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STABILITY AND INSTABILITY OF STANDING WAVES

FOR ONE DIMENSIONAL NONLINEAR SCHRODINGER

EQUATIONS WITH DOUBLE POWER NONLINEARITY

MASAHITO OHTA

1. Introduction and main results

In the present paper we consider the stability and instability of standing
waves for the following nonlinear Schrodinger equation:

(1.1) iut+uxx+f(u)=0, t^O,

where f(u)=a\u\p~lu+b\u\q~ιu with a, b^R and
Equation (1.1) arises in various regions of mathematical physics. For ex-

ample, when α>0, &<0, p = 3 and q—5, this equation appears in boson gas
interaction, nonlinear optics, and so on (see, e.g., [1] and its references).

By a standing wave, we mean a solution of (1.1) with the form

u(t, x)=eιωtφω{x),

where ω>0 and φω is a solution of the following problem:

J -φxx+a>φ-f(φ)=0, x^R,

\φ<ΞH\R), φ^O.

The existence and uniqueness of the solution of (1.2) are well known. Put

ω*=sup{ω>0: (ω/2)s2-F(s)<Q for some s>0}, where F(s)=[f(σ)dσ. Then,
Jo

for any ωe(0, α>*), there exists a unique solution φω of (1.2), up to a translation
and a phase change (see, e.g., [3]).

Stability and instability of standing waves are defined as follows.

DEFINITION. We shall say that the standing wave uω{t)—exωtφω is stable if
for any ε>0 there exists δ>0 with the following property: if uo&H\R),
\\uo—φω\\Hi<δ and u(t) is a solution of (1.1) with u(0)—uo, then

sup inf \\u(t)-eiθτyφω\\m<ε ,
t< θ, y&R
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where τyv{x)—v{x—y). Otherwise, uω is said to be unstable.

The unique local existence theorem in H\R) for (1.1) is already established:
for any u^H\R)y then there exist T > 0 and a unique solution M( ) G C ( [ 0 , T) ;
H\R)) of (1.1) with u(Q)=u0 such that either T=™ or T<co and limt^Γ \\u(t)\\m

= 00. Furthermore, u(t) satisfies the two conservation laws ||W(OIIL2=I|WO||Z,2 and

E(u(t))=E(u0), where E(V)=1/2\\VX\\L2-\°O F(\v(x)\)dx. For the details, see,

e.g., [5], [6] and [10].
Recently, many authors have been studying the problem of stability and

instability of standing waves for nonlinear Schrδdinger equations (see, e.g., [2,
4, 8, 9, 12, 13]).

In the single power case f(u)=a\u\p~ι with α>0 and p>ί, it is well
known that if l</><5, then uω is stable for any ωe(0, 00) (see [4]), and if
p^5, then uω is unstable for any ωe(0, 00) (see [2] for p>5 and [13] for
P=5).

In the double power case (aφO and bφQ), (1.1) has no scaling invariance,
while it exists in the single power case. The scaling invariance makes the
stability and instability problem simple in the single power case (see [12]).
However, we can not use the scaling argument in the double power case. This
is why the double power case has not been studied as well as the single power
case, regardless of its physical importance. In fact, the phenomena occurring
in the double power case are quite different from those in the single power
case (see Remarks 1~4 below).

Our main results are the followings.

THEOREM 1. Let α>0, b>0 and l<ρ<g<oo.

(1) // #<;5, then uω is stable for any ωe(0, 00).
(2) // />^5, then uω zs unstable for any ωe(0, 00).
(3) // p<5<g, then there exist positive constants a*! and ω2 such that uω zs

stable for any <we(0, ωO, and unstable for any α>e(ω2, 00).

THEOREM 2. Let α<0, 6>0 and Kp<q<oo.

(1) // <?^5, then uω is unstable for any ωG(0, 00).
(2) // q<5, then there exists a positive constant α>3 such that uω zs stable for

any ω^(ω3f 00).
(3) // #<5 and p+q>6, then there exists a positive constant ω4 such that

uω is unstable for any ωe(0, ω4).

THEOREM 3. Let a>0, b<0 and

(1) // p<^5, then uω is stable for any α)E(0, α>*).
(2) // p>5, then there exist positive constants ay*, and ωβ such that uω is un-

stable for any <we(0, ω6), and stable for any ωe(ω6, α>*).

Remark 1. Recall that when f(u)=a\u\p~ιu with α > 0 and p>l, the critical
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exponent p is 5, that is, if l<p<5, then uω is stable for any ωe(0, oo), and
if £2^5, then uω is unstable for any ωe(0, oo). Note that in the single power
case, the stability and instability of standing waves are determined only by the
exponent p and do not depend on the frequency ω. Theorems 1 (3), 2 (2), (3)
and 3 (2) are, to our knowledge, the first examples that admit both stable and
unstable frequencies ω of standing waves for nonlinear Schrodinger equations.

Remark 2. It is well known that if a function / : [0, oo)->R satisfies the
following condition (G), we call it Glassey's condition, the solution u(t) of (1.1)

S oo

\x\2\u0(x)\2dx<oo
-co

(see [7]): (G) There exists a constant γ^6 such that sf(s)^γF(s) for all s^O.
When a>0, b>0 and p<5<q, Glassey's condition does not hold, but Kurata
and Ogawa [11] showed the existence of finite time blowing-up solutions of
(1.1). It is a very interesting problem to investigate the relations between the
instability of standing waves and the existence of finite time blowing-up solu-
tions (see [13]).

Remark 3. In the single power case, f(u)=b\u\*u with b>0, uω is unstable
for any α)G(0, OO). It seems natural to conjecture that uω is more unstable in
the case of f(u)=a\u\p~1u+b\u\4u with α>0, b>0 and l<p<5 than that of
f(u)=b\u Au with b>0. Nevertheless, Theorem 1 (1) shows that it is not so.
Furthermore, when α=4, b—?>, p=3 and q—5, we can show that E(φω)=

— 1)/V(o)— Vω/2, which implies that £(0ω)—>—oo as ω-*oo (see Sec-

tion 3 below). Clearly, the standing wave solutions exist globally in time. It
is an open problem whether the finite time blowing-up occurs or not in this
case (see [11]).

Remark 4. In the case of f(u)—a\u\p~ιu with α>0 and l</><5, uω is
stable for any O>G(0, OO). However, Theorem 2 (3) shows that even if l<p<
q<5, there exist unstable frequencies ω in the case of f(u)=a\u\v~ιu-\-b\u\q~ιu
with α<0, £>0 and l<p<q<oo. On the other hand, when α<0, b>0, p—2
and q=3, we can show that uω is stable for any ωG(0, OO) (see Section 3 be-
low). Therefore, in Theorem 2 (3), the condition that p + q>6 is needed,
although it may be not optimal.

2. Proof of Theorems

In this section, we prove Theorems 1, 2 and 3 stated in Section 1 by using
the following lemmas due to Grillakis, Shatah and Strauss [8] and Iliev and
Kirchev [9].

LEMMA 1. (Grillakis, Shatah and Strauss [8]) Put
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/(«)=ll0.lli.= Γ \φω(x)\*dx.
J-oc

// /'(ω)>0, £A#n uw is stable, and if Γ(ω)<Oy then uω zs unstable.

LEMMA 2. (Iliev andKirchev [9]) When g(\u\2)u=f(u)=a\u|p'ιu+b\u\q'ιuf

we have

M J~2W'(h))oV G(h)/h-G(s)/sAW(s)J

—1 r* K(h)—K(s) /
2W'(h))o G(h)/h-G(s)/s\W(s)

where G(s)=[Sg(σ)dσ=(2a/p+l)sip+1)f2+(2b/q+l)s«+1"\ W(s) = ωs-G(s), K(s)
Jo

=(a(5-p)/p + l)s(p-1)/2+(b(5-q)/q+l)s(q-1)/2 and h = h(ω) is a positive number
such that W(h)=0, W'(h)<0 and W(s)>0 for any S G ( 0 , h).

Since it follows from the definition of h = h(ω) that G(h)/h—G(s)/s—ω—
G(s)/s>0 for any s<=(0, A), if K(h)>K(s) for any se(0, A), then we have
7/(ω)>0, and if K(s)>K(h) for any se(0, A), then we have /'(ωXO.

Put L(s)=(2a/P + l)s(p~1)ί2+(2b/g+l)siq-l)/2, and let Si, s2, s3 and s4 be the
positive numbers, if they exist, such that L(si)=0, L/(s2)=:::0, K(s3)~0 and /C'CsJ
=0, respectively. That is,

b(~p+ΪX5-q) ' 4

For the sake of simplicity, we write K(oo) for lims_oo/£(s), A(0) for limω_>0

A(ω), and so on.

/ Theorem 1. (1) Since /C/(s)>0 for s>0, we have K{h)>K{s) for
any se(0, A), which implies that //(ω)>0 for any ωe(0, oo). Thus, (1) follows
from Lemma 1.

(2) Similar to (1).
(3) In this case, we see that K(0)=0, K'(s)>0 for s<s, and K'(s)<0 for

s>s 4 . Thus, if h<s4, then we get K(h)>K(s) for any S<Ξ(0, A), and if A>s3,
then we have K(s)>K(h) for any S E ( 0 , A). Moreover, since Z/(s)>0 for s>0,
L(0)=0 and L(co)=oo, we see that A'(ω)>0 for α>>0, A(0)=0 and A(oo)=oo.
Therefore, (3) follows from Lemma 1. D

Proof of Theorem 2. Since L(0)=0, L7(s)<0 for s < s 2 and Z/(s)>0 for
s>s 2 , we see that A/(ω)>0 for ω>0, Λ(O)=Si and A(oo)=oo.

(1) When p^5<q, it follows from /ί^sXO for s>0 that K(s)>K{h) for
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any SG(0, h). Thus, we get Γ(ω)<0 for any α)G(0, OO). When £ > 5 , since
X(0)=0, K'(s)>0 for s<s4 and tf'(s)<0 for s > s 4 and ss<slf we have X(s)>
K{h) for any SG(0, &), which implies Γ(ω)<0 for any CO<Ξ(0, oo). Therefore,
(1) follows from Lemma 1.

(2) (3) Let q<5. Then, we see that /C(0)=0, K'(sX0 for s < s 4 and K'(s)
>0 for s>s 4 . Thus, if h>sif then we have K(h)>K(s) for any S E ( 0 , h),
which implies (2). Moreover, if p+q>6, then we see that Si<s4. Therefore,
if /ι<s4, then we have K(s)>K(h) for any SG(0, /ι), which implies (3). D

/ Theorem 3. Since L(0)=0, L'(s)>0 for s<s2 and L'(sX0 for
s>s 2 , we see that λ'(<w)>0 for α)G(0, α>*), Λ(0)=0 and h(ω*)=;s2, where ω*=

(1) When p£5^q, it follows from /Γ(s)>0 for s>0 that K{h)>K{s) for
any S E ( 0 , /ι). Thus, we get //(ω)>0 for any α>e(0, α>*). When ^<5, since
K(0)=0, K /(s)>0 for s < s 4 and /C(s)<0 for s>s4 and s 2 <s 4 , we have K(h)>
K(s) for any SG(0, /ι), which implies Γ(ω)>0 for any ωG(O, α>*). Therefore,
(1) follows from Lemma 1.

(2) Let p>5. Then, we see that /C(0)=0, /('(sXO for s < s 4 and K /(s)>0
for s>s 4 . Thus, if /z<s4, then we have K(s)>K(h) for any se(0, h). More-
over, since s 3 <s 2 , if h>sB, then we have K(h)>K(s) for any se(0, /ι), which
implies (2). D

3. Remarks on special cases

In this section, we give the proof of the following facts stated in Remarks
3 and 4.

THEOREM 4. // α<0, 6>0, p—2 and $=3, then uω is stable for any COG
(0, oo).

THEOREM 5. When α = 4, ft = 3, /> = 3 αnrf # = 5, ẑ e /iαvβ E(φω) =

tan-^CVl+ω—lVx/ω)—VαΓ/2 αncί /(ω)=2tan" 1((Vl+ω—l)/vί>). /n particular,

we have E(φω)-^ —oo and I(ω)~>π/2 as ω—>oo. / / e r e , w;^ noίβ ί/iαί \ \φ(x)\2dx

= τ r / 2 , where φ is a positive solution of

When q=2p—l, the unique solution 0 ω of (1.2) can be expressed as follows:

where α=α/(/)+l) and β—b/p.
Thus, we have
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(3.2) I ( ω ) ^

where v=(\β\/a2)ω.

Proof of Theorem 4. Put

1-f-μcosh x)2

where μ=y/l-\-v. Then, M{μ) can be calculated as follows:

Thus, we have M'(μ)=2Vμ2-l/μ>0 for all μ > l . It follows from (3.2) that
Γ(ω)>0 for any α>e(0, oo). Hence, from Lemma 1, the proof is completed. D

Proof of Theorem 5. Since it follows from (1.2) that
(ω/2)\φω(x)\2-F(\φω\)(x)=:Q for any XSΞR, we get

oo

(3.3) E{φω)=\ |0:(x)| fίf*- ! ( " \φω(xWdx,
J-oo Ŝ J -oo

where φr«>(x)=(d/dx)φω{x).
An elementary calculation shows that

(3.4) /(ω)

On the other hand, from (3.1), we have

φ'ωW=— o)Vl+a>sinh(2\/ft>x)(l+v/l+a>cosh(2v/a)x))~3/2,

Thus, an elementary computation shows

(3.5) j JφUx)\2dx=a+ω)tan-\(Vl+ω-l)/Vω)-Vω/2.

Therefore, from (3.3), (3.4) and (3.5), we obtain

E(φω)=tan-\(y/ϊ+ω-1)/ Vω)- Vω/2 . D
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