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TIMELIKE SURFACES WITH MEAN CURVATURE
ONE IN ANTI-DE SITTER 3-SPACE

By JiaNQia0o HONG

1. Introduction

It is well-known that the classical Weierstrass-Enneper representation for-
mula describes minimal surfaces in Euclidean 3-space R® in terms of their Gauss
maps and auxiliary holomorphic functions [7]. This representation formula
plays a very important role in constructing and studying minimal surfaces in
R®. Later, D.A. Hoffman and R. Osserman obtained the higher dimensional
version of the classical Weierstrass-Enneper representation formula for minimal
surfaces in Euclidean n-space R"™ [3]. A natural question is how to generalize
the above results to the surfaces in space forms of other constant curvature.
In 1987, R. L. Bryant gave a representation formula for surfaces of mean cur-
vature one in hyperbolic 3-space H*® [1]. In his paper, he also pointed out that
the surfaces of constant mean curvature in S® have no representation in terms
of holomorphic data.

While considering the surfaces in Lorentz space forms, O. Kobayashi re-
presented spacelike maximal surfaces in Lorentz-Minkowski 3-space R} in terms
of holomorphic data [5]. Also C.H. Gu obtained the representation formula
for the timelike and mixed type extremal surfaces in R% [2].

Motivated by these results, in this paper we obtain a reprsentation formula
for timelike surfaces with mean curvature one in 3-dimensional anti-de Sitter
H3. By this formula, we get some timelike surfaces with mean curvature one
in H3.

This paper is organized as follows. In section 2, we introduce the standard
model of H3%, and set up another model of H? which is quite useful for com-
putation. In section 3, we will prove the main theorems (Theorem 3.1 and
Theorem 3.3) which describe the timelike surfaces of mean curvature one in

{ in terms of two simple mappings. At last, in section 4, after writing the
representation formula into a suitable form, we will give some examples.

2. Models for H:

On the 4-dimensional real vecter space E*, we consider the symmetric form
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(X, YO=X1Y1FXaY2—XsYs— X4,
x=(xy, -, X)EE,  y=0, -, YIEE".
The pair (E*, <{-, ->) will be denoted by Ri. Define H{ as follows:
2.1 Hi={xeR}; (x, xd=—1}.

When we consider H? with the induced pseudo-metric from R3, it is easily
shown that H? is a complete 3-dimensional, pseudo-Riemannian manifold of
constant sectional curvature —1 and has signature (4, +, —). One may refer
to [8] for more detail to understand the completeness and other properties of
anti-de Sitter 3-space.

Besides the above standard model for H2, there is another way of describ-
ing H$ which will be quite useful in our calculations. We identify Rji with
the space of 2X2 real matrices by identifying (x,, x,, x,;, x,) with the matrix

X1+X4  Xg—Xg
2.2) ( Xot Xy —X1+2x, )

The real Lie group, SL(2, R)XSL(2, R), two copies of 2x2 real matrices with
determinant 1, acts naturally on R% by the representation

(2.3) (g1, g2)-v=gwg}

where we regard v as a 2X2 real matrix by (2.2). Under this identification,
we clearly have <v, vD=—detv. Thus SL(2, R)XSL(2, R) preserves <-, -> and
H3 can be recognized as the space SL(2, R)

(2.4) Hi={gegl2 R): det g=1}.

Let F be the oriented orthonormal frame bundle of R which consists of the
bases (e, s, es, e,) of R} satisfying conditions:

eiNesANesNe >0,
<em eﬁ>=5a5aﬂ

where ¢;—=¢,=1 and e;=¢,—=—1. Wecanuse SL(2, R)XSL(2, R)to parametrize
g as follows.
Assume that

R AR H R U R

and let eq(g1, g2)=(g1, 82)-€a=g1¢.85. Then the map (g, g.) — (ei(gy, &2),
e(g1, g2)) is a 2-1 covering map of SL(2, R)XSL(2, R) onto &.

By submersion e¢,: F—H?}, we may regard ¢ as the oriented orthonormal
frame bundle of H3 such that e,, e, es&T,,H? is an orthonormal frame of T, H3.
Denoting its dual frame fields by {w®', ®? ®*}. Then there exist unique 1-forms
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on H} {0}, j=1, 2, 3} so that
de,=3w'e,,
(2.6) de, =X wie;+w'e,,
wle;+wie,=0.
Denoting the metric on H? by ds?, we have
2.7 ds*={de,, de,>=(0")*+(w?)>*—(0*)?.

For an orthonormal frame on H? given by {ei(gi, g2)|l7=1, 2, 3}. The
canonical forms {w*, w}|s, 7=1, 2, 3} can be expressed by Maurer-Cartan forms
of g, and g,.

LEMMA 2.1. Let {@', @1, 7=1, 2, 3} be the canonical forms associated with
the frame {e,=ge.gt|1=1, 2, 3}. Then we have

B 1 0'—®} witoi+o'—o’
1 —_—
(2.82) 0= 5(Lopratotte  —orat )
_ 1 o'+ o} w—oi+o* o
1 —_——
(2,8b) &> dgz— 2 <—wé—w§+(02—“w3 _wl_w% )'

Proof. From e,=g.e.8:, we get

de,=gi[g1'dg e.tes(gz'dg)"]gs .
On the other hand, by (2.6) we have

de,=Xwles=3g\(whep)g}.

From these two equations and noting that w}=w'=wie,, we can easily verify
the lemma by direct computation. [ ]

3. Timelike surface theory in H3i and the case H=1

Throughout this section, M will denote an oriented connected smooth 2-
dimensional manifold, and f: M—H? will be a timelike smooth immersion.

We let FPC M XF denote the first order frame bundle of f. Thus (m; ey,
e, €5, e)=F P if e,=f(m)and e;Nes=f+(T M) as oriented 2-plane. We restrict
all forms and maps to F$. It follows that ¢,&T ;) H} is the oriented united
normal to f4«(T,M) and hence, we may regard e, as well-defined as a map
e, M—Rj.

We have <e;, df)=0'=0, so the induced metric by f on M is ds?=(w?)?*—
(0*)?, and the structure equations for immersion f are given as follows:
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do*=—wiNe®,

(3.1 do*=—wiNe®,
A=’ N’ + 0 N\ wi.

Since dw'=w?Aw}+o*Awi=0, it follows that there exist smooth functions h,;=
h;: (i, j=2, 3) so that

G)é:hzng—‘hggﬂ)s y
(3.2)
W= —hg*+ hgo®.

One easily checks that IT=/h,(@?)?—2h,0*@*+ has(@®)? is a well-defined smooth
quadratic form on M, which is called the second fundamental form. Its trace
with respect to ds? denoted by H=(hy,;—hs;s)/2 is defined as mean curvature
of immersion f. It’s easily checked that the function H is a well-defined smooth
function on M.

After the above preparation, we now set up to establish our main theorems.

THEOREM 3.1. Let USR"! be a domain in 2-dimentional Lorentz-Minkowsk:
space R“' and {7, &} be the global oriented null coordinates on R*'. Let g, g:
U—SL(2, R) be two maps satisfying the following three conditions:

ag1 _ 3g2 .
W F=gE=o,

(2) det(gi'dg.)=det(g3'dg.)=0,

(3) det(gi'dg:+(g3'dg)")+#0.

Then the map f=g.gt: USR"'—-H} is a conformal (timelike) immersion with
the mean curvature one.

Proof. Let (e,=g,e;g5) be the orthonormal frame associated to g;, g..

Under this frame, we have canonical 1-forms {@*, w}|7, 7=1, 2, 3}.
Denote by

m=wi—oito’+o’,
T,=0i+0}—0*+0°,
o=+,
o =w’—®.
By Lemma 2.1, we have
R 1 (w‘—wg 7r2+2w')
g1a8:= 5 77-'1 —o'+ad)’
and
a)l‘l'wg '_751+2(0+

1
U §
8z dg2_2(—7'r2 —0'—w} /'’
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By condition (1), we assume that
oli—03=2a,=2A,(n)dyn,  oi+ei=2a,=24,§)d§,
m,=27,=2C\(9)d7, —7m,=2r,=2Cy(§)d§,
my+20"=28,=2B,(5)dy, —m 20" =28,=2B,(§)d§.
Condition (2) means
3.3) ai+ Biri=ai+ Bar.=0.
So the induced metric ds? on U is
ds}={df, df>=<d(g.g}), d(g:gh)>=—det(g7'dg,+(g3'dg")=*0.
More precisely,
(3.4) dsi=2a 0+ B:Be+717:=2A1 A+ B1B,+C,Cy)dnd§.

It then follows that f=g,g5: U—H? is a conformal (timelike) immersion.

We will now show that for this immersion H=1 by computing H in a first
order adapted frame. Without lose its generity, we assume that 2A4,A4,+ BB,
+C,C,>0, then we can write down that ds?=Adnd& on U, for some smooth
function 2>0 on U. From (3.3) and (3.4), we have

(3.5) *+B.C,=0,

for /=1, 2 and

(3.6) 2A,A,+B,B,+C,Co=2".
First we will prove an assertion.

ASSERTION. For any peU, if there exist a neighborhood V of p in U and
some smooth functions p;, q,(:=1, 2) on V so that

Ai=2Ap:q,
(3.7 B,=sign(B,)Ap}
C,=sign(C,)q?
for i=1, 2, then H(p)=1.

Note that B;C,=—A%<0, and hence sign(B,) sign(C,)=—1. For simplicity,
we assume that sign(B,)=1, sign(C,)=—1 and p,p,+¢.,g.=1 from (3.6) and (3.7).
Let h: V—SL(2, R) be defined by

= 3

then e,(g.h, g.(h*) )=-e, g1, g.)=4:85. Moreover we compute that
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(g:h)'d(g:h)=h"Y(gi'dg)h+h"'dh

:[ 3241+ ped Py —qed pat pqu2+zd1,]
—pidgt+qidpy P1dpetqidgs
and

(g2(h™)) ' d(go(h™ ) )=h"(g3'd gs)(h")'—(h™'d h)*
:_[ QZd(]1+P2dp1 *ﬁldlh—l“l]ldl)l—ld&]
—q2d Pt Padgs P1d pstgidg. ’

Also denote the 1-forms {w*, w}|é, /=1, 2, 3} be the canonical 1-forms associated
to the frame {e,(g.h, g.(h™Y))|a=1, .-, 4}. By Lemma 2.1, it follows that

0'=0, v =0"—0’'=idy, ©0'=0’+o’'=1d§
and
T, =—w}+0;+0*+0*=2(—p.dg:+g.d p:).

Thus {e.(g:h, g.(h"")")|a=1, ---, 4} is an oriented adapted frame field on V for
immersion f=g,g5. The l-form —p,dg,+¢,dp, must have the form @dy for
some function @ on V, since we have the representations

2g AL 9 Zd( ‘(n)> where p,#0,
p Bi(n)
_pxd(]1+Q1dp1: » (”)
1
q%d?;— 2d<C1(n)) where ¢;#0.

By the following Lemma 3.2, we conclude that assertion holds.
Now we continue to prove our theorem. Let

U,={peU|By(p)+0}
and

V.={p€U|Ci(p)*0}
for =1, 2.

For peU,NU.NV NV, we can choose a neighborhood V of p such that
B.,|y#0 and C,|y#0, for i=1, 2. Let p;=sign(A4,)v|B.|/4 and ¢,=+/|C,|/2
by assertion we conclude that H =1 holds on U,NU.N\V NV,

Next by the continuity of the mean curvature function H, we have that
H=1 holds on U,NU,NV,NV.SUNU,"\V,"\V, On the other hand, for pe
(ONU)NU,NV NV, we can choose a neighborhood V of p such that B,|,=0,
Byly#0 and C,|p=0 for i=1,2. Let p,=0, p,=sign(A4,)v|B:|/4 and ¢,=
~T1C.[/4, by assertion we conclude that H=1 holds on (U\TU)NU.NV,N\V,. So
we see that H=1 holds on U,"N\V ,NV,.

Repeat the above discussion, we conclude that H=1 holds on V,N\V,, on
V, and finally on U. n

LEMMA 3.2. Let f: USR"'-H? be an conformal (timelike) immession and
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{n, &} be the global oriented null coordinates on R''. Let {0, w}li, j=1, 2, 3}
be the canonical 1-forms associated with an oriented adapied frame field {e,|i=
1,2, 3}. Then the immersion f has mean curvature one if and only if —wi+w}
+@*+o* has the form @dy for some function @ on U.

Proof. Let ds;=2*dyndé denote the induced metric on U, so we have
*—0’=2Ady and &*+w*=2d&. We compute that

— @3+ 03 = —(N320° — N330°) +(— R ps0®+ hgy00*)
=—2Hw*—(has+has) (@0 —0?),

and
—witwi+ 0+ 0= —2(H—1)w*—(— 14 hys+ haes) (@ — o)
-——"—Z(H—1)0)3—2(—1+h33+h23)d77.
So it then follows that lemma holds. n

To complete the representation for the timelike surfaces with mean cur-
vature one in H3, we shall prove the following theorem.

THEOREM 3.3. Let USR"! be a simply connected domain and f:U—H3 be
a conformal (timelike) immersion with mean curvature one. Then there exist two
maps Fy, Fy: U-SL(2, R) satisfying condition (1), (2) and (3) such that

f=FF}.

Proof. Let ds?=A%dnd& be the induced metric on U, and ey, e, es be the
adapted frame fields on U such that e, is the unit normal vecter field of f in
H3. Then {ey, e, e, e,=f} is a frame field of R3i. By the fact that U is
simply connected, we have the lifting maps gi, g:: U—SL(2, R) such that e;(g,
g:)=e, for i=1,2 3 and f=g,gi. Again let {0, w}|i, j=1, 2, 3} be the can-
onical 1-forms associated to the frame field {e,|/=1, 2, 3}. By Lemma 2.1 and
0'=0, we have

—1g zl( —o} w;+w§+w2—a)s)
ErEE= o\ ot ol+ot+o° o} ’
1 3 0 —0j+ o'+’
-1 —_
g:'dgi=7 <—a)§—a)§+w2—a)3 —w} )

Consider the 8((2, R)-valued 1-form g on U:
__l( —w3 a);+w§-—w2+w3>
£72\ oottt o} '
It is easy to see that p satisfies duy=—pAp (since f has mean curvature one).

It follows by the Frobenuis theorem that there exists a smooth map h: U—
SL(2, R) so that py=h"dh.
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Let us write
a b
h_( c d )
for smooth functions a, b, ¢ and d on U. Then if we set Fi=g;A""' and F,=
g:h', by the fact that @*—w’=4d7n and ©*+0*=21d§, we easily compute

S e

Fear=( 2 4 )iz,

Since dF,(resp. dF;) has the form @dy (resp. ¥dé) for gl(2, R)-valued func-
tion @ (resp. ¥), we must have that F; and F, satisfy the condition (1). Clearly,
F, and F, also satisfy condition (2), (3) and

FiFi=g.gi=f.

This completes our proof. [ ]

4. Representation formula and examples

Let USR"* be a simply connected domain and {y, & be the global null
coordinates on R"!'. For given smooth functions ai(y), B:«(§) (¢=1, 2, 3) on U,
satisfying

(i) a a4 a3=0

(ii) B1B.+p3=0,

by Frobenuis theorem, there exist two maps
A(m): U—>SL(2, R),
B): U—SL(Z, R),

such that
@.1) A dA=( 5 % dy
. Berao=(5 F, ).

Then we obtain that a mapping given by
f& N=AmBE®)': U — H}

is a branched conformal (timelike) immersion with mean curvature one.
The mapping f is an immersion if the functions a.(y) and Bi(&) (=1, 2, 3)
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satisfy
(iii) aiBi+asfa+2a;58:#0.

At last we shall give here some examples.

Examples. 1) Let a; =B, = —1, ax=a;=F,=B:=1. By solving (4.1) and
(4.2), it follows that

A= ),

&+1 ¢ )

BO=("% g

Hence an entire timelike immersion f: R"'—H} with mean curvature one is
given by
f&, n=E+n, 26y, n—§, 26p+1).
2) Let a;=Bi=—1, ay=7, B:=§and a,=%° B.=&. We have by (4.1) and
4.2):

sin »—7» cos cos
Ap=( SRS,
—cosp—xnsiny siny
siné—&cosé& cosé
B&)= . . .
© (—cos E—E&siné siné
Then we have a branched immersion f: R"'->H$} with mean curvature one:
1 . u?—y? E—p?
flu, v)—i(—u sin u-+ g Cos u, ucos u+ g sinu,
2.2 2__ .2
2sinv—v cosv+ “ 4v sinv, 2 cosv+v sinv+ u 4v cosz))

where u=%+§, v=9—&. And f is an immersion on domain
U={(u, v)€R™': u*—1v*+4+0}.

3) Let a;=8,=—1, f:=B:=1 and a.=9% a;=7. By (4.1) and (4.2), we
get that

_( sinp—mcosy cosy
A(yi)_< —cosp—ysiny siny /’
_(§+1 §
mo=(*7 )

Then we have a branched immersion f: R*!— H} with mean curvature one
given by f(n, §)=(1/2)(x,, -, x4), where
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x1=2§ sin p—x cos -+E&y(sinn—cosy),
xy=—2§ cos p—y sinp—E&p(sinn+-cosy),
x5=—2 cos 7 —(2&-+9) sin p+-E&n(cos p—siny),
x4=2sin9—(26-+7) cos p—E&n(siny+cos ).

And f is an immersion on domain U={(§, p)eR"*; p#—1}.
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