
H. MASAOKA AND S. SEGAWA
KODAI MATH. J.
17 (1994), 351-359

HARMONIC DIMENSION OF COVERING SURFACES

Dedicated to Professor Mitsuru Nakai on his sixtieth birthday

BY HIROAKI MASAOKA AND SHIGEO SEGAWA

Introduction

Let R be an open Riemann surfaces of null boundary which has a single
ideal boundary component in the sense of Kerekjartό-Stoϊlow. A relatively
noncompact subregion Ω of R is said to be an end of R if the relative boundary
dΩ consists of finitely many analytic Jordan curves (cf. Heins [4]). We denote
by &(Ω) the class of nonnegative harmonic functions on Ω with vanishing
boundary values on dΩ. The harmonic dimension of Ω, dim£P(β) in notation, is
defined as the minimum number of elements of <?(£?) generating 5*(fl) provided
that such a finite set exists, otherwise as oo, It is known that dim <?(£?) does
not depend on a choice of end of R : dim£P(ί2)=dim£P(42') for any pair (Ω, Ωf)
of ends of i?(cf. [4]). In terms of the Martin compactification dim£P(£?) coin-
cides with the number of minimal points over the ideal boundary (cf. Con-
stantinescu and Cornea [3]).

In this paper we especially concern with ends W which are subregion of
/^-sheeted unlimited covering surfaces of {0<|^ |^oo}. For these W it is known
that l^d\m£{W)^p (cf. [4]). Consider two positive sequences {an\ and \bn)
satisfying bn+1<an<bn<l and liningtfn^O. Set G = { 0 < | z | < l } — / where / =
\Jn=Jn and / n = [ α w , bn~\. We take p{>l) copies Glf •••, Gv of G. Joining the
upper edge of In on G3 and the lower edge of In on G3+1 (j mod p) for every
n, we obtain a ^-sheeted covering surface W=W*P of { 0 < | z | < l } which is
naturally considered as an end of a /^-sheeted covering surface of
In [4] Heins proved the followings:

(A) // / is sufficiently 'thin1 at z=Q such as

lim sup J$

then dim&(W)=p, where RJ

Go is the baίayage of G0(z)=\og(l/\z\) relative to I
on D;

(B) if I is sufficiently 'thick' at z=0 such as
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00 bn

then dim&(W)=l.

The purpose of this paper is to extend these Heins' results. For example
our Theorem 1 (cf. § 1) in more general setting for / implies that if / is thin
at z=0, in the sense that z=0 is an irregular boundary point of G with respect
to Dirichlet problem, then dim ££(W)=p, which sharpens the above (A). Res-
tricted to the case p—2m(m^N) our Theorem 2 (cf. § 1) in a bit more general
setting for / implies that if / is not thin at z=0, then dim^B(W)=lf which
partially sharpens the above (B). Consequently we have the following which
completely determines the harmonic dimension of W=W!

P in the case p=2m

(cf. [6]):

THEOREM. Suppose that p=2m. Then
( i ) dim&(W)=p if and only if I is thin at z~0\
(ii) dim<£(W)=l if and anly if I is n°t thin at z—0.

In § 1 we give preliminaries and state main results Theorems 1 and 2. The
proof of Theorem 1 (resp. Theorem 2) is given in § 2 (resp. § 3).

§ 1. Preliminaries from potential theory and statement of main results

1.1. We begin with recalling the definition of balayage. Consider an open
Riemann surface F possessing the Green's function. Denote by S the class of
nonnegative superharmonic functions on F. Let £ be a subset of F and s
belong to S. Then the balayage Rf=FRf of s relative to E on F is defined by

Rf(z)=\im'mf inf{u(x): u^S, u^s on E\

(cf. e.g. [1]). Let GF(-) be the Green's function on F with pole at ξ. We
here review fundamental properties of balayage (cf. [1], [2], [5], etc.).

PROPOSITION 1.1. ( i ) / / EXΌ.E^ then Rf^

(ii)
(iii)
(iv) if N is a polar set, then RfUN=Rf;
(v) if E is a closed subset of F, then Rξ(z)—s(z) on E except possibly for

those z^dE which are irregular boundary points of F—E;
(vi) R%F{X)—R%F(Z) for every z and x in F.

Next we state the definition of thinness (cf. [2]).

DEFINITION 1.1. Let z be a point of F and E a subset of F. We say that
E is thin at z if R%ξφGf.



HARMONIC DIMENSION OF COVERING SURFACES 353

Assuming that E is closed and z belongs to E in the above definition, it
is well-known that E is thin at z if and only if z is an irregular boundary
point of F—E with respect to Dirichlet problem (cf. e.g. [1, p. 348]).

1.2. In the complex plane C, we introduce the weakest topology which
makes all positive superharmonic functions in C continuous. This topology is
called fine topology (cf. e.g. [2]). It is well-known that a subset U of C is a
fine neighborhood of a point z in C if and only if C—U is thin at z. Here and
hereafter, for simplicity, we denote by G (̂ ) the Green's function on { |z |<l}
with pole at ξ. In § 2 we will be in need of the following proposition (cf. [2]):

PROPOSITION 1.2. Let E be a domain in C such that the point z=0 belongs
to dE. Suppose that C—E is thin at z=0 and h is a positive superharmonic
function on E. Then h/G0 has a fine limit fAimEBZ-»o h(z)/G0(z) at z=0, where
the fine limit of h/G0 at z=0 is the limit of h/G0 at z=Q with respect to the
fine topology.

1.3. In order to state main results, we begin with fixing the notations.
Denote by D the open unit disc { | z |<l} . Let {Jn\n=ι be a family of closed
segments Jn in D— {0} such that JmΓΛjn—9 for every m and n with mΦn
and {Jn)n=i accumulates only at z=0 in DVJdD. Set J=\Jn=Jn and S=D—
{0}—/. By definition of S, S has two edges on each Jn. Then we denote by
Jt one of them and by Jΰ the other. Take p(>ϊ) copies Su •••, Sp of S and
identify along each / „ , the edge Ji on Sj being joined to the edge Jΰ on
Sj+iU mod/)). We thereby obtain a ^-sheeted covering surface W=WP of
{0< |^ |< l } which is naturally considered as an end of a ^-sheeted covering
surface of {0<|z |^oo}. The followings are our main results.

THEOREM 1. // / is thin at the origin, then dim&(W)=p.

THEOREM 2. Suppose that p—2nι{m^N) and that J is symmetric with respect
to the real axis. If neither of JΓ\R and R—J is thin at the origin, then

It is easily checked that Theorem in Introduction follows from Theorems
1 and 2.

§2. Proof of Theorem 1

2.1. First we give the following proposition:

PROPOSITION 2.1. Suppose that J and S are the same as in Theorem 1.
Then,
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if and only if J is thin at z—0, where R J

G Q — D R J

G Q '

Proof. The 'only if part of the assertion follows from the definition of
thinness. Suppose that / is thin at £=0. Set DQ={z<=D: Rez^O} and Dx—
{z<=D: R e ^ O } . By (ii) of Proposition 1.1, we only have to prove that

( i ) / - ' - &
SBZ-,0 G0(Z)

for k=0 and 1. We prove (1) only for k=0, since the proof works similarly
for k — l. By the fact that the open segment (—1, 0) is not thin at z—0 and
by Proposition 1.2, we have only to prove that

(2) l,m
R

We take points x in D0Γ\J and z in (—1, 0). From simple calculation we obtain
the inequality

1—zx

x —z

Hence we have

(3) R

on D for ^ G ( - 1 , 0) and a subset E of JΓ\D0. Let jo be a real number with
p>l and set D(N)={\z\<e-pN\(N^N). Then Wiener's criterion implies that

(4) \imRinD<>nIHN\0)=0
JV-»oo

(cf. [2, p. 80]). By (ii) and (vi) of Proposition 1.1 and by (3), we have

lim sup °. . — < lim sup (—°
Λ 3 0 K G U ) Λ 3 0 ^ V G(Z)GO(Z) GO(Z)

<hm sup
~ R 3 0m s u p „ ...

R3Z-+-0 G,(0)

Therefore, by letting N-*oo and by (4), we have the equality (2).

2.2. Proof of Theorem 1. Suppose that / is thin at z—0. Let π be the
projection from W onto D— {0}. For every f e S , we denote by £, the point in
W such that π(ξj)=ξ and ^ e 5 / / = l , •••, ί ) . Since the origin is a finely interior
point of 5W{0}, there exists the fine limit /-lim^^oGjjiη) for every η<=W
(cf. [2]), and hence the fine limit f-limsjBξ^oGfjiη) determines an element,
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denoted by h3{η), belonging to £E>(W) for each / = 1 , •••, p. Thus, by the fact
that dim£P(W)^p, we have only to prove that the family {hu •••, hv) in &(W)
is linearly independent. T o see this, we define positive harmonic functions hjk

o n S a s f o l l o w s : hjk{z)=hj{zk), J, k — l, •••, p , w h e r e τr~\z)—{z1, •••, z v \ a n d
zk(=Sk. Then, we have only to prove the equality

( 5 ) / - l i m ^
S

where δJk is the Kronecker delta, since it instantly follows from (5) that the
family {hu •••, hv) is linearly independent.

It is easily seen that

V V

β J 0 - ^ ; = Cr 2 (^)= 2 J k'zfcCs. J— 2 J (jξj\Zk)

for each z e S and for each ^ — 1, •••, /? (cf. [4]). Hence, by definitions of h3

and hjk, we obtain the equality

( 7 ) G 0 ( * ) = : S M * )

on 5 for each ^ = 1, •••, /?. On the other hand, by (6), we have

for every z<=S and for every k — l, •••, £. Hence, by (iv) and (v) of Proposition
1.1 and by maximum principle, we find that

( 9 ) RGξi^ — RG^Kz^^ΣiGf^Zk) (Z<E.S, k — l, •••, p),

since Σ.?** Gfj(zk) is considered as a bounded harmonic function on S. Thus,
by letting £—>0 with respect to the fine topology and by (vi) of Proposition 1.1,
we have

Σ3

Therefore, by virtue of Proposition 2.1, we obtain

(10) /-lim

It is easily seen that the equality (5) follows from (7) and (10). The proof is
herewith complete.

§ 3. Proof of Theorem 2

3.1. We first give the following lemma which is useful in the sequel:

LEMMA 3.1. Let F be an open Riemann surface, F an unlimited covering
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surface of F, E a subset of F, s a positive superharmonic functin on F and π the
canonical projection from P onto F. Then, it holds that

on P.

Proof. Let ίί be a positive superharmonic function on P satisfying that
u>s°π on π~\E). Setting

u(w)=\im inf inf {u(z): z&π~\x)}
x-*w

on F, we find that u is a positive superharmonic function on F and u^s on
E. Hence we have u^u°π^iFRE<>π on P, which implies that

on P. Therefore, by a trivial relation FRf°π>:

pR^olc

iE\ we have the desired
assertion.

3.2. Essential part of the proof of Theorem 2 is to prove the following
proposition :

PROPOSITION 3.1. Suppose that p=2 and that J is symmetric with respect
to the real axis. If neither of ] Γ\R and R—J is thin at the origin, then

Proof. Let h be an element of &(W) and π the projection from W onto
D— {0}. For a point z^W which belongs to Si(/=1, 2), we denote by z the
point in St whose projection coincides with πζz). Defining h by h(z)=h(z) on
W, we find that htΞ&{W).

First we show that h(<^&(W)) is a constant multiple of G0(π(z)) if h—h.
Let τ be the sheet interchange of W. Then, we find a positive constant c
such that

(11) cG0(π(z))=h(z)+h τ(z)

on W. Since JίλR is not thin at the origin, by Lemma 3.1, (11) and (iii) of
Proposition 1.1, we have

= cG0(π(z))
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on W and, in particular,

(12) Kz)=w£r1{JC]R\z)

on W. On the other hand, by (11), we also have

(13) h(z)=^G0(π(z))

for every z<E.π~\JΓ\R), because h — h — h^τ on π~\JΓ\R) except possibly a polar
subset of π~\JΓ\R). By means of (12), (13), Lemma 3.1 and the assumption,
we conclude that

(14)

on W.
Next we consider the general case. Let h^<P(W) be a minimal function

(cf. e.g. [2]). By the fact that h + h = h + h on W and by the above observation,
we find a positive constant a such that

h(z)+h(z)=aG0(π(z))
on W, and hence

(15) A(*)=|-Go(*r(z))

on π~\R—J), because z—z on π~\R—J). Since R—J is not thin at the origin,
by (15) and Lemma 3.1, we have

on W. Therefore, by the minimality of h, we find a positive constant k such
that

h(z)=kG0(π(z))

on W, which implies that άim&(W)=l.

3.3. Proof of Theorem 2. Take a minimal function h in &(WP), where
p=2m(m<=N). Let θ be the covering transformation of Wp:



358 HIROAKI MASAOKA AND SHIGEO SEGAWA

θ(wt)=wt+lf (i modp, / = 1 , ••-, p)

where π~\w)={wu •••, wp] and wί(=Sι for w^D— {0}. Set

/ j =

a m 2 " 1 A . ί » * + ' (/=0, 1),

where 0°=id.. Then we can consider / 0 as a function in S>(W2). Hence, by
Proposition 3.1, we find a positive constant b such that

Mz)=bG0(π(z))

on W, and hence, by the fact that fi=fo°θ, we have

on PF. Therefore, by the uniqueness of Martin's integral representation (cf.
e.g. [2], [3], [5] etc), we can find an integer I such that

(16) h = h°θ2l+1,

since h°θι is a minimal function for each i=l, •••, p. On the other hand, we
can find two integers a and β such that α ( 2 / + l ) + j 8 2 m = l . Therefore, by the
fact that 0 2 T O =id. and by (16), we have

h=h*θ.

From this it follows that dim@(Wv)=l.

3.4. By applying the same argument as in 3.3 and by the fact that
άim£P(Wn)^n, we obtain the following:

THEOREM 3. Suppose that p=2mn, where m<=N and n is an odd integer.
Under the same condition for J as in Theorem 2, it holds that

Remark. In Theorem 2, we can not omit the condition that R—J is not
thin at z=0. For example, we assume that p=2, JcR and R—J is thin at
z=0. Denote by {/n}n=i the family of the connected components of (R—J)Γ\
Z>—{0} and by / ; the closure of J'n for each n. By replacing {/n}n=i in 1.3
with {Jn)n^iy we construct a 2-sheeted covering surface W of { 0 < | z | < l } in
the same way as in 1.3. Then Uϊ=i/ή is thin at z=0, and hence Theorem 1
yields that dim£P(TF/)=2. Therefore we find that dim5 ) (^)=2 since W is
conformally equivalent to W'.
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