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Introduction

Let R be an open Riemann surfaces of null boundary which has a single
ideal boundary component in the sense of Kerékjarté-Stoilow. A relatively
noncompact subregion £ of R is said to be an end of R if the relative boundary
082 consists of finitely many analytic Jordan curves (cf. Heins [4]). We denote
by @(2) the class of nonnegative harmonic functions on £ with vanishing
boundary values on 082. The harmonic dimension of 2, dim @(2) in notation, is
defined as the minimum number of elements of P(2) generating P(2) provided
that such a finite set exists, otherwise as oo. It is known that dim ®(2) does
not depend on a choice of end of R: dim®@(2)=dim ®(£2’) for any pair (2, 2)
of ends of R(cf. [4]). In terms of the Martin compactification dim () coin-
cides with the number of minimal points over the ideal boundary (cf. Con-
stantinescu and Cornea [3]).

In this paper we especially concern with ends W which are subregion of
p-sheeted unlimited covering surfaces of {0<|z|<co}. For these W it is known
that 1<dim @(W)<p (cf. [4]). Consider two positive sequences {a,} and {b,}
satisfying b,,:<a,<b,<1l and lim,..a,=0. Set G={0<|z| <1} —I where I=
Us=1l, and I,=[a,, b,]. We take p(>1) copies G,, -, G, of G. Joining the
upper edge of [, on G, and the lower edge of I, on G,,, (j mod p) for every
n, we obtain a p-sheeted covering surface W=W} of {0<|z|<1} which is
naturally considered as an end of a p-sheeted covering surface of {0<|z|Zoo}.
In [4] Heins proved the followings:

(A) If I is sufficiently ‘thin’ at z=0 such as
lim sup R (x)<+oo,
Roz--0

then dim @P(W)=p, where f?’go is the balayage of G.(z)=log(1/|z|) relative to I
on D;
(B) if I is sufficiently ‘thick’ at z=0 such as
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o bn _
2 Jog- ~=co,

then dim e(W)=1.

The purpose of this paper is to extend these Heins’ results. For example
our Theorem 1 (cf. §1) in more general setting for I implies that if I is thin
at z=0, in the sense that z=0 is an irregular boundary point of G with respect
to Dirichlet problem, then dim ®@(W)=p, which sharpens the above (A). Res-
tricted to the case p=2"(meN) our Theorem 2 (cf. §1) in a bit more general
setting for [ implies that if I is not thin at z=0, then dim ¢(W)=1, which
partially sharpens the above (B). Consequently we have the following which
completely determines the harmonic dimension of W=W} in the case p=2™

(cf. [6]):

THEOREM. Suppose that p=2™. Then
(i) dimPW)=p if and only if I is thin at z=0;
(ii) dim@W)=1 if and anly if I is not thin at z=0.

In §1 we give preliminaries and state main results Theorems 1 and 2. The
proof of Theorem 1 (resp. Theorem 2) is given in § 2 (resp. §3).

§1. Preliminaries from potential theory and statement of main results

1.1. We begin with recalling the definition of balayage. Consider an open
Riemann surface F possessing the Green’s function. Denote by S the class of
nonnegative superharmonic functions on F. Let E be a subset of F and s
belong to S. Then the balayage RE=FRE of s relative to E on F is defined by

RE(z)=liminf inf {u(x): usS, u=s on E}

(cf. e.g. [1]). Let Gf(-) be the Green’s function on F with pole at & We
here review fundamental properties of balayage (cf. [1], [2], [5], etc.).

PROPOSITION 1.1. (i) If E.CE,, then RE1<RE:;

(ii) REVESREV4RE:;

(iii) R£+v:R€+R§;

(iv) if N is a polar set, then REVN=RE;

(v) if E is a closed subset of F, then RE(z)=s(z) on E except possibly for
those z0FE which are irregular boundary points of F—FE;

(vi) REr(x)=REr(z) for every z and x in F.

Next we state the definition of thinness (cf. [2]).

DEFINITION 1.1. Let z be a point of F and E a subset of F. We say that
E is thin at z if REr+GF.
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Assuming that E is closed and z belongs to E in the above definition, it
is well-known that E is thin at z if and only if z is an irregular boundary
point of F—E with respect to Dirichlet problem (cf. e.g. [1, p. 348]).

1.2. In the complex plane C, we introduce the weakest topology which
makes all positive superharmonic functions in C continuous. This topology is
called fine topology (cf. e.g. [2]). It is well-known that a subset U of C is a
fine neighborhood of a point z in C if and only if C—U is thin at z. Here and
hereafter, for simplicity, we denote by Ge(-) the Green’s function on {|z|<1}
with pole at & In §2 we will be in need of the following proposition (cf. [2]):

PROPOSITION 1.2. Let E be a domain in C such that the point z=0 belongs
to 0E. Suppose that C—E is thin at z=0 and h is a positive superharmonic
function on E. Then h/G, has a fine limit f-limgs,., h(2)/Go(2z) at z=0, where
the fine limit of h/G, at z=0 is the limit of h/G, at z=0 with respect to the
fine topology.

1.3. In order to state main results, we begin with fixing the notations.
Denote by D the open unit disc {|z]<1}. Let {J.}%-: be a family of closed
segments J, in D—{0} such that J,NJ,=0 for every m and n with m+#n
and {J,}%-, accumulates only at z=0 in D\UJD. Set J=U%-.J, and S=D—
{0} —J. By definition of S, S has two edges on each J,. Then we denote by
J+ one of them and by J5 the other. Take p(>1) copies Si, -+, S, of S and
identify along each J,, the edge J3 on S, being joined to the edge J, on
S,+1(j mod p). We thereby obtain a p-sheeted covering surface W=W, of
{0<|z| <1} which is naturally considered as an end of a p-sheeted covering
surface of {0<|z|<o}. The followings are our main results.

THEOREM 1. If J is thin at the origin, then dim P(W)=>p.

THEOREM 2. Suppose that p=2™(m< N) and that | is symmetric with respect
to the real axis. If neither of JN\R and R—J s thin at the origin, then
dim 2(W)=1.

It is easily checked that Theorem in Introduction follows from Theorems
1 and 2.

§2. Proof of Theorem 1

2.1. First we give the following proposition :

PROPOSITION 2.1. Suppose that | and S are the same as in Theorem 1.
Then,
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Rg(2)
f Sléz—tl) Go(Z) -

if and only if J is thin at z2=0, where R%,="R%,

Proof. The ‘only if’ part of the assertion follows from the definition of
thinness. Suppose that J is thin at z=0. Set Dy={z€D: Rez=0} and D,=
{zeD: Rez<0}. By (ii) of Proposition 1.1, we only have to prove that

Rmnk
(1) f-lim Ko@)

s2em0 Go2)

for k=0 and 1. We prove (1) only for k=0, since the proof works similarly
for k=1. By the fact that the open segment (—1, 0) is not thin at z=0 and
by Proposition 1.2, we have only to prove that

. REHD(z)
(2) R N R
We take points x in DyN\J and z in (—1, 0). From simple calculation we obtain
the inequality

G (x)=log| =~ Slog‘—ilzG,(O).
Hence we have
(3) RGZ_R <o)=Gz(0)k§

on D for z=(—1,0) and a subset E of /N\D,. Let p be a real number with
0>1 and set D(N y={|z|<e *"}(NeN). Then Wiener’s criterion implies that

(4) lim RINDoNDW)(0)=0)
(cf. [2, p. 80]). By (ii) and (vi) of Proposition 1.1 and by (3), we have
R ﬂDo (2) Régmonb(”’(z) ﬁéQDO‘D‘N’(Z)
fim sup=* = <lim sup(=* = e )
RJnDonD(N)
<lim sup L ©

B52--0 G,(O)

S RINPADI (),
Therefore, by letting N—o and by (4), we have the equality (2).

2.2, Proof of Theorem 1. Suppose that J is thin at z=0. Let z be the
projection from W onto D—{0}. For every £=S, we denote by &, the point in
W such that =(§;)=¢& and &,€S,(j=1, ---, p). Since the origin is a finely interior
point of S\ {0}, there exists the fine limit f-lims jz¢,0 GE’;(r;) for every peW
(cf. [2]), and hence the fine limit f-limsjg,eﬁoG?;(ri) determines an element,
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denoted by hA,(n), belonging to @(W) for each j=1, ---, p. Thus, by the fact
that dim@(W)<p, we have only to prove that the family {A,, ---, h,} in @W)
is linearly independent. To see this, we define positive harmonic functions 4,
on S as follows: h;(2)=hyz:), 5, k=1, -+, p, where 7 %(z2)={z,, ---, z,} and
z,eS;. Then, we have only to prove the equality

. hjk(Z) _
(5) f-jim, Gy =0

where 0,, is the Kronecker delta, since it instantly follows from (5) that the
family {h,, ---, h,} is linearly independent.
It is easily seen that

(6) Gie)=C.&)= 3} GH(E)= 3} Gz

for each z&S and for each k=1, ---, p (cf. [4]). Hence, by definitions of #,
and hj;, we obtain the equality

Y4
(7) Go(z)= ]gl hjk(z)
on S for each k=1, ---, p. On the other hand, by (6), we have
w
(8) Ge(2)= ]%Gej(zk)
for every z&S and for every k=1, ---, p. Hence, by (iv) and (v) of Proposition

1.1 and by maximum principle, we find that
(9) Rée(z)=Ré§“°’(2)2]§eGéﬁ(zk) (z€S, k=1, -, p),

since X, G?}(zk) is considered as a bounded harmonic function on S. Thus,
by letting £—0 with respect to the fine topology and by (vi) of Proposition 1.1,
we have
Réo(z)g 2 hi(2).
Ve

Therefore, by virtue of Proposition 2.1, we obtain

(10) f—slggo—z—%’;%)’*(z) —

It is easily seen that the equality (5) follows from (7) and (10). The proof is
herewith complete.

§3. Proof of Theorem 2

3.1. We first give the following lemma which is useful in the sequel:

LEMMA 3.1. Let F be an open Riemann surface, F an unlimited covering
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surface of F, E a subset of F, s a positive superharmonic functin on F and = the
canonical projection from Fonto F. T hen, it holds that

A FHr=1
FREp=FRE;1®

on F.

Proof. Let #i be a positive superharmonic function on F satisfying that
fi=sew on w !(E). Setting

w(w)=lim inf inf {#(z) : z€x"'(x)}
W
on F, we find that u is a positive superharmonic function on F and u=s on
E. Hence we have #i=u-x="RE-x on F which implies that
PRI B =FRFox

on F. Therefore, by a trivial relation FRE-x=FR7.®, we have the desired
assertion.

3.2. Essential part of the proof of Theorem 2 is to prove the following
proposition :

PROPOSITION 3.1. Suppose that p=2 and that | is symmetric with respect
to the real axis. If neither of JNR and R—] s thin at the origin, then
dim @(W)=1.

Proof. Let h be an element of @(W) and = the projection from W onto
D—{0}. For a point z&W which belongs to S;(7=1, 2), we denote by Z the
point in S, whose projection coincides with #(z). Defining & by A(z)=h(Z) on
W, we find that he@W). |

First we show that A(€@(W)) is a constant multiple of Go(n(2)) if h=h.
Let = be the sheet interchange of W. Then, we find a positive constant ¢
such that

11 cGo(m(2))=h(z)+het(z)

on W. Since /MR is not thin at the origin, by Lemma 3.1, (11) and (iii) of
Proposition 1.1, we have

cGy(n(2)="RIG*(n(2))
=W REG$I0B)(2)
SYRETIIMB(2) 4+ RES:IB(z)
Sh(z)+het(2)
=¢Go(n(2))
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on W and, in particular,
(12) h2)="R; "™ (z)
on W. On the other hand, by (11), we also have

(13) h(@)= 5 G (z)

for every zex (JNR), because h=h=hot on 7~ (JNR) except possibly a polar
subset of 7 '(JNR). By means of (12), (13), Lemma 3.1 and the assumption,
we conclude that

h(z)=" R} (2)

W Pz-1(JNR
RTc560%9(2)

(14) N
="R{0% 6, (7(2))
c
=5 Go(m(2))
on W.

Next we consider the general case. Let he®@(W) be a minimal function

(cf. e.g. [2]). By the fact that h+h=h-+h on W and by the above observation,
we find a positive constant a such that

h(2)+h(z)=aGy(n(2))
on W, and hence

(15) h@z%&@@)

on n~'(R—J), because z=z on 7 '(R—J). Since R—J is not thin at the origin,
by (15) and Lemma 3.1, we have
h(z)Z" R; ™7 (2)

-1(p—
=¥ i‘a/z%’f:l,Z;(Z)

="R{EH%(7(2))
a
=5 Go(#(2))

on W. Therefore, by the minimality of 4, we find a positive constant 2 such
that
h(z2)=kGy(n(2))

on W, which implies that dim *(W)=1.

3.3. Proof of Theorem 2. Take a minimal function h in P(W,), where
p=2"(meN). Let 6 be the covering transformation of W,:
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O(w,)=w,,,, (7 mod p, =1, -, p)

where 7 '(w)={w,, ---, w,} and w;S, for weD—{0}. Set
2m—1-1
fi=Z het™ (=0, 1),

where 6°=id.. Then we can consider f, as a function in ®(W,). Hence, by
Proposition 3.1, we find a positive constant b such that

fo(2)=bG(n(2))
on W, and hence, by the fact that f,=f,20, we have

fo2)=11(2)

on W. Therefore, by the uniqueness of Martin’s integral representation (cf.
e.g. [2], [3], [5] etc), we can find an integer [ such that

(16) h=ho6%*",

since h-f* is a minimal function for each 7=1, ---, p. On the other hand, we
can find two integers a and B such that a(2/+1)4p2™=1. Therefore, by the
fact that 6*™=id. and by (16), we have

h=h-6.
From this it follows that dim @(W,)=1.

3.4. By applying the same argument as in 3.3 and by the fact that
dim®(W,)<n, we obtain the following:

THEOREM 3. Suppose that p=2™n, where meN and n is an odd integer.
Under the same condition for J as in Theorem 2, it holds that dim P(W,)<n.

Remark. In Theorem 2, we can not omit the condition that R—J is not
thin at z=0. For example, we assume that p=2, JCR and R—] is thin at
z=0. Denote by {/7}%-, the family of the connected components of (R—J)N
D—{0} and by J; the closure of J; for each n. By replacing {/,}%-; in 1.3
with {J4}3-1, we construct a 2-sheeted covering surface W’ of {0<|z|<1} in
the same way as in 1.3. Then \U3-; J4 is thin at z=0, and hence Theorem 1
yields that dim @(W’)=2. Therefore we find that dim®(W)=2 since W is
conformally equivalent to W’.
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