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TIMELIKE SURFACES WITH MEAN CURVATURE
ONE IN ANTI-DE SITTER 3-SPACE

BY JIANQIAO HONG

1. Introduction

It is well-known that the classical Weierstrass-Enneper representation for-
mula describes minimal surfaces in Euclidean 3-space R3 in terms of their Gauss
maps and auxiliary holomorphic functions [7]. This representation formula
plays a very important role in constructing and studying minimal surfaces in
R\ Later, D. A. Hoffman and R. Osserman obtained the higher dimensional
version of the classical Weierstrass-Enneper representation formula for minimal
surfaces in Euclidean n-space Rn [3]. A natural question is how to generalize
the above results to the surfaces in space forms of other constant curvature.
In 1987, R. L. Bryant gave a representation formula for surfaces of mean cur-
vature one in hyperbolic 3-space / /3 [1]. In his paper, he also pointed out that
the surfaces of constant mean curvature in S3 have no representation in terms
of holomorphic data.

While considering the surfaces in Lorentz space forms, O. Kobayashi re-
presented spacelike maximal surfaces in Lorentz-Minkowski 3-space R\ in terms
of holomorphic data [5]. Also C. H. Gu obtained the representation formula
for the timelike and mixed type extremal surfaces in R\ [2].

Motivated by these results, in this paper we obtain a reprsentation formula
for timelike surfaces with mean curvature one in 3-dimensional anti-de Sitter
H\. By this formula, we get some timelike surfaces with mean curvature one
in HI

This paper is organized as follows. In section 2, we introduce the standard
model of H\, and set up another model of H\ which is quite useful for com-
putation. In section 3, we will prove the main theorems (Theorem 3.1 and
Theorem 3.3) which describe the timelike surfaces of mean curvature one in
H\ in terms of two simple mappings. At last, in section 4, after writing the
representation formula into a suitable form, we will give some examples.

2. Models for H\

On the 4-dimensional real vecter space E4, we consider the symmetric form
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The pair (£4, < , •» will be denoted by R\. Define H\ as follows:

(2.1) Hl={xE:Rt; {x, *>=-l}.

When we consider //? with the induced pseudo-metric from R\, it is easily
shown that H\ is a complete 3-dimensional, pseudo-Riemannian manifold of
constant sectional curvature —1 and has signature (+, +, —). One may refer
to [8] for more detail to understand the completeness and other properties of
anti-de Sitter 3-sρace.

Besides the above standard model for H\, there is another way of describ-
ing H\ which will be quite useful in our calculations. We identify R\ with
the space of 2x2 real matrices by identifying (xlt x2, xs, xA) with the matrix

/o Λ\ / XiΛ'Xi X% x% \

\ Xz+Xs —Xί + X*'

The real Lie group, SL(2, R)xSL(2, R), two copies of 2x2 real matrices with
determinant 1, acts naturally on R\ by the representation

(2.3) (gl) g2).v=gιvgϊ

where we regard v as a 2x2 real matrix by (2.2). Under this identification,
we clearly have <v, v>=—detv. Thus SL{2, R)xSL(2, R) preserves < , •> and
H\ can be recognized as the space SL(2, R)

(2.4) # ϊ = t e e g l ( 2 , R): detg=l\.

Let £F be the oriented orthonormal frame bundle of R\ which consists of the
bases (eίf e2, e3, e4) of R\ satisfying conditions:

where εx—ε2—1 and ε 3 = ε 4 = — 1. We can use SL(2, R)XSL(2, R) to parametrize
9" as follows.

Assume that

f l 0 \ f o l \ ί° "

a n d let ea(glf g2)=(gi, g2)-ea=gίeagl T h e n t h e m a p (gu g2)^(βί(gu g2), •••,
e*(gi, §2)) is a 2-1 covering map of SL(2, R)xSL(2, R) onto ff.

By submersion e4: 3-*H\, we may regard SF as the oriented orthonormal
frame bundle of H\ such that eίf e2, ez(=TeJί\ is an orthonormal frame of Tefl\.
Denoting its dual frame fields by {ω\ ω2, ω3}. Then there exist unique 1-forms
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on H\, {ω)\ι, ; = 1, 2, 3} so that

(2.6)

Denoting the metric on H\ by ds2, we have

(2.7) ds2=(de4, ded=(o)

For an orthonormal frame on //? given by {0<(gi, g2)|*' = l, 2, 3}. The
canonical forms {ω\ α>}|ι, ; = 1, 2, 3} can be expressed by Maurer-Cartan forms
of g1 and g2.

LEMMA 2.1. Let {ωι, ω)\t, j=l, 2, 3} be the canonical forms associated with
the frame {eι=g1eίgl\ι = l, 2, 3}. Then we have

(2.8a) ^ • ^ (

(2.8b)
~ - ~- Z V —ft)2 —ft)3 + ft)ώ —ft)°

Pπw/. From ea=gigagl, we get

On the other hand, by (2.6) we have

From these two equations and noting that ω\—ωι—ω\εx, we can easily verify
the lemma by direct computation. •

3. Timelike surface theory in H\ and the case H=l

Throughout this section, M will denote an oriented connected smooth 2-
dimensional manifold, and / : M->H\ will be a timelike smooth immersion.

We let ϊ f c M X ϊ denote the first order frame bundle of / . Thus (m; eu

02, 08, 04)^2r}1) if e4—f{m) and e2ΛeB=f*(TmM) as oriented 2-plane. We restrict
all forms and maps to EF}υ. It follows that ex^Tf{m)H\ is the oriented united
normal to f*(TmM) and hence, we may regard eγ as well-defined as a map

We have <£x, df}=ω1=0, so the induced metric by / on M is ds}=(ω2)2—
(ft>3)2, and the structure equations for immersion / are given as follows:
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dω2— — ft>|Λω3,

(3.1) dωs=-ωlAω\

Since dω^ω2 Λωl+ω3 Λωl=0, it follows that there exist smooth functions htj=
(i, y=2, 3) so that

(3.2)

One easily checks that II=h22(ω2)2—2h2Zω
2ωSjrh39(ω2)2 is a well-defined smooth

quadratic form on M, which is called the second fundamental form. Its trace
with respect to ds} denoted by H=(h22—hzs)/2 is defined as mean curvature
of immersion / . It's easily checked that the function H is a well-defined smooth
function on M.

After the above preparation, we now set up to establish our main theorems.

THEOREM 3.1. Let UQR11 be a domain in 2-dimentional Lorentz-Minkowski
space R1 ι and {η, ξ] be the global oriented null coordinates on R11. Let gu g2:
U->SL(2, R) be two maps satisfying the following three conditions:

( 1 ) %- = ^=0,
dξ dη

(2) det (g^[1dgι)=άet (g2

ldg2)=0,

(3) detig^dgi+ig^dg^ΦO.

Then the map f—g\g\\ U^RlΛ^>H\ is a conformal (timelike) immersion with
the mean curvature one.

Proof. Let (eϊ=g1eig
t

2) be the orthonormal frame associated to glf g2.
Under this frame, we have canonical 1-forms {ω\ ω)\i, j—l, 2, 3}.

Denote by

ω~=ω2—ω3.

By Lemma 2.1, we have

and

g - i d g = (
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By condition (1), we assume that

ω\-ωl=2a1=2Λ1(η)dη) ω\Jrω\~2a2=2A2{ξ)dξ,

πί=2γ1=2Cί(γ1)dV>

π2+2ω-=2βι=2Bι(7])dη,

Condition (2) means

(3.3) αϊ+j8iri

So the induced metric ds} on U is

ds}=<df, df>=<d{glgQ, d(g1

More precisely,

(3.4) ds}=2a1a2+β1β2^γ1γ2=(2AίA2+B1B2+C1C2)dηdξ.

It then follows that f=gιg2: U-^H\ is a conformal (timelike) immersion.
We will now show that for this immersion H = l by computing H in a first

order adapted frame. Without lose its generity, we assume that 2A1A2

JrB1B2

+ C1C2X), then we can write down that ds}=λ2dηdξ on U, for some smooth
function λ>0 on U. From (3.3) and (3.4), we have

(3.5)

for i=l, 2 and

(3.6) 2A1A2+B1B2+C1C*=λ2.

First we will prove an assertion.

ASSERTION. For any p<=U, if there exist a neighborhood V of p in U and
some smooth functions pίf qt(i=l, 2) on V so that

Ai=λpiqι

(3.7) Bt=sίgn(Bt)λp*

Cι=sign(Cι)λq2

ι

for ί = l , 2, then H(p)=l.

Note that BiCτ= — A2

t£0, and hence sign(β t) sign(C ι)= — 1. For simplicity,
we assume that sign(Bι)=l, sign(C t)= —1 and pίp2+qiQ2=

:l from (3.6) and (3.7).
Let A : F->SL(2, R) be defined by

h=(pι qΛ
\—Qι Pi'

then e^gίh, g2(ht)~1)=e4(gι, g2)=zgigϊ. Moreover we compute that
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(g1hy1d{glh)=h-\gτιdg1)h+h-1dh

Γ —q2dp2+p2dq2-\-λdη~\
L—pidqι-{-qίdp1 Pχdp2+qλdq2 y

and

= [ q2dq1

Jrp2dpι -pidq^q^p^λdξl
L—q2dp2-\-p2dq2 pιdp%+qxdq2 Jq2dp2-\-p2dq2

Also denote the 1-forms {ω\ ω)\i, / = 1 , 2, 3} be the canonical 1-forms associated
to the frame {ea(g\h, g2(h'1)t)\a=l, ••• , 4 } . By Lemma 2.1, it follows that

ω1=0, ω~=ω2—ω3=λdη, ω+=
and

Thus {ea{gxh, g^h'^^a—l, •••, 4} is an oriented adapted frame field on V for
immersion f=g1g

t

2. The 1-form —pidq^q^pY must have the form Φdη for
some function Φ on V, since we have the representations

w ) where piΦ0'
) where **°

By the following Lemma 3.2, we conclude that assertion holds.
Now we continue to prove our theorem. Let

and
Vt={p

for ί = l , 2.
For p^Uιr\U2Γ\VιΓ\V2f we can choose a neighborhood V of p such that

Bt\vΦθ and Ct\vΦθ, for / = 1 , 2. Let i<=sign(i4 t )V|^tl/^ and ^ ^ V T C J T I
by assertion we conclude that / / = 1 holds on Z7iΓ\/72Γ\VΊΓ\V2.

Next by the continuity of the mean curvature function H, we have that

/ / = ! . holds on UλΓ\U2Γ\VλΓ\V2QU^Λϋ2Γ\V^V2. On the other hand, for p(Ξ

(JJ\Uι)Γ\U2Γ\V1Γ\V2, we can choose a neighborhood V of p such that J5i | κ =0,

5 2 | F ^ 0 and Cτ\v^0 for ί = l , 2. Let pι=0, ί 2 = s i g n ( ^ 2 ) V T ^ W and qt=

V]Ct\/λ, by assertion we conclude that H=l holds on (C/WOΠί/BΠVΊΛKa. So

we see that //=1 holds on U2Γ\VιΓ\V2.
Repeat the above discussion, we conclude that H=l holds on VιΓ\V2y on

V2 and finally on U. m

LEMMA 3.2. Let f: U^RlΛ—*H\ be an conformal {timelike) immession and
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{η, ξ} be the global oriented null coordinates on R11. Let {ω\ ω}\i, j=l, 2, 3}
be the canonical 1-forms associated with an oriented adapted frame field \ex\i—
1, 2, 3}. Then the immersion f has mean curvature one if and only if — ωl+ωl
+ ω 2 - f ω 3 has the form Φdη for some function Φ on U.

Proof, Let dsf=λ2dηdξ denote the induced metric on U, so we have
ω2—ω*=λdη and ω2+ω*=λdξ. We compute that

\=—(h22ω
2—

and

So it then follows that lemma holds. •

To complete the representation for the timelike surfaces with mean cur-
vature one in HI, we shall prove the following theorem.

THEOREM 3.3. Let UQRιί be a simply connected domain and f: U-*H\ be
a conformal {timelike) immersion with mean curvature one. Then there exist two
maps Fu F2: U-^SL{2, R) satisfying condition (1), (2) and (3) such that

f=FιFl.

Proof. Let ds}=λ2dηdξ be the induced metric on U, and eu e2, es be the
adapted frame fields on U such that eλ is the unit normal vecter field of / in
H\. Then {eu e2y es, e,=f} is a frame field of R\. By the fact that U is
simply connected, we have the lifting maps gu g2: U-+SL{2, R) such that e^gi,
g2)—ex for i—\, 2, 3 and f—gxg\. Again let {ω\ ω}\i, / = 1 , 2, 3} be the can-
onical 1-forms associated to the frame field {^11=1, 2, 3}. By Lemma 2.1 and
ω^O, we have

_! , _ 1 / —col ωl-\-ωlJr(o2—ω2

g l gι~~2\-ω\+ω\+ω2+o? ω\

ω\—ω\+o)2jrθ)\

Consider the §ϊ (2, i?)-valued 1-form μ on U:

1 / — ωl ω\-\-ω\—ω2+ω\
n—-τr[ 0 „ „ )•

L \—O)\-\-O)\-\-O) -γθ) O>2 '

It is easy to see that μ satisfies dμ=—μΛμ (since / has mean curvature one).
It follows by the Frobenuis theorem that there exists a smooth map h: [/—>
SL(2, R) so that μ=h~1dh.
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Let us write

\ c d )

for smooth functions a, b, c and d on U. Then if we set F1=gίh'~1 and F2

gih1, by the fact that ω2—ωz=λdη and ω2+ω*=λdξ, we easily compute

Since dF^resp. dF2) has the form Φd)?(resp. Ψdξ) for gl(2, i?)-valued func-
tion Φ (resp. ?0, we must have that F1 and F2 satisfy the condition (1). Clearly,
Fj and F2 also satisfy condition (2), (3) and

F1Fi=g1gi=f.

This completes our proof. •

4. Representation formula and examples

Let UQR11 be a simply connected domain and {η, ξ} be the global null
coordinates on R11. For given smooth functions ati(η), βi(ξ) (*=1, 2, 3) on Z7,
satisfying

(ϋ) j8ij8,+j8!=O,

by Frobenuis theorem, there exist two maps

A(η): U

B(ξ): ί/
such that

(4.1) A(η)-χdA(η)=

(4.2) B{ξ)-'dB{ξ)=( βJ βί

a)dξ.

Then we obtain that a mapping given by

/(£ η)=A{η)B{ξγ :U—*Hl

is a branched conformal (timelike) immersion with mean curvature one.

The mapping / is an immersion if the functions «<(#) and βt(ς) (i=l, 2, 3)
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satisfy

(iii) a1β1+atβ2+2a3β9φθ.

At last we shall give here some examples.

Examples. 1) Let ax = βγ — —1, a2~az—β2—βz—\. By solving (4.1) and
(4.2), it follows that

Hence an entire timelike immersion / : RlΛ-*H\ with mean curvature one is
given by

2) Let ^ = ^ = - 1 , az=η, βz=ξ and α 2 = ^ 2 , ^ ^ ί 2 . We have by (4.1) and
(4.2):

A(V)=( s i n ' ? - ' ? C 0 S ί ?
\ — cos oy — η sin >y

os|\
inf/

cos oy — η sin >y sin

c o s |

Then we have a branched immersion / : Rι>ι—>H\ with mean curvature one:

, N 1 / .(#, ϋ ) = — ί — wsi cos u, u cos u-\ — s m i / ,
4

j c o s u, u cos u\
4 4

|^2 — .^2 ^ 2 ^ 2 v

2 sin f—v cos t H ^ sin v, 2 cos v+v sin z H cos v)

4 4 /

where M = ^ + £ , v—η—ξ. And / is an immersion on domain

U={(u, v
3) Let a^β^-1, β2=β,=l and a2=η\ az=η. By (4.1) and (4.2), we

get that

A(y)=( s i n ^ - ^ C O S ) ? COSV\
' V — c o s ^ — ηύτi-η §mη J'c o s ^ — ηύτi-η §mη

Then we have a branched immersion / : Rhl->Hl with mean curvature one
given by f{η, ξ)=(l/2)(xlf •••, x4), where
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xί=2ξsmη—η cos 37+£37 (sin;? — cos37),

x2=— 2ξ cos η — η sin η— ξη(sin η + cos η),

And / is an immersion on domain U={(ξ, ^ ) e / ? l f l ; ηφ—l).
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