P(b,)=P(b;)=0. Hence P(a)=(a—b,)(a—b;). Therefore

bi+by,—x+y=b,+bs
and
bxbz“bzx_*"bly:b.;bs .

We impose a condition that Aa+ B does not vanish excepting a==>, and a=b,.
Here B does not vanish, If B=0, then

F(z, 0)=e¢® Aa(a— b, a—b,)+ala—bs)a—b,)a—bs).
Hence F(z, 0)=0, which is absurd. Therefore we have three possible cases:
(a) A=0, (b) Aa+B=Ala—b), (c) Aa+B=Ala—b,).
CASE (a). Then
B: ~ B

Hence we have
51=b3+b4+b5 ’

Se= L BieH +bbit-babs+bibs
1Vz

_bitb,
Se= b,b;

S4:ﬁle‘7 .

‘B,e”+b3b4b5 ’

We denote this surface by Ri.*.
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CASE (b). Then A=-—pB,/b:*h,. Hence

B _ Be iy
bibsby  by(bi—bs)(bs—bs)  bi%be

Further we have

bbby (bitbofs _ Zhith g
blbzbs ' bs(bl"bs)(bz—bs) b12b2 !

and

blbz+blb3+b2bsﬁ _ b1b, s _ 0" +-2bb, 8
blb2b3 ! ba(bl“ba)(bz_‘bs) b12b2 b

Therefore we have

Si= bfj;)ze”+bs+b«+bs ’
S,= 211);131;172 Bre™ +bybitbabs+bibs
1 Ve
2
Sszé#ﬁley-Fbsb‘;bs ,
1 U2
S4:‘81€H .

We denote this surface by R, *.

CASE (c). Then we have similarly

Simghe kbbb,
2b.
52=b1+ 22B19H+b3b4+b3b5+b4b5 s
b,b,
2
Ssz%;bzizég‘ﬁleb"f'bab«tbs s
b1b,
S4:/318H .
We denote this surface by Ri.*.
We now have listed up twelve surfaces R,* (j=1, 2, ---, 12), which satisfy

P(y)=7. However we prove that there are only three different surfaces among
R (=1, 2, ---, 12), when the same e is used.

Let us put F(z, y)=y*—S5,9*+S,y*—S;y+S, and G(z, Y)=Y"*—-T,Y*+T,Y?
—T,Y+T, 1If there is a suitable linear transformation y=al +p3, for which
F(z, aY +B)=a*G(z, Y), then two surfaces defined by F(z, y)=0 and G(z, Y)=0
are called the same surface or conformally equivalent with each other and this
fact is denoted by ~. Evidently
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To=1(5,-4p),
a

1 .
Ty= 672(52_3‘851+6ﬂ2) ’

T3=$(83—2552+35251—4ﬁ3),

and
T4=&%;(54—‘853—#,@252——,8351—#,8‘).

Now we put
aB,+$=0, B=b,
aB,=0b0,—b,,
aB;=b,—b,,
aB,=b,—b,,
aB;=bs—b; .

It is easy to prove that R,*~R.,*, R,*~ R * and R,*~ R, *. Next we put
aB+8=0, B=b.
aB,=b,—b,,
aB,=b;—b,,
aB,=b,—b,,
aBy=bs—b, .

Again it is easy to prove that R*~R,*, Rs*~R,* and R*~R;*. Next we
put

aB;=—b,, B=b,
aB,=b,—b,,
aB;=b,—b,,
aB,=b;—b,,
aBs=b;—b, .
Then we have R,*~ R *. Similarly we can prove that R;*~R,*. Next we put

aBy=—b;s » ,8=b5
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aB,=b,—bs,
aB;=b,—bs,
aB,=b,—bs,
aB,=b,—b; .

Then we can prove that R, *~R;,*.
Therefore we may pick up R.,*, R,*, Rs* as three representatives of these
twelve surfaces. Other representative may be selected several times.

§5. Discriminants of R,*, R;* and R,*
Firstly we consider the case R,*. The surface R,* is defined by

y*—=S1y*+S:y*—S;y+S,=0

with
5123’1 ’
Se=yoe"+ .,
lSs=b1yoe”+ys ’
Si=ys.
Here

y1=bz+b3+b4+b5 y y22b2b3+b2b4+b2b5+b3b4+b8b6+b4b5 ’
Va=b3bsbs+bsb3bs+bybsbs+-bsbybs ¥a=bsb3bsbs .
Discriminant A is given by

—2TM*+144 LM*N—128 L*N*+256N*—4 L*M*+16 L*N ,

where
L=—35245s
8 1 2
1 1
M=—‘8—513+ 58152_53 ’
3

N= sx+—1—slzsz—%s,ss+s4.

2567 16

For simplicity’s sake we put y,e?=X. Then
L=X+a,,
M=BX+p:,
N=y X+71.,



FOUR-SHEETED ALGEBROID SURFACES 123

where
3 1 1 1
a1=yz—~8—y12, ,3025311—171, }91=—§y13+73’13’z’3’3,
1 1 3 1 1
To='1‘éy12—-4"b1y1, 71=—ﬁy1‘+1—éy12y2—74—y1y3+y4-
Then

A= “4b12y0595H+A4JI0424H+A3y039”1+Azyo292H+A13/oeH+Ao

with a non-zero constant A,. Why is A,#0? Suppose A,=0. Firstly we have
AT (r, v)=QA+0(1)T(r, e¥) for R*. Now by an analogue of the proof of Ullrich-
Selberg’s ramification theorem [6], [7].

4N(r, RH)<N(r, 0, 4)
<40 +0(ANT(r, ).

Hence
N(r, R*)=41+0()T(r, y).
Thus
. N(r, R*)
e= lm =7 =y =t
Therefore by [6]
2o0(w,)=2+¢e<6.

But 7<3Y0(w,). This is a contradiction. The surface R¢* is defined by

Ys—S19°+S5: 3 =S5y +5,=0

with
Sl=X+y1, X=yoeH
Se=20X+y.,
\ Ss=b.X+;,
54:y4 .
Here
V1=bo+b3+bs+bs , Yo=bsb3+byb4+bsbs+b3b,+bsbs+b.bs
Y3=b2bsbs+bybsbs+bsbsbs+-bsbubs V4=babsbsbs .
Now

3 3
L = — §512+52:—(—8‘X2+Q1X+a2)

1 1 1
M:—— '—8—513+ -2"5152‘—‘53: —(—8—X3+ﬁ1X2+52X+‘83),
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N= 2;651 + 651252 5153+S4
= (256X‘+r1X3+er2+raX+r4)

where

3 3
011=Zy1"2b1, a2=§y12—yz.

3 3 1
‘@1='8‘y1—b1y .32:§y12—7y2‘b1)’1+b12,

1 1
,@a=§y13~7y1yz+ys ,

71 —ézyl g’ Tz——128y1 2 biy, 16yz+4b1 ,

3 .1 1 L 1 1

7s =614yﬁ—§y1yz—§b1y1“+zb12yl+z-ys ,
3 1 1

74 zigéyl4"ﬁ;ylzyz+zyxys—y4 .

Then we have 28,=a,, 16y,=a, and a,=48,—167.. Hence A is of at most six
degree of X. Now the coefficient of X°¢ is just

9a,

?Z}(‘B 47'3>2 (,82—872)(/;3_4)’3)

+a’(Bs—47:)+4(Be—8r.) +a.*(B: —872)° .

See §3. In the present case we have

1 1 2
Br—dys=—1py:(n—4b)'=— (%~ by)
and

3
,Bz——8rz=——y12+b1y1—b12 .
16

Hence the coefficient of X¢ of A is equal to

?; (32 b1>4+%(%y1—2b1)(1§6}’12_b1)’1+b12>}’1<%—b1)2
SEN N

+<731'y1 _2171)'2(%3712—1713’14‘1712)2
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(o[ T 0+ s Yo
~y1(%y1_2b1)3—4<%y1 “bl)3<%3’1 _b1>

+Hiprew) (0]
=0.
Therefore
A=Asy,%e" 7+ Ayotet + Asyote® 4+ Ay y,%e® T + A y0e 4+ Ao

with A, A;#0.
We shall now consider the case R.,*. The surface R,* is defined by y*—
Si1¥*4+S,y2—S,;y+S,=0 with

Si=ye + 3 =X+y.,
JSQ=x1X+y2,
]S,;:ng,

Si=x.X,

where y,=b,+b;, Vo=bsbs, X1=b1+by+bs, xX;=b1b,+b1b3+b:0s and x3=0,b,b;.
Then

__Bcaic__(3
L=—2S+5,= (8X2+a1X+a2),
M= sS4 -85 Si= —(£ X'+ B X+ BuX + o)
8 1 2 122 3 8 1 2: 3)
3 1 1
N=—‘25—6514+I'651252—15153+S4

3
=—(‘—ZSGX“+7’1Xs+TzX2+7’3X+T4>
with
o -—-i —X a —.?l 2__
1—4311 1y 2—83’1 Yo,

3 1 3 1 1
131=-§yx—7x1, ,82253’12—'2—951))1—7)’2‘*‘?52,

1 1
,Ba=—8—y1’——§y1y2 .
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_3 1
=616

3 1 1 1
7s =§;1y1’-—13x1y12—§y1y2+—4—y1x2——xa ’

9 , 1 1 1
X1, 7’2:—12—8% "“gxlyx—i"é%‘f‘zxz ,

=3 a1
7= 167

Evidently we have 28,=a;, 16y,=a, and a;=48,—16y.. Hence the discriminant
A is at most six degree with respect to y,e”. Let us consider the constant
term of A, which is equal to

— 2784 +144a, By, — 1280,y — 2567 +4a, By — 16a,*7, .

Hence we have
i) i) i)
N B o
i) i) (i)

—16(_2—%2-y2>4(2_§3y“_116y12y2)'

Then this is equal to the following expression :
yl[—%(%yﬁ—w)@%(%y#—m)(%yﬁ—yz)(—i—yf—yz)z
‘%‘(%ylz—y2>2(%y12_3’2>2—%y12(%y12”‘yz)s

—i%(%ylz—yz)s(%yﬁ—yzﬂ .

which is identically equal to 0. Hence the discriminant A of R,* has the form:
Aeyoeesy‘i"AayoseﬁH+A4yo4e4H+A3y0393}1+A2y0292H+A1yoeH

with non-zero constants A,, As.

§6. A lemma

It is necessary to give an explicit proof of the following

LEMMA. Let R be the Riemann surface R,* defined by
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¥*—=519'+S: 92— S,y +S,=0

Se=y,e" +x,,
l 3:b1yoeﬂ+xa ’

Sdle ’

] Si=x,,
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where Xi,=by+bs+b,+bs, Xo=bybs+bsbs+ bybs+bsby~+bsbs+bibs, X3 =byb3bs+bsbsbs

+b2b4b5+b3b4b5, X4:b2b3b4b5,

representable as

F=fi+foy+foy?+fiy°,

Let F be a regular function on R,*.

Then F is

where fi, f., fs and f, are meromorphic functions in |z|<co, all of which are
regular at any points z satisfying H'(z)+0.

Proof. Let z, be a point satisfying H’(z)+#0. Let us put t=z—z,.

should consider several cases.
There are two points of R,* on z, and both points are branch points.
Then there are two different branches of y. And

1).

2).

Then

and

4).

5).

yleo+Altp/2+A2t(P+l)/2+ TN
Yo==Bo+ Bt/ 4 Byt @Vt ...

We

There are two points of R,* on z, and only one is a branch point.

1= Aot AP Agt PO

Y2=B+ Bitl+ Byttt 4 -
There are three points of R,* on z,. Then
1= Ao+ AP At @0
V2e=Bo+ B 11+ Byt?" + -,
Ya=Co+Cit"+Cot ™' + -+
There is only one point of R,* on z,. Then
Yi=Ag+ AstP/ - Apt PO
There are four points of R,* on z,. Then
Nn=At+ AP+ -,
Yo=Bo+Bt?+ -
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ya=C0+C1tr+ ty

y4=Do+D1t8+ e
Since H’(z,)+0, we have

eH®=p o1 4-dit4-dot*+ ),  d,#0.
CASE 1). Suppose that p=3. Then
Yi=Ao+ Aut?P+ -
2= A+ 24, A P12+ -

11*=A+3A> AP+ -
and
YA=AtH4AS AP e

Hence by y*—x19,°+(yoe? +x5)9,2—(b1yoe? +x5)y:+x,=0 we have

Vo0 d A —b e 0 d, A,=0.
Therefore

Af(Ag—b1)d yoe?0=0,
that is, either A,=0 or A,=b,. On the other hand
Ayt —x, AP+ (302" @0+ x,) A2 — (b1 yoe® 0+ x5) Ag+x,=0 .
If A,=0, then x,=0. But x,=b,bsb,b;#0. This is absurd. If A,=b,, then
bt —x1b° +(900® 0+ x5)b,2—(by o0 20+ x,5)b, + x,
=Apt— 1, A* + (1,27 0+ x5) A2 — (b, yoe™ 20+ x4) Ao+ %,
=0.

This contradicts that b, is a lacunary value of y. Hence 1<p<2. Similarly
1<¢<2. Similarly we can prove the following facts: In case 2) we have 1<
p<3, g=1 and in case 3) 1<p=<2, ¢=1, »=1 and in case 4) 1<p=<4 and in
case 5) p=¢g=r=s=1.

CASE 1), Suppose that y,=A,+ At+ -+ + A%+ --- with the smallest odd
s such that A,*+#0 and s=3. Then

At — 2, A+ (07 F0 + x,) A2 —(by yoe® 0+ x5) Ag+x,=0,
{4A,°—3x, A2+ (yoe® 0+ x,)2 Ag—(by yoe™ 0+ x,)} A,

+yoeH 0 d, Ay(Ay—b,)=0
and

4APAF —x,340° As*+ (906" 0+ 2,)2 Ag Ag* —(byyoe™ *0 +x3) A *=0 .
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Hence by A *+#0 we have

44,5 —3x, A4 (y,e™ 0+ x,)2 Ag— (b1 yoe? 0 4 x,)=0 .
Therefore
AO(AO'_bl):O »
which is absurd. Hence we have

yi=Ao+ A Agt+ At 2+ -
and

¥2=Bo+Bit'2+ Byt + Byt¥*+ -
In case 2) we can prove that either

Yi=AgF AP At At -
or
y1=Ao+ At + Agt + AP+ -
with
ya=30+Blt+th2+ e
In case 3) we have

y12A0+A1t1/2+A2t+A3t3/2+
and in case 4) we have either

V1= Ao+ At A4 At 4 At Ayt - -

or

V1= Ao+ At 4 Agt* - Ayt 4 -+
or

Vi=Ag+ A+ A+ At + -+ .

Firstly we consider case 4). Suppose that
Vi=Ag+ At A4 Apt P+ At + Ayt -
Let us put
n n n 571
fl %*4‘ s fz——"‘lf—n“"}" , f:;:;:n—"l' » ff——ﬁ'i’

Then

F=fi+foni+ o+ foyi
is pole-free. Hence

an+,8nAo+TnA02+5nA03:0 »
ﬁnAl +7’n2AoA1 +5n3A02A1:0 ’
BrAst+7n(2AgAs+ A®)+ 0,340 A +3A4,A4,%)=0
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and
Badst+ra(240A4; +2A1A:)+02(340°As+6A4,41 4, + A,%)=0 .

A,#0 implies B,+7.24,40,34,*=0 and hence
(7n+5n3A0)Alz=0 .

Therefore y,4+0,34,=0. This gives 6,4,°=0, that is, 6,=0. Hence y,=8.=
a,=0, which is absurd. Hence we may put A,=0. Then

Yi=Agt At P+ A+ o F AL o At D
with the smallest odd s>1 for which A;#0. By
Y1t =219+ (Doe™ +x2) 31" —(Dryoe™ + x9) 31+ x,=0
we have
(445 — %3424 (0e® ¥+ x,)2 Ay—(by Y% “0 + x,)} A,=0,
4A2A— %342 A+ (00T O+ x,)2 A Ay —(byyoe™ 04 x45) A,
+ {642 — 21340+ Y02 0+ x5} A+ yoe™ 0 d Ay(Ag—by)=0

and
{4.45°— 23402+ (0™ 0+ 15)2 Ao — (b1 yoe™ 0 4-x3)} Agyo

4+ {642 —x,34,+ yoe”“"’ + x5} 24, A4,=0.

Since A,+#0 and A,+0,
6A4,2—x,34,+ y,e¥ 0+ x,=0
and hence
d1Ay(Ay—b)=0,

which is again a contradiction. Hence we may put A,=0. Then

yi=Ac+ At A+ - .
In this case we have

»404—7511403'1'()109”“0)+x2)Aoz—(b1yoeH(z°) +x3) Ao+ x,=0 ,
{4A°—x,3A,24+ (9,270 +x,)2 Ag—(by y,e" 20 +-x,)} A;=0

and
{44,°— x13A02+(yoeH(z°) + xz)ZAo—‘(blyoeH ot xg)} A,

+y0e" 0 d, Ay(A;—b,)=0.

By A;+#0, the coefficient of A =0. Hence A,(A,—b,)=0, which is a contradic-
tion. Hence case 4) does not occur.
Now we consider case 5). Then F,=f,+f.v,+ fsy,+f.y,® are pole-free
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for j=1, 2, 3, 4. Hence
CntBrAstraAd+0,4,"=0,
&nt+BaBotyaB+0,8,"=0,
an+B.Co+71,C?4+0,C*=0,
an+B,Do+72Do?40,D*=0.

Then A,=B, or Bnt+yi(Ae+Bo)+0.(A*+AsBo+B,*)=0 and A,=C, or B.+
72(Ao+ Co)+0.(As®+ A Co+Co*)=0 and Ay=D, or Bp+7n(Ae+Do)+3:(As2+ AsD,
+D¢*)=0. If Ay#B,, A;*=C, A¢#D,, then

By=C, or Tn+5n(Ao+Bo+co):0
and
By=D, or T7z+6n<Ao+Bo+Do):O .

If further B,#C,, B,#*D,, then 0,(C,—D,)=0. Hence either C,=D, or §,=0.
If 0,=0, then y,=f,=a,=0, which is absurd. Hence C,=D,. Therefore we
may assume that A,=B, By the definition of R,* we have

At — 2, A+ (902 0+ x5) A2 —(by o™ 0+ x3) Ag+x,=0,
{4A,°— x:3A0°+(90e™ 0+ x,)2 Ay — (b1 y0e™ 0+ x,)} A,
+ 3020 d; Ay(Ag—by)=0.

If 44°—x,342+(v0e® 204 x,)24,—(byy,e™ *0+x,)=0, then A,(A,—b:)=0, which
is absurd. Hence 4A4,*—x,34,+(p,e7 0+ x,)2 A, — (b1 y,e® ?0+x;)#0. Thus we
have

{448 — 2,342+ (o0 204 x,)2A,— (b, y0e™ 20+ x4)} (A, — B1)=0,
which gives A,=B,. Similarly, if put y,=A,+Ait+ Ast®*+ --- + A"+ ---, then
An(4A*—x,3A0" 4 (yoe™ 0+ 15)2 Ay —(by yoe™ 0+ xy))
+P (Ao, -+, An-)=0,

where P(A,, -+, A,_1) is a polynomial of A,, ---, A,_;,. Hence we have 4,=B,.
Therefore y,=y,, which is absurd.

CASE 2). If yi;=A,+ A1+ Apt?°+ Ast+ -+ and y,= Bo+ Bt + B,t*+ ---, then
by the pole-freeness of F,=f,+ foy,+ f:v,2+ f.v,* we have

an+ﬁnAo+TnAoz+5nA03:0

(ﬁn+7’n2Ao+5n3Aoz)A1=O
and
(‘Bn+Tn2A0+5n3A02)A2+(rn+5n3Ao)A12:0 .
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Hence A,;#0 implies that 8,+7.24,+0,34,*=0 and 7,40,34,=0. Further we
have
an+BaBo+72Bo*+0,B,°=0.
Hence
(,Bn+Tn(Ao+ Bo)+0,(A®+ AyBo+Bo)(Ay—Bo)=0.

If Ay#B,, then
ﬁn+Tn(Ao+ Bo)+0x(As*+ Ao Bo+ Bo*)=0.
By Ba+722A,+0,34,°=0 we have
(Bo—Ao) {ynt0.(24,+Bo)} =0,
that is,
Tn+5n(2Ao+Bo):0 .

By y.+0.34,=0 we have 0,(B,—A4,)=0, that is, §,=0. Then successively y,=
Br=a,=0, which is absurd. Hence A,=B,.
Substituting y,=A,+ A,#**+ A,t**+ --- into the defining equation of R,* we
have
At —x, AP+ (9007 O+ 1) At — (b1 yoe™ *0 4+ x5) Ay +x,=0,
{44° — 2,342+ (0™ *0 +x,)2 Ay — (b1 ye™ *0 4+ x)} A, =0
and
4A03A2+6A02A12‘—xl(BAoZAz+3A0A12)+(yoeﬂ(z°)+x2)(2A0A2+A12)
—(byyee® 0+ x,)A,=0.
Hence
6A4,2—x,34,+ v, 0 +x,=0 .
On the other hand by y,=B,+ Bit+ B,t*+ --- we have
{4B*—x:3By? (0™ 20 4 x,)2 Bo—(by yoe™ 0+ x,)} B,
4+ {6By2—x,3Bo+ y,e7 20+ x,} B2+ y,e7 0 d,By(By—b,)=0.

Since A,=B,, the coefficients of B, and B,®> are equal to zero. Therefore
Ay(Ay—by)=0, which is absurd.
If y,=A,+ Ast?°+ Ast+ -+, then by the defining equation of R.* we have

At =2, A"+ (302 0+ x,) Ag® —(br yoe™ 20 4 x3) A+ 2,=0,

{4140”*x13z402+(yoe”“°’+x2)2/40—(b1yoe”"“’+xa)} A,=0
and
{4A40°— 2,342+ (e 20 4 %)2 Ag— (b1 yoe™ 0 + x,)} Ag

+y0e? 0 d (Ay—b)Ar=0.
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Since A,#0, we have (A,—b,)A,=0, which is absurd.
CASE 3). In this case we have
y1=Ag+ At 2+ At +--
Ye=Bo+Bit+ -,
U Ys=Cot+Cit+ .

Fi=fi+foy;+f33,2+ f.y,® is pole-free for j=1, 2, 3. Hence
Ant+BrAstyaAl+0,4,°=0,
(Brt+71240+0,34DA,=0,  A,#0
@n+B2Bot+72B’+0,B,°=0,

and
an+,8nco+)’ncoz+5ncos=0~
Therefore
Ay=B, or ,3n+Tn(Ao+Bo)+5n(A02+AoBo+Boz)=0
and

Ae=Cy or Butya(ActCo)+0.(Al’+ACo+CoH)=0.

If Ay#B,, then 7,40.(24,+ B,)=0. If A.#C,, then y,+0.(24,+C,)=0. Hence
(By—Cp)0,=0. If B,#C,, then 4,=0 and y,=f,=a,=0, which is absurd.
Hence B,=C,. If this is the case, then we can conclude y,=y; as in Case 5).
Hence we may suppose that A,=B, By making use of the equation of surface
R.*, we have

Aod—‘xler"‘*‘(yoeH(zo) +x2>A02_(bxyoeH(z°) +x3)A0+x,=0,

4A03"x13l402+(yoen(z°)+x2)2A0—(b13’03H(z°) +x4)=0,
and
{4By*—x,3B2+ (9,87 20 4 x,)2B,— (b, .2 0+ x,)} B,

+yoeH(Z°)d1(Bo‘“b1)Bo:0 .
By A,=B, we have
Ao(Ao_b1)=0 s
which is absurd.

CaSE 1). In this case we may put
yi=Ao+ At At + -,
yzzBo+Bltl/2+Bet+ RN

Since Fr=f1+fove+fave+ Sy (R=1, 2) are pole-free, we have
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an+,BnA0+TnAoz+5nAoszo »

ﬂn+7’n2Ao+5n3Aoz———O
and
an+,8nBo+TnBoz+5nBos_——0 ;

ﬂn+rn230+5n3302:0 .
Hence we have
,3n+7'n(Ao+Bo)+5n(A02+AoBo+Boz)zo ’

if Ag#=B,. Hence y,+0,(24,+B,)=0. Similarly we have y,40.(4,+2B,)=0 if
A,#B,. Hence 0,=0 and successively y,=0, 8,=0 and a,=0, which is absurd.
Therefore A,=B,.

Anyway we have

y1:A0+A1t”2+A2t+A3t3/2+A4tz+A5t5/2+ T
and
o= Aot But 4 Bot+ Byt + B+ Bytol 4 oo

Substituting these into the defining equation of R,* we have

At — 2, A0 (9007 0+ x,) A — (b1 306" *0 + x5) Ag+%,=0,

442 — %342+ (yoe® 0+ %,)2A4, — (b1 y,e 0 +x4)=0,

{440’ — 2,340+ (902" “0 4 x)2 A0~ (b1 yoe™ 0+ x3)} A,

+ {642 —x,3A,+ (3007 20+ x,)} A2+ 3,07 200 d Ay(Ap—b1)=0.
Hence we have
{6A2—x,3A,+ 300" 0+ x,} A 2= y,e7 0 d, Ay(by— A,).

Since Aq(b;—A,)#0, we have

6A02—x13Ao+yoe”“°’+x2 #0.
Therefore
{6A02—x13Ao+yoe”"°’+xz} (A—B)(A,+B)=0,

that is, either A,=B, or A,=—B,. Further
{4A03—x13A02+(J’oe”(z°)+x2)2Ao_(bxyoeH(z°)+x3)} As
+ {642 — %340+ y,e¥ 0+ x,} 2A, A, + (4 A —x1) AL

_blyoeH(zo)dlAl+y0e11(zo)d12AoA‘:0 .
Hence
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{6A2—x,3A0+ e 0 +x,} 2A, Ay +(4Ag— x) AP

=y0e" 0 d,(b;—2A40)A, .
Thus we have
{6A,°— %13 A0+ yoe™ 0+ x,} 2(A,— Be)=0,

that is, A,=B,. Similarly we have
4452 A +6 47241 A +4ABA A+ A — 5,34 Au+3A402 A1 As+3A,° )
+(yoe”“°’+xz)(2A0A4+2A1As)+yoé”"“’(d12A0A2+donz)

—(blyoeH("”+x3)A4~b,yoeH(’°)(d1Az+ don)ZO .
Thus
{642 — x,3A0+ yoe 20+ x,} 24, A,

=(x,—44)3A4,2A;— A+ 40 @0 {(b;—2A0)d1 Ap+(by— Aog)d2 Ao} .
For y, we have a similar relation. Hence
{642 — %340+ yoe® 0+ x5} 2(A1A;— B Bs)=0.
Therefore A,=B, if A,=B, and A;=—B, if A;=—B,. Quite similarly we have
{642 —x,3A0+ yoe® 0+ x,} 2A1 Ay +2A4; 4s)
=(x,—44,)3A:*As+34,4:.5)—4A,* A,
+y0e¥ 0 {bd A+ b,ds A1 — d1(2A0 As+2A4, As)— dr2 A, AL}

and a similar relation for B,=.A4,, B,, B,=A4, and B, with B,B;=A4,41,. Then
we have
o
A44+442—41=B,+Bz—g“‘r .

<11 1
that is, A,=B,. This method of proof goes through by induction and finally
we arrive at

Azn:BZn, 441"12n-1:BlBZn—1 -

If A,=B, for all j, then y,=y,, which is absurd. If A,=B, for all even j and
A,=—B, for all odd j, then

yZ(t): E ‘42jt(2“/2'_ 2 AZJHL‘(ZJ”)/Z
J=0 =0

— i Azj(tezxi)(21)12+ “2 A2]+1<tezx£)(2;+1)/z
j=0 =0

=v,(te*™").
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Hence y,, y., are the same branch with a different representation. Therefore
there are only two sheets over |t|<t,. This is a contradiction.

We can prove quite similarly that corresponding lemmas for the surfaces
X, R¢* and R,* do hold. Since X.~X,, Ri*~R,*~R*~R*~R¥~Ry* Rj*~
Rio*, Re*~R#~ R *~R,*, when the same ¢¥ is commonly used, it is sufficient
to prove lemmas for representatives R,* X,;, R and R.*, respectively.

§7. Transformation formula of discriminants

The following method of proof of transformation formula of discriminants
is suggested by Referee of our previous paper [4]. We now make use of his
suggestion with thanks. Starting from a surface K

Y =S519"4+ S8,y =S,y +S5,=0,
we have the representation of discriminant A as
{(31= 32 )31 =y (1= YYo= Y )(Ye— YN Vs— Y} "
Let F be a regular function on R. Then F can be written as
F=fi+foy+fs9*+ f4°
as in lemma in § 6. F satisfies
F*—U,F*4+U,F*—U,F+U,=0.
The discriminant D of this surface is given by
{(Fy—Fo) (Fi—Fo)(Fy— F)(F,— Fo)(F,— F)(Fy—Fy)}®.
Here F,=f,+ foy;+fsy,2+fiy,* for j=1, 2, 3, 4. Then

Fi—Fe=;—y{fo+ sty + iy + 3,06+ 3:5}
Hence
D=A-G*,
where

G={fot fo(y1Fy)+ [s(¥ 2192+ 3D {fot fo(psF+y)+ [y + Yyt yiD}
{fot Fo(i4y)+ fa(yiP+y1ys+ )} {fot fa(@ety)+fa(plP+ 20+ 345}
{(fot fa(iF 30+ Fely 2+ 3190 YD ot (et 3+ Fi(32+ Y295+ 355}

Now G is a homogeneous polynomial of sixth degree of f,, fs, f, with suitable
symmetric polynomial coefficients of y,, v,, ys, y.. Therefore every coefficient
is a polynomial of S,, S,, S; and S,. Here S;=vy,+y:+y:+ys, Sa=y1Y2+ V1Y
F V1Yt YeYsF Ve YaF ViV, Se=319:YsF V1Y Vet V1 Y5 Vit Y2 s Vs and Sy=31:Y5¥.
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Hence G may have poles at z, at which H’(z,)=0.

Now we introduce a new assumption that H(z) is a polynomial. From now
on we consider the problem under this finiteness assumption.

Let R be the surface R*: y*—S,9*+S:y2—S;y+S,=0 with S;,=y,, S;=y,e?
+ 9,5, Ss=b,yee¥+y, and S,=y,, where y,=b,+b;+b,+bs, Y2=bsbys+bsbs+bsbs+
b3bs+b3bs+bibs, Vs=bsbsbs+bsbsbs+bsbbs+bsb,bs and y,=b.bsb,. Then P(y)=7.
Suppose that P(R,*)=8. Then there is a non-constant regular function F on
R.* such that P(F)=8 and

F=f1+f2y+f3y2+f4y3 s

where f,, fs, fs, f4 are meromorphic in |z|<co and regular excepting at most
at points satisfying H’=0. We may assume that F defines the surface X,.
Hence

F*—U,F*4+U,F*~U,F+U,=0

with
U,=x,e*+x,,
U,=(a,+az)xeel+x, ,
Us=a,a,xe"+x;
and

Ui=xy,

where x,=a;+a,+as+as, X,=0:0,+0:05+0a306+a,a5+ 0.0+ 050¢, X;=0;0,05+
0,04+ asa5a,+asa5a; and x,=a,a,as;a,. Discriminants of R,* and X, are de-
noted by A and D, respectively. Then we have

D=A-G*.
Evidently the number of poles of G is finite. Let us put

D=Ae(xoeL—7’1)(xoeL'—7’2>(7503L—Ta)(xoel'—)’4)(xoeL“7’5)(xoeL" Tﬁ)
and
A=—4b(yoe” —8,)(yoe™ —0:)(yoe™ —0:)(yoe™ —0:)(yoe? —05).

CASE 1). The counting function of simple zeros of A satisfies
Ny(7, 0, A) ~ 5T (7, ™),
that is, 0;#40, for 1. Then
Ny(r, 0, A)=Ny(r, 0, D)~m-T(r, e*)

with m=1, 2, 3, 4, 6. Then L should be a polynomial, whose degree coincides
with the one of H. In this case we return back y from F. Then we have

A=D-I%,
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The number of poles of I is finite again. This shows that the zeros of G is
finite in number. Hence

D=A-g-er™

with a rational function B and with an entire function M, M(0)=0. In this
case y,#7y, for i=+7.

Case 2). Ny(r, 0, A)~3T(r, e¥), that is, d,, 0. 0;, 0, are different and 0,=0;.
Then

Nz(”, O} A):Nz(r; 0: D)~m~T(r, eL)

with m=1, 2, 3, 4, 6. Then L should be a polynomial, whose degree coincides
with the one of H. Again we can return back y from F. Then A=D-I?
where I has only finitely many poles. Hence G has only finitely many zeros.

Cases m=1 and 3 donot occur. Suppose that m=2 or m=4. Then the count-
ing function of multiple zeros of A satisfies

No(r) 0) A):No(ry 0; D)r
where Ny(r, 0, A)=N(r, 0, A)—N,(r, 0, A). However
Ny(r, 0, A)~2m(r, e¥)

and
Ny(r, 0, D)~4dm(r, et) if m=2,
Ny(r, 0, D)~2m(r, e*) if m=4.
However
3m(r, e®)~Ny(r, 0, A)=N,(r, 0, D)~2m(r, el) if m=2
and

~A4m(r, e*) if m=4.

These give a contradiction.

CASE 3). Ny(r, 0, A)~2T(r, e¥), that is, 0,, 0;, J; are different and §;=4§,=0;.
Ny(r, 0, D)~m-T(r, e¥) with m=1, 2, 3,4, 6. Then L should be a polynomial.
We can return back y from F. Then A=D-1°% where I has only finitely many
poles. In any case m=1 or m=2 or m=3 or m=4 or m=6 gives a contradic-
tion.

CASE 4). Ny(r, 0, A)~T(r, e¥), that is, 6,#0, and 8,=0;=0,=0; or 8,, 0, Js
are different and 8,=40,, 6,=8;. Ni(r, 0, D)~m-T(r, et) with m=1, 2, 3, 4, 6.
Then L should be a polynomial. We can return back y from F. Then A=
D-1%, where I has only finitely many poles. In any case m=1 or m=2 or m=3
or m=4 or m=6 gives a contradiction.

CASE 5). A does not have any simple zero. Then we arrive at a contra-
diction easily.
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Therefore we have
D=A-B*. e

with a rational function 8 and D, A must have only simple factors.
We have proved the above relation for the surface R,;*. For R¢* and R,*
we can prove the same fact.

§8. Theorems
We shall prove the following

THEOREM 1. Let R* be the Riemann surface. Assume that its discriminant
« satisfies

Aﬂ4*= —4b 2y e+ Ayotet T+ Asyoe® + Ay et + Ay ye + Ay,

where at least one of A, (j=1, 2, 3, 4) does not vanish. Then P(R*)=7, if H
is a polynomial.

Ar

4

Proof. Suppose that P(R,*)=8. Then on R,* there is a regular function
F for which P(F)=8. Suppose that F defines the surface X,. (We may assume
so, since X,~X,.) Then
D=A34*'ﬁ2'22‘41 ,

which is just the following identity :
Bsxo®e® 4+ Bsxy’e*l+ Byxotett 4+ Byxoy*e’ 4 By xo*e*l + B x et + B,
=(—4b2y° T+ Ayyotet T+ Agyote + Ay yoter + Ay 4 A,) Be? .
Now we shall make use of Borel’s unicity theorem. In this case we have

6T (r, e)~Ny(r, 0, D)=Ny(r, 0, Ap,«)~5T(r, e¥).
Hence

T(r, e¥) ~%T(r, el).

This relation makes our discussion simpler. Firstly assume that M=0. Then
there remains only one possibility: 6L=5H, By=(%4,, Bex,*=—4b,28%y,° and
By=B,=B;=B,=B,=A,=A;=A,=A,=0, which contradicts our assumption: at
least one of A,, j=1, 2, 3, 4 does not vanish. Hence we have the desired result.

Assume that M=£0. 5H+2M=0 and 6L=-5H, B,=—4b*8%y,", Bsx,’=
B*A,, Bs=B,=B;=B,=B,=A,=A,=A4,=A,=0, which contradicts our assump-
tion: at least one of A, j=I1, 2, 3,4 does not vanish. Hence we have the
desired result.

THEOREM 2. Let R¢* be the Riemann surface, whose discriminant Aggs 25
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ARG*:AsyOSeSH+A4y04e4H+AsyOSefiH+Azy02e2H+A1yoe[{+Ao

with non-zero constants A, and As. Suppose that at least one of A, (J=1, 2, 3, 4)

does not vanish. Then P(R*)=7, if H is a polynomial.

Proof is similar as in Theorem 1. So we shall omit it.

THEOREM 3. Let R;* be the Riemann surface, whose discriminant Ag, 1S
AR7*=AsyOSZGH+A5y0525H+A4yo4eAH+A3y03e3H+A2y0222H+A1y0211

with non-zero constants A, and As. Suppose that at least one of A, (=2, 3, 4, 5)
does not vanish. Then P(R.*)=7, if H is a polynomial.

Proof of Theorem 3. Suppose that P(R,*)=8. Then on R,* there is a
regular function F for which P(F)=8. Suppose that F defines the surface X,.
Then similarly

D=Ap 2 e*" .

This is just the following identity:
Boxo el + Bsx et + Byxytett + Byxy' e’ 4 By x et - By x et 4 By
=(Ae¥o°e™ + As P+ Ayyotet T 4+ Ay yote® 4+ Ay yotet 4 A yoe) e,
In this case we have

6T (7, eM)~N,(r, 0, D)=N,(7, 0, Ag,)~5T(r, ).
Hence

T(r, e™) w-g—T(r, er).

There are only two possible cases: 2M+H=0 or 2M+6H=0. If 2M=—H, then
By=A,%y,, x,'°B,=Ay,°f* and By=B,=B;=B,=B,=A;=A,=A;=A,=0 and
6L=5H. If 2M=—6H, then By=Aey,'p? Bexo'=A1y,8°, 6L=—5H and B;=D,
=B,=B,=B,=A;=A,=A;=A,=0. In any cases we have a contradiction: A,=0
for j=2, 3, 4, 5. Thus we have the desired result.

In the above we list up three theorems which correspond three representa-
tives R,*, R¢* and R,*. Theorems are almost similar for other surfaces. We
shall omit their formulations. (We can make use of similar transformation Y =
ay-+pB. Then the discriminant is transformed into constant times of a discri-
minant. Hence the non-vanishing property of coefficients of discriminant is
preserved.)
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