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STABILITY AND INSTABILITY OF STANDING WAVES
FOR ONE DIMENSIONAL NONLINEAR SCHRODINGER
EQUATIONS WITH DOUBLE POWER NONLINEARITY

MASAHITO OHTA

1. Introduction and main results

In the present paper we consider the stability and instability of standing
waves for the following nonlinear Schriédinger equation :

(1.1) it ua.+f(uw)=0, 120, xeR,

where f(u)=alu|?'u+blu|?'u with a, b€R and 1<p<g<oo.

Equation (1.1) arises in various regions of mathematical physics. For ex-
ample, when >0, <0, p=3 and ¢=5, this equation appears in boson gas
interaction, nonlinear optics, and so on (see, e.g., [1] and its references).

By a standng wave, we mean a solution of (1.1) with the form

u(t, x)=e**'d.(x),
where >0 and ¢, is a solution of the following problem:

{ _¢xx+w¢_f(¢):0) XERy

1.2)
$cHYR), ¢=0.

The existence and uniqueness of the solution of (1.2) are well known. Put
w*=sup{w>0: (w/2)s’—F(s)<0 for some s>0}, where F(s):SZf(a)do. Then,

for any we(0, w*), there exists a unique solution ¢, of (1.2), up to a translation
and a phase change (see, e.g., [3]).
Stability and instability of standing waves are defined as follows.

DEFINITION. We shall say that the standing wave u,(t)=¢**'@, is stable if
for any &>0 there exists >0 with the following property: if u,eHY(R),
|uo—@ull <0 and u(z) is a solution of (1.1) with u(0)=u,, then

sup inf u(®)—elr 0, m<e,

0st<oo 0, yeR
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where 7,u(x)=v(x—7y). Otherwise, u, is said to be unstable.

The unique local existence theorem in H'(R) for (1.1) is already established :
for any u,=H'(R), then there exist 7>0 and a unique solution u(-)eC([0, T);
HY(R)) of (1.1) with u(0)=u, such that either T=co or T <oo and lim,_.z ||u(t)||m
=oo, Furthermore, u(t) satisfies the two conservation laws |u(?)| z2=| %] L2 and

E(u(t))=E(u,), where E(v):l/Zl]vZNLZ—S:F(lv(xN)dx. For the details, see,
e.g., [5], [6] and [10].

Recently, many authors have been studying the problem of stability and
instability of standing waves for nonlinear Schrodinger equations (see, e.g., [2,
4, 8,9, 12, 13]).

In the single power case f(u)=alu|?! with a>0 and p>1, it is well
known that if 1<p<5, then u, is stable for any w<(0, ) (see [4]), and if
p=5, then u, is unstable for any we(0, «) (see [2] for p>5 and [13] for
p=5).

In the double power case (a+0 and b+0), (1.1) has no scaling invariance,
while it exists in the single power case. The scaling invariance makes the
stability and instability problem simple in the single power case (see [12]).
However, we can not use the scaling argument in the double power case. This
is why the double power case has not been studied as well as the single power
case, regardless of its physical importance. In fact, the phenomena occurring
in the double power case are quite different from those in the single power
case (see Remarks 1~4 below).

Our main results are the followings.

THEOREM 1. Let a>0, b>0 and 1<p<g<oo.

(1) If ¢g<5, then u, s stable for any we(0, o).

(2) If p=5, then u, s unstable for any w<(0, ).

(3) If p<5<q, then there exist positive constants w, and w, such that u, s
stable for any we(0, w,), and unstable for any w<(w,, o).

THEOREM 2. Let a<0, b>0 and 1<p<g<oo.

1) If g=5, then u, is unstable for any w<(0, ).

(2) If <5, then there exists a positive constant w; such that u, s stable for
any ws(w;, ).

() If q<5 and p+q>6, then there exists a positive constant w, such that
Uy is unstable for any we(0, w,).

THEOREM 3. Let a>0, b<0 and 1<p<g<oo.

1) If p<5, then u, is stable for any w<(0, w*).

(2) If p>b, then there exist positive constants ws and ws such that u, is un-
stable for any we<(0, w;), and stable for any ws(ws, w*).

Remark 1. Recall that when f(u)=a|u|?"'u with a>0and p>1, the critical
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exponent p is 5, that is, if 1<p<5, then u, is stable for any we(0, «), and
if p=5, then u, is unstable for any w=(0, «). Note that in the single power
case, the stability and instability of standing waves are determined only by the
exponent p and do not depend on the frequency w. Theorems 1 (3), 2 (2), (3)
and 3 (2) are, to our knowledge, the first examples that admit both stable and
unstable frequencies w of standing waves for nonlinear Schrédinger equations.

Remark 2. 1t is well known that if a function f:[0, «o)>R satisfies the
following condition (G), we call it Glassey’s condition, the solution () of (1.1)

with %(0)=u, blows up in a finite time if E(u,)<0 and g“’ | %12 ug(x)]2dx < o0

(see [71): (G) There exists a constant y=6 such that sf(s)=yF(s) for all s=0.
When a>0, >0 and p<5<gq, Glassey’s condition does not hold, but Kurata
and Ogawa [11] showed the existence of finite time blowing-up solutions of
(1.1). It is a very interesting problem to investigate the relations between the
instability of standing waves and the existence of finite time blowing-up solu-
tions (see [13]).

Remark 3. In the single power case, f(u)=>b|u|*u with b6>0, u, is unstable
for any we(0, ). It seems natural to conjecture that u, is more unstable in
the case of f(u)=alu|P'u+blul*u with ¢>0, b>0 and 1<p<5 than that of
f(u)=blul*u with b>0. Nevertheless, Theorem 1 (1) shows that it is not so.
Furthermore, when a=4, b=3, p=3 and ¢=5, we can show that E(¢.,)=
tan~'((v/IFw—1)/+/)— vw/2, which implies that E(¢,)——oo as w—oo (see Sec-
tion 3 below). Clearly, the standing wave solutions exist globally in time. It
is an open problem whether the finite time blowing-up occurs or not in this
case (see [117).

Remark 4. In the case of f(u)=alu|?'u with ¢>0 and 1<p<5, u, is
stable for any we(0, «). However, Theorem 2 (3) shows that even if 1<p<
g<b5, there exist unstable frequencies w in the case of f(u)=a|u|?'u+blu|? u
with <0, 6$>0 and 1<p<g<co. On the other hand, when a¢<0, b6>0, p=2
and ¢g=3, we can show that u, is stable for any we(0, «) (see Section 3 be-
low). Therefore, in Theorem 2 (3), the condition that p+¢>6 is needed,
although it may be not optimal.

2. Proof of Theorems

In this section, we prove Theorems 1, 2 and 3 stated in Section 1 by using
the following lemmas due to Grillakis, Shatah and Strauss [8] and Iliev and
Kirchev [9].

LeMMA 1. (Grillakis, Shatah and Strauss [8]) Put
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I@=lgalte=|" Igux)l%dx.

If I'(@)>0, then u, is stable, and if I'(w)<0, then u, 1s unstable.

LEMMA 2. (Iliev and Kirchev [9]) When g(|u|Hu=f(u)=alu|? ‘u+blu|? u,
we have

, —1 h)—g(s) e
Fe)= 2W’(h)5:(3_ G(f)(/h—i((sg/s)(”{ )" ds

_ —1 ¢ K(h)—K(s) s \l/2
= 2W’(h)So G(h)/h—G(s)/s(W(s)) ds,

where G(s):S:g(o)daz(Za/p+1)s"’“”2+(2b/q+1)3“1”’/2, W(s)=ws—G(s), K(s)

=(a(5—p)/p+1)s®P V124 (b(5—¢q)/g+1)s9V/* and h=h(w) is a positive number
such that W(h)=0, W/(h)<0 and W(s)>0 for any s<(0, h).

Since it follows from the definition of h=h(w) that G(h)/h—G(s)/s=w—
G(s)/s>0 for any s<(0, h), if K(h)>K(s) for any s&(0, h), then we have
I'(w)>0, and if K(s)>K(h) for any s<(0, h), then we have I’(w)<0.

Put L(s)=(2a/p+1)sP V24 (2b/q+1)s9"Vi2 and let s,, s,, s; and s, be the
positive numbers, if they exist, such that L(s;)=0, L’(s,)=0, K(s;)=0 and K’(s,)
=0, respectively. That is,

S@-P2— a(g+1) YCR Y alg+1Xp—1)
! b(p+1)° b(p+1)g—1) "’
sla-P/z— _ a@j@@‘:” @Pe=_ S’S‘L+1)<P*1,>L5:Z’2

bip+1)5—g) b(p+1(g—1)Y5—g)

For the sake of simplicity, we write K (o) for lim;... K(s), h(0) for lim,_,
h(w), and so on.

Proof of Theorem 1. (1) Since K’(s)>0 for s>0, we have K(h)>K(s) for
any s<(0, h), which implies that I’(w)>0 for any we(0, o). Thus, (1) follows
from Lemma 1.

(2) Similar to (1).

(3) In this case, we see that K(0)=0, K’(s)>0 for s<s, and K’(s)<0 for
s>s,. Thus, if h<s,, then we get K(h)>K(s) for any s€(0, 4), and if h>s,,
then we have K(s)>K(h) for any s<(0, ). Moreover, since L’(s)>0 for s>0,
L(0)=0 and L(w)=x, we see that h’(@)>0 for >0, A(0)=0 and h(co)=co.
Therefore, (3) follows from Lemma 1. O

Proof of Theorem 2. Since L(0)=0, L’(s)<0 for s<s, and L’(s)>0 for
s>s,, we see that A’(w)>0 for >0, h(0)=s, and A(co)=oo0,
(1) When p<5<g, it follows from K’(s)<0 for s>0 that K(s)>K (k) for
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any s&(0, h). Thus, we get I’'(w)<0 for any we(0, ). When p>5, since
K(0)=0, K’(s)>0 for s<s, and K’(s)<0 for s>s, and s;<s;, we have K(s)>
K (h) for any s=(0, h), which implies I'(w)<0 for any we&(0, ). Therefore,
(1) follows from Lemma 1.

(2) (3) Let g<b5. Then, we see that K(0)=0, K’(s)<0 for s<s, and K’(s)
>0 for s>s,. Thus, if h>s;, then we have K(h)>K(s) for any s<(0, h),
which implies (2). Moreover, if p+¢>6, then we see that s;<<s.. Therefore,
if h<s,, then we have K(s)>K(h) for any s<(0, 4), which implies (3). O

Proof of Theorem 3. Since L(0)=0, L’(s)>0 for s<s, and L’(s)<0 for
s>s,, we see that h/(w)>0 for we(0, w*), h(0)=0 and h(w*)=s,, where w*=
L(s,).

(1) When p<5=<gq, it follows from K’(s)>0 for s>0 that K(h)>K(s) for
any s<(0, h). Thus, we get I'(w)>0 for any we(0, w*). When ¢<5, since
K(0)=0, K'(s)>0 for s<s, and K’(s)<0 for s>s, and s,<s,, we have K(h)>
K(s) for any s=(0, ), which implies I’(w)>0 for any we(0, w*). Therefore,
(1) follows from Lemma 1.

(2) Let p>5. Then, we see that K(0)=0, K'(s)<0 for s<s, and K’(s)>0
for s>s,. Thus, if A<s,, then we have K(s)>K(h) for any s(0, ). More-
over, since s;<s,, if h>s,, then we have K(h)>K(s) for any s=(0, h), which
implies (2). O

3. Remarks on special cases

In this section, we give the proof of the following facts stated in Remarks
3 and 4.

THEOREM 4. If a<0, b>0, p=2 and q=3, then u, is stable for any we
(0, o).

THEOREM 5. When a=4, b=3, p=3 and ¢=5, we have E(¢,) =
tan ' (vV14+w—1)/ Vo)— vw/2 and 1(©)=2tan"((vV/I+w—1)/+/®). In particular,
we have E(¢,)——co and I(w)—x/2 as w—oc. Here, we note that - 14 (x)|%dx
=n/2, where ¢ is a positive solution of -

— @+ 0—36°=0, xR, pcH'(R).

When ¢=2p—1, the unique solution @, of (1.2) can be expressed as follows:

@ )l/(p—l)
s

3.1) ¢“’(x)=<a+ Ve’ +Bw cosh (p—1) Varx

where a=a/(p+1) and B=b/p.
Thus, we have
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(3.2) I@)=|" |go(x)|%dx

dx,

1 (= |a|¥@-D-1|g|1e-2(p-by2/(p-n-1/2
- p+15-w(a/|a|+\/l+(‘8/l‘8])y cosh x)%(P=1

where v=(|8|/a®w.

Proof of Theorem 4. Put

_ (ﬂz_l)s/z B
M(‘a)_S—m (—1+p cosh x)zdx ’

where p=+/I+v. Then, M(p) can be calculated as follows:
M(p)=4tan™ \/%4-2 V1.

Thus, we have M’(p)=2+/p*—1/p>0 for all p>1. It follows from (3.2) that
I’'(w)>0 for any we(0, ). Hence, from Lemma 1, the proof is completed. O

Proof of Theorem 5. Since it follows from (1.2) that —(1/2)¢u(x)|*+
(0/2)|pu(x)|*~F(|¢u|)(x)=0 for any xR, we get

3.3) E@a=| 1w irdx—2{" g0,

where @o(x)=(d/dx)p.(x).
An elementary calculation shows that

3.4) 1<w)=gi’ | go(x)|2dx =2 tan"'(v[Fo—1)/ Va).
On the other hand, from (3.1), we have
bu(x)=—w~/T+w sinh (2+/wx)(1+ +/IFo cosh 2vawx)) ™/,
Thus, an elementary computation shows

Therefore, from (3.3), (3.4) and (3.5), we obtain
E(p,)=tan(VI+o—1)/vVo)—vw/2. O
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