HARMONIC DIMENSION OF COVERING SURFACES

Dedicated to Professor Mitsuru Nakai on his sixtieth birthday

By Hiroaki Masaoka and Shigeo Segawa

Introduction

Let R be an open Riemann surfaces of null boundary which has a single ideal boundary component in the sense of Kerékjártó-Stoïlow. A relatively noncompact subregion Ω of R is said to be an end of R if the relative boundary $\partial\Omega$ consists of finitely many analytic Jordan curves (cf. Heins [4]). We denote by $\mathcal{P}(\Omega)$ the class of nonnegative harmonic functions on Ω with vanishing boundary values on $\partial\Omega$. The harmonic dimension of Ω , $\dim\mathcal{P}(\Omega)$ in notation, is defined as the minimum number of elements of $\mathcal{P}(\Omega)$ generating $\mathcal{P}(\Omega)$ provided that such a finite set exists, otherwise as ∞ . It is known that $\dim\mathcal{P}(\Omega)$ does not depend on a choice of end of R: $\dim\mathcal{P}(\Omega) = \dim\mathcal{P}(\Omega')$ for any pair (Ω, Ω') of ends of R(cf. [4]). In terms of the Martin compactification $\dim\mathcal{P}(\Omega)$ coincides with the number of minimal points over the ideal boundary (cf. Constantinescu and Cornea [3]).

In this paper we especially concern with ends W which are subregion of p-sheeted unlimited covering surfaces of $\{0 < |z| \le \infty\}$. For these W it is known that $1 \le \dim \mathcal{P}(W) \le p$ (cf. [4]). Consider two positive sequences $\{a_n\}$ and $\{b_n\}$ satisfying $b_{n+1} < a_n < b_n < 1$ and $\lim_{n \to \infty} a_n = 0$. Set $G = \{0 < |z| < 1\} - I$ where $I = \bigcup_{n=1}^{\infty} I_n$ and $I_n = [a_n, b_n]$. We take p(>1) copies G_1, \cdots, G_p of G. Joining the upper edge of I_n on G_n and the lower edge of I_n on G_{n+1} ($j \mod p$) for every g, we obtain a g-sheeted covering surface g-sheeted covering surface of g-sheeted covering su

(A) If I is sufficiently 'thin' at z=0 such as

$$\lim_{R\ni x\to -0}\sup \hat{R}^{I}_{G_0}(x)<+\infty,$$

then dim $\mathfrak{L}(W) = p$, where $\hat{R}_{G_0}^I$ is the balayage of $G_0(z) = \log(1/|z|)$ relative to I on D;

(B) if I is sufficiently 'thick' at z=0 such as

Received September 6, 1993.

$$\sum_{n=1}^{\infty}\log\frac{b_n}{a_n}=\infty,$$

then $\dim \mathcal{L}(W)=1$.

The purpose of this paper is to extend these Heins' results. For example our Theorem 1 (cf. § 1) in more general setting for I implies that if I is thin at z=0, in the sense that z=0 is an irregular boundary point of G with respect to Dirichlet problem, then $\dim \mathcal{P}(W)=p$, which sharpens the above (A). Restricted to the case $p=2^m(m\in N)$ our Theorem 2 (cf. § 1) in a bit more general setting for I implies that if I is not thin at z=0, then $\dim \mathcal{P}(W)=1$, which partially sharpens the above (B). Consequently we have the following which completely determines the harmonic dimension of $W=W_p^I$ in the case $p=2^m$ (cf. $\lceil 6 \rceil$):

THEOREM. Suppose that $p=2^m$. Then

- (i) $\dim \mathcal{L}(W) = p$ if and only if I is thin at z=0;
- (ii) $\dim \mathcal{L}(W)=1$ if and anly if I is not thin at z=0.

In § 1 we give preliminaries and state main results Theorems 1 and 2. The proof of Theorem 1 (resp. Theorem 2) is given in § 2 (resp. § 3).

§ 1. Preliminaries from potential theory and statement of main results

1.1. We begin with recalling the definition of balayage. Consider an open Riemann surface F possessing the Green's function. Denote by $\mathcal S$ the class of nonnegative superharmonic functions on F. Let E be a subset of F and S belong to $\mathcal S$. Then the balayage $\hat{R}_s^E = F\hat{R}_s^E$ of S relative to E on F is defined by

$$\hat{R}_s^E(z) = \liminf_{x \to z} \inf \{ u(x) : u \in \mathcal{S}, u \ge s \text{ on } E \}$$

(cf. e.g. [1]). Let $G_{\xi}^F(\cdot)$ be the Green's function on F with pole at ξ . We here review fundamental properties of balayage (cf. [1], [2], [5], etc.).

PROPOSITION 1.1. (i) If $E_1 \subset E_2$, then $\hat{R}_{\mathfrak{s}}^{E_1} \leq \hat{R}_{\mathfrak{s}}^{E_2}$;

- (ii) $\hat{R}_{s}^{E_{1}\cup E_{2}} \leq \hat{R}_{s}^{E_{1}} + \hat{R}_{s}^{E_{2}};$
- (iii) $\hat{R}_{u+v}^E = \hat{R}_u^E + \hat{R}_v^E$;
- (iv) if N is a polar set, then $\hat{R}_s^{E \cup N} = \hat{R}_s^E$;
- (v) if E is a closed subset of F, then $\hat{R}_{s}^{E}(z)=s(z)$ on E except possibly for those $z\in\partial E$ which are irregular boundary points of F-E;
 - (vi) $\hat{R}_{G_z}^{E_F}(x) = \hat{R}_{G_x}^{E_F}(z)$ for every z and x in F.

Next we state the definition of thinness (cf. [2]).

DEFINITION 1.1. Let z be a point of F and E a subset of F. We say that E is thin at z if $\hat{R}_{EF}^g \neq G_z^F$.

Assuming that E is closed and z belongs to E in the above definition, it is well-known that E is thin at z if and only if z is an irregular boundary point of F-E with respect to Dirichlet problem (cf. e.g. [1, p. 348]).

1.2. In the complex plane C, we introduce the weakest topology which makes all positive superharmonic functions in C continuous. This topology is called *fine topology* (cf. e.g. [2]). It is well-known that a subset U of C is a fine neighborhood of a point z in C if and only if C-U is thin at z. Here and hereafter, for simplicity, we denote by $G_{\xi}(\cdot)$ the Green's function on $\{|z|<1\}$ with pole at ξ . In § 2 we will be in need of the following proposition (cf. [2]):

PROPOSITION 1.2. Let E be a domain in C such that the point z=0 belongs to ∂E . Suppose that C-E is thin at z=0 and h is a positive superharmonic function on E. Then h/G_0 has a fine limit $f-\lim_{E\ni z\to 0} h(z)/G_0(z)$ at z=0, where the fine limit of h/G_0 at z=0 is the limit of h/G_0 at z=0 with respect to the fine topology.

1.3. In order to state main results, we begin with fixing the notations. Denote by D the open unit disc $\{|z|<1\}$. Let $\{J_n\}_{n=1}^\infty$ be a family of closed segments J_n in $D-\{0\}$ such that $J_m\cap J_n=\emptyset$ for every m and n with $m\neq n$ and $\{J_n\}_{n=1}^\infty$ accumulates only at z=0 in $D\cup\partial D$. Set $J=\bigcup_{n=1}^\infty J_n$ and $S=D-\{0\}-J$. By definition of S, S has two edges on each J_n . Then we denote by J_n^+ one of them and by J_n^- the other. Take p(>1) copies S_1,\cdots,S_p of S_n and identify along each J_n , the edge J_n^+ on S_n being joined to the edge J_n^- on $S_{n+1}(j \mod p)$. We thereby obtain a p-sheeted covering surface $W=W_p$ of $\{0<|z|\leq n\}$ which is naturally considered as an end of a p-sheeted covering surface of $\{0<|z|\leq \infty\}$. The followings are our main results.

THEOREM 1. If J is thin at the origin, then $\dim \mathcal{L}(W) = p$.

THEOREM 2. Suppose that $p=2^m(m\in N)$ and that J is symmetric with respect to the real axis. If neither of $J\cap R$ and R-J is thin at the origin, then $\dim \mathcal{P}(W)=1$.

It is easily checked that Theorem in Introduction follows from Theorems 1 and 2.

§ 2. Proof of Theorem 1

2.1. First we give the following proposition:

PROPOSITION 2.1. Suppose that J and S are the same as in Theorem 1. Then,

$$f - \lim_{S \ni z \to 0} \frac{\hat{R}_{G_0}^J(z)}{G_0(z)} = 0$$

if and only if J is thin at z=0, where $\hat{R}_{G_0}^J={}^D\hat{R}_{G_0}^J$.

Proof. The 'only if' part of the assertion follows from the definition of thinness. Suppose that J is thin at z=0. Set $D_0=\{z\in D: \operatorname{Re} z\geq 0\}$ and $D_1=\{z\in D: \operatorname{Re} z\leq 0\}$. By (ii) of Proposition 1.1, we only have to prove that

(1)
$$f - \lim_{S \ni z \to 0} \frac{\hat{R}_{G_0}^{J \cap D_k}(z)}{G_0(z)} = 0$$

for k=0 and 1. We prove (1) only for k=0, since the proof works similarly for k=1. By the fact that the open segment (-1,0) is not thin at z=0 and by Proposition 1.2, we have only to prove that

(2)
$$\lim_{R\ni z\to -0} \frac{\hat{R}_{G_0}^{J\cap D_0}(z)}{G_0(z)} = 0.$$

We take points x in $D_0 \cap J$ and z in (-1, 0). From simple calculation we obtain the inequality

$$G_{\mathbf{z}}(x) = \log \left| \frac{1-\mathbf{z}x}{x-\mathbf{z}} \right| \leq \log \frac{1}{|\mathbf{z}|} = G_{\mathbf{z}}(0).$$

Hence we have

(3)
$$\hat{R}_{G_z}^E \leq \hat{R}_{G_z(0)}^E = G_z(0)\hat{R}_1^E$$

on D for $z \in (-1, 0)$ and a subset E of $J \cap D_0$. Let ρ be a real number with $\rho > 1$ and set $D(N) = \{|z| < e^{-\rho^N}\} (N \in N)$. Then Wiener's criterion implies that

(4)
$$\lim_{N \to \infty} \hat{R}_{1}^{J \cap D_{0} \cap D(N)}(0) = 0$$

(cf. [2, p. 80]). By (ii) and (vi) of Proposition 1.1 and by (3), we have

$$\begin{split} \limsup_{R\ni z\to -0} & \frac{\hat{R}_{G_0}^{J\cap D_0(z)}}{G_0(z)} \leq \limsup_{R\ni z\to -0} \left(\frac{\hat{R}_{G_0}^{J\cap D_0\cap D(N)}(z)}{G_0(z)} + \frac{\hat{R}_{G_0}^{J\cap D_0-D(N)}(z)}{G_0(z)} \right) \\ & \leq \limsup_{R\ni z\to -0} \frac{\hat{R}_{G_z}^{J\cap D_0\cap D(N)}(0)}{G_z(0)} \\ & \leq \hat{R}_J^{J\cap D\cap D_0(N)}(0) \,. \end{split}$$

Therefore, by letting $N \rightarrow \infty$ and by (4), we have the equality (2).

2.2. Proof of Theorem 1. Suppose that J is thin at z=0. Let π be the projection from W onto $D-\{0\}$. For every $\xi \in S$, we denote by ξ_j the point in W such that $\pi(\xi_j)=\xi$ and $\xi_j \in S_j (j=1, \dots, p)$. Since the origin is a finely interior point of $S \cup \{0\}$, there exists the fine $\liminf_{f \to 0} f^W_{\xi_j}(\eta)$ for every $\eta \in W$ (cf. [2]), and hence the fine $\liminf_{g \to \xi_j \to 0} G^W_{\xi_j}(\eta)$ determines an element,

denoted by $h_j(\eta)$, belonging to $\mathcal{Q}(W)$ for each $j=1,\cdots,p$. Thus, by the fact that $\dim \mathcal{Q}(W) \leq p$, we have only to prove that the family $\{h_1,\cdots,h_p\}$ in $\mathcal{Q}(W)$ is linearly independent. To see this, we define positive harmonic functions h_{jk} on S as follows: $h_{jk}(z) = h_j(z_k)$, $j, k=1,\cdots,p$, where $\pi^{-1}(z) = \{z_1,\cdots,z_p\}$ and $z_k \in S_k$. Then, we have only to prove the equality

$$(5) f_{-\lim_{S\ni z\to 0}} \frac{h_{jk}(z)}{G_0(z)} = \delta_{jk}$$

where δ_{jk} is the Kronecker delta, since it instantly follows from (5) that the family $\{h_1, \dots, h_p\}$ is linearly independent.

It is easily seen that

(6)
$$G_{\xi}(z) = G_{z}(\xi) = \sum_{j=1}^{p} G_{z_{k}}^{W}(\xi_{j}) = \sum_{j=1}^{p} G_{\xi_{j}}^{W}(z_{k})$$

for each $z \in S$ and for each $k=1, \dots, p$ (cf. [4]). Hence, by definitions of h_j and h_{jk} , we obtain the equality

(7)
$$G_0(z) = \sum_{j=1}^p h_{jk}(z)$$

on S for each $k=1, \dots, p$. On the other hand, by (6), we have

$$(8) G_{\xi}(z) \ge \sum_{j \neq k} G_{\xi_j}^{W}(z_k)$$

for every $z \in S$ and for every $k=1, \dots, p$. Hence, by (iv) and (v) of Proposition 1.1 and by maximum principle, we find that

(9)
$$\hat{R}_{G_{\xi}}^{J}(z) = \hat{R}_{G_{\xi}}^{J \cup \{0\}}(z) \ge \sum_{j \neq k} G_{\xi_{j}}^{W}(z_{k}) \qquad (z \in S, k=1, \dots, p),$$

since $\sum_{j\neq k} G_{\xi_j}^w(z_k)$ is considered as a bounded harmonic function on S. Thus, by letting $\xi \to 0$ with respect to the fine topology and by (vi) of Proposition 1.1, we have

$$\hat{R}_{G_0}^J(z) \ge \sum_{i \neq k} h_{jk}(z)$$
.

Therefore, by virtue of Proposition 2.1, we obtain

$$f - \lim_{S \ni z \to 0} \frac{\sum_{j \neq k} h_{jk}(z)}{G_0(z)} = 0.$$

It is easily seen that the equality (5) follows from (7) and (10). The proof is herewith complete.

§ 3. Proof of Theorem 2

3.1. We first give the following lemma which is useful in the sequel:

LEMMA 3.1. Let F be an open Riemann surface, \tilde{F} an unlimited covering

surface of F, E a subset of F, s a positive superharmonic function on F and π the canonical projection from \widetilde{F} onto F. Then, it holds that

$$F\hat{R}^{E} \circ \pi = \tilde{F}\hat{R}^{\pi^{-1}(E)}$$

on \widetilde{F} .

Proof. Let \tilde{u} be a positive superharmonic function on \tilde{F} satisfying that $\tilde{u} \ge s \circ \pi$ on $\pi^{-1}(E)$. Setting

$$u(w)=\liminf_{z\to u}\inf\{\tilde{u}(z):z\in\pi^{-1}(x)\}$$

on F, we find that u is a positive superharmonic function on F and $u \ge s$ on E. Hence we have $\tilde{u} \ge u \cdot \pi \ge F \hat{R}^E_s \cdot \pi$ on \tilde{F} , which implies that

$$\tilde{F}\hat{R}_{s \circ \pi}^{\pi^{-1}(E)} \geq F\hat{R}_{s}^{E} \circ \pi$$

on \tilde{F} . Therefore, by a trivial relation ${}^F\hat{R}^E_{\mathfrak{s}} \circ \pi \geq {}^F\hat{R}^{\pi^{-1}(E)}_{\mathfrak{s} \circ \pi}$, we have the desired assertion.

3.2. Essential part of the proof of Theorem 2 is to prove the following proposition:

PROPOSITION 3.1. Suppose that p=2 and that J is symmetric with respect to the real axis. If neither of $J \cap R$ and R-J is thin at the origin, then $\dim \mathcal{L}(W)=1$.

Proof. Let h be an element of $\mathcal{P}(W)$ and π the projection from W onto $D-\{0\}$. For a point $z\in W$ which belongs to $S_i(i=1,2)$, we denote by \bar{z} the point in S_i whose projection coincides with $\overline{\pi(z)}$. Defining \bar{h} by $\bar{h}(z)=h(\bar{z})$ on W, we find that $\bar{h}\in\mathcal{P}(W)$.

First we show that $h(\in \mathcal{P}(W))$ is a constant multiple of $G_0(\pi(z))$ if $h=\bar{h}$. Let τ be the sheet interchange of W. Then, we find a positive constant c such that

$$cG_0(\pi(z)) = h(z) + h \circ \tau(z)$$

on W. Since $J \cap R$ is not thin at the origin, by Lemma 3.1, (11) and (iii) of Proposition 1.1, we have

$$cG_{0}(\pi(z)) = {}^{D}\hat{R}_{cG_{0}}^{J \cap R}(\pi(z))$$

$$= {}^{W}\hat{R}_{cG_{0}}^{\pi^{-1}(J \cap R)}(z)$$

$$\leq {}^{W}\hat{R}_{h}^{\pi^{-1}(J \cap R)}(z) + {}^{W}\hat{R}_{h \circ \tau}^{\pi^{-1}(J \cap R)}(z)$$

$$\leq h(z) + h \circ \tau(z)$$

$$= cG_{0}(\pi(z))$$

on W and, in particular,

(12)
$$h(z) = {}^{W} \hat{R}_{h}^{\pi^{-1}(J \cap R)}(z)$$

on W. On the other hand, by (11), we also have

(13)
$$h(z) = \frac{c}{2} G_0(\pi(z))$$

for every $z \in \pi^{-1}(J \cap \mathbf{R})$, because $h = \bar{h} = h \circ \tau$ on $\pi^{-1}(J \cap \mathbf{R})$ except possibly a polar subset of $\pi^{-1}(J \cap \mathbf{R})$. By means of (12), (13), Lemma 3.1 and the assumption, we conclude that

(14)
$$h(z) = {}^{W} \hat{R}_{h}^{\pi^{-1}(J \cap R)}(z)$$

$$= {}^{W} \hat{R}_{(c/2)}^{\pi^{-1}(J \cap R)}(z)$$

$$= {}^{D} \hat{R}_{(c/2)}^{J \cap R}(\sigma_{0}(\pi(z)))$$

$$= \frac{c}{2} G_{0}(\pi(z))$$

on W.

Next we consider the general case. Let $h \in \mathcal{P}(W)$ be a minimal function (cf. e.g. [2]). By the fact that $h + \bar{h} = \overline{h + \bar{h}}$ on W and by the above observation, we find a positive constant a such that

$$h(z) + \bar{h}(z) = a G_0(\pi(z))$$

on W, and hence

(15)
$$h(z) = \frac{a}{2} G_0(\pi(z))$$

on $\pi^{-1}(R-J)$, because $\bar{z}=z$ on $\pi^{-1}(R-J)$. Since R-J is not thin at the origin, by (15) and Lemma 3.1, we have

$$\begin{split} h(z) & \geqq^W \hat{R}_h^{\pi^{-1}(R-J)}(z) \\ & = {}^W \hat{R}_{(a/2)}^{\pi^{-1}(R-J)}(z) \\ & = {}^D \hat{R}_{(a/2)}^{(R-J)\cap D}(\pi(z)) \\ & = \frac{a}{2} G_0(\pi(z)) \end{split}$$

on W. Therefore, by the minimality of h, we find a positive constant k such that

$$h(z) = kG_0(\pi(z))$$

on W, which implies that $\dim \mathcal{L}(W)=1$.

3.3. Proof of Theorem 2. Take a minimal function h in $\mathcal{L}(W_p)$, where $p=2^m(m\in N)$. Let θ be the covering transformation of W_p :

$$\theta(w_i) = w_{i+1}, \quad (i \mod p, i=1, \cdots, p)$$

where $\pi^{-1}(w) = \{w_1, \dots, w_p\}$ and $w_i \in S_i$ for $w \in D - \{0\}$. Set

$$f_{j} = \sum_{k=0}^{2^{m-1}-1} h \cdot \theta^{2k+j}$$
 $(j=0, 1),$

where θ^0 =id.. Then we can consider f_0 as a function in $\mathcal{L}(W_2)$. Hence, by Proposition 3.1, we find a positive constant b such that

$$f_0(z) = bG_0(\pi(z))$$

on W, and hence, by the fact that $f_1 = f_0 \circ \theta$, we have

$$f_0(z) = f_1(z)$$

on W. Therefore, by the uniqueness of Martin's integral representation (cf. e.g. $\lceil 2 \rceil$, $\lceil 3 \rceil$, $\lceil 5 \rceil$ etc), we can find an integer l such that

$$(16) h = h \cdot \theta^{2l+1},$$

since $h \circ \theta^{\imath}$ is a minimal function for each $i=1, \dots, p$. On the other hand, we can find two integers α and β such that $\alpha(2l+1)+\beta 2^m=1$. Therefore, by the fact that $\theta^{\imath^m}=id$. and by (16), we have

$$h = h \circ \theta$$

From this it follows that $\dim \mathcal{P}(W_p)=1$.

3.4. By applying the same argument as in 3.3 and by the fact that $\dim \mathcal{L}(W_n) \leq n$, we obtain the following:

THEOREM 3. Suppose that $p=2^m n$, where $m \in \mathbb{N}$ and n is an odd integer. Under the same condition for J as in Theorem 2, it holds that $\dim \mathcal{P}(W_p) \leq n$.

Remark. In Theorem 2, we can not omit the condition that R-J is not thin at z=0. For example, we assume that p=2, $J \subset R$ and R-J is thin at z=0. Denote by $\{J'_n\}_{n=1}^{\infty}$ the family of the connected components of $(R-J) \cap D-\{0\}$ and by \bar{J}'_n the closure of J'_n for each n. By replacing $\{J_n\}_{n=1}^{\infty}$ in 1.3 with $\{\bar{J}'_n\}_{n=1}^{\infty}$, we construct a 2-sheeted covering surface W' of $\{0 < |z| < 1\}$ in the same way as in 1.3. Then $\bigcup_{n=1}^{\infty} \bar{J}'_n$ is thin at z=0, and hence Theorem 1 yields that $\dim \mathcal{L}(W')=2$. Therefore we find that $\dim \mathcal{L}(W)=2$ since W is conformally equivalent to W'.

REFERENCES

- [1] J. Bliedtner and W. Hansen, Potential Theory, Springer-Verlag, 1986.
- [2] M. Brelot, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math., 175, Springer-Verlag 1971.

- [3] C. CONSTANTINESCU AND A. CORNEA, Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [4] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
- [5] L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969.
- [6] S. Segawa, Harmonic dimension and extremal length, Kodai Math. J., 17 (1994), 256-261.

Department of Mathematics Faculty of Science Kyoto Sangyo University Kamigamo-motoyama, Kitaku, Kyoto 603 Japan

DEPARTMENT OF MATHEMATICS
DAIDO INSTITUTE OF TECHNOLOGY
DAIDO, MINAMI, NAGOYA 457
JAPAN