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ON LENGTH-MINIMIZING STEINER NETWORKS

BY DAO TRONG THI AND NGUYEN Huu QUANG

Introduction

Let M be a set of points in Rn. The Steiner problem can be stated as follows: to
find a network of least length in the class of networks with fixed ends M. There are
two approaches to this problem. In the first case, the search for an absolutely minimal
network is carried out in the class of networks, whose vertices all belong to M. This
approach is developed in the papers by Du, Hwang and others (see, for example, [5],
[6]). In the second case, the set of vertices of the networks may be larger than the set
M. The vertices do not belong to M are called Steiner points and the points in M are
called boundary points. In this paper we study globally minimal network in the second
case. By using calibration systems we prove that each locally minimal network is also
globally minimal in the class of networks with the same topological type. The method of
calibrations was developed in works of Federer, Dao Trong Thi, Lawson, Harvey, Morgan
and others (see, for example, [l]-[3]). Calibration systems were used first in [4].

1. Steiner networks

DEFINITION 1.1. A Steiner network in Rn is any connected complex of one-dimen-
sional simplexes, whose vertices have degree at most three. A Steiner network without
vertices of degree two is said to be nondegenerate Steiner network.

Henceforth we shall study only acyclic nondegennerate Steiner networks with bound-
ary points coinsiding with the vertices of degree one. Such networks are called simply
Steiner networks.

LEMMA 1.2. Let a Steiner network N has k boundary points. Then N has (k — 2)
Steiner points and (2k — 3) sides.

Proof. Assume that the network N has m Steiner points and c sides. By calculating
we have k = 3m — 2(ra — 1). Hence, we obtain m = k — 2 and c = 2k — 3. The lemma is
proved.

DEFINITION 1.3. Two boundary points of a Steiner network are called adjacent
boundary points if they are ends of two adjacent sides (i.e. sides, which have a common
end).
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LEMMA 1.4. A Steiner network always has at least two adjacent boundary points.

Proof. Suppose that the given network TV has not any two adjacent boundary
points. We consider a boundary point A. The network TV has only one side a with the
end A. The second end of a is denoted by A\. Then TV has two sides (different from α)
with the end A\. We denote by B\,Bι the other ends of the sides αι,α2 respectively.
Among Bι,B2 there is at lest one point, for example, B\. Further, the TV has two sides
61, 62 (different from αi) joining BI with C\ and C% respectively (Fig. 1). Go on, because
the network TV is acyclic we obtain infinite number of Steiner points. That is impossible.
The lemma is proved.

CΊ A

Fig. 1

THEOREM 1.5. Every Steiner network with k boundary points has a finite series of
subnetworks NI , T V 2 , . . . , TVjt_2 such that

TVi C TV2 C . . . C Nk-2=N

Here NI has only one Steiner point, TVz_j_ι = Nt(J{ai,bi} 1 < i < k — 3 and αj,6 2 are
sides of N that do not belong to Nz.

Proof. Let ajc-3, b^-s be sides of TV joining two adjacent boundary points. We put
TVfc_3 = TV\{αjfc_3,6fc_3}. Then TVfc_3 is a Steiner network. By Lemma 1.4 TV^-a has
two sides joining adjacent boundary points, for example, αfc_4,6fc_4. We put TVj._4 =
TVfc_3\{αfc_4, δfc_4}. Go on, after k — 3 steps we get a series of subnetworks we need.

DEFINITION 1.6. A Steiner network is said to be oriented if its sides can be oriented
so that every two adjacent sides are oriented opposite to each other.

COROLLARY 1.7. A Steiner network has exactly two orientations.

Proof. Suppose that the given network TV has k boundary points. By Corollary 1.5
TV has a series of subnetworks NI C NΪ C . . . C TV& = TV. We consider NI . This subnetwork
has only one point. Clearly, NI has exactly two following orientations (Fig. 2).

Further, we assume that the subnetwork TV2 has exactly two orientations and consider
the subnetwork TV2+ι = Nl \J{di, &;} Suppose that the sides α», 6; meet at A and denote
by Ci the side in Nt with the end A. Clearly, each orientation in c, , corresponding a
certain orientation in TV,, completely defines a orientation on α; and 6Z (Fig. 3). Thus,
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there are exactly two orientations in Nz+\. Proceeding the process we can prove the
corollary.

Fig. 2

A a Ci A

Fig. 3

2. Globally minimal Steiner networks

We remember that a path of a network is any continuous series of sides (with ori-
entation) joining two vertices. If these vertices are boundary points then it is called a
maximal path. A system of maximal paths is said to be independent if every one of them
is not a combination of other paths from the system.

DEFINITION 2.1. A system of mximal paths {Pj}3 in N is called a basis of maximal
paths if it satisfies the following conditions:

(1) The union of all paths from {Pj}^ overlaps N
(2) The system {Pj}j is indenpendent
(3) Every maximal path in AT is a combination of path from {P3 }3

THEOREM 2.2. Every oriented Sieiner network N with k boundary points has a
basis of maximal paths consisting of (k — 1) paths.

Proof. We shall prove the theorem by induction for number k. At first we consider
the case k = 3, i.e. the given network has three boundary points with three sides α, 6, c
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oriented as in Fig. 4.

Fig. 4

We put PI = a — 6, PI = c — b. Clearly, the system {Pi,P^} is a basis of maximal
paths in N. Now, we assume that a Steiner network with i (i > 3) boundary points has
a basis of maximal paths consisting of (i — 1) paths. There is in TV2 a side Ci ended at
At. Assume that the side Ci belongs to P^,..., P;λ, 1 < a ' ι , . . . , ύ < i — 1. We put:

Pa = Pα,α^iι,t ' 2,. . .,ΰ

Λj - Pij - dj(ci)bi

Pa = α, - 6,

Where czj is the sign of the side ct in the path Pj;. To prove that the system {Pi,..., Pt }
is a basis of maximal paths in NΪ+I we need only to check the condition (3) in definition
2.1. Let P be a path joining two boundary points A and B in TV t +ι. The first case: A, B
belong to Nz. Suppose that P is a path joining A, B in Nt. Then P is the combination,
for example^of Pjlt..., /}m from {/\,. . ., P -i}.

Hence, P is the combination of P.χ p in TV2 +ι.

The second case: A belongs to TVn B is an end of α^. We assume that P is the path
joining A, At in TVZ and P is the combination of Pα ι,. . ., Pan from {Pi,..., P;_ι}. Then
P is the combination of Pα ι,..., Pαn, P4 in 7V2+ι The third case: A belongs to Nt, B is
the end of 6t . We suppose that P is the pathjoining A, At in Ni and_P is the Combination
of Pβλ,..., Pβt from (Pi,..., P»_ι). Then P is the combination of JPβλ,_._.., P^t in Ni+ι.
The fourth case: A is the end of α; and β is the end of 6, . Then P = Pt. The theorem
is proved.

DEFINITION 2.3. Let TV, N' be Steiner networks in Rn with the same boundary
points AI , . . . , Ak We say that TV and TVX are of the same topological type if there is a
homeomophism /: Rn —> .Rn such that f ( A { ) = ^4t, i = 1 , . . . , t and /(TV) = TV7.

THEOREM 2.4. Let TV δe an oriented Steiner network with k boundary points in Rn

and with a basis of maximal paths {Pi,..., P*.}. Suppose that there is a system of closed
differential 1-forms u > ι , . . . ,ωfc on Rn such that

(1)
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(2) < 1

Where Ja = {j' : α £ P/} /or any side a £ N and Nx is the unit tangent vector to N at
x 6 a w t/λ Me same orientations a. TΛen N is a length-minimizing network in the class
of networks with fixed topological type.

Proof. Let N' be any Steiner network belonging to the topological type of N.
Assume that / : Rn —> Rn is homeomophism such that f ( N ) = TV' and /(A») = At for
any i, where ^42 are the vertices of TV. The orientation on N1 is induced by the orientation
on N under /. We have {/(Pi),..., /(P*)} is a basis of the maximal paths in N'. Denote
the length of N and TV' by |TV|, \N'\ respectively, and put a' = /(α), x1 = /(x). We have

Σ/,
β' -70

Σ/
^

Σ

Where /^ = f ( P j ) and |α|, |α'| are the length of α and α', respectvely. The theorem is
proved.

Such a system {wj3} is called a calibration system on TV.
Now we remember that locally minimal Steiner networks have following properties:

(1) The network consists of st right line segments
(2) At every vertice the segments meet at angles of 120°.

By using theorem 2.4 we obtain the following result.

THEOREM 2.5. Every locally minimal oriented Steiner network is also length-mini-
mizing in the class of the Steiner networks with the same topological type.

Proof. We shall prove this theorem by induction for the number of boundary points
of N. At first we consider the case when N has only three boundary points Ai^A^^A^.
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The network is oriented as in Fig. 5.
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Fig. 5

Denote sides of N by αi,02,03. We put
Pl = aι - α3

P2 = 02 — 03
Clearly, the system {Pι,p2} is a basis of maximal paths of N.
Let aι, #2, 03 be the unit tangent vectors to 7V on αi, 02, α3, respectively and αj, α£, 03

are the unit co-vectors dual to them. Let ωι,ω2 be constant differential 1-forms induced
by a[, a\ respectively. Then {ω\^ω^} is a calibration system of N. Indeed, for any x £ N
we have:

If x E αi then ω\(Nx) = αί(αι) = 1
If x £ 02 then ω2(Nx) = 02(^2) = 1
If x £ 03 then (ωιω2)(</Va.) = 03(03) = 1
By theorem 2.4 TV is a length-minimizing network.
Further, assume that the statement of the theorem is true for any network with

k boundary points and consider an arbitrary locally minimal oriented network N with
k + 1 boundary points.

By Corollary 1.5 we have N = Nk U{α*> δ*} Since Nk is a locally minimal oriented
network with k boundary points there are a basis of maximal paths {Pi,..., Pk-ι} and
a calibration system {ω\,... ,ωjb-ι} of Nk such that

< I

for any x £ a 6 ΛΓ, where α denotes the unit tangent vector to a and α* denotes the unit
co-vector dual to α. This means that ]Γ\ £ Ja€j(a)ωj = α*.

Now we choose the basis of maximal paths {Pi,..., PjJ of ΛΓ as in the proof of
Theorem 2.2 and let ω^ be the unit constant differential 1-form, dual to α^. We shall
prove that {u>ι,. . . ,c*>]b_i,u>fc} is a calibration system of N. Really, denoting by ej(α) the
sign of the side a in the path P} and putting Ja = {j : a £ P3} we have :
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a. If x € a € Nk then

Σ €Mωi Σ eMωi

b. If x 6 6jb then

Σ 'ίftfc -Σ
jeJCk

Σ *(**)«,

c. If x € αjfe then

= 1

Thus, we have constructed a calibration system {u>ι,... ,α;jb_ι,α;jb} of TV. The theorem
is proved.
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