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A GEOMETRICAL APPROACH TO THE JACOBIAN
CONJECTURE FOR n =2

By LE DONG TRANG AND CLAUDE WEBER

Let us recall the Jacobian conjecture (see [B-C-W] §I p. 288):

Jacobian Conjecture. Let F': C™ — C" be a polynomial map. Suppose that, for every
pownt z € C", the derwatwve F'(z) is invertible. Then the map F 1s mvertible.

In this lecture we describe a geometrical approach to this conjecture when n = 2.
First we shall need some results on the geometry of complex polynomial functions.

Topology of polynomial functions.

It is known that a complex polynomial function might not be a locally trivial topo-
logical fibration over the complement in C of its critical values. As an example, consider
the polynomial f(X,Y) = X — X2Y (see [B]): this complex polynomial function has no
critical point, but it is not a locally trivial topological fibration on C. In fact the fiber
f = 0 has two connected components, but, for any A # 0, f = A has only one component.
However there is a general theorem of R. Thom:

THEOREM (THOM). Let f:C™ — C be a complex polynomaal function. There 1s a
manimal finite set A(f), such that f induces a locally trivial topological fibration over the
complement of A(f) wm C.

One can check that the finite set A(f) always contains the set of critical values D(f).
Let us write:

A(f) = D(f)uI(f)

where D(f) and I(f) might not be disjoint. By definition I(f) # @ depends on “acci-
dents” at oo. We shall call A(f) the set of atypical values of f.
Polynomuals which are locally trivial topological fibrations are well understood be-

cause of the following observation:

PRrROPOSITION. If the complex polynomaal function
f:ct=>cC
15 a locally trivial fibration on C, there 1s an algebraic automorphism o of the complex
plane, such that foo = X.
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This proposition is consequence of the Embedding Theorem of S. Abhyankar and
T.T. Moh ([A-M]):

THEOREM (S. ABHYANKAR - T.T. MoH). Let C be a complez algebraic affine
curve embedded 1n the complex plane C? and 1somorphic to the complex line C. Let
f = 0 be its (reduced) equation. Then, there is an algebraic automorphism o of the
complezx plane, such that f oo = X, where X 1s one of the coordinates of C2.

The methods developed in this note are the basic tool for a geometrical proof of the
Abhyankar-Moh Theorem (see [A]).
The proposition above has the following consequence:

CoROLLARY. Let F = (f,g):C? — C? be a polynomual map. Suppose that, for
every point x € C2, the derwative F'(x) 15 invertible and furthermore, suppose that f 1s
a locally trivial topological fibration on C. Then F 1s invertible.

Proof. If we assume that f is a locally trivial topological fibration on C, the general
fibers of f are isomorphic to the complex line. Therefore the Embedding Theorem of
S. Abhyankar and T.T. Moh shows that there is an algebraic automorphism o of the
complex plane such that foo = X. This proves the proposition above. Now the Jacobian
J(F o 0) of F oo is the product of the Jacobians J(F') and J(o) and therefore is equal
to a non-zero constant k. But F oo = (X, g 0 7), so that, by integration

goo =kY + h(X)
where h is a complex polynomial function. Hence F o o is an automorphism of the

complex plane, which implies that F is also an automorphism of the complex plane, as

announced.
As a consequence, the Jacobian conjecture will be proved, if one can show that:

CONJECTURE. Suppose that f: C?2 — C 1s not a locally trivial topological fibration
on C. Then, for any complez polynomaal function g, the Jacobian J(f,g) cannot be a
non-zero constant.

We have seen that f: C2 — C is not locally trivial topological fibration on C, if and
only if A(f) is non-empty. If the set of critical values is non-empty, our conjecture is
obviously true. Therefore we shall assume that the polynomial f has no critical point.
We are led to understand the meaning of I(f) # 0. In [H-L], we give a way to calculate
I(f). Now we describe how to do it.

Let f(x,y) be the complex polynomial of degree d which defines f:

f@y)= Y capz®y’.
at+p<d
The homogeneization of f(X,Y) is the homogeneous complex polynomial F(X,Y,T) of
degree d:
F(X,Y,T)= ) copX?YPT4 "¢
atp<d
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The compactification of the fibers f = X in the complex projective plane P2 are the
projective curves Cy with projective equations F' — AT = 0. These curves pass through
the same points on the line at infinity 7" = 0, namely through:

{z1,...,2,}={F =T%=0}

which corresponds to the asymptotic directions of the level curves f = A.
For each z;, 1 <1 < r, there is an integer

po = inf p(Cy, z;)
{xeC}

where u(Cly, z;) is the Milnor number of the curve C) at the point z;. Now we can state:

THEOREM (HA-LE). We have
I(fy={A € C | there 1s 1 £ i < r such that, u(Cy,z;) # pi}.

For example, consider f(X,Y) = X — X2Y. Then
F(X,Y,T) = XT? - X?Y

and the asymptotic directions of the level curves f = A are the points z; := (1:0: 0)
and z3 ;= (0:1:0). At z;, we have g; = 0 and the Milnor number of all the curves C),
is 0, for all A € C. At z2, we have us = 2 and the Milnor number of Cy at z3 is 3. In
this case A(f) = I(f) = {0}.

Compactification of polynomial functions.

In general it is easier to deal with proper maps. In the case of complex polynomial
functions in two variables, there is a natural way to compactify the function. We consider
the rational function F/T¢ on the complex projective plane P2. The set where F = T¢ =
0 is the set of indeterminacy of the rational function F/T¢. By blowing-up points, one
can remove the indeterminacy of the rational function F//T¢. We shall describe a minimal

way to do it.
. First fix do ¢ A(f). Let ¢:Y — P? be the embedded resolution of the projective
curve C),. Let L be a linear form which does not vanish at the points z;,...,z,. For

each component D of the divisor

Do(Y) = ¢} (T =0)
we denote by vp(F/L?) the multiplicity of F/L?oq along D. Now consider the points of
indeterminacy of F/T%oq which might remain on ). Each of these points £ belongs to a
component Dy of the divisor Deo (). Now at every point £ of indeterminacy of F/T%oq
on Y, perform point blowing-ups so that to separate non-singular branches having an

intersection number equal to vp,(T¢/L%)—vp,(F/L?) at €. In this way we obtain a map
p: X — Y. Denote Doo(X) := (g0 p)~(T = 0). We have:

THEOREM. On X, F/T%oqop defines a rational map onto P'. The restriction of
this map to X — Do (X) nduces a map wnto C somorphic to f by m := qop.

The map 7 is minimal in the following sense:
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OBSERVATION. The only components of the divisor Doo(X) := 7~ 1(T = 0) which
may have self-intersection —1 are some of the components D such that the restriction of
F/T%om to D 1s not constant and, possibly, the strict transform of T =0 by 7 in X.

Note that Vitushkin (see [V] Introduction) has used the existence of a non-singular
compactification of f in relation with the Jacobian conjecture when n = 2.

For convenience, we shall call 7 the minimal compactification of f. In fact the mod-
ification 7 has interesting properties. First the intersection graph of the divisor Do ()
is a tree A. Furthermore a careful study (using results of [L-M-W]) leads to the following
key result:

CONNECTEDNESS THEOREM. The space (F/T% o m)71(c0) 1s connected.

In other words the divisor (F/T¢ o 7)~!(co) defines a strict connected subtree Ao
of A. If the general fiber of F/T%o 7 is connected, this theorem is actually an immediate
consequence of Zariski Main Theorem (cf [Mu] Theorem 3.24 and the footnote p. 52).

Let ¢ := F/T? o m. We shall call the divisor Deo(X), the divisor at infinity of X/,
and a component of Do, (X) on which ¢ 1s not constant is called dicritical.

The proof of the existence theorem for the minimal embedded resolution of a pro-
jective plane curve implies the following theorem:

THEOREM. Fach connected component of A — Ay 1s a bamboo which contains a
unique dicritical component of ¢ and this dicritical component s the only wrreducible
component of the bamboo which meets Ao .

According to Orevkov (see [O] Lemma 2.1), this last theorem was already observed
by Vitushkin.

Remark. Let B be a bamboo of A—.Ay and let Dg be its dicritical component. If B
has more than one component, the components of B other than Dp define a sub-bamboo
B' of B. The restricition to B’ of the function ¢ is a finite constant. This value will be
called the atypical value of the bamboo B.

Results.

Consider a polynomial function f of degree d defined on C2?. We assume that f has
no critical point. We shall call Jacobian pair a pair (f, g) of polynomial functions defined
on C? for which the Jacobian is a non-zero constant. We shall say that f is a Jacobian
polynomial, if there is a polynomial g such that (f,g) is a Jacobian pair.

The conjecture stated above can be reformulated as follows. It is equivalent to the

Jacobian conjecture:

CONJECTURE. If f 1s not a locally trivial topological fibration (on C), 1t cannot be
a Jacobian polynomual.
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The Theorem of Ha and Lé can be translated in the following way:

I(f) = {critical values # oo of the restriction of ¢ to dicritical components } U
{atypical values of ¢ on each bamboos of A — A, with at least two vertices}

This new formulation of the Theorem of Ha and Lé implies the following theorem:

THEOREM. Let f be a complez polynomaal function on C? and let ¢ be the minimal
compactification of f. Assume that f has no critical point. Then, f 1s not a locally trivial
fibration on C if and only if, esther there 1s a bamboo of A — Ao with at least two
components or all bamboos in A — Ay, only contain one component and the restriction
of ¢ to at least one of them has critical points.

Therefore in an attempt to prove our conjecture above, we shall consider two cases:

Case 1. In the graph A — A there is at least one connected component with
two vertices;

CASE 2. In the graph A— Ay, all the connected components have only one vertex
(which is a dicritical component of ¢) and the restriction of ¢ on at least one dicritical
component has degree strictly greater than one.

Ezamples. The function X —X2Y corresponds to the case 1. The function X —X4Y*
belongs to the case 2.

Now let g be another complex polynomial function of degree d’. Denote by G the
homogenized polynomial associated to g. Then, in order to prove our conjecture, the
cases 1 and 2 subdivide in subcases, depending on the behaviour of the rational function

G/T? .

Case 1. Letuscall Dy, Dy, ..., D, the ordered components in a bamboo of 4A—.A4
with at least two vertices (r 2 1), Dy being the dicritical component.
The case 1 subdivides in the followmg subcases:
a) The rational function G/T? is defined in some neighbourhood U of Dy U...UD,:
i) The rational function G/T% is constant on Dy, ..., D, and D NU;
ii) There is a D;, with 1 £ ¢ < r— 1, which is dlcntlcal for G/T,
iii) The component D, is dicritical for G /Td
iv) The component Dy is dicritical for G/Td
b) There are points 1,...,z, in Dy U...U D, where G/T" is not defined:
i) s 22;
il) s =1 and z; is not on D, — "ID
i) s =1 and #; is on D, — U}_ 1D

CASE 2. We first have the following result:
PROPOSITION. Assume that f has no critical point and that f 1s not a locally trivial

fibration. If all the connected components of A — A contain only one vertez, there is
at least one dicritical component D of ¢ on which ¢ has a critical point.
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Proof. If f is not a locally trivial fibration, the translation of the Theorem of Ha
and Lé given above shows that under the assumptions of the proposition, the restriction
of ¢ to one of the dicritical components of ¢ is critical at some point of this dicritical
component. The proposition asserts that there is at least one dicritical component of ¢
which carries a critical point of ¢ itself and not its restriction.

Assume that ¢ has no critical point. Then, Ehresmann Lemma implies that ¢ is
a locally trivial fibration on C. This would imply that the Euler characteristic of the
general fiber of ¢ equals 1+ ¢, where £ is the number of dicritical components of ¢
Therefore necessarily £ = 1. A result by T.T. Moh ([Mo]) interpreted in our setting
implies that the restriction of ¢ to this unique component must be of degree 1, which
would contradict the fact that this restriction has a critical point on this component.

Indeed, a direct proof of this theorem of T.T. Moh is possible using the connectedness
theorem and a little topological argument.

Now consider a dicritical component Dy of ¢ on which ¢ has a critical point z.

The case 2 subdivides in the following subcases:

a) The rational function G/T is defined in some neighbourhood U of Dy:

i) The rational function G/T% is constant on Dy;
ii) The component Dy is dicritical for G/ T,
b) There are points 1, ...,z in Dy where G/Td is not defined:
i) none of these pomts are equal to x;
i) one of them, say z; is actually z.

We can prove that, if f has no critical point and is not a locally trivial fibration,
for any polynomial function g on C2, the pair (f,g) is not a Jacobian pair in all the
preceeding cases except the cases, case 1 a iv) and case 2 a ii). In the unsolved case 1 a
iv), we can conclude if we know that one of the restrictions of ¢ or ¥ := G/Td on the
dicritical component Dy has degree one.

We now express our results differently. Let us say that a dicritical component of ¢
is non-equisingular if Dy belongs to a bamboo in 4 — A of length at least two or if
the restriction of ¢ to Do has at least one critical point. Let us say that Dy is strongly
non-equisingular if Dy belongs to a bamboo in A — Ay of length at least two or if ¢ has
a critical point on Dy.

The above proposition says that if C(f) = @ and I(f) # 0, then ¢ has at least one
strongly non-equisingular component.

The results we obtained so far in our attempt to prove the Jacobian Conjecture can
be summarize as follows:

MAIN THEOREM. Let f be a polynomaal such that C(f) = 0 and I(f) # 0. Let g
be a polynomaal with C(g) = 0. Then the pair (f,g) cannot be a Jacobian pair if at least
one of the following conditions s fulfilled:

1. There ezists a strongly non-equisingular component of ¢ which s not dicritical

for ¢;

2. There exists a strongly non-equisingular dicritical component Dy for ¢ for which

the restriction @|Dy or ¥|Do has degree one.

The following proposition is not difficult but very useful -
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PROPOSITION. Let (f, g) be a Jacobian pair. Let w: Z — P? be the composition of
a finite sequence of point blowrng-ups centered above the line at infinity T = 0, such that
F/T%0o @ and G/Td’ ow define morphisms ¢ and ¥ from Z to P'. Then, the support
of the divisor of the 2-form dyp A dy 1s contained 1n Do (Z2) = w=1(T = 0).

In other words, the divisor of dp A d¢ is a canonical divisor for Z which is confined
at infinity (i.e. on Doy (Z)). The multiplicities of such a canonical divisor are well defined
and can be computed from the sequence of blowing-ups. They do not depend on ¢ and
.

For instance, this proposition implies that, in the case 1 above, if the dicritical
component Dy of ¢ in X has a negative multiplicity in the canonical divisor of X con-
centrated at infinity, its strict transform Dj in Z has the same negative multiplicity in
the canonical divisor of Z concentrated at infinity. This implies that ¢ has a pole along
Dj. Therefore Dy cannot be a common dicritical component of ¢ and ¥, which means
that we are in one of the cases where our conjecture is true.

As an example, these observations applied to the case of f(X,Y) = X — X2Y show
that it is not a Jacobian polynomial. The same argument works to show that many
polynomials with no critical points cannot be Jacobian polynomials.

This leads to the following corollary of the Main Theorem:

COROLLARY. Let f:C? — C be a polynomaal function without critical pownt. Then
f cannot be a Jacobian polynomial if there exists a dicritical component Dy of ¢ in X
whach 1s strongly non-equisingular and such that the multiplicity of Dy in the canonical
divisor of X confined at infinity esther 1) 1s strictly negative or 2) 1s positive and the
restriction of p|Do 1s of degree one.
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