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STEENROD OPERATIONS ON THE MODULAR
INVARIANTS
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Introduction

Fix an odd prime p. Let A,» be the alternating group on p" letters. Denote by X, ,
a Sylow p-subgroup of Ay~ and E™ an elementary abelian p-group of rank n. Then we
have the restriction homomorphisms

Res(E™, Spn ) : H*(BZpn ,) — H*(BE™),
Res(E", Ay») : H*(BAy=) — H*(BE™),

induced by the regular permutation representation E™ C Xpn p C Apn of E™ (see Mui
[4]). Here and throughout the paper, we assume that the coefficients are taken in the
prime field Z/p. Using modular invariant theory of linear groups, Mui proved in [3], [4]
that

ImRes(E", Spn p) = E(Us, ..., Up) ® P(WA, ..., Vo),
n

ImRes(E™, Apn) = E(Mp0,- -, Mpn-1)® P(Ln,Qn 1, -, Qnn-1)-

Here and in what follows, E(.,...,.) and P(.,...,.) are the exterior and polynomial alge-
bras over Z/p generated by the variables indicated. Ln, Q@n,s are the Dickson invariants
of dimensions p*, 2(p™ — p*), and Mn,,, Ui, Vi are the M invariants of dimensions
p* — 2p°, p*~1, 2pF~1 respectively (see §1).

Let A be the mod p Steenrod algebra and let 75, & be the Milnor elements of
dimensions 2p* — 1, 2p' — 2 respectively in the dual algebra A. of A. In [7], Milnor
showed that, as an algebra

A, = E(To,Tl,...) ®P(£1,€2,...).

Then A. has a basis consisting of all monomials 7s¢® = 7, ... 7, &' ... €™ with S =
(s1,---,8%),0<s1<...<sx, R=(r1,...,™m), ri > 0. Let StS5E ¢ A denote the dual
of 7s&€R with respect to that basis. Then A has a basis consisting all operations St5:%.
For S =0, R = (r), St%(") is nothing but the Steenrod operation P".

Since H*(BG), G = E™, Xpn p or Apn, is an A-module (see [13 ; Chap. VI]) and the
restriction homomorphisms are A-linear, their images are A-submodules of H*(BE™).

The purpose of the paper is to study the module structures of ImRes(E™,X,» ,) and
ImRes(E™, Apn) over the Steenrod algebra A. More precisely, we prove a duality relation
between StSR(ME QL) and St (UL, VLF) for 6 =0, 1, £(R) = k and £(R') = n.
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Here by the length of a sequence T' = (t,...,t,) we mean the number ¢(T") = ¢. Using
this relation we explicitly compute the action of the Steenrod operations P" on Ugy1,
Vi1, Mn s and Qn,s’

The analogous results for p = 2 have been announced in [11].

The action of P" on Vi41 and Qs has partially studied by Campbell [1], Madsen
[6], Madsen-Milgram [6], Smith-Switzer [12], Wilkerson [14]. Eventually, this action was
completly determined by Hung-Minh [10] and by Hai-Hung [8] , Hung [9] for the case of
the coefficient ring Z /2.

The paper contains 3 sections. After recalling some needed information on the in-
variant theory, the Steenrod homomorphism d}, P, and the operations St5:F in Section
1, we prove the duality theorem and its corollaries in Section 2. Finally Section 3 is an
application of the duality theorem to determine the action of the Steenrod operations
on the Dickson and Mii invariants.

Acknowledgement. The author expresses his warmest thanks to Professor
Huynh Mui for generous help and inspiring guidance. He also thanks Professor Nguyén
H.V. Hung for helpful suggestions which lead him to this paper.

§1. Preliminaries

As is well-known H*(BE™) = E(x1,...,%n) ® P(y1,...,Yn) where dimz; = 1,
¥; = Pz; with B the Bockstein homomorphism. Following Dickson [2] and Mui [3], we
define

e1, ..., ex) = det(y?”),

&1 CEE 3

e e
yf’ ...y:“

[1;e2,...,ex]=| . ],

AT A

for_every sequence of nonnegative integers (ey,...,ex), 1 < k < n. We set

Lis=100, ..,8,...,k], Ly = Legy =[0,...,k— 1], Lo =1,

My, =1[1;0,...,5,....k—1], 0<s< k <n.
Then in,Qn,s, Mn's,Uk, Vi are defined by

Ly=Lk h=(p-1)/2, Que=Lns/Ln, 0<s<n,
My =My LAY Uy = My g1 L27Y, Vi = Ly /Ly—y, 1<k <n.
Note that Q, 0 = Z/,Z,, Qn,n = 1for any n > 0.
Let X be a topological space. Then we have the Steenrod power map
P, : HY(X) — HP"Y(EApn X XP"),

which sends u to 1 ® uP” at the cochain level (see [13; Chap. VII]). We also have the
diagonal homomorphism

& : H*(EApn X XP") — H*(BE™) ® H*(X)
Pn
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induced by the diagonal map of X, the inclusion E” C A,» and the Kiinneth formula.
d;, P, has the following fundamental properties.

ProposiTION 1.1 (Mui [3], [4]). (i) d}, P, s natural monomorphism preserving
cup product up to a sign, more precisely
& P (uv) = (=1)"M"d, Pud}, Py,
where ¢ = dimu,r = dimv, h = (p — 1)/2.
(i) &P, =d;_,.Pp_sd; P, ,0<s<mn.
(iii) For H*(E') = E(z) ® P(y), we have

n—1
dy Paz = (—hY) " Uns1 = (h)"(Lnz + (1) Mo oy7),
s=0
n

APy = Vopr = (=1)" ) _(=1)°Qnev”’,

s=0

where Un+1 = Un+1(1:1:" 3 Tn, T, Y1, )yn)y)) Vﬂ+1 = Vn-l-l(yl) ;ymy)-

The following is a description of dj, P, in terms of modular invariants and cohomology
operations.

THEOREM 1.2 (Mui [4; 1.3]). Let z € HY(X),u(q) = (R)1(—1)P=D/2 We then
have
& Paz = p(@)" Y (1) EPM, . Moo L0Q7 . Qity ® S5 Rz,
S,R
Here the sum runs over all (S,R) with S = (s1,...,8x), 0 < 81 < ... < s, R =
(ri,.- ), 7 20,70 =q—k—=2(ri+...47:) >0, 7(S,R)=k+s1+...+sp+r1+
2ro + ...+ nr,.

§2. The duality theorem
Let iy s, Zm, qm,s, m = nor k, (resp. Ug41, vk41) be the dual of Mm,s, Lo, Qm,s
(resp. Ug+1, Vik41) In
E(Mmo, .., My n-1)® P(Lm,Qm 1, -, @mym—1)
(resp. E(Ug4+1) ® P(Vi41)) with respect to the basis consisting of all monomials
MsQY = My s, ... Moo LE0QM . Q02

with S = (s1,...,8%),0 <81 < ... <sp, H=(ho,...,hm-1),hi > 0, (resp. U1 Vi,

e=0,1,72>0). Let T(¢m,qm,1,- -,9m,m—1) (resp. ['(vg41)) be the divided polyno-
mial algebra with divided power v;,7 > 0 generated by €m,¢m 1, -, dm,m—1 (r€sp. Vit1).
We set

msqg = ﬁlm,sl cee Thm,u')’hg (Zm)'th (Qm,l) .- ~7hm-1(Qm,m—l)~
For ¢ >0and R=(r1,...,7m), set
Ry=(q—2(ri+...47mm), 1, ., Tm=1).
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Let V be a vector space over Z/p and V* its dual. Denote by
(,): VeV —1Z/p

the dual pairing.
The main result of the section is

THEOREM 2.1.  Suppose gwene, 6 =0,1, 5 >0, (S,R), and (S’, R') with £(R) = k,
YR)=n,4S)=t<k {S)=t <n. Seto=r(S,R)+r(S’, R')+s+6+(t+[-2p*])t'+
nhké, with —6 < s <n—6. Then we have

(Mmsqr: ® ug417j (Ve+1), Ses R (U Vet

(2=6)pn—e—23—1
— (—l)a(mS'qR’22—6)pk_¢l ’ StS’R(Mf‘z,S 31-56»’ e+ 2j = _[—21)8]’
0 otherw:se.

)

Here, by convention, M, _1 = L,.

Proof. We prove the theorem for § = 1. For § = 0, it is similarly proved. We set

_ ’ / ’ /
U—Un+k+1(xly°";xk7z1)'")zn)xayl)'")yk)yl)"‘)yn:y)

U/ = Un+k+1($1,. .,m;,zl,...,wk,x,y'l,. -')y:nylw"yykyy)'
It is easy to verify that
(a) U = (=1)**hy’ .
Computing directly from Proposition 1.1 gives
(b) U= (-~ X PUnsr(2}, ... 20, 2,9, ..., Y0, Y)
n—-1
= (=h)H=D)PdiPe( D (-1 Mooy
s=-—1
n—1
= (-1)" Z (—h!)_(s+1)k/(‘si+l)(—1)3+1(d2Pan,,)V:+1.
s=-—1

Here by convention, y'/? = z, and Vkl_{_’; =Uk41.

We observe that dim Mn)s = p" + [~2p°]. According to Theorem 1.2 we have
(c) Ay PM, o = p(p" + [-20")F D (=1 P MsQFonsi-2o-1 StSR 1Y, .
S,R

A simple computation shows that
@ (=D 4 [2p°]) = (~1)™
Combining (b), (¢) and (d) we get
n—1
U= Z (Z(_l)n(kh+l)+r(5,R)+s+1 MsOFom+ l-’»‘l-'StS'RMn,s) V,f;l.

s=—1 SR
From this, we see that it implies
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(e) ( 1)r(5 JR)+n(hk+1)+s+1 (mSQR‘pn—e—zg ., ® mS’QR" . ® uz+17j ('Uk+1), U)
— (_1)t (ﬁzs,qu:k_t/’StS R(Mn,8)7 e+2j = —[-2p°],
0, otherwise.

On the other hand, from Proposition 1.1 and Theorem 1.2 we have
UI = (—h!)—nd:uPnUk-l-l(zl’ ey Ty YLy -5 Yk, y)
= (=h)™"u(et)" Y (-1 Mg QT v 515 T Uy .

S',R!
From this and the fact that (—h!)~*u(p*) = (—=1)"*, we get
® (O s, @ s, | ©ulsyi(vee), U

= ()" (msir;,_,_, _, ® w17 (vks1), St Uppa).

Comparing (e) with (f) and using (a), we obtaln the theorem for 6§ = 1.

Since the basis {MSIQH } of E(Mn 0y Mpn_ 1)®P(L,.,Q,. 1,--,@nn-1) is dual
to the basis {fs/qn} of E(my, 0, ... ,m,.,n_l) ®I‘(l,,, 9n,1,---,qn,n—1). Hence, we easily
obtain from Theorem 2.1

COROLLARY 2.2. Set

Cs' p = (Msqr: ® 7p‘(”k+1),5t (Uk+1Vk+16)>

(2-6)p™+[-2p%]—t
We have
~ _ —~ RI‘
StS’R(Mﬁ)SQ}z’j) = E (—1)UCSI,RIMSIQ (2—6)?"—:”
S' R’

Here, by convention, 71 /p(vk41) = Up41-
By an analogous argument we obtain

COROLLARY -2.3. Set C, s g = (s dr* StSE(M] ,QL70)). We have

@-o)pk=t’
n—=4
StSI’RI(U'HleH&) = Z (Z("l)aCS»S»RMSQR._(2_6)p"+[_2ps]—t)V’f“’

s=—6 S,R

1
Here, by convention, V,c_'/_ll7 = Ugt1 -

§3. Applications

Fix a nonnegative integer r. Let a; = a;(r) denote the i-th coefficient in p-adic
expansion of ». That means

r:aop0+alp1+...

with 0 < i< p, 1> 0. Set a; =0 for 7 < 0.
The aim of the section is to prove the following four theorems:



590 NGUYEN SUM

— (h—1)! = o — ;
THEOREM 3.1. Setc = ) ) N th=ai—ai_, 0< i< k. We
have
k-1 k-1
Y -1 t k .
P Uiy = C(hUk+1 +§tqu+1Mk,qu,u) ,]':‘E Qr, 2r<p’, i >0, i<k,
0, otherwsse.
THEOREM 3.2. Setc= (A-L)! t, = (h—a,)(a; —

(h a"—l)(a'+l a,_l)'n'¢'<"(a,—a, l)', '

a;-1), -1<i<s, t,=(h—a;)(a;+1—-a;,-1), t,_ﬁlr}ffl—*i)(a, a;_1), i > s, with
-1<s<n-1 Wehave
Zt Mantu—l H Q:;,ﬂ 27’§Pn+[_2ps])aizai—1y

PrMns — u=0 u#i<n '
s;éz<n, as+12as—1)

0, otheruse.

The following two theorems were first proved in [10] by another method.

THEOREM 3.3 (Hung-Minh [10]).
Vlf+1’ r=p,

( l)ak Yog—q! ai—a,— k .
P Vi1 = Vo j 2> o
b H0<1<k‘(az — Q-1 )'Wc+1 H Q ’ r< P = %1 1 < k’
0, otherwse.
_Mi = (=1)"r—taa_s!(as+l)
THEOREM 3.4 (Hung-Minh [10}). Setc= ERTESENT) ) PR Then
}Y’l 8 r= pn - ps,
ch s H Qa' ot y < pn - p.s, a; 2 o,
PrQn,‘g = 0<:<n

S#i(n, as+12a3—11

0, otherwise.
To prove these theorems we need

NoTATION 3.5. Let R = (ry,...,r,) be a sequence of arbitrary integers and b > 0.
Denote by |R| = Y1, (p'—1)r;, and ( ) the coefficient of y7* ... y%m in (1+y1+. . .4+yn)’.

That means,
b!

(b) = (b—rl-"'_rﬂ)!rll-..rn!’ >0, m+...4+7r <b,
i otherwise.

The proofs of Theorems 3.1 and 3.3 are based on the duality theorem and the
following
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LEMMA 3.6. Let b be a nonnegative integer and € = 0,1 . We then have

b
R) YRl g=,

St5R(z%y’) = e(%)y”*""*?“, S =(u), u20,
0, otherunse.

Here z and y are the generators of H*(BE') = E(z) ® P(y),

Proof. A direct computation using Proposition 1.1 shows that
m-—1
&y Pr(ay?) = (m)™(R)™ (L52° + € Y (-1)*V' My uy®)
u=0

( (-1)r(0,R>(;’2) Gy HFl)

R=(1‘1,m,rm)

= p(2b+ 6)'"( Z (-1)rO®.R) (;) GRavte gf yb+El

R=(r1,.,Tm)
m—1
b -~ -~ * °
+ey, Y (@R ( R) Wi QR 1R ),
4=0 R=(r1, ")

The lemma now follows from Theorem 1.2.

Proof of Theorem 3.1.  Since dim Uz = pF, it is clear that P"Ui4; = 0 for 2r > p*.
Suppose r < (p* — 1)/2. Applying Corollary 2.3 with § = n = 1 and using Lemma 3.6
we obtain

P"Uk+1 = Z (—1)T(O,R)+r+hk<§(r)‘k;Sto’Ril)Uk+1QR;—l
R=("1:--~yfk) P
k-1 ] ) )
+ Z Z(_l)r((u),R)+r+kh+1 (q(,);k , StORN VVip1 My Q53
u=0 R

Set 7 :ai—ai—lai< k7 T = h_ak) RO :(7—'1)"'71—%)1 Ru =(7_‘1)"'1FU_17"'7FIC))
1 < u < k. Computing directly from Lemma 3.6 withe =0, b=hore=1,b=h—-1
gives

h! -

~ 4 — — R = RO
<q(r):k,StO’RL1) = ro...Tk
? 0, otherwise.
(h—1)'F, i
- - _, R=R,
(d(r), ,St(“)’RMl,o) = 7o... 7k
? 0, otherwise.

A simple computation shows that
(0, Ro) +r = r((u), Ry) + r + 1 = hk (mod 2).

Hence, the theorem is proved.
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Proof of Theorem 3.3. Since dim V;4; = 2p¥, we have only to prove the theorem
for r < p*. Note that Q1,1 = 1. Hence

StS,RQ1,1= {1’ S=0, R=(0,...,0),

0, otherwise.
So, (ij(,); k,Sts’RQl)l) = 0 for any S, R. Remember that Q10 = y?~!. So, applying
Corollaryp2.3 with § =0, n = 1 and using Lemma 3.6 with e = 0, b =p — 1, we get

(a) PVi41 = Z(_I)T(G’R)H (q(’);,k ) StG’RQl,o)VkHQR;"?.
R

From Lemma 3.6, we see that it implies
(b)
p—1
(———) , R=(a1—ag,...,0p_1 —op_2,p— 1 —0ap_1),

(@n; > St* Q1) = R
? 0, otherwise.
Suppose that R = (a1 — ao, ..., 0k—1 — ag—2,p — 1 — ax—1). Then we can easily observe
that
(c) r(0,R) + r = 0 (mod 2),

(p— 1) (=Dt y!
R ) HOSi(k(ai - ai-1)’

Ry,_2 = (200,01 — @0, ..., @k—1 — Qf—2).
Theorem 3.3 now follows from (a), (b) and (c).

Following Corollary 2.2, to determine P" Mn’, and P"Q, , we need to compute the
action of St5F on U, and V,.

PROPOSITION 3.7. Suppose gwen R = (r1,...,7), and 0 < u < n. Set ry, =
Ts41+ ...+ 7n, for s>u, and rys=rsp1+...+rn —h, for s < u. Then we have

n—1
(TZ) (leRl/"Uz + Z:h"lro,s1(41.0135“2'“}”+ +1)/hV2p.) , S§=0,
s=0
R

0, otherwise.

St5RU, = = . g .
2 (h) Zh_lru’ngm_p +yp +h)/hV2p , S=(u), u<n,

s=0

Here, |R| and (g) are defined in Notation 3.5.
The proposition will be proved by using Theorem 1.2 and the following
LEMMA 3.8. Letu, v 23 nonnegative integers with u < v. We have
() ol = T2, V07 W
v z v_ s+1_ s
(i) [l0]= VP " Uz + Mio 02, VPP VT
Here [u,v] and [1;v] are defined in §1.

The proof is straightforward.
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Proof of Proposition 3.7. Recall that M2 1 = z1y2 — z2y;. From Proposition 1.1 we
directly obtain

d;, PaM3 = (—h!)" Z("l)vinQn,v[l;v] + Z (_1)u+u+1Mn,uQn,v[u)”]~

v=0 0<u<n
0<v<n

Since L; = y; and 2(h — 1) = p — 3, using Proposition 1.1(iii) with y = y; and Notation
3.5 we get
- - ! h - 1 ~ pl* 4 -
d P L™ = (1D Y (=1 R ( 2 ) QR sy,
R/
We have Uy = M1 L}, diim U, = p and p(p) = (—1)*h!. So, it implies from the above
equalities and Proposition 1.1 that

d Pl = (o) (2(-1 PG (Z) LT a1t

R v=0

n-1 n
- s h —p¥
+ E E (—1)’((“)'R)Mn,uQR -1 (R) E h'lr,,yiRH'h P [u;v]).
u=0 R v=u
Then by Theorem 1.2 we have

v (fz) Dort L), S =0,

v=0

S,Ryr. _ n v
St Uy = Bl <z) eryllRHh-p [w;v], S=(u), u<n,

y=u
0, otherwise.

Now the proposition follows from Lemma 3.8.

Proof of Theorem 3.2. For simplicity, we assume that 0 < s < n. Applying Corol-
lary 2.2 with § = k = 1 and using Proposition 3.7 we get
(a) Pr Mn,s — Z ("‘1)r((u)’R)+r+s+l+nhC(u),RMn,uQR;_1 )

0<u<n
R:(rl’“."‘n)

Here C(y) g = @(r);n_z,,. ® Vp+ (v2), St RY,).

If 2r > p™ — 2p* — 1 then P’Mn,, = 0 since dimMn,, = p™ — 2p°®. Suppose 2r <
pt=2p*—1.8et 7 =y —aj1,for 0<i# s, n, s =a,+1—a;-1, 7 = h—a,_1,
Ry = (f1,...,7n), Ru = (F1,..., 7 — 1,...,7s), 1 < u < n. From Proposittion 3.7 we

have
cty, R=R,,
Ctuy,r = { .

0, otherwise.

It is easy to verify that
r((u), Ry) + 7+ s+ 1=nh (mod 2).
Theorem 3.2 now is proved by combining the above equalities.

Now we return to the proof of Theorem 3.4. It is proved by the same argument as
given in the proof of Theorem 3.2. We only compute St5:8V5.
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PROPOSITION 3.9. For R=(r1,...,rp), "o =p—171 —...— Ty, we have
V”' re=p, 1 =0, i#s,
— 1) s
Stﬂ,sz - E (p ) (7'3+1-:'- ' -+ rﬂ)v|R|+P p lvp 0 S < p, 0 S : S n,
g .Th!
0, otherwise.

Proof. Recall that Vo = 3§ — yotf) ~!. Applying Proposition 1.1 and Lemma 3.6
with y = y; or y = y2 we get

@ arw=YCoteg™

_(_l)n i Z(_l)u+r(0,R’) ( ) Qn uQR'gp 2le |+p-1 yg
u=0 R’
= (1" YD, T - )
3—0
—(- 1)1122( 1)r@.R) (p— )QR,, |Rl+p—p* ¥ )
u=0 R

Here the last sum runs over all R = (rq,...,r,) with 0 < r; <p, 0<i<n, Ry =R,
R,=(r1,...,ru—1,...,7), 1 <u<n.
Let v be the greatest index such that 7, > 0. A simple computation shows

(b) yIRI+p—p“yp“ - _ IRI+p-p”—p"[u’ v] + yIRI+p—p"yg".
Combining (a), (b), Lemma 3.8 and the fact that y_,_, ( ..l) = 0 we obtain

a1 PaVa = p(20)" (3 (=1)'Qn sV’

s=0

+ (- 1y OGRS, Z Z ( )yIIRHp—p‘*‘Vzp‘)
R

s=0u=s+1
The proposition now follows from this equality and Theorem 1.2.
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