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ON RESOLUTION COMPLEXITY OF PLANE CURVES

LE Di'N¢ TRANG AND MUTSUO OKA

Introduction

The embedded resolution of a plane curve is a known process which was
already known by Max Noether in [N]. One may find an elementary account
of this process in the book of E. Brieskorn and H. Knérrer [B-KJ.

When the plane curve is locally irreducible, it is easily observed that the
case of one Puiseux pair is solved by only one good toroidal blowing-up. More
generally with one good toroidal blowing-up one may eliminate the first Puiseux
pair. Therefore after g good toroidal blowing-ups, one can solve a curve
singularity with one branch and g Puiseux pairs.

In this paper we show that this phenomenon is general. Namely we prove
that the minimal number of required toroidal blowing-ups to resolve the curve
singularity is a topological invariant of the singularity that we have called the
complexity of the resolution (see Theorem (3.12)).

In fact the complexity of a plane curve singularity is expected to behave
like a depth. If we expect that a non-degenerate hypersurface singularity has
resolution complexity one, it is reasonable to prove that a general plane section
of that hypersurface is a curve which singularity has complexity at most equal
to the dimension of the hypersurface. This result was actually proved by the
second author in [O4].

It remains to understand what is the resolution complexity of a hypersurface
singularity. We hope that this paper will draw the interest of the specialists
on this subject.

1. Choice of good coordinates

Let f(x, y) be a complex analytic function of two variables defined on an
open neighborhood U of the origin O of C? and suppose that f(0)=0. Let

f(x, 3)= o, pxy?
be the Taylor expansion of f at the origin O=(0, 0). The Newton polygon
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I'.(f; x, y) of f at the point O relatively to the coordinate system (x, y) is the
convex closure of the set

U {(a, B)+RY
Ca, 570

The Newton boundary I'(f; x, y) of f at O is the union of compact faces of
the boundary of the Newton polygon of f at O. Notice that the boundary of
the Newton polygon differs from the Newton boundary by two non-compact
faces parallel to the coordinate axes. For each compact face A of I'(f; x, »)
we define the face function fa by
falx, )= 2 capxy?

(a, prel
In the space R? where the Newton polygon I',(f; x, y) is contained, we call
(u, v) the coordinates. For any linear form P defined by P(u, v)=au+bv, where
(a, b) is a pair of positive relatively prime integers, we define d(P; f) to be
the smallest value of the restriction of P to the Newton polygon 7I'.(f; x, »)
and A(P; f) be the face where this smallest value is taken. For simplicity we
shall write P=%(a, b) and we simply denote fp instead of fae,;. Thus fp is
a weighted homogeneous polynomial of weight ‘(a, b) and degree d(P; f). For
each face A of dimension 1 there is a unique linear form P defined by the
weight vector ‘(a, b) of positive relatively prime integers such that fz=f, and
furthermore we have a factorization of fj,:

k
falx, )=cx"y* II (y* —7.x°)"
1=1

with d(P; f)=C3.vi)ab+ar+bs. We shall call P=%a, b) the weight vector of
the face A.

There is a finite number of faces of dimension 1 in the boundary of the
Newton polygon (notice that two of these faces are non-compact and parallel
to the coordinate axes). We order the compact faces A, (1</<m) of weights
P,=%a,, b;) by the slopes —a;/b; of the lines which contain them. We index
such that —co<—a,/b;< -+ <—an/bn<0. The case m=0 means that the
Newton boundary has one point, which means that f(x, y)=x"y*u(x, y) where
u(x, y) is a unit at O.

A,
4,

An

Figure (1.A) (m=4)
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In the space N* of positive dual vectors, we introduce an equivalence relation
~defined by P~Q if and only if A(P; f)=A(Q; f). The equivalence classes of
this equivalence relation define a conical subdivision of N*. By taking a line
section which does not pass through the origin and intersects N* (e.g. the line
x+4y=1), we obtain a simplex with a simplicial decomposition (in this case, a
segment with a subdivision). We represent this simplex by the segment
[R.., R,] with the subdivision given by the vertices R_., P, -, Pn, Ro. We
call this graph the dual Newton diagram I'*(f; x, y) of f with respect to the
coordinates x and y. In this graph, the vertices correspond to the faces of the
Newton polygon and their names correspond to the unique element in their
equivalence class which is a primitive integral vector. So R_.=‘(,0), P,=
Ya,, b)) (1<i<m) and R,=%0, 1). The edges correspond to the vertices of the
Newton boundary. Because of its particular shape, this graph is called a bamboo,
i.e. a tree without branches, linking R_.. and R, through P, -+, P,. Let

kl
fex, y)=cxTys i I[ (¥ —7,,,x%0%0, =1, -, m
J=1

DEFINITION (1.1). We say that the coordinate x is bad for f at the point
O if the first face function fp satisfies one of the following conditions.
(1) mz1 and fp(x, ) is of the form ¢,y°1(y*1—7, 1200t e, =0, A=
‘(ay, 1) and k,=1.
2) m=1and fp(x, Y)=ci(y—71,1 X)L 1(y—71,2)22 i e, ri=5=0, P,="1,1) and
ky=2.
Similarly y is called bad if the last face function fp, (x, ) satisfies either (1)’
or (2) where
1Y mz1 and fp, (%, yY)=cux"™(y—7m x"m)'m1 ie., sn=0, Pp,=%1, b,) and
kn=1.

We say that the coordinate x (resp. y) is quasi-good for f at the point O if
it is not bad. We say that a coordinate system (x, y)is quasi-good for f at the
point O if both x and y are quasi-good for f. Notice that if m=0, the coodi-
nates ¥ and y are always quasi-good. In case (2), both x and y are bad coodi-
nates.

We will see later that there exists a toric bowing-up z: X—C? which is
canonically associated with the dual Newton diagram [I'*(f; x, y) (see (2.6)).
The corresponding dual graph of the exceptional divisors is a bamboo. Then
x is a bad coordinate if and only if the divisor £(P,) which corresponds to the
weight vector P, intersects at most two irreducible components of the divisor
(m*f) (see Lemma (2.12)).

Remark. In the case that the function f is analytically irreducible at O,
the Newton boundary has only one face and it touches to the both axis and
the coordinate x (respectively y) is bad for f if and only if the slope of the
Newton boundary (resp. the inverse of the slope of the Newton boundary) is an
integer.
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DEFINITION (1.2). We say that x is good if x is quasi-good and one of the
following condition is satisfied.
(i) m=0 or (ii) m=1 and b,>1 or
(iii) m=1, b =1,

ky
fr(x N=cxTyt T (%=, (=1

and for any change of coordinates x'=x—y1}y%1+A(y), y'=y with 1<;<k,
and val h>a, such that x’ is a quasi-good for f/(x’, y/):=f(x'+7r1}y *1—h(y"), y'),
the number of compact faces of I'(f’; x’, y’) is m.

Similarly we say that y is good if y is a quasi-good coordinate and

(i) m=0 or (ii)Y m=1 and a,>1 or (iii)y m=1, a,=1 and

k’”L
frp(x, =cnx™my*m I (y—7m,,x'm)10  (an=1)
7=1

and for any change of coordinates x'=x, y'=y—y, ,x’n+g(x) with 1<;<k,
and valg >b, such that y" is a quasi-good for f'(x’, y'):= f(x', v +
Tm,,x'?m—g(x’)), the number of compact faces of I'(f’; x’, y’) is m.

If both x and y are good, we say that (x, y) is a good system of coordinates.

As the coordinate change of type (iii) in definition (1.2) does not change the
other part of the Newton boundary I'(f; x, y)N\{u=r} =\UJ%, 4,, the condition
(iii) implies that the face A, does not split into more than two faces.

We will see later that x is a good coordinate for f(x, y) if and only if
(ry, k)#(0, 1) and for each ;=I1, .-, k, there exists analytic functions A;(y)
with val h,>a, such that (x—7y75y*1+h,(y))’ts divides f(x, y) (see Sublemma
(1.9)). Geometrically this implies that the function m=*f has only normal cross-
ing singularities on the exceptional divisor E(P,) (Lemma (2.9)).

Example (1.2.1). We give two basic examples.
(A) Let us consider the case

flx, y)=(x+y)*+x%y

Then the Newton boundary has only one face and the corresponding face func-
tion is
fe(x, y)=(x+y%?

As is easy to see, x is not even a quasi-good coordinate for f. We will see
later that C is irreducible but the strict transform of C on the total space X
of the toric blowing-up has a cusp singularity at the intersection with the ex-
ceptional divisor. To give an example of a curve C={k(x, y)=0} for which x
is a quasi-good but not good coordinate, we can simply take k(x, y)=f(x, y)-
h(x, y) where I'(h; x, y) does not have any face whose slope is equal or sharper
than —2. Namely we assume that
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he(x, y)=x2y*  for any P=Xp, ¢), p/g<—2
As an easiest example, we can take A(x, y)=x and let
k(x, y)=x(x+y")"+x'y
Then the Newton boundary has only one face and the corresponding face func-
tion is
kp(x, y)=x(x+y"

Thus it is easy to see that x, y are quasi-good coordinates for 2. However x
is not a good coordinate. In fact, take the change of coordinate:

7

=x4yt, Y=y
Then in this coordinate, f is written as
k'(x’, y/)_____.(x/_y/Z)x/z+(x/_y/2)4y/

Now ['(k’; x’, ') has two compact faces and the face function of the first
face is

klP,l (xl, y/):y/Z(_x/2+yl7)
Thus it is easy to see that x’ is a quasi-good (in fact a good) coordinate. Thus

x 1s not a good coordinate by the definition. For the geometrical interpretation,
see Example (2.10.1).

1 .
AN
3

1 4

Figure (1.2.1.A)

(B) Let us consider the function
g(x, y)=(x+y)(x—y ) x—y>+y*™)

The Newton boundary has only one face and the curve g(x, y)=0 has three
irreducible components. Note that
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gr(x, y)=(x+y*)(x—y?)*
It is obvious that x is a quasi-good coordinate for g. We assert that x is not
a good coordinate. In fact, let
x/:x_yz , /:y
and let g’(x’, y'):=g(x’+y’% y’). Then I'(g’; x’, ) has two faces and the
first face has the weight vector P'=¢2+m, 1) and
g'(x", y=x"(x"+2y"*)(x'+y"*"™)
gh(x', y)=22"y (2 +y' ™)
gp (', y)=x"(x"+2y"%)
x’ is obviously a quasi-good coordinate for G. In fact, it is also a good coordi-
nate for f/ by Sublemma (1.9) as x’+y’**™ divides g’(x’, y’). Let n: X—C?
be the canonical toric blowing-up with respect to (x, y). Then the strict trans-
forms of the irreducible components x—y*=0 and x—y*+y?*™=0 are smooth

but they intersects with intersection multiplicity m at the point where they
intersect transversely with E(P,).

Figure (1.2.1.B.)

See also Example (2.10.1). Let h(x, y) be as in (A). The same assertion is
true for

k(x, y)=(x+y")x—y*)(x—y*+ > ™h(x, ¥)

We have the following fundamental lemma:

LEmMMA (1.3). Assume that x is a bad coordinate for a given f(x, y) as above
and assume that

fe(x, y)=c1y* (y*1—11,1%)11

Then there exists an analytic change of coordinates (x’, y’):
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x=xFyi R, =Y

where h(y’) is a germ of an analytic function of y’ with val h>a, so that x’ is
a quasi-good coordinate for f'(x’, ¥')i=f(x"+riiy’*t+h(y"), ¥'). Here val is
the valuation of the corresponding series. Furthermore if y is quasi-good for
f(x, v), ¥ is also quasi-good for f'(x’, ¥').

The similar assertion is true for the coordinate y if y is a bad coordinate.

COROLLARY (1.4). For any given f(x, y), there exists an analytic change of
coordinates
x=@(x1, y1) y=¢(x1, y1)

where (x1, v,) 1s a quasi-good coordinate system for fi(x1, y1)=rf(p(x1, y1), (%1, 1)).
Furthermore if x (resp. y) is already quasi-good we can choose this change of
coordinates such that x=x, (resp. y=y).

Proof of Corollary (14). Assume that x is a bad coordinates. If x is as
in Lemma (1.3), we apply Lemma (1.3). If x is bad and the condition (2) is
satisfied in Definition (1.1). Namely assume that m=1 and fp(x, y)=
ci(y—711x)11(y—71,.x)12. Then we first take the coordinate change

'=y—7ri1%, Y =Y—T1.2X

If either x’ or y’ is still a bad coordinate, we come to a situation as in Lemma
(1.3). If x’ or y’ is bad, we apply Lemma (1.3) (twice if necessary). This
proves the assertion.

Proof of Lemma (1.3). Suppose that x is a bad coordinate and we may
assume
frx, )=cy*(y*—rx)

for convenience. Note (v, s)&/'(f; x, y) be the first interior vertex of the
Newton boundary I'(f; x, ). (The first interior vertex of the Newton boundary
which has the minimal positive u-coordinate.) We first consider the change of
coordinates:

x=x'477y (), y=y

Here h(y’) is any germ of an analytic function of y’ with val A>a, where val
is the valuation of the corresponding series. Let

J/& 9= f 7y (), 3)

ASSERTION (1.5). The intersection I'(f'; x’, v )N {u=y} equalsto I'(f; x, y)
N{uzv} and fL (%', y)=Ffalx, ¥) for any i=2, -, m. In I'(f'; %', y)N{u=y},
either there are mno faces or any new face is sharper than A,. Let (v, s’)E
L'(f"; x’, ') be the first interior vertex. Then v'<y. If y 1s quast-good for
f, ¥’ is also quasi-good for f’.
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Proof. Let P=Yp, gyN* be a dual vector. Then we have
Fe(x!, y)=(f(x"+7ry"*+ ("), y)p
HRLSERY if p/g<a
_{ fe(x'+y=ty’e, y)=cy”x” if p/g=a

Thus, for any dual vector P=p, ¢) such that p/g<a, we have A(P; f)=A(P; [’)
and fp(x’, y)=fp(x, y). This proves the first assertion. Assume that y is
quasi-good for f. Then we have to show that y’ is also quasi-good. If the
number of faces in the Newton boundary m is greater than 1, y’ is obviously
quasi-good for f’ by the above argument. Assume that m=1. Then fp(x, ¥)
=cy*(y*+rx)*. In this case y is bad if and only if s=0 and ¢=1. If y is
quasi-good and s>0, it is easy to see that y’® divides f’, so y’ is also quasi-
good for f’. If y is quasi-good and s=0, we must have a>1. By the above
argument, ['(f’) does not have any face with the corresponding covector P=
Yp, g) with p/g<1 and y’ is quasi-good for f’. Thus in any case, the coordi-
nate function y’ is quasi-good for f’. This proves the above assertion. Q.E.D.

Now we use the preceding assertion to prove Lemma (1.3). Let g and &
be germs of analytic functions at the origin such that the ideal (g, i) generated
by g and A has a finite codimension in the ring of germs of analytic functions
©. Recall that the intersection multiplicity m(f, g; O) of {g=0} and {h=0} at
the origin is defined by dim ©/(f, g).

Let

S={ge0o; g(x, y)=x—7"'y*—h(y), val h>a}
In the above notation, we have:
m(f, x; O)=dim 0/(f, x)=val f(0, y)=s+av=d(P,; f)
m(f, x—r~'y*—h(y); 0)=dim 0/(f, x—r'y*—h(y))
=val f(r~'y*+h(y), ¥

>s+ay.
Thus we have

m(f, g; 0)>m(f, x; 0) for any gES.
We consider the change of coordinates:

H=X—=77Y =y
and let
f1(xy, y0)i= fx4+r7"9%, )

Call this change of coordinates the canonical change of coordinates. If x; is not
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quasi-good for f,, we take the canonical change of coordinates (x,, y,) and we
continue this operations. Note that a finite composition of canonical changes
of coordinates is a change of coordinates of the form:

xzx/_'_r—ly/a_}_h(yl) y:y/

as we have used in the above assertion. Thus we have two possibilities.

(a) There exists a j, such that x,, is a quasi-good coordinate for f, (x,, v,,).

(b) For any ;>0, x, is not quasi-good for f,.

In the case of (a), we can simply take x'=x,, y'=y,. Note that i(y) is a
polynomial in this case. In the case of (b), the first vertex of the Newton boundary
which we denote by (v,, s;) does not change after some 7,>0, so we may
assume that v,=v,,, and m(f, x,,.)>m(f, x;) for any ;. In particular, this
implies that sup,es m(f, g)=co. So, we assert

ASSERTION (1.6). Assume that supges m(f, g)=oo. Then there 1s a g(x, y)
e S such that g|f.

Assuming this assertion, we take x’=g(x, y) and y’=y to complete the
proof.

To prove the last assertion, we consider the intersection multlplicity. Let
f=kT1-.- kIs be the factorization in the ring @ of f into irreducible functions.
First by the linearity of the intersection multiplicity, m(f, g)=33%-, r.m(k,, g).
So if sup,es m(f, g)=co, thereisi, 1<i<s, such that sup,es m(k,, g)=c. Then
using the Puiseux expansion of %, and the equality

m(k,; x+77 'y Fh(y)=val R (=77'y*—h(y), ¥),

it is easy to see that sup,es m(k,, g)=co if and only if in the complete ring ¢
of formal power series, there is an element g of S (which is necessarily irre-
ducible in @) which divides k,. But being irreducible in ©, %, is irreducible in
its completion @. Therefore {k,=0} is non-singular and &2;€S for some unit
& in ©. Namely there exists a g=S such that g divides f. Q.E.D.

This completes the proof of Lemma (1.3).
Now we extend Lemma (1.3) for good coordinates.

LEMMA (1.7). Assume that x is a quasi-good coordinate which is not good
and assume that fp(x, y):clx”y*ll'[féz (y*1—7,,x)v9.  Then there exists a
(1< k) and a coordinate change (x’, y'):

x=2470hy" A, y=y

with val h>a, and x’ is good for f/(x’y’):i= f(x'+riyy’*t+n(y’), y'). If y is
good, y' 1s also good. A similar assertion is true for y coodinates.
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COROLLARY (1.8). For any given f(x, y), there exists an analytic change of
coordinates

x=@(%;, y1) y=¢(x1, y1)

where (x,, y1) s a good coordinate system for fi(x., y)=f(p(x1, y1), ¢(x1, y1)).
Furthermore if x (resp. y) is already good we can choose this change of coord:-
nates such that x=x, (resp. y=y1)

To prove the assertion for the good coordinates, we first prove the follow-
ing criterion for the goodness.

SUBLEMMA (1.9). Let fp(x, y):clx"lyslﬂfél(y“l—rl,Jx)"l-J. The coordinate
x is good if and only if (ri, k)#(0, 1) and for each j=1, .-, k, there exists
analytic functions h(y) with val h,>a, such that (x—yi}y*'+hi(y))7 divides
f(x, ).

Sublemma (1.9) and Lemma (2.9) give a geometrical interpretation for the
good coordinate.

Proof. Assume that x is good. Let x'=x—pi4y*, y'=y and let f'(x’, y):
=f(x'+7.,,'*1, y). As in the proof of Assertion (1.6), we can see easily that

k1 k1
ris w, yonfuzrnt Zuof=I5 5 nfuznt Zn.).
7=1 7=1
Obviously fp(x, y) changes as
[, (%, y’)=(x’+r15y’“l)"y"*x’”!-flI;I (A=rat)y 1 =1 x )Pt
7

As x is assumed to be good, ;>0 if £,;=1. Thus f}; is not a monomial. Let
A{ be the support of this polynomial. If I"(f’; x’, ¥y )N {u<v,, ;} =0, this implies
that x’*1.j] f’ and the assertion is proved. Assume that I'(f’; x’, ¥y )N {u=y,, ;}
contains faces. Let them Aj,, ---, Al ;. Thus Af,, -+, A, Al and A,, -, A,
is the faces of I'(f’; x’, y’). By the goodness of x, x’ is necessarily not quasi-
good. Thus we can write

fz'.\i.l(x', Y)=c' Yy (Y =)
Note that a’>a,. Using Lemma (1.3), we can take a coordinate change
x//:x/_T/-ly/a’+h(yl), y//zy/

so that x” is a quasi-good coordinate for f”(x”, y”):= f/(x”+yr " 'y"*1—h(y"), y")
and the faces Aj,, -+, A, Al A, -+, A, are unchanged under this change of
coordinates. Again by the goodness of x, this is possible if and only if t=1
and I"'(f”; x”, y")N{u<y, ;} =0. This implies that x”*1.j|f. As we can write
x"=x—riyy*1+h'(y), y"=y with val i’>a,, the necessity is proved.
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Now we consider the sufficiency. Assume that for each ;=1, ---, k,, there
exists some h, with val 2,>a, such that (x—y7}y*1+h,(y))1s divides f. Let
X=x—r7}y%1+hi(y), Y=y and let FX,Y):= f(X+ri¥Y*1—h,Y), Y). The
assumption implies that ['(F; X, V)N {u<y,;}=0. Note that the Newton
boundary I'(F; X, Y) is same with I'(f; x, y) for u=r,+3% v,,, and

Fp (X, Y)=c(X 4775V )"y X0 TL (=70, a1 p)Y ©1 =1, X

l#)

Now let x'=x—yr}y%+@(y), y’=y be an arbitrary change of coordinates with
val¢>a,. Then the following assertion shows that x is a good coordinate
for f.

ASSERTION (1.9.1). Assume that x’ s a quasi-good coordinate for
Fr(x, y) = f 41y —=6(), ¥")
Then ¢(y)=h,(y") and x'=X.
Proof. It is easy to see that x'=X—h;Y)+¢(), y'=Y. Thus we have
', 3)=F(x'=hi(3)+$(3"), )
Let ¢(»"):=@(y)—h,(y’). Assume that ¢+0 and let
d(y")=7'y’* +(higher terms)
and let P=%a’, 1). Note that a’>a,. Thus it is easy to see that
fox’, y)=Fp (X' +7'y'"", ¥ Ne=ci(x’+7 y* Y11y"

with &=s;+a,(*1+>4,v1,;). Thus x’ is not quasi-good which is a contradiction.
Therefore if x’ is quasi-good for f’, then x’=X. Q.E.D.

Proof of Lemma (1.7). Assume first that x is quasi-good and let
Fax, =iy (%=, 9
Assume that x is not good. By the definition, there exists a coordinate change
' =x—1i4y" 1 +d(y), y=y
for some ; and ¢(y) with val ¢ >a, such that x’ is quasi-good for
frxly )= fx" 1" =), )

and in I'(f’; x’, ¥') A, splits into more that two faces in I'(f’; x’, y’). If x’
is not good, we continue this operation. Such an operation strictly increases
the number of faces of the corresponding Newton boundary and only the first
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face A, is changed into several faces. Note that the u coordinate of the right
end of the first face A, is strictly decreasing under this operation. Thus this
operation stops after finite steps. Namely we obtain a quasi-good coordinate
system (x,, y,) where x, is good. The composition of such changes of coordi-
nates is again a quasi-good coordinate change which we are considering: x,=
x—riyy*1+h(y), y,=y with val h>a,.

Now assume that y is good from the beginning. We have to show that y,
is also good. Let fi(xi, y.):= f(x:+7riyy$—h(yy), 1) and let

km
[on(%, Y)=cnxTmym IL(y*m—{mp, ,x"m)m s
7=1
Note that
Cnx Imyim I (y4m— 7, XimPms, m>1
fl,Pm(xl, V)= .
(X y i) iy (A =70rTDy S =10, m=1

If a,>1, v, is good by the definition. Assume that a,=1. By Sublemma (1.9),
for each 1<i<k,, there exists h,(x) with val h,>b,, such that (y—7y, x’n+
h(x)ymt| f(x, y). Let x"=x, y'=y—Tm x’m+h(x). As x;=x—7.,y*14+(y)
and y,=y, we have

x'=x+rnsy P —h(y)

V'=y—=Tm X +hy(x)

=y Tm X+ P — () R 7Ty —h(yy)
{ Yi—Tm Xm0 (%, Y1), m>1
(l—Tl,lTI—,l.i)yl_Tl,Lx1+h'(x1, Y1), m=1,

where val h’>b,. In the case of m=1and ¢,=1, P,="'(1, 1). By implicit func-
tion theorem, there exists an analytic function H(x,) with val H>b,, and a unit

U such that

UX(31=—7m, 1 Xim+H(x1)), m>1
V'=y = m X m+h(x)=
UX((A=7110759) 91— 1106 +H(x1), m=1.

Thus by the assumption we see that
Wi=Tmaxim+H(x))ym ] f1(x1, Y1), m>1
((A=707T Dy i— 1% FH (x )P0 L fo(%1, y1), m=1, P='l, 1).

Thus by the above expression of fi p,(x;, y) and Sublemma (1.9), y, is also
good for f. Q.E.D.

COROLLARY (1.10). Let f(x, v) be a given germ of function. Then there
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exists a change of coordinates (x,, y,) which 1s a good coordinate system for

fi(xy, y0).

2. Non-degenerate plane curves

Consider as above a complex analytic function f(x, y) defined in a neigh-
borhood of O. We define (cf. [K], [V], [O1]):

DEFINITION (2.1). Let A be a compact face of the Newton boundary of the
function f. The function f is non-degenerate on A if the quasi-homogeneous
function f, has no critical point in the torus (C*)®. The function f is non-
degenerate in the system of coordinates (x, y) if, for any compact face of
its Newton boundary, the function f is non-degenerate on this compact face.

Let 4A,, -+, A, be the faces of I'(f; x, y) and let P,=%a,, b,), -+, Pn=
‘(an, bn) be the corresponding weights. Let P,=%(a,, b;) and

ka
fAl(xy y):fPi(x) J’):sz”ysi H (yal_‘Tz.bei)vi"
=1

where ¢,, 7.1, ***, 7.,» are non-zero complex numbers and vy, -+, vy, (€SP,
r, and s,) are positive (resp. non-negative) integers and 7,.;, -+, 7., » are assumed
to be mutually distinct. Then f is non-degenerate on the face A, if and only
if vi 1= =v;s,=1. This can be proved easily using the Euler equality:

d(Py; /)fpx, y)=?¢%’3<x, y)+yaaL;’(x, y)

Now it is convenient to introduce the following notion of quasi non-degeneracy
which is motivated by Sublemma (1.9).

DEFINITION (2.2). We say that f is quas: non-degenerate if for any 7, j
with y; ,>1, there exists a germ of analytic function k, ;(x, y) with d(P,; h, ;)
>ab; such that (y*r—7y, ,x%+h, (x, y)&.s divides f(x, ).

We will show later that if f is non-degenerate, f is also quasi non-degenerate
(see Lemma (2.8) and Lemma (2.9)).

The non-degeneracy of a function depends on the choice of coordinate, but
we shall observe in Corollary 3.13 that the quasi non-degeneracy does not de-
pend on the choice of good coordinates. However, for a reduced function germ
f, the notion of non-degeneracy is also independent of the choice of good
coordinates.

In connection with quasi-good coordinates we have the following Lemma:

LEMMA (2.3). Suppose that f is quasi non-degenerate (resp. non-degenerate)
with respect to the given coordinates (x, v). Assume that x i¢s a bad coordinate
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for f and assume that
frp,=c1y* (y%1—7,, 211 (vi1=1 if f is non-degenerate)

Let x=x,+rhyi +h(y1), y=y, with val h>a, and assume that x, is a quase-
good coordinate system for

filxy, yo)i= fo+rThiy i +h(), 91)

as guaranteed by Lemma (1.3). Then f, is also quasi non-degenerate (resp. non-
degenerate) in the new system of coordinates (x,, y,).
A similar assertion is true for y coodinate.

Proof. Suppose
fp =y (y*r—yy 1 x)0 1

(r;=0 and k,=1) and perform a change of coordinate using Lemma (1.3):
x=x+r7hy{+h(3,), y=y:,  with valh>a,
so that x, is quasi-good for fi(x,, yi):= f(x:+rihy T +h(yy), y1).

SUBLEMMA (2.3.1). Assume that v, ,=1. Then x, 1s quasi-good for fi(x;, y,)
if and only if x, divides f(x,, y1).

Proof. Sufficiency is obvious by definition. Therefore we prove that the
condition is necessary. Note that the first interior vertex of I'(f; x, v) is
1, sy). Thus I'(f,; x,, ¥,) can have at most one face in {u<l}. If x, does
not divide fi, I'(fi; xi, y,) has a unique face A{ in {#<1} and we can

write fia) (x4, y)=ciy(y*1—7'x,) which shows that x, is not quasi-good for f,.

Assume that f is non-degenerate with respect to (x, y). Then vy, ,=1. By
Assertion (1.5), we have

I'(fy; 2, yoN{uzl}=I(f; x, y)N{u=1}

and fp,(x’, y)=fp(x’, ') for i=2. This observation and Sublemma (2.3.1)
imply that
I'(fy; x, yoN{uslt={Q1, sy}

so f; is non-degenerate with respect to (x,, ¥;). This proves Lemma (2.3) if f
is non-degenerate.
It remains to consider the case f is quasi non-degenerate. We need:

ASSERTION (2.3.2). Assume that (x—yy*—+h(x, y)) divides f(x, y) where
h(x, y) is a germ of an analytic function with d(P;h)>a and P=%(a, 1). Then
there exists a germ of analytic function h’(y) such that val h’> a and (x—yy*+
h'(y)) divides f(x, y).
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Proof. By the implicit function theorem, we can find an analytic function
h’(y) so that

x—ry*+h(x, y)=UX(x—ry*+h'(y))

where U is a unit with U(0, 0)=1. As we have

x—ry*=(x—7ry*+h(x, y)p=Up(x—73*+h"(y))r
and Up=1, we have
(x—=ry*+h'(YNp=x—7"

This implies that val A’>a and (x—7y*+h'(y))* divides f.

As f(x, y) is assumed to be quasi non-degenerate, there exists a germ of an
analytic function h,,(x, y) such that (x—7riy®i+h,.(x, y)’1t divides f(x, y).
Thus by the Assertion (2.3.2) there exists a germ of an analytic function Af ,(y)
such that (x—yriy®t+hi ()11 divides f(x, y). Now consider the following
change of coordinate given by:

=x—r7hy%+hi(y) and y'=y

and denote f'(x’, y):= f(x'+rihy’*1—hi (y’), y'). Obviously xu.1 divides
f’(x’, ). Assume that (x,, y,) be as above and assume that x, is quasi-good
for f.(x,, ;). By Assertion (1.9.1), we must have x;=x’ and y,=y’. It re-
mains to prove that f, is quasi non-degerate with respect to (x;, y;). As xju!
divides f,(xi, y:), we have

I'(fy; %, yoN{uzv b = (f; %, y)N{u=vq}

and fp(x1, yo)=fip, (%1, y:) for i=2. Assume that v;,>1 for some ;>1 and
1<j7<k,. Then by the quasi non-degeneracy of f(x, y), there exists a germ of
analytic function h, (x, y) with d(P,; h, ,)<a;b, such that (y*—7, ,x%+
h,, x, y))'es divides f(x, ).

As (x,+77hy$t—h(y))p,=x:, We have

yor—7,,x%% 4k, (%, ¥)=y5 =71 (T P = (Y )Ry Ty S —R(0), Y1)
=y%—7,, ,x0+h" (%1, y1)

where d(P,; h')>a;b;. Therefore (y$1—y, ,x3+h'(x,, y,))*%7 divides f,(x,, yi).
Thus f, is quasi non-degenerate with respect to (x;, y,). A similar proof works
for the coordinate y. Q.E.D.

The Lemma (2.3) implies:

COROLLARY (2.4). Suppose that f is quasi non-degenerate (resp. non-degene-
rate) with respect to the given coordinates (x, y). Then there exists a change of
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coordinates (x,, y,) so that f is quasi non-degenerate (resp. non-degenerate) in
(%1, ¥1) and (x4, ;) is a quasi-good system of coordinates of f.

Proof. First assume that both coordinates x and y are bad under the con-
dition (2) of (1.1), i.e. we have

fe (%, Y)=c(y =111 X0 (Y —T1,X)"02

where vy, ,=v; ,=1 if f is non-degenerate.
Assume first that f is non-degenerate. So we have v, =y, ,=1. We first
take the coordinate change

X'=y=711%, Y =Y—T1:X

Then f’(x’, y'):= f(x, y) is automatically non-degenerate with respect to (x’, y’)
and we come to the situation as in the condition (1) of (1.1). Applying Lemma
(2.3) and Sublemma (2.3.1), we find coordinates (x,, y,) such that f, is simply
the monomial cx,y, and is therefore non-degenerate. (In particular f has a
normal crossing singularity at O.)

In the case f is quasi non-degenerate, we take the coordinates

Xi=y—r11x+h (%, y) and yi=y—71.x+hy(x, ¥)

where h,,, h; ., are chosen so that (y—7i,:1x+h, (x, y))'1.1 divides f, (y =714+
hy(x, y)yrre divides f and d(P; h,.)>1 for =1, 2 with P=%1,1). Then f,
becomes simply the product c¢,x%t.1y%.2 and f; has a normal crossing singularity.
Now assume that the coordinate x is bad under the condition (1) of (1.1), then
we can apply Lemma (2.3) to obtain a quasi-good coordinate (x,, y,) in which
f1 is quasi non-degenerate (resp. non-degenerate). Similarly we do the same
reasoning for the coordinate y. Q.E.D.

LEMMA (2.5). If (x, y) is a quasi-good coordinate system for a function
f(x, v) and assume that f is non-degenerate (resp. quas: non-degenerate) in this
coordinates. Then the system of coordinates (x, y) is also good for f.

Proof. We may assume that f has not a normal crossing singularity at O.
As the non-degeneracy implies the quasi non-degeneracy by Lemma (2.8) below,
we may prove the assertion in the case f is quasi non-degenerate. Let

k1
o, =et iy LM =, 2
7=

If b,>1, the assertion follows from the definition. Assume that b,=1. As x
is quasi-good, either (a) »,>0 or (b) »,=0 and k,>1. In any case, r,+k,=2.
By the assumption, f(x, y) is quasi non-degenerate. Using Assertion (2.3.2),
we can take a germ of analytic function hj (v) such that val h{ ,(y)>a, and
(x—r5hy*1+hi (y)yr divides f(x, y). Let
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X=x—1ihy*1+hi(»), Y=y

and let F(X,Y):= f(X+riyY*1—h{ Y), Y). Then X, divides F(X,Y). Let
X'=x—rihy"i+h(y),  y'=y

be an arbitrary change of coordinates with val hA>a,. Let f/(x’, y):= f(x'+
riyy’*1—h(y’), y’). Assume that x’ is a quasi-good coordinate for f’. By As-
sertion (1.9.1), this implies that x’=X. This implies that x"*1.7 divides f’(x’, y’).
Therefore x is good by Sublemma (1.9). The same argument applies for y.
Q.E.D.

(2.6). Now we recall the definition of a toroidal modification. We have
already introduced the dual Newton diagram /"*(f; x, y) and we have identified
it with a subdivision R_., P, ---, P,, R, of the segment [ R_., R,]. For con-
venience, we denote Pp.=R_, and P,.,=R,. Assume that

da(R,Pngda(;’ i:»>1.
We use Lemma (3.6) of [O3] to obtain a unique regular subdivision [P, P, i, -,
P, P..;] so that det(P,,, P, ,..)=1 for 0</<m and 0<;</, (where P, ,=P,
and P, ;,.,=PF,,;). Thus we obtain a canonical regular simplicial subdivision
S¥(f; x, y) of I'*(f; x, y). Let “a,,. b;; be the unique primitive integral
weight vector in the class represented by the point P, , (we identify the point
P, , and the unique primitive integral vector contained in it) and let

(a4t a0 540)
a,,,

for any (7, ) such that 0<:<m, 0<57<!, except (7, 7)=(0, 0) and with the con-
vention (7, —1)=(—1, I,_,). This subdivision has the following properties: the
number m, , is a positive integer for any (7, j) such that 0<;<m, 0<;</, and

7

m,,,=2 for 0<:<m, 1<7</,. In particular, only m,, (z=1, -+, m) can be pos-
sibly 1. Let

_(* B

o~(r p

be a unimodular integral 2X2 matrix. This matrix defines a birational morphism
T,: (C*)? —> (C*)?

by mo(x, v)=(x*y#, x7y%. If the integers a and 7 are non-negative, this map
can be extended to the axis {x=0}. Similarly if the integers 8 and 0 are non-
negative, this map can be extended to the axis {y=0}. Because of the uni-
modularity of the matrix ¢, the map =z, is in fact an analytic isomorphism.
Note that if 7 is another unimodular 2X2 matrix

Mg =T o and (ﬂ-’a)—l: To-1



18 LE DONG TRANG AND MUTSUO OKA

For each segment 3, ;=[P, , P.,.:] and the corresponding unimodular matrix

“— Q. Qy, 541
7= Gl )
i, 7 T, 741

we associate a two dimensional affine space C7, , with coordinates (xq,, ; Yo, ;)
and the map

. 2
Ty, C

5., —>C*.
We use the maps 7,, , to build-up a non-singular algebraic variety X as follows.
First we consider the disjoint union \,,, C%, | and the variety X is the quotient

of this union obtained by identifying points (x,, ;, ¥4, JEC3, , and (%4,,,, Yo,,,)
€C;, , if and only if the birational map z,;1,, , is defined at the point (%, ;, ¥s,, ;)

Okl
and

”a,zllu,;,j(xoi,jy yai,j):(xak,p yak, l) .

Again by the unimodularity of the above matrices, X is non-singular. The maps
{ns, ;} glue into a proper birational algebraic map =: X—C".

DEFINITION (2.7). The map = is called the toroidal modification associated
to (the canonical regular simplicial subdivision X*(f; x, y) of) the dual Newton
diagram I'*(f; x, y) ([V], [03, 4]).

Note that we only consider regular toroidal modification. In the sequence
when we speak about the toroidal modification associated to (x, y), we implicitly
deal with an analytic function f and we mean the toroidal modification asso-
ciated to the canonical regular simplicial subdivision X*(f; x, y) of the dual
Newton diagram I'*(f; x, ¥).

One can check that each vertex P, , with 0</<m, 0<7</, except (7, /)=
(0, 0) defines a component of the exceptional divisor of = which we denote by
EP, ,) and which is a non-singular rational curve. In the coordinate chart
C:, ., E(P,,) is defined by x,, ,=0. Actually we have

E(P, )=(C?

93,5

Mgy, =0DU(CE, N ey, =00

By analogy we denote by E(P,) and E(P,.,) the non-compact components

E(P)=C2 Mgy =0, E(Pui)=C2\ N{day, =0}

%00

which are isomorphically mapped on the axis {x=0} and {y=0}. The self-
intersection numbers E(P, ;)* can be easily computed by the well-known property
(see for example [La], Theorem (2.6)):

(x*(x))- E(P,, =0

where (7*(x)) is the divisor associated to the function #*(x)=x.m. Note that
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(m*(x))= lEJ) a, ;E(P, )+ E(Py)

Therefore we can see that E(P, ;?=—m,,, (see [02, 3]).
On the other hand, in the chart C7, , the restriction of the function z*f is

given by:

ka
2.7.1) w*f(xg,, y.,l,0)=clxé’i‘,’;“”yfﬁ’§iv"“(JI;Il(yai,o—rz,j)”i»1+xai,oyai,oqf)
kq
(2.7.2) wm*f(xq,, y.f,.,,)=clx§i‘,§'i’““yfi‘,'l’i'l+1'f’(]I=Il(—n.j)“i-1+xai,lya,.,,§lf)
where ¥ is a germ of analytic function. Let

T*f(Xay,ps Yoy, )/ XG0 0D y3He e (6, 1)%(0, 0), (m, 1)

f"i,l(x”i.l’ yﬂi,l)z ”*f(xao,oy yﬂo,o)/ygo(,ﬁi’ l’f) (Z.: Z):(O) 0)
T (Kom, 1 s Yom, 1, ) Xont tntm @, D=(m,ln).

Obviously f,, ,=0 is the defining equation of the strict trar}sform of {f=0}NCZ ,.
So the strict transform of {f=0} only intersects with E(P,), ---, E(P,). E(P,)
(resp. E(Pn..)) is a component of this strict transform if x (resp. y) divides f.

Let C, , be the germ of the curve at the origin which is the image of the
germ of the curve 61,,:: {fo; ) =0at (0, 7, )€C,, ,. Forsimplicity, we denote
the point represented by (0, 7,.,)€C,, , by &.,. In general, C, , is not reduced
and a union of same irreducible components of C= {f=0} with positive integers
as coefficients. The following lemma gives the form of the equations of C,,
and the irreducible components C, , , of C,,:

LEMMA (2.8). (1) Let r be the number of irreducible camponents of C=

{f=0}. Then r=3", k,=zm. In particular, if C is irreducible, we must have
m=0 or m=1 and the Newton boundary touches to the both axis.
2) Let C,,=mn,,,C. 1+ +n.,¢ Cuse,,, where Co 1, -, Coy, , are
distinct irreducible components. Let f, (x,v) and f,, k=1, - t,, be the
defining functions of C, ,and C, ,  respectwely. Then multiplying by a unit of
necessary, we can write as

{ fz.j(xy y):(y‘lz._rl’]xbi)”i,;+hhj(x’ y); d(Pl: hl,j)>aibiyi,1
fona(x, M=% =7, 5000 kth, , w(x, 9), d(P; hy, 0)>abwsi ;0

and ! M., 5 kY4, 5 k=Vi,
Proof. The assertion (1) is obvious. We consider the equality

t1,7
f:Uerlysml]] foss fz,J:Uz,Jk].:-[lf:lle',Jk'k

FAIA
IANA

1sm
1=7=kg
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with U and U, , being units. Let P be an arbitrary weight vector. Then we
have

fP:UPE (fuse, (fl:i)P':(Uz.J)P;i;Ii (fora)pe?®

Thus using the assertion (1), f, , «(x, ¥) is either x or y or (y%r—y, ,x0n)n. b &
+(higher terms). However the proper transform of the curve {(y%r—y,, ,xPr)*i.0. &
+(higher terms)=0} passes through &, , if and only if (A, [)=(, 7). This proves
the assertion (2). Q.E.D.

LEMMA (2.9). The function n*f has a normal crossing singularity at &, ;€
C:.. ., if and only if there exists a germ of a function h, (x, y) with d(P,; h,,,)
>a;b; so that (y*r—7y, ,x%+h, (x, y))%s divide f(x,y). (In the notations of
Lemma (2.8), this implies t, ,=1, n, , =v;,.) In particular if v,,=1, C,, is
wreducible and w*f has a (reduced) normal crossing singularity at &, ,.

Proof. Let

Groi= (Z; Z:i), ab; —a, b;=1

Then by the definition of the mapping =, ,: Ci, —C® and (2.7.1), we have

ylr—7, ,xi=xfP%yin "y, —7.,)  therefore

79{,0 791 0
ka
7"'-*f(x"i,o’ y"iy0)=clxgz‘(fo,i'f)ygi(,lgi' 1J)<]1;I1(y"iro_—T‘vJ')yi’]+x"i’oy”i>o¢(x0i.o’ y”ia0)>
Take
xI:xvi,o’ y/:yﬂi,o—rlvf
as a system of coordinates centered at &, ;&C%, . Note that

7*flez, o=c1x"“”i"f>U1 X (943U, +x'¢h)

where U,, U, are units and ¢ is a germ of analytic function at &, ,, We neea.

ASSERTION (2.10). The function m*f has a normal crossing singularity at
&, , 1f and only if there exists an analytic function h(x') vanishing at x'=0 so
that

YU+ x'g=(y"+x"h(x"))i. iU,
where U, is a unit and h(x’) is a germ of an analytic function at &, ,.
We assume Assertion (2.10) for a while. Assume first that there exists a

germ of a function h(x, y) with d(P;; h)>a;b, so that (y*—7, ,x%+h(x, p))is
divide f(x, y). Then under the same notation as in Lemma (2.8),
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Fo x, 3)=(y%r—71, ;x%4h(x, y)yi
and we can write

THfL 5,y )= x5 (YU
as a function germ at &, , where A’(x’, y’) is a suitable germ of an analytic
function and U is a unit. This implies that

mE (!, )= APy W, U

where U’ is a unit. Thus #*f has a normal crossing singularity at &, ,.
Conversely assume that z*f has a normal crossing singularity at &, ,. By
Assertion (2.10), there exists a germ of function A(x’) so that

n.*fox/d(Pi;f)(y/_i_x/h(x’))Vi,J

This implies that CNM:ui,,L where L:= {y’+x’h(x")=0} and ¢, ,=1. Thus
C. ,=v:;C, , . in the notation of Lemma (2.8). This also implies that f, ,.(x, y)
=y“’—7’z.1x°i+hz,;,1(% y) with d(P,; h, ;)>a.b; and fl,]:.fl;,i:f‘,’l‘ As fo (%, ¥)
divides f(x, y), this proves the assertion. Q.E.D.

Proof of Assertion (2.10). Let g(x’, y)=c x’¢ PN X (y"*w:U,+x’¢). The
sufficiency is clear. Assume that the function g has a normal crossing singularity
at the origin. Obviously x’=0 is a component. Thus we can write g(x’, y’)
=x"%{(x"y’)® where [(x’, y')=0 is the other smooth components. Using the im-
plicit function theorem, we can write {(x’, y)=U,-(y’+h(x’)) with h(0)=0.
Now considering the equality

C,,x/d(Pi;f)UlX(ywi'JUz"f’x/g[)):xla(Uf()}/+/’l(1/)))b
we can easily see that a=d(P,; f), b=v,; , and
Y4 Uy /=y + h(x)}4.3U,

for some unit U,. In particular if v, ,=1, 7*f has a normal crossing singularity
at &, ,. This proves the assertion.

Example (2.10.1). Let us consider the examples considered in Example (1.2.1).
(A) Let
f(x, y)=x(x+y°)*+x'y

Then I'*(f; x, y) has only one vertex P,=%2.1).
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E(Pl.l)
Co Cl.l
E(P)
Figure (2.10.1.A)
For the canonical regular subdivision, we need one more vertex P =%, 1).

In the toric coordinate chart
2 1
o=, P=(] )
we can write
T f(xm ya) xvyu((Va+1)2+xay )

Thus the strict transform is a cusp at (0, —1).
Now we consider the case (B) in Example (1.2.1):

g(x, M)=(x+y)x—y*)(x—y*+ " ™) y+*x*)

Let Ci,= {x+y*=0}, C,.= {x— yz_o}, Cis= {x— yi4y**m=0} and C,,,=
{y+x2=0}. Then the strict transforms Cl , of C1 ., =1, 2,3 are smooth and
intersect transversely with E(P,) and ¢ 1,2 and o) .5 are tangent with the inter-
section multiplicity m. The Figure (2.10.1.B) shows the situation for m==2.

E(Pl.l) Cz.]
Cl-l Cl.z I

Vcn.s
I k E(Py)

Figure (2.10.1.B)

E(Py)

Recall that a map p:Y—V is a resolution of the function f on a neighbor-
hood V of O in C? if:
i) Y is non-singular;
ii) p is a proper analytic mapping and the restriction p:Y —p~'(0)—-V— {0} is
biholomorphic ;
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iii) the divisor (p*f) defined by the pull-back p*f:= fop has only normal
crossing singularities and its irreducible components are non-singular.

It is known that each component of the divisor p~'(O) is isomorphic to P'.
We remark here that the function f need not reduced. To such a resolution
of f, we associate the dual resolution graph G(p) of p in the following way:
let E, (1</<s) be the distinct compact components of the divisor (p*f) i.e.,
Y O0)=\U:, E, and let C , (1<7<t) be the distinct non-compact components of
(p*f). Namely we have (p*f)=>%., mE;+ > njCNJ,. Note that the union of
¢ , are the proper transform of C={f=0}. To each E, we associate a vertex
v;, an edge joining v, and v, if E;NE,#0. The total dual resolution graph
g'(p; f) of f with respect to p is obtained by adding a vertex w, for each C,
and an edge between w, and v; when C,NE;#0. The dual resolution graph
and the total dual resolution graph are in fact trees and in general they are
not bamboos.

Recall that the resolution of the function f in the neighborhood of the
origin is minimal if and only if there is no component of the exceptional divisor
p~}0) with self-intersection number —1 which intersects at most two com-
ponents of the divisor (p*f). In the case of quasi non-degenerate function, we
have:

PROPOSITION (2.11). Assume that the function f s quast non-degenerate with
respect to the coordinates x, y and let w: X—C? be the associated toroidal mods-
fication. Then m:X—C? is a resolution of f near the origin. If (x,y) is a
quasi-good coordinate system, w: X—C? is a munmimal resolution.

Proof. The first assertion results from Lemma (2.9). We assume that
(x, y) is a quasi-good coordinate system and we will show = : X—C? is minimal.
We saw above that the self-intersection numbers of the divisors E(P, ,) is equal
to —m, ,. Furthermore for 0<:/<m and 1<;</, the integer —m, ,<—2 (see
[02], Lemma (3.6) of [03]). Therefore the only components to be checked are
EP, )=E(P,) for 1<i<m. If 2<i<m—1, E(P,) intersects with E(P,_..,_),
E(P, ;) and at least a non-compact component of the divisor (z*f). Therefore
this component E(P,) intersects at least three components of the divisor (z*f).
It remains to consider E(P,) and E(P,). Now we shall see that x and y being
quasi-good coordinates, each of E(P:) and E(P,) intersects at least three com-
ponents of the divisor (z*f). We will see this assertion for E(P). Let

k1
fe(x, M)=cixT1y IL (y*1—7,, , 20010
7=1
Recall that
91,0

k1
PGS, (=axs D ya v T (9, =11, )7 mod (x5 (G yd (Gl
7=1

Assume first that m=2. Then E(P,) intersects with E(P,.;) and %,(=1) non-
compact components Cyy, -+, Cy,, Of (w*f). Either /,>0 (this means det (7, /)
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>1) or [,=0. In the first case, E(P,) intersects with E(Po_lo), In the second
case, we have P,=%a,, 1). x being quasi-good, either 2,>2 or k;=1 and x
divides f i.e., »,>0. If x divides f, E(P,) is a non-compact component of the
divisor (z*f) which intersects £(P;). So in any case E(P,) intersects at least
three components of the divisor (7*f) and for E(P,) we have similar arguments.
Assume now that m=1. If /;=1, the argument above applies. If /,=0, either
=1 or [,=0. If {,=1, E(P,) intersects E(P, ;) and k, non-compact components
Cii, -+, Cix,. » being quasi-good, either k,=2, or y divides f and E(P,.,) is
a non-compact component of the divisor (z*f) which also intersects E(P,). Thus
in any case E(P)) intersects at least three divisors. If /,=[,=0, the map = is
the blowing-up of the point O. This is the case if and only if m=1 and P,=
{1, 1). By the assumption that x and y are quasi-good coordinates, there are
three possible cases: (1) £,=3 or (2) k;=2and x|f or y|f or (3) ky=1 and x| f
and y|f. In any cases E(P,) intersects at least three non-compact components
of the divisor (z*f). Q.E.D.

By a similar argument, we obtain

LEMMA (2.12). Let f be a complex analytic function defined in a neighbor-
hood of the origin in C*. Assume that x (resp. y) be quasi-good coordinate for
f at the origin and m: X—C* be the assoctated toroidal blowing-up. Then com-
pact divisors E(P,) (i=1, -, m—1) (resp. 1=2, ---, m) intersect at least three
components of the divisor (z*f).

Remark (2.13). Another way to state this Lemma and Proposition (2.11) is
to say that, when f is quasi non-degenerate with respect to (x, y) and (x, ¥)
are quasi-good for f, the compact divisors E(P,) (i=1, ---, m) are the rupture
components of the minimal resolution of f in the sense of (1.3.10) in [L-M-W],
because these divisors intersect at least three components of the divisor (z*f)
at normal crossing singularities.

More generally, when (x, y) are quasi-good for an analytic function f, the
toroidal modification associated to (x, y) will be of a particular interest. There-
fore it is reasonable to introduce the following definition:

DEFINITION (2.14). A quasi-good (resp. good) toroidal modification = : X—C*
of f is the toroidal modification associated to the canonical regular subdivision
of the dual Newton diagram I'*(f; x, y) of f with respect to a system of
coordinates (x, y) which is quasi-good (resp. good) for f. Its restriction over
a neighborhood V of the origin is also called a quasi-good (resp. good) toroidal
modification.

3. Resolution Complexity

Let ¥ be a graph which is a tree. Let V(F) be the set of vertices of &.
For any vertex veV(¥), let d(v) be the number of edges meeting at v.
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DEFINITION (3.1). The complexity of the graph o(<) is defined by
o(F):=14+ 3 max(dw)—2, 0).
veV(F)

The graph & is called a bamboo if p(F)=1. The resolution complexity o(p; f)
of a minimal resolution p:Y—V of f at the origin of f is defined by the com-
plexity of the resolution graph 2(p). If f has a normal crossing singularity at
0, p(f)=0 by definition.

Remark (3.2). If g has at least two vertices, it is easy to see that o(¥)
+1 is equal to the number of vertices v with d(w)=1. We call such vertices
the ends of the graph. The definition of the resolution complexity does not
depend on the minimal resolution p:Y —V because any two minimal resolutions
are isomorphic above a neighborhood of the origin. Thus we denote this num-
ber by p(f) hereafter.

Let p:Y—V be a modification at the origin. Namely Y is smooth, V is a
neighborhood of the origin, p is proper and the restriction p:Y —p~'(O)—
V— {0} is biholomorphic. Furthermore assume that the components E,, -, E;
of p~}(0) are non-singular curves.

DEFINITION (3.3). Let é=(E;—\U,. E;) and assume that p*f has a singu-
larity at & which is not a normal crossing singularity. A system of coordinates
(u, v) centered at & is called admissible with p: Y —V if u=0 (or v=0) is the
defining equation of E,. We say that (u, v) is an admissible quasi-good (resp.
admissible good) system of coordinates if it is admissible and v is quasi-good
(resp. good), assuming that u=0 is the defining equation of E,.

Note that u is necessarily quasi-good as u divides p*f.

DEFINITION (3.4). A map q: Z—V is a quasi-good (resp. good) toroidal re-
solution of the function f(x, y) if
(i) the map ¢ is the composition

10 o oy & Xk'ﬁXk_l-* ] 2

of a quasi-good (resp. good) toroidal modification z, and non-trivial quasi-good
toroidal modifications =,: X, —X,., for j, k=j=2 where X;,=Z and =, is the
toroidal modification associated to the function fem,e .- ex, ; and admissible
quasi-good (resp. admissible good) coordinates with the modification 7o - o, ,
(in short we shall call these modifications admissible quasi-good (resp. admissible
good) toroidal modifications).

(ii) the map ¢: Z—V is a resolution of f in a neighborhood of O.

We first prove the existence of a quasi-good toroidal resolution.
Let p:Y—V be a modification at the origin. Hereafter V is assumed to be
a sufficiently small neighborhood of the origin.



26 LE DONG TRANG AND MUTSUO OKA

Denote E,, ---, E; the irreducible components of p~(0). We use the follow-
ing well-known properties (see [La] Theorem (5.9))

FACT (3.5). The modification p 1s a finite composition of ordinary blowing-
ups. In particular, the curves E, are non-singular and isomorphic to the Riemann
sphere P' and there exists an exceptional divisor E, with E?*=—1,

Let f be a complex analytic function defined on a neighborhood of the origin
0. Let C be the proper transform of~C={ f=0} by the modification p: Y -V
and let p-}(O)NC={&,, - , Gt Let C, be the germ of a curve at &, which is

~

defined by C. The germ C, is not necessarily either irreducible or reduced.

Now we assume that p*f has a normal crossing singularity at any non-
empty intersections E;N\E, with 7#). In this situation, we consider the con-
figuration graph G(p) (resp. the total configuration graph G'(p; f)) as follows:

To each divisor E,, we give a vertex v, and a vertex w, to each strict
transform C ;. Two vertices are joined by an edge if the corresponding divisors
has non-empty intersection. The graph obtained in this way is the total con-
figuration graph ¢’(p; f). The graph 4(p) is simply defined by the subgraph
with vertices v;; 1<i<s. It is well known that ¢’(p; f) and G(p) are trees.
If p:Y—V is a minimal resolution of f, the configuration graph ¢(p) coincides
with the resolution graph defined in §2. Let d(v;) (resp. d’(v,)) be the number
of edges meeting at the vertex v, in G(p) (resp. in ¢’(p; f)). We define the
complexity of p:Y—V by the complexity of G(p):

p(p)=14 3 max (3.)-2, 0).

We say that the modification p:Y —V is quasi-effectwe for f if it satisfies the
following condition.

(a) p*f has a normal crossing singularity at any non-empty intersections
ENE, with 7.

(b) The self-intersection number E:<—2 for any E, with ¢'(w,)<2.

In the case of p being a resolution, (b) implies the minimality. A quasi-effective
modification is called effective if the following condition (c¢) is also satisfied.

(¢) p*f has at most normal crossing Singularities on each end component E,
(i.e., E, with é(w,)=1).

LEMMA (3.6). Assume that p:Y —V 1s quasi-effective and assume also that
there is a vertex v, with 0’ (v,)>2. Let m, be the multiplicity of the function
p*f along E,. Then we have the following inequality :

sgmi<2—5'<vl>)<o

Remark. When p:Y—V is a resolution of f, the sum >¥.; m,(2—0'(z,)) is
equal to the Euler characteristic of the Milnor fiber of f at O.
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Proof. Note that any two vertices of ¢(p) can be uniquely joined by a
finite edges as the graph is a tree. We decompose the graph &G(p) into a finite
star graphs in the following way. Let

S={v:eV(9)p)); 0'(v,)23}

Let v;=S. Assume that a vertex v, with 0’(v;)=1 can be joined to v, without
passing any other vertices v,S, then we add this path to v,. The union of
such paths make a star with center »v;. We denote this subgraph by &(v,). It
is immediate by definition that

1) ew)NGwr)=0 if v;#v, and

2) B:=3(p)—\Uses 9(vy) is a disjoint union of bamboos.

For any vertex v, of @, ¢’(/)=2 and it does not contribute the sum which we
are considering in Lemma (3.6). Thus we can ignore the vertices of & for
our purpose. We will first show that

3 m,2—0'(v,)=0.
;€5 (V)
We assume that v, =S and assume that G(v,) has r-branches of respective length
g, . e in G(,). We renumber each vertex from the center as v, ,, .-,
Vtpys 3 Ura, 0, Ur,, and we write the corresponding component by E, ,,
1<i<r, 1<j<p.. See Figure (3.A).

O\ ’ \\“
Q Va1 S
\\
(CRRRG—C SHYS Shi ¥ S - —0
U1,y V2 U Vo Ura  Ure Vr gy
Figure (3.A)

We denote the corresponding coefficient of E, , in (p*f) by m, ,. Let
T O Kr
(P*f)z 2 2 mz.]Ez.j+maEa+D
1=1 y=1

where D is a linear sum of the other components. Let /[=¢’(v,)—r. Note that
[>0. In fact, if G@(p)=&(v,), the vertex v, must intersect with some non-
compact vertex w,. If ¢(p)26(v,), the vertex v, must intersect with some
compact vertex v,, as G(p) is connected. In any case, we have r=0(v,)<d’(v,).
Then the sum which we are considering is
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(3.6.1) 5 m2-§ )= D me gt @r—lme

;€4 (Vg)

The intersection multiplicities of E, , and E, are determined from the equality :

Oz(p*f)'Ez,J:mt,jE%,j+(mz,;—1+m1,1+l)
0=(p*f)Ea= £ m,1+EqD
1=1

where m, ;=mq4, m, ,,.1=0. As E},<—2 for 1<7<p, by the assumption (b),
we obtain

(3.6.2) 2m1,_‘ui§m7,,‘ui—l <mz,pi—2< <m1,,0:ma

Assume first »=0. Then the above sum is obviously negative as 2—0'(v,)<0.
Assume next that »=1. Then [=2 as d’(v,)=3 and by (3.6.2)

émz,pi+(2_r_1)ma:ml,,ul+<1—l)ma§ml,pl—ma<0
1=1
Assume that »=2. By (3.6.2), we have Mg =My, y,+My, 4. Thus we have
TZmt.yi+(2~7—1)ma§ml,‘ul+7n2.p2—ma§0
1=1

If the equality holds, we must have u=p,=1, [=1 and m,=2m, =2m, . If
this is the case, we have

_m1,1+m2,1+E1'D

Mg

EZ= <—1

Now we consider the case that »=3. The 2—r—{)<—(»—1) and

%mz.pi'i"(z—r—l)maé(ml,pl+m2,y2—ma)+(ms, y3+ +mr,p,.*‘(r—2)7nu)
<0 by (3.6.2)

Thus we have proved

SIm2—0' )= 2 > my(2—d'(w;)=0

1=1 ViES v;EV (4 (v3))
If the equality holds, we have that E?<—1 for any v;€8. As E}<—2 for any
v, €3 by the quasi-effectiveness, we get a contradiction to Fact (3.5). Q.E.D.

Now let us recall the Milnor fibration. Let f(x, y) be a germ of an analytic
function with f(0, 0)=0. Then there exist small positive numbers ¢ and §
(0<d<«e) such that f: E(e, 0)—S; is a local trivial fibration where

E(e, 0):= {(x, »); | f(x, »)|=0, |x|*+|y[*=e?}, Si:= {neC; |n|=d}
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This is cailed the Milnor fibration of f(x, y) at the origin O. We denote the
fiber by F(f; O) and its Euler characteristic by X(f; O). It is well-known that
the isomorphism class of the Milnor fibration does not depend on either the
coordinates (x, y) or the positive numbers ¢ and ¢ if they are sufficiently small
and 0<d<e.

COROLLARY (3.7). (1) Under the same assumption as in Lemma (3.6), we
have

3.7.1) Xf 5 0)= DAB* 3 €+ Hm@—30.)
where p~HOYNC={&,, -, &}. In particular, we have

(3.7.2) X(p*f; €)>X(f; 0)

(2) The Euler-Poincaré characteristic X(f ; Q) is positive if and only if f=f%
for some function germ f, which is non-singular at the origin. In this case, we
have X(f ; O)=a and we say that f is quasi-smooth. If f is not quasi-smooth, we
have X(f ; 0)<0 and the equality holds if and only if the singularity is a normal
crossing singularity at O.

Proof. Let %,, be the intersection of E;NE; (if not empty) and fix a
coordinate system (x,, v,) and (x; ,, ;) centered at & and 7, , respectively
for a=1, .-+, ¢, ¢+j. Let B,, and B, be the ball of radius ¢ centered at 7, ,
and &, respectively:

B,,,= {(xi.w Vi) |x1.1|2+|y;,j|2§82}
Bo={(x,, y); | %"+ 1y.]?=¢?}

We also fix a metric on X. Let U be the ¢’-neighborhood of #°'(0). Let W=
UJ., B, ;\J. B, and let F=@p*H)(OnW=1{QeW; f(=(Q)=d} and let F, ,=
FNB,, and F,=FNB,. Let (p*f)=3%-, mE;+24 C,. Here m, is the
multiplicity of the function p*f along E,. If ¢, ¢/, 0 are sufficiently small and
0<0<e’'Ke, by a standard argument we see that
(1) F is diffeomorphic to F(f; O),
(2) F,, and F, are diffeomorphic to the respective Milnor fiber F(p*f; 5, ;)
and F(p*f; &a).
(3) The complement F—\U, ,F, ;—\U, F, is disjoint union of s-components, say
G,, i=1, -+, s, and G, is diffeomorphic to a m-fold covering space over E;
using the projection map p, of a tubular neighborhood of E,:

m-fold

p‘L: Gl —— E: ’ Ei:El_Eim(U]$l Bz.;‘UeaeEz Ba)

By the definition of &’(v;), this space is homeomorphic to P! minus ¢’(v;) disks.
From the decomposition F =, F,;\U. F.\U, G, and the additivity of Euler-
Poincaré characteristics, the equality (3.7.1):
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Xf; 0)= D Xx*; o)+ 2 mi(2—0"(vy))

follows immediately. Here we have used the following facts:

(4) X(p*f; F, )=0 as p*f has an normal crossing singularity at 7, ,.

(B) XUG)=m(2—0'(vy) by (3).

(6) The Euler-Poincaré characteristics of the various intersections G;N\F,, or
G:NF,, , of the above decomposition are zero as they are disjoint sums of S'.

F,,---t

Figure (3.B)

Now we prove the assertion (2) before showing (3.7.2). Assume that p: Y-V
is a minimal resolution of f. Assume that G¢’(p; f) is a bamboo i.e., 0'(v;)<2
for any =1, .-, s. Then 4(v;)’<2 and by the minimality this is the case only
when s=0. This implies either (i) f=f% for some a>0 and f, being non-
singular or (ii) f has a normal crossing singularity at the origin. In these
cases, we have X(f; O)=a or X(f ; 0)=0 respectively. See [O1] for the second
equality. Assume that the singularity of f at the origin is neither quasi-smooth
nor a normal crossing singularity. Then we are in the situation as in Lemma
(3.6). Note that p*f has a normal crossing singularity at &,, 1<a<s as p is
assumed to be a minimal resolution. Thus Z(p*f; &,)=0 and the inequality
(3.7.2) gives

Xf;5 0)=ZXUp*Sf; )+ Zmy(2—0"(vy))
= 3 m;2—6(v;))<0 by Lemma (3.6).
This proves the assertion (2). We come back to the situation as in (1) where

p is a quasi-effective modification. The inequality (3.7.2) follows immediately
from Lemma (3.6), (3.7.1) and (2):

X(f; 0)=ZX0*f; )+ ZmiR—0"w)<X(p*[ ; €a)

This completes the proof. Q.E.D.
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COROLLARY (3.8). Assume that the singularity of [ at the origin is neither
quast-smooth nor a normal crossing singularity. Let (x, y) be a quasi-good coordi-
nates and let ©: X—V be the associated toroidal modification. Then = 1s quasi-
effective and under the same notation as in §2, X(w*f; &, )>X(f; O).

Proof. The quasi-effectiveness follows from Lemma (2.12) and the property
E(P, ;)*)<—2 for any 0<i<m, 1<)<U,.

COROLLARY (3.9). For any function germ f, there exists a quasi-good (resp.
good) toroidal resolution q: Z—V of f.

Proof. Consider first a quasi-good (resp. good) toroidal blowing-up at the
origin z,: X,—V. If n*f has still some singularity &, , which is different from
a normal crossing singularity, we take an admissible quasi-good (resp. good)
coordinate centered at &, , by Lemma (1.3) or Lemma (1.7). The number of
such &, ,’s is not bigger than —X(f; O) by Corollary (3.7). Then we take the
associated blowing-up at &, , and continue the same operation on the upstairs
if necessary. Each tower of the singularities has at most —X(f ; O) steps again
by Corollary (3.7). Q.E.D.

Now we study how the configuration graph and the complexity of the
modification change under the composition of the modifications.

Let f be as in §2 and let =: X—V be the associated toroidal modification
with respect to the system of coordinates (x, y). We use the same notations
as in §2. Recall that we have shown in §2:

PROPOSITION (3.10). (i) The graph of m s a bamboo with m—+ 337, l;-vertices
Vo1, "5 Um,1,, COTTEsponding to the exceptional divisor E(P,,), -+, E(Pp.1,). (P,
=P, if 1,=0 and Pn .,=Pn if 1.=0.) The non-compact divisor E(P,) (resp.
E(P,..) which is the pull back of x=0 (resp. y=0) intersects only with E(P, ,)
(resp. E'(Pl,,,lm)).

We have E(P, ;*<—2 for 0<i<m, 1<)<(, and 0'(v,,0)23 for 2<i<m—1.

@ity If x (resp. y) is quasi-good for f, either l,#0 or [,=0 and 9 (v,,,)=3 (resp.
In#0 or 1,=0 and 0'(wn, o)=3.

(iii) If x (resp. y) is good, the function m*f has at most normal crossing
singularities on the left end divisor E(P,,) (resp. the right end divisor E(Py,.,)).
(iv) In particular, the quasi-good (resp. good) torordal blowing-up is quasi-effec-
tive (rvesp. effective).

The assertion (iii) follows from Lemma (2.12). Now we consider the com-
position of modifications.

LEMMA (3.11). ~(i) Let p:Y—-V be an quast-effective modi fication for f at
the origin and let C be the proper transform of C={f=0}. Let E,, ---, E; be
the components of p~'(0) and let EcE;NC be a singular point of p*f which 1s
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not a normal crossing singularity. Let (u, v) be an admissible quasi-good (resp.
good) coordinate for p*f at & and let w,: Y ,—Y be the associated toroidal blowing-
up. We assume that E, is defined by u=0.) Then the composition p;: pemw,:Y,
—V is a quasi-effective modi fication and the configuration graph G(p,) is obtained
from the disjoint sum of G(p) and G(m,) by joining the vertex v, and the left end
vertex of G(m,).

(ii) Furthermore in the case that p 1s effective and (u, v) is admissible good,
we have the equality: p(p.)=p(p)+1.

Proof. We know that &(z,) is a bamboo. Let Fj, ---, F, be the com-
ponents of #7'(&) from the left and let vi, ---, v; be the corresponding vertices
of G(r,). Let E; be the proper transform of E, (1<7<s) respectively. It is
obvious that Ef, ---, E; and F,, ---, F; are the components of p7'(0). As m,(F,)
={&} and &&E, for j+#i by the quasi-effectivity of p, E;NF,=0. As E, cor-
responds to {u=0}, E; intersects with F,. Thus the configuration graph of p,
is simply obtained by adding the bamboo &(x,) at the vertex v; corresponding
to E,. We assert F,>=FE?%, j+¢ and E;?><E?% The first equality is obvious and
the second equality follows from the well-known fact that (i) =, is a finite com-
position of ordinary blowing-ups and under an ordinary blowing-up whose
center is on a compact smooth divisor D, the self-intersection number of the
proper transform D’ of D goes down by 1 (see for instance [La] Lemma (4.3)
or [O47). Thus p, is quasi-effective. This proves the assertion for the case
that p is quasi-effective and =, is admissible quasi-good toroidal modification.
Assume that p is effective and (u, v) is admissible good. By the effectiveness,
p*f has at most normal crossing singularities at each end divisor E, of 4(p)
(i.e., 0,=1). In particular, E, is not an end divisor. Thus we obtain the equality :
o(p)=p(p)+1. By Proposition (3.10) and the above observation, p¥f has at
most normal crossing singularities on E; with d,=1 and on the right end divisor
F, of ¢(z,). Thus p, is effective. Q.E.D.

Now we are ready to state our main theorem which is an immediate con-
sequence of Lemma (3.11).

THEOREM (3.12). (i) Assume that m,o - o7y is a quasi-good toroidal resolu-
tion. Then mo -+ o), grwes a nummal resolution of f.
(i) Assume that w,° - om, 1S a good toroidal resolution. Then the number
of good toroidal blowing-ups k is equals to the resolution complexity of f: k=p(f).
In particular, the number of good toroidal blowing-ups does not depend on the
choice of the good toroidal blowing-ups.

As an application of Theorem (3.12), we obtain:

COROLLARY (3.13). Let f be a gwen function.
(i) The quasi non-degeneracy does not depend on the choice of a good system
of coordinates.



RESOLUTION COMPLEXITY OF PLANE CURVES 33

(ii) Assume that f is reduced. Then the non-degeneracy does not depend on the
choice of a good system of coordinates.

Proof. Assume that (x, y) is a good system of coordinates for f. Then
by Theorem (3.12), p(f)=1 if and only if f is quasi non-degenerate in (x, y).
This proves (i). Assume that f(x, y) is non-degenerate in a good system of
coordinates. Then f is also quasi non-degenerate. Thus f is quasi non-
degenerate in any good system of coordinates. Assume that (u, v) be a good
system of coordinates. Let f’(u, v):= f(x(u, v), y(u, v)). Then f’(u, v) is quasi
non-degenerate. By the definition of quasi non-degeneracy, for reduced function
germ, f’(u, v) is quasi non-degenerate if and only if f’(x, v) is non-degenerate.

4. Remarks

In this section, we give a few remarks

(I) Non-admissible good coordinates
Assume that we have chosen a finite admissible good toroidal blowing-up

Ts Ts-1 T
X — Xy — o —> X, —> C?

Let py=me - oy X,—C? and let E,, ---, E, be components of p;(0). Let
fsi=p¥f. Let é=(E,—\U,, E,) and assume that f,; has a singularity at &
which is not an ordinary double point. As we have seen in §3, we can take
an admissible good system of coordinates (x,, y,) centered at & such that x,=0
defines E,. The coordinate y, is good by definition but the coordinate x, may
not good, though it is quasi-good of course. Assume that x, is not good. Let
Q,, -+, Q. be the covectors corresponding to the faces of I'(f,; x;, y;) and let

k1
fs.Q,zblxI’yf‘H(xl—hy?l)vjy Q:=%ay, 1)
1=1
Then there exists good coordinate system (x,, v,) so that

Vi=Ye, X1=Xe+7y, ¥51+h(x,, y2)  for some 1=7,<k,

Note that (x,, v,) is not an admissible system of coordinates in the sense of
Definition (3.4). Now the face A(Q,; f;) breaks into ¢ faces (¢=2) and f; g,
changes as
cl(xg+r;y%‘)"y§'x§"°y(xz—(r;—no)y‘él)”f
2#20

Let p:Y—X, be the toroidal blowing-up with respect to I"*(f,; x5, y2). As x1!
divides fs, (xo+7,9$)7* also divide fs(x:+7,,v8!+h(xs, ¥5), 2). Thus p*f; has
a normal crossing singularity near the divisor F, which is the proper transform
of E,={x,=0} (Lemma (2.8)). Let p’=p;°p:Y—C?% Now the configuration
graph ['(p’) is simply obtained by joining the configuration graph I'(p,) and
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['(p) at the vertices corresponding to E, and E(Q,). See Figure (4.1.A). Now
it is easy to see that

4.1) o(p")=p(ps)+2

Thus the above non-admissible good toroidal blowing-up is the composition of
two admissible blowing-ups.

Add to v;

o S S —i—o— --------- —0

Figure (4.1.A)

(II) Finiteness of admissible blowing-ups

To show the finiteness of admissible blowing-ups, we can also use the fol-
lowing argument. Let f(x, y) be as in the section 1. We use the same nota-
tion as in the section 1 or 2. We define the level of degeneracy x(f; x, y) of
f relatively to the system of coordinates x, y by the following:

n(f;x, y)= max (v;,).
1sizm,1s7sk,

(p(f; x, ¥) is assumed to be 0 if m=0). Notice that f is non-degenerate if and
only if n(f; x, y)=1 or 0.

Then we have the following simple lemma.

LEMMA (4.2). Let f be as above. Suppose that (x, y) is a system of quasi-
good coordinates for [ at the point O. Let w be the good toroidal blowing-up of
f in these coordinates and suppose it is a non-trivial toroidal blowing-up. Let &
be a point in the component E(P) of n~'(0O) where the total transform of f has
not normal crossings. Let (x,, y,) be an admissible quasi-good coordinates for the
total transform m*f of f at the point &. Then we have:

2(f;0;x, )>pr*f; & %1, 1)

This inequality may not hold if we take non-admissible good coordinate
system.

(III) A toroidal blowing-up is a finite composition of blowing-ups

We have remarked already that a toroidal blowing-up is a composition of a
sequence of blowing-ups. This fact can be also proved quite elementarily as
follows

PROPOSITION (4.3). Any toroidal blowing-up is a sequence of point blowing-
ups.
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Proof. We assume that we start for the point O which is the origin. Let
2* be a regular subdivision of the dual diagram [R_., R,]. Let m: X—C? be
the corresponding toroidal blowing-up.

First we notice that, if X* is non-trivial, the vertex %1, 1) is among the
vertices of X*. In X* there is a unique pair of vertices (P, Q) such that (P, Q)
is a simplex of X* and, for P=!(a, b) and Q=%a’, b’), a=b and a’<b’. Be-
cause X'* is regular, we have ab’—ba’=1 and

1=ab’'—ba’zb(b’—a")=0

If b=0, we must have e=06'=1 and then (P, Q)=(K_., R,) which contradicts to
the assumption. So 6>0 and we have necessarily that b=b'"—a’=1 and a=b.
Thus P=1(1, 1).

Now consider the blowing-up ¢: Y —C? of the point O. We have two charts
U, and U, with coordinates (s, t) and (u, v). The blowing-up ¢ is given by e
and ¢, given by:

x=u, y=uv

This is the toroidal blowing-up with respect to the simplest non-trivial regular
subdivision with three vertices {R., P, R,} where P=%(1, 1). If non-trivial, the
regular subdivision X* gives two subdivisions &, and 2, ending and starting
by P=%(1, 1) respectively. These subdivisions define subdivisions S, and 5, of
[R-«, R,] by the corresponding affine transformations

3 —25, Ha, B—4Ya—B, B)
22-%22; l(a’ ‘B)I———)t(a’ ﬁ_a)

in which P is respectively sent onto R, and R.. It is obvious that these sub-
divisions 5, and %, are regular. They define two toroidal blowing-ups
m: X,—U, and r,: X,—U, The spaces X, and X, are respectively biholo-
morphic to U, and U, outside the inverse images of the origin and can be
glued into a space X’ and, by gluing the maps =, and x,, we obtain a map
n': X'—Y. Let us explicit this map. Consider 8=(P,, P,) be a simplex in J,
(resp. 2,). Write
(pl, pz)=(‘(1’:’u, [721), L(ﬁlz, 1322))

Then =’ is defined by

s=ybiydy i=ybuyly (resp. =iyl v=20090%).

One can check that X’ is obtained by the charts obtained by composing
these charts and e, or e,. There is a canonical biholomorphic map of X’ onto
X. We define this map from X, (resp. X,) into X: let 4 in 3, (resp. 3,);
defines a simplex ¢ of X* so the map of X, into X read in the correspondlng
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charts is the identity. One checks easily that the corresponding gluings give
the biholomorphic isomorphism. So the assertion of the proposition derives
from an induction on the number of vertices in the dual diagram.
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