SOME ESTIMATES FOR MEROMORPHIC FUNCTIONS SHARING FOUR VALUES

Dedicated to Professor Nobuyuki Suita on the occasion of his 60th birthday

By Hideharu Ueda

1. Introduction

In this paper the term "meromorphic function" will mean a meromorphic function in \boldsymbol{C}. We will use the standard notations of Nevanlinna theory: $T(r, f)$, $m(r, c, f), N(r, c, f), \bar{N}(r, c, f), N_{k}(r, c, f), \bar{N}_{k}(r, c, f)(c \in \boldsymbol{C} \cup\{\infty\}, k=1,2, \cdots)$, and we assume that the reader is familiar with the basic results in Nevanlinna theory as found in [3]. Further, we will use the notations and terminology defined in the following (i)-(vi):
(i) Let f and g be distinct nonconstant meromorphic functions. For $r>0$, put $T(r)=\max \{T(r, f), T(r, g)\}$. We write $\sigma(r)=S(r)$ for every function $\sigma:(0, \infty) \rightarrow(-\infty, \infty)$ satisfying $\sigma(r) / T(r) \rightarrow 0$ for $r \rightarrow \infty$ possibly outside a set of finite Lebesgue measure.
(ii) For two nonconstant meromorphic functions f, g and $c \in \boldsymbol{C} \cup\{\infty\}$ we denote by $\bar{n}(r, c)=\bar{n}(r, c ; f, g)\left(\right.$ resp. $\bar{n}_{1}(r, c)=\bar{n}_{1}(r, c ; f, g), \bar{n}_{3}(r, c)=\bar{n}_{3}(r, c$; $f, g)$) the number of distinct roots of at least one of the equations $f=c$ and $g=c$ in $|z| \leqq r$ (resp. the number of distinct common roots of $f=c$ and $g=c$ with the same multiplicities in $|z| \leqq r$, the number of distinct c-points of f or g which are not common to f and g in $|z| \leqq r)$. We write

$$
\begin{gathered}
\bar{N}(r, c)=\bar{N}(r, c ; f, g)=\int_{0}^{r}\{\bar{n}(t, c)-\bar{n}(0, c)\} / t d t+\bar{n}(0, c) \log r, \\
\bar{N}_{j}(r, c)=\bar{N}_{j}(r, c ; f, g)=\int_{0}^{r}\left\{\bar{n}_{j}(t, c)-\bar{n}_{j}(0, c)\right\} / t d t+\bar{n}_{j}(0, c) \log r(j=1,3)
\end{gathered}
$$

and

$$
\bar{N}_{2}(r, c)=\bar{N}(r, c)-\bar{N}_{1}(r, c) .
$$

Further, for a complex number $a(\neq 0,1)$ we write

$$
\begin{gathered}
\quad \bar{N}(r)=\bar{N}(r, 0)+\bar{N}(r, 1)+\bar{N}(r, \infty)+\bar{N}(r, a), \\
\bar{N}_{j}(r)=\bar{N}_{j}(r, 0)+\bar{N}_{j}(r, 1)+\bar{N}_{j}(r, \infty)+\bar{N}_{j}(r, a) \quad(j=1,2) .
\end{gathered}
$$

AMS classification 30D35
Received May 12, 1993.
(iii) We say that f and g share the value $c I M^{\prime \prime}$ (resp. $C M^{\prime \prime}$) if $\bar{N}_{3}(r, c)$ $=S(r)\left(\right.$ resp. $\left.\bar{N}_{2}(r, c)=S(r)\right)$.

These notions $I M^{\prime \prime}$ and $C M^{\prime \prime}$ are slight generalizations of $I M$ (See [2, p 545].) and $C M$ (See [2, p 545].) (or "CM" (See [5, p 172].), respectively. It is easily seen that Theorem F, Corollary 1, Lemma 2 in [2] and Theorem B^{\prime} in [5] remain valid if $I M$ and " $C M$ " are replaced by $I M^{\prime \prime}$ and $C M^{\prime}$ ", respectively. And so, using the argument of the proof of Theorem 1 in [5], we see that Theorems E and 2 in [2] are still true if $I M$ and $C M$ are replaced by $I M^{\prime \prime}$ and $C M^{\prime \prime}$, respectively. The function ψ defined in [4, 5, 7] satisfies $N(r, \infty, \psi)=S(r)$ and $m(r, \infty, \psi)=S(r)$ if $I M$ is replaced by $I M^{\prime \prime}$, and hence Lemma 2 in [7] remains true if $I M$ is replaced by $I M^{\prime \prime}$. (For convenience sake we state in $\S 3$ only a part of these facts without proof- which will be used to prove our results.)
(iv) For a given complex number $a(\neq 0,1)$ and two nonconstant meromorphic functions f and g we write

$$
\begin{aligned}
& n^{(k)}(r, c)=\#\left\{z_{c} \in \boldsymbol{C} ;\left|z_{c}\right| \leqq r, z_{c} \text { is a } c \text {-point with multiplicity } p\right. \text { for } \\
& f \text { and with multiplicity } q \text { for } g \text {, where } p \text { and } q \text { satisfy } \\
& \left.\max (p, q) \geqq k+1 . z_{c} \text { is counted } \max (p, q)-k \text { times. }\right\} \\
& (c=0,1, \infty, a ; k=0,1,2), \text { and } \\
& N^{(k)}(r, c)=\int_{0}^{r}\left\{n^{(k)}(t, c)-n^{(k)}(0, c)\right\} / t d t+n^{(k)}(0, c) \log r \\
& \quad(c=0,1, \infty, a ; k=0,1,2) .
\end{aligned}
$$

(v) Let $\bar{N}(r, f=g=c$ with $(p, q))$ denote the counting function of the c points with multiplicity p for f and with multiplicity q for g, each point counted once. Further, we denote such a c-point by $z_{c}(p, q)$.
(vi) Let $a(\neq 0,1)$ be a complex number, and let f and g be two nonconstant meromorphic functions. For $c=0,1, a, \infty$ we use the following notation:

$$
\left.\left.\begin{array}{rl}
\bar{n}_{11}(r, c)=\#\left\{z_{c} \in \boldsymbol{C} ;\left|z_{c}\right| \leqq r, f\left(z_{c}\right)=g\left(z_{c}\right)=c, f^{\prime}\left(z_{c}\right)=-g^{\prime}\left(z_{c}\right) \neq 0,\right. \\
\left.f^{\prime \prime}\left(z_{c}\right)=g^{\prime \prime}\left(z_{c}\right), f^{\prime \prime \prime}\left(z_{c}\right)=-g^{\prime \prime \prime}\left(z_{c}\right), 3 f^{\prime \prime}\left(z_{c}\right)+2 \kappa(c)\left(f^{\prime}\left(z_{c}\right)\right)^{2}=0\right\} \\
(c=0,1, a), \quad \text { where }
\end{array}\right\} \begin{array}{rl}
\kappa(c)= & (a+1)(c-1)\{(a-2) c-a(a-1)\} / a^{2}(a-1) \\
& +(a-2) c\left\{(a+1) c-\left(a^{2}+1\right)\right\} / a(a-1)^{2}
\end{array}\right] \begin{array}{ll}
(a+1) / a \quad(c=0) \\
= & \begin{cases}(2-a) /(a-1) \quad(c=1), \\
(1-2 a) / a(a-1) \quad(c=a)\end{cases} \\
\bar{n}_{11}(r, \infty)=\#\left\{z_{\infty} \in \boldsymbol{C} ;\left|z_{\infty}\right| \leqq r, f(z)=\alpha /\left(z-z_{\infty}\right)+(a+1) / 3+\beta\left(z-z_{\infty}\right)+\cdots,\right. \\
\left.g(z)=-\alpha /\left(z-z_{\infty}\right)+(a+1) / 3-\beta\left(z-z_{\infty}\right)+\cdots, \alpha \neq 0\right\} \\
\left(\alpha \text { and } \beta \text { may depend on } z_{\infty}\right),
\end{array}
$$

$$
\bar{N}_{11}(r, c)=\int_{0}^{r}\left\{\bar{n}_{11}(t, c)-\bar{n}_{11}(0, c)\right\} / t d t+\bar{n}_{11}(0, c) \log r .
$$

Further, we write

$$
\bar{N}_{11}(r)=\bar{N}_{11}(r, 0)+\bar{N}_{11}(r, 1)+\bar{N}_{11}(r, \infty)+\bar{N}_{11}(r, a)
$$

2. Results

In this section we give some estimates for meromorphic functions sharing four values $I M^{\prime \prime}$. Without loss of generality we may assume that these four shared values are $0,1, \infty$ and a.

In Theorems 1-4 we assume that f and g are distinct nonconstant meromorphic functions sharing four values $0,1, \infty$ and $a I M^{\prime \prime}$. Further, we assume in Theorems $1-3$ that g is not any Möbius transformation of f.

The following Theorem 1 is a refinement of a well known theorem of R. Nevanlinna [6, p 122].

ThEOREM 1. $2 T(r)+3 \bar{N}_{11}(r) \leqq 3 \bar{N}_{2}(r)+S(r)$.
Our Theorem 2 contains a corresponding result to an author's uniqueness theorem for meromorphic functions sharing three values $C M$ [9, Theorem 2].

Theorem 2. $2 T(r)+3\left\{\bar{N}_{11}(r, 1)+\bar{N}_{11}(r, a)\right\}+\left\{N^{(2)}(r, 1)+N^{(2)}(r, a)\right\}$

$$
\leqq 3\{\bar{N}(r, 0)+\bar{N}(r, \infty)\}+2\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r) .
$$

Our Theorem 3 is a refinement of so called 2-2-Theorem of G. Gundersen [2].

THEOREM 3. (i) There exists a positive constant K_{1} satisfying

$$
\begin{aligned}
& 2 T(r)+3 \bar{N}_{11}(r)+\left\{N^{(2)}(r, 1)+N^{(2)}(r, a)\right\} \\
& \leqq K_{1}\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r)
\end{aligned}
$$

We may take $K_{1}=11$ if $a=-1$, and $K_{1}=17$ otherwise.
(ii) Particularly if $\bar{N}_{1}(r, 0)=\bar{N}_{11}(r, 0)+S(r)$ and $\bar{N}_{1}(r, \infty)=\bar{N}_{11}(r, \infty)+S(r)$ hold, then we have

$$
\begin{aligned}
& 2 T(r)+3\left\{\bar{N}_{11}(r, 1)+\bar{N}_{11}(r, a)\right\}+\left\{N^{(2)}(r, 1)+N^{(2)}(r, a)\right\} \\
& \quad \leqq(13 / 2)\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r) .
\end{aligned}
$$

Finally, using a method of E. Mues [4], we prove
Theorem 4. (i) There exist positive constants K_{2} and K_{3} satisfying

$$
T(r) \leqq K_{2}\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+K_{3} \bar{N}(r, \infty)+S(r) .
$$

We may take $\left(K_{2}, K_{3}\right)=(11 / 2,19 / 2)$ if $a=-1,1 / 2$ or 2 , and $\left(K_{2}, K_{3}\right)=(10,17)$ otherwise.
(ii) Particularly if $\bar{N}(r, f=g=c$ with $(2,1))+\bar{N}(r, f=g=c$ with $(1,2))=$ $S(r)$ for $c=0,1$ and a, then

$$
T(r) \leqq \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+2 \bar{N}(r, \infty)+S(r) .
$$

(iii) Assume that $\bar{N}_{2}(r, c, f)+\bar{N}_{2}(r, c, g)=S(r)$ for $c=0,1$ and a, and that for each $c=0,1$ and a $\bar{N}(r, f=g=c$ with $(2,1))=S(r)$ or $\bar{N}(r, f=g=c$ with $(1,2))=S(r)$. Suppose further that if $\#\left\{z_{c}(2,1)\right\} \geqq 2$ (resp. $\#\left\{z_{c}(1,2) \geqq 2\right)$, then $g^{\prime}\left(z_{c}(2,1)\right)=$ const. $C_{c(2,1)}$ for all $z_{c}(2,1)$'s (resp. $f^{\prime}\left(z_{c}(1,2)\right)\left(=\right.$ const. $C_{c(1,2)}$ for all $z_{c}(1,2)$'s). Then we have

$$
T(r) \leqq 2\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}(r, \infty)\right\}+S(r) .
$$

Remark 1. The estimates of Theorems 1,2 and 3 (ii) are sharp in the case of $a=-\omega$, where $\omega(\neq 1)$ is a third root of 1 . Consider the two functions F, G and two values A, B in [8, p 94]. If we put $f=F / A, g=G / A$, and $a=$ $B / A(=-\omega)$, then f and g are distinct meromorphic functions sharing four values $0,1, a, \infty I M$, and g is not any Möbius transformation of f. Further, f and g satisfy the estimates of Theorems 1,2 and 3 (ii) with equality.

Remark 2. The estimate of Theorem 4 (ii) is sharp in the case of $a=$ $-1,1 / 2$ or 2 . For $a=-1$ this is illustrated by the pair of F and G in [7, Theorem 1]. For $a=1 / 2$ or 2 we can obtain an example from these F and G with the aid of a Möbius transformation.

Remark 3. The estimate of Theorem 4 (iii) is sharp in the case of $a=$ $-1 / 8,-8,1 / 9,9,8 / 9$ or $9 / 8$. For $a=-1 / 8$ this is illustrated by the pair of $f=\left(e^{2}+1\right) /\left(e^{2}-1\right)^{2}$ and $g=\left(e^{2}+1\right)^{2} / 8\left(e^{z}-1\right)$. This example is due to G. Gundersen [1]. For $a=-8,1 / 9,9,8 / 9$ or $9 / 8$ we can obtain an example from these f and g with the aid of a Möbius transformation.

3. Lemmas

In this section, we assume that f and g are distinct nonconstant meromorphic functions sharing four values $0,1, \infty, a I M^{\prime \prime}$. Then the following (3.1) (3.8) hold:
(3.1) $T(r, f)=T(r)+S(r), \quad T(r, g)=T(r)+S(r)$;

$$
\begin{align*}
& \bar{N}(r)=2 T(r)+S(r) \tag{3.2}\\
& N(r, 0, f-g)=\bar{N}(r, 0, f-g)+S(r)=\bar{N}(r, 0)+\bar{N}(r, 1)+\bar{N}(r, a)+S(r) \tag{3.3}\\
& N^{(0)}(r, \infty)=N(r, \infty, f-g)+S(r) \tag{3.4}\\
& N(r, \infty, f)+N(r, \infty, g)=N^{(0)}(r, \infty)+\bar{N}(r, \infty)+S(r)
\end{align*}
$$

(3.5) If $N_{0}\left(r, 0, f^{\prime}\right)$ refers only to those roots of $f^{\prime}=0$ such that $f \neq 0,1$ and a, and if $N_{0}\left(r, 0, g^{\prime}\right)$ is similarly defined, then $N_{0}\left(r, 0, f^{\prime}\right)=S(r)$ and $N_{0}(r, 0$, $\left.g^{\prime}\right)=S(r)(c f .[2$, Lemma 2]);
(3.6) The function

$$
\phi_{5}=\frac{f^{\prime} g^{\prime}(f-g)^{2}}{f g(f-1)(g-1)(f-a)(g-a)}
$$

satisfies $T\left(r, \phi_{5}\right)=S(r)$ (cf. [4, p 113]);
(3.7) $m\left(r, \infty, f^{\prime} /(f-g)\right)+N_{1}\left(r, \infty, f^{\prime} /(f-g)\right)=S(r)$,
$m\left(r, \infty, g^{\prime} /(g-f)\right)+N_{1}\left(r, \infty, g^{\prime} /(g-f)\right)=S(r) \quad$ (cf. [7, Lemma 2]);
(3.8) Suppose further that f and g share two values of $0,1, \infty, a C M^{\prime \prime}$. Then $a=-1,1 / 2$ or 2 . In this case f and g is connected with exactly one of the following relations: $f+g \equiv 0(a=-1), f g \equiv 1(a=-1), f+g \equiv 1(a=1 / 2)$, $(f-1 / 2)(g-1 / 2) \equiv 1 / 4(a=1 / 2), f+g \equiv 2(a=2),(f-1)(g-1) \equiv 1(a=2) \quad(c f$. [5, Theorem 1]).

For (3.1), (3.2) and the second equation of (3.4), see [4, Hilfssatz 1]. (3.3) and the first equation of (3.4) are easily verified by using the function ψ-which we denote by ϕ_{5} in this paper-in the proof of [4, Hilfssatz 1].

4. Proof of Theorems

4.1. Proof of Theorem 1. Consider the functions

$$
\begin{gather*}
\phi_{1}=\frac{f^{\prime}(f-1)}{f(f-a)}-\frac{g^{\prime}(g-1)}{g(g-a)}, \tag{4.1}\\
\phi_{2}=\frac{f^{\prime}(f-a)}{f(f-1)}-\frac{g^{\prime}(g-a)}{g(g-1)}, \tag{4.2}\\
\phi_{3}=\frac{f^{\prime} f}{(f-1)(f-a)}-\frac{g^{\prime} g}{(g-1)(g-a)}, \tag{4.3}\\
\phi_{4}=\frac{f^{\prime}}{f(f-1)(f-a)}-\frac{g^{\prime}}{g(g-1)(g-a)} . \tag{4.4}
\end{gather*}
$$

If $\phi_{k} \equiv 0$ for $k=1,2,3$ or 4 , then it is easily seen that f and g share four values $0,1, a, \infty C M^{\prime \prime}$. Hence by (3.8) g is a Möbius transformation of f, which contradicts our assumption.

Now, consider the case $\phi_{k} \not \equiv 0$ for all $k=1,2,3,4$. We first note from the fundamental estimate of the logarithmic derivative and (3.1) that

$$
\begin{equation*}
m\left(r, \phi_{k}\right)=S(r) \quad \text { for } \quad k=1,2,3,4 \tag{4.5}
\end{equation*}
$$

By substituting into (4.1) the Taylor expansions of f and g at a $z_{1}(1,1)$ which
is counted into $\bar{n}_{11}(r, 1)$, we see that ϕ_{1} has a zero whose multiplicity is at least four at this point. Hence from (4.1), (3.1), the first fundamental theorem and (4.5) it follows that

$$
\begin{align*}
& \bar{N}(r, 1)+3 \bar{N}_{11}(r, 1) \leqq N\left(r, 0, \phi_{1}\right)+S(r) \leqq T\left(r, \phi_{1}\right)+S(r) \tag{4.6}\\
& \quad=N\left(r, \infty, \phi_{1}\right)+S(r) \leqq \bar{N}_{2}(r, 0)+\bar{N}_{2}(r, a)+\bar{N}_{2}(r, \infty)+S(r) .
\end{align*}
$$

In the same way, we deduce from (4.2), (4.3) and (4.4) that

$$
\begin{align*}
& \bar{N}(r, a)+3 \bar{N}_{11}(r, a) \leqq \bar{N}_{2}(r, 0)+N_{2}(r, 1)+\bar{N}_{2}(r, \infty)+S(r), \tag{4.7}\\
& \bar{N}(r, 0)+3 \bar{N}_{11}(r, 0) \leqq \bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)+\bar{N}_{2}(r, \infty)+S(r) \tag{4.8}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{N}(r, \infty)+3 \bar{N}_{11}(r, \infty) \leqq \bar{N}_{2}(r, 0)+\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)+S(r), \tag{4.9}
\end{equation*}
$$

respectively. Taking (3.2) into consideration, the combination of (4.6)-(4.9) yields the estimate of Theorem 1.
4.2. Proof of Theorem 2. Define $\phi,(j=1,2)$ by (4.j). From the argument of the first part of the proof of Theorem 1 we deduce that $\phi_{j} \neq 0(j=1,2)$. In this case, (4.6) and (4.7) hold, and so,

$$
\begin{gather*}
\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+3\left\{\bar{N}_{11}(r, 1)+\bar{N}_{11}(r, a)\right\} \tag{4.10}\\
\leqq 2\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r) .
\end{gather*}
$$

Next, by (3.1), (3.2) and the first fundamental theorem

$$
\begin{align*}
& N(r, 1, f)+N(r, a, f)+N(r, 1, g)+N(r, a, g) \leqq 4 T(r)+S(r) \tag{4.11}\\
& \quad=2\{\bar{N}(r, 0)+\bar{N}(r, 1)+\bar{N}(r, a)+\bar{N}(r, \infty)\}+S(r) .
\end{align*}
$$

Since $2\{\bar{N}(r, 1)+\bar{N}(r, a)\}+N^{(1)}(r, 1)+N^{(1)}(r, a) \leqq N(r, 1, f)+N(r, a, f)+N(r, 1$, $g)+N(r, a, g)+S(r)$ by the definition of $I M^{\prime \prime}$, it follows from (4.11) that

$$
\begin{equation*}
N^{(1)}(r, 1)+N^{(1)}(r, a) \leqq 2\{\bar{N}(r, 0)+\bar{N}(r, \infty)\}+S(r) . \tag{4.12}
\end{equation*}
$$

Further, from (3.3) and the definition of $N^{(k)}(r, c)$ we deduce that

$$
\begin{gather*}
\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)+N^{(2)}(r, 1)+N^{(2)}(r, a) \tag{4.13}\\
=N^{(1)}(r, 1)+N^{(1)}(r, a)+S(r) .
\end{gather*}
$$

Thus the combination of (3.2), (4.10), (4.13) and (4.12) yields the estimate of Theorem 2.
4.3.1. Proof of Theorem 3. (i) Define $\phi_{j}(j=1,2)$ by (4.j), and further define $\phi_{J}(j=5,6,7,8,9)$ as follows:

$$
\phi_{5}=\frac{f^{\prime} g^{\prime}(f-g)^{2}}{f g(f-1)(g-1)(f-a)(g-a)},
$$

$$
\begin{gather*}
\phi_{6}=\left\{\frac{f^{\prime \prime}}{f^{\prime}}-2 \frac{f^{\prime}}{f}-\frac{f^{\prime}}{f-1}-\frac{f^{\prime}}{f-a}\right\}-\left\{\frac{g^{\prime \prime}}{g^{\prime}}-2 \frac{g^{\prime}}{g}-\frac{g^{\prime}}{g-1}-\frac{g^{\prime}}{g-a}\right\}, \tag{4.14}\\
\phi_{7}=\left\{\frac{f^{\prime \prime}}{f^{\prime}}+2 \frac{f^{\prime}}{f}-\frac{f^{\prime}}{f-1}-\frac{f^{\prime}}{f-a}\right\}-\left\{\frac{g^{\prime \prime}}{g^{\prime}}+2 \frac{g^{\prime}}{g}-\frac{g^{\prime}}{g-1}-\frac{g^{\prime}}{g-a}\right\}, \tag{4.15}\\
\phi_{8}=\phi_{6}{ }^{2}-(1+a)^{2} \phi_{5} \tag{4.16}
\end{gather*}
$$

and

$$
\begin{equation*}
\phi_{9}=\phi_{7}{ }^{2}-(1+a)^{2} \phi_{5} . \tag{4.17}
\end{equation*}
$$

Consider the case that $\phi_{j} \equiv 0$ for $\jmath=8$ or 9 . Then from (4.16), (4.17) and (3.6) we have $T\left(r, \phi_{j}\right)=S(r)$ for $j=6$ or 7. Noting that $N\left(r, \infty, \phi_{j}\right)=\bar{N}_{2}(r, 0)+$ $\bar{N}_{2}(r, \infty)+S(r)(\jmath=6,7)$ from (4.14), (4.15) and (3.5), we obtain $\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)$ $=S(r)$, which implies that g is a Möbius transformation of f in view of (3.8).

Now, assume that $\phi_{j} \neq 0$ for $j=8$ and 9 . The substitution into (4.16) (resp. (4.17)) of the Taylor (resp. Laurent) expansions of f and g at a $z_{0}(1,1)$ (resp. $\left.z_{\infty}(1,1)\right)$ gives $\phi_{8}\left(z_{0}(1,1)\right)=0$ (resp. $\left.\phi_{9}\left(z_{\infty}(1,1)\right)=0\right)$. (See [5, pp. 174-175].) Especially if $z_{0}(1,1)$ (resp. $z_{\infty}(1,1)$) is counted into $\bar{n}_{11}(r, 0)$ (resp. $\bar{n}_{11}(r, \infty)$), then ϕ_{8} (resp. ϕ_{9}) has a zero whose multiplicity is at least two at this point. Hence, from (3.1), (3.3)-(3.6), the first fundamental theorem and the fundamental estimate of the logarithmic derivative it follows that

$$
\begin{gather*}
\bar{N}_{1}(r, 0)+\bar{N}_{11}(r, 0) \leqq N\left(r, 0, \phi_{8}\right)+S(r) \leqq T\left(r, \phi_{8}\right)+S(r) \tag{4.18}\\
=2 T\left(r, \phi_{6}\right)+S(r)=2\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r)
\end{gather*}
$$

and

$$
\begin{gather*}
\bar{N}_{1}(r, \infty)+\bar{N}_{11}(r, \infty) \leqq N\left(r, 0, \phi_{9}\right)+S(r) \leqq T\left(r, \phi_{9}\right)+S(r) \tag{4.19}\\
\quad=2 T\left(r, \phi_{7}\right)+S(r)=2\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r) .
\end{gather*}
$$

Combining (4.18) and (4.19) with the estimate of Theorem 2, we have

$$
\begin{gather*}
2 T(r)+3 \bar{N}_{11}(r)+N^{(2)}(r, 1)+N^{(2)}(r, a) \tag{4.20}\\
\leqq K_{1}\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)\right\}+S(r)
\end{gather*}
$$

with $K_{1}=17$.
Finally, we consider the case $a=-1$. In this case we note that $\phi_{6}\left(z_{0}(1,1)\right)$ $=0$ and $\phi_{7}\left(z_{\infty}(1,1)\right)=0$ (Especially if $z_{0}(1,1)$ (resp. $z_{\infty}(1,1)$) is counted into $\bar{n}_{11}(r, 0)$ (resp. $\bar{n}_{11}(r, \infty)$), then $\phi_{6}\left(\right.$ resp. $\left.\phi_{7}\right)$ has a zero whose multiplicity is at least two at this point.), and so the above estimates (4.18) and (4.19) can be replaced by

$$
\begin{align*}
& \bar{N}_{1}(r, 0)+\bar{N}_{11}(r, 0) \leqq N\left(r, 0, \phi_{6}\right)+S(r) \leqq T\left(r, \phi_{6}\right)+S(r) \tag{4.18}\\
& \quad=\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)+S(r)
\end{align*}
$$

and
$(4.19)^{\prime}$

$$
\begin{aligned}
& \bar{N}_{1}(r, \infty)+\bar{N}_{11}(r, \infty) \leqq N\left(r, 0, \phi_{7}\right)+S(r) \leqq T\left(r, \phi_{7}\right)+S(r) \\
& \quad=\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, \infty)+S(r),
\end{aligned}
$$

respectively. Thus the combination of (4.18)', (4.19)' and the estimate of Theorem 2 yields (4.20) with $K_{1}=11$.
4.3.2. Proof of Theorem 3. (ii) Define ϕ_{10} and ϕ_{11} by

$$
\begin{align*}
& \phi_{10}=\left\{\frac{f^{\prime \prime}}{f^{\prime}}+\frac{f^{\prime}}{f}-\frac{f^{\prime}}{f-1}-\frac{f^{\prime}}{f-a}\right\}-\left\{\frac{g^{\prime \prime}}{g^{\prime}}+\frac{g^{\prime}}{g}-\frac{g^{\prime}}{g-1}-\frac{g^{\prime}}{g-a}\right\}, \tag{4.21}\\
& \phi_{11}=\left\{\frac{f^{\prime \prime}}{f^{\prime}}-\frac{f^{\prime}}{f}-\frac{f^{\prime}}{f-1}-\frac{f^{\prime}}{f-a}\right\}-\left\{\frac{g^{\prime \prime}}{g^{\prime}}-\frac{g^{\prime}}{g}-\frac{g^{\prime}}{g-1}-\frac{g^{\prime}}{g-a}\right\}, \tag{4.22}
\end{align*}
$$

respectively. Assume first that $\phi_{10} \equiv 0$. In this case we have $f^{\prime} f /(f-1)(f-a)$ $\equiv L g^{\prime} g /(g-1)(g-a)$ with a nonzero constant L. If $L=1$, then f and g share four values $0,1, \infty$, a $C M^{\prime \prime}$, and so by (3.8) g is a Möbius transformation of f. Unless $L=1$, then $\bar{N}(r, 0)=\bar{N}_{1}(r, 0)+S(r)=\bar{N}_{11}(r, 0)+S(r)=S(r)$ and $\bar{N}_{1}(r, 1)+$ $\bar{N}_{1}(r, a)+\bar{N}_{1}(r, \infty)=S(r)$. Applying Theorem $4(\mathrm{i})$-which will be proved laterto $1 / f$ and $1 / g$ with shared four values $\infty, 1,0,1 / a I M^{\prime \prime}$, we conclude that there does not exist such a pair of f and g. The case of $\phi_{11} \equiv 0$ can be handled in the same way as the one of $\phi_{10} \equiv 0$.

Now, consider the case of $\phi_{10} \not \equiv 0$ and $\phi_{11} \not \equiv 0$. By substituting the Taylor (resp. Laurent) expansions of f and g at a $z_{0}(1,1)$ (resp. $z_{\infty}(1,1)$) which is counted into $\bar{n}_{11}(r, 0)$ (resp. $\left.\bar{n}_{11}(r, \infty)\right)$ into (4.21) (resp. (4.22)), we see that ϕ_{10} (resp. ϕ_{11}) has a zero whose multiplicity is at least two at this point. Hence from (4.21) and (4.22) it follows that

$$
\begin{aligned}
2 \bar{N}_{1}(r, 0) & =2 \bar{N}_{11}(r, 0)+S(r) \leqq N\left(r, 0, \phi_{10}\right)+S(r) \\
& \leqq T\left(r, \phi_{10}\right)+S(r)=\bar{N}_{2}(r, 0)+S(r)
\end{aligned}
$$

and

$$
\begin{aligned}
2 \bar{N}_{1}(r, \infty) & =2 \bar{N}_{11}(r, \infty)+S(r) \leqq N\left(r, 0, \phi_{11}\right)+S(r) \\
& \leqq T\left(r, \phi_{11}\right)+S(r)=\bar{N}_{2}(r, \infty)+S(r),
\end{aligned}
$$

respectively. Combining these with the estimate of Theorem 2, we obtain the estimate of Theorem 3(ii).
4.4.1. Proof of Theorem 4. (i) By (3.1) we easily see that $T\left(r, f^{\prime}\right)+$ $T\left(r, g^{\prime}\right) \leqq 2 T(r)+2 \bar{N}(r, \infty)+S(r)$, and from (3.3) and (3.5) it follows that $\bar{N}\left(r, 0, f^{\prime}\right)+\bar{N}\left(r, 0, g^{\prime}\right)=\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)+S(r)$. Hence using (3.2), we get

$$
\begin{align*}
& m\left(r, 0, f^{\prime}\right)+m\left(r, 0, g^{\prime}\right)+N_{1}\left(r, 0, f^{\prime}\right)+N_{1}\left(r, 0, g^{\prime}\right) \tag{4.23}\\
& \quad \leqq \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+3 \bar{N}(r, \infty)+S(r) .
\end{align*}
$$

Now, we define two auxiliary functions ϕ_{12} and ϕ_{13} :

$$
\begin{gather*}
\phi_{12}=2 \frac{f^{\prime \prime}}{f^{\prime}}-3\left\{\frac{f^{\prime}}{f}+\frac{f^{\prime}}{f-1}+\frac{f^{\prime}}{f-a}\right\}-2 \frac{g^{\prime \prime}}{g^{\prime}}+2\left\{\frac{g^{\prime}}{g}+\frac{g^{\prime}}{g-1}+\frac{g^{\prime}}{g-a}\right\} \tag{4.24}\\
+\frac{f^{\prime}-2 g^{\prime}}{f-g}
\end{gather*}
$$

and

$$
\begin{gather*}
\phi_{13}=2 \frac{g^{\prime \prime}}{g^{\prime}}-3\left\{\frac{g^{\prime}}{g}+\frac{g^{\prime}}{g-1}+\frac{g^{\prime}}{g-a}\right\}-2 \frac{f^{\prime \prime}}{f^{\prime}}+2\left\{\frac{f^{\prime}}{f}+\frac{f^{\prime}}{f-1}+\frac{f^{\prime}}{f-a}\right\} \tag{4.25}\\
+\frac{g^{\prime}-2 f^{\prime}}{g-f}
\end{gather*}
$$

Making use of (3.3), (3.4), (3.5) and (3.7), we obtain the following estimates for $N\left(r, \infty, \phi_{12}\right)$ and $N\left(r, \infty, \phi_{13}\right)$:

$$
\begin{align*}
& \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}_{2}(r, \infty)+\sum_{p \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \tag{4.26}\\
& \text { with }(p, 1))+S(r) \leqq N\left(r, \infty, \phi_{12}\right) \leqq \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a) \\
& \quad+\bar{N}(r, \infty)+\sum_{p \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \text { with }(p, 1))+S(r) \text {, } \\
& \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}_{2}(r, \infty)+\sum_{q \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \tag{4.27}\\
& \text { with }(1, q))+S(r) \leqq N\left(r, \infty, \phi_{13}\right) \leqq \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a) \\
& \quad+\bar{N}(r, \infty)+\sum_{q \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \text { with }(1, q))+S(r)
\end{align*}
$$

According to E. Mues' calculations (See [4, pp. 116-117].) we have

$$
\begin{array}{ll}
\left(\phi_{12}{ }^{2} / 2 \phi_{5}\right)\left(z_{0}(2,1)\right)=(a+1)^{2}, \quad\left(\phi_{13}{ }^{2} / 2 \phi_{5}\right)\left(z_{0}(1,2)\right)=(a+1)^{2}, \\
\left(\phi_{12}{ }^{2} / 2 \phi_{5}\right)\left(z_{1}(2,1)\right)=(2-a)^{2}, \quad\left(\phi_{13}{ }^{2} / 2 \phi_{5}\right)\left(z_{1}(1,2)\right)=(2-a)^{2}, \\
\left(\phi_{12}{ }^{2} / 2 \phi_{5}\right)\left(z_{a}(2,1)\right)=(2 a-1)^{2} \quad \text { and } \quad\left(\phi_{13}{ }^{2} / 2 \phi_{5}\right)\left(z_{a}(1,2)\right)=(2 a-1)^{2} .
\end{array}
$$

As will be shown later

$$
\begin{equation*}
\phi_{12}{ }^{2} / 2 \phi_{5} \not \equiv(a+1)^{2},(2-a)^{2},(2 a-1)^{2} \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{13}{ }^{2} / 2 \phi_{5} \not \equiv(a+1)^{2},(2-a)^{2},(2 a-1)^{2} \tag{4.29}
\end{equation*}
$$

hold. Hence from (3.6), (3.7), (4.26), (4.27) and (4.23) we deduce that
$\bar{N}(r, f=g=0,1$ or a with $(2,1))+\bar{N}(r, f=g=0,1$ or a with

$$
\begin{align*}
& (1,2)) \leqq N\left(r,(a+1)^{2}, \phi_{12}{ }^{2} / 2 \phi_{5}\right)+N\left(r,(2-a)^{2}, \phi_{12}{ }^{2} / 2 \phi_{5}\right) \tag{4.30}\\
& \quad+N\left(r,(2 a-1)^{2}, \phi_{12}{ }^{2} / 2 \phi_{5}\right)+N\left(r,(a+1)^{2}, \phi_{13}{ }^{2} / 2 \phi_{5}\right) \\
& \quad+N\left(r,(2-a)^{2}, \phi_{13}{ }^{2} / 2 \phi_{5}\right)+N\left(r,(2 a-1)^{2}, \phi_{13}{ }^{2} / 2 \phi_{5}\right) \\
& \leqq \\
& 6\left\{N\left(r, \infty, \phi_{12}\right)+N\left(r, \infty, \phi_{13}\right)\right\}+S(r) \\
& \leqq 12\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}(r, \infty)\right\} \\
& \quad+6 \Sigma_{p \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \text { with }(p, 1)) \\
& \quad+6 \Sigma_{q \geq 3} \bar{N}(r, f=g=0,1 \text { or } a \text { with }(1, q))+S(r) \\
& \leqq \\
& 18\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+30 \bar{N}(r, \infty)+S(r) .
\end{align*}
$$

Together with (3.2) and (4.23), this yields

$$
\begin{aligned}
& 2 T(r)=\bar{N}(r)+S(r)= \\
& \quad\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\} \\
& \quad+\left\{\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)\right\}+\bar{N}(r, \infty)+S(r) \\
& \leqq\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+\bar{N}(r, f=g=0,1 \text { or } a \text { with }(2,1)) \\
& +\bar{N}(r, f=g=0,1 \text { or } a \text { with }(1,2))+N_{1}\left(r, 0, f^{\prime}\right)+N_{1}\left(r, 0, g^{\prime}\right)+ \\
& \bar{N}(r, \infty)+S(r) \leqq 20\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+34 \bar{N}(r, \infty)+S(r)
\end{aligned}
$$

This gives the estimate of Theorem $4(\mathrm{i})$ with $\left(K_{2}, K_{3}\right)=(10,17)$.
Consider the case of $a=-1$. Then, $a+1=0$ and $(2-a)^{2}=(2 a-1)^{2}$ hold, so that (4.30) is replaced by

$$
\begin{aligned}
\bar{N}(r, f & =g=0,1 \text { or } a \text { with }(2,1))+\bar{N}(r, f=g=0,1 \text { or } a \text { with }(1,2)) \\
& \leqq 3\left\{N\left(r, \infty, \phi_{12}\right)+N\left(r, \infty, \phi_{13}\right)\right\}+S(r) \\
& \leqq 9\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+15 \bar{N}(r, \infty)+S(r) .
\end{aligned}
$$

Combining this with (3.2) and (4.23), we obtain the estimate of Theorem 4 (i) with $\left(K_{2}, K_{\mathrm{s}}\right)=(11 / 2,19 / 2)$. The cases of $a=1 / 2$ and 2 can be handled in the same way.

It remains to show (4.28) and (4.29). We prove only that $\phi_{12}{ }^{2} / 2 \phi_{5} \neq(a+1)^{2}$ since the other cases can be handled in the same way. We assume that $\phi_{12}{ }^{2} \equiv$ $2(a+1)^{2} \phi_{5}$, and will seek a contradiction. Consider first the case of $a \neq-1$. By the symmetry of ϕ_{5} on f and g we have

$$
\begin{equation*}
\phi_{12}{ }^{2} \equiv 2(a+1)^{2} \phi_{5} \equiv \phi_{18}{ }^{2} . \tag{4.31}
\end{equation*}
$$

If $\bar{N}_{1}(r, \infty) \neq S(r)$, then by (3.4) there exists a $z_{\infty}(1,1)$ satisfying $\operatorname{Res}\left(z_{\infty}(1,1)\right.$,
$f) \neq \operatorname{Res}\left(z_{\infty}(1,1), g\right)$. Let $\alpha=\operatorname{Res}\left(z_{\infty}(1,1), f\right)$ and $\alpha^{\prime}=\operatorname{Res}\left(z_{\infty}(1,1), g\right)$. Simple computations on (4.31) give $\left\{\left(2 \alpha-\alpha^{\prime}\right) /\left(\alpha-\alpha^{\prime}\right)\right\}^{2}=0=\left\{\left(2 \alpha^{\prime}-\alpha\right) /\left(\alpha^{\prime}-\alpha\right)\right\}^{2}$, which is impossible. Hence $\bar{N}_{1}(r, \infty)=S(r)$, so that equality (up to an $S(r)$ term) must hold everywhere in (4.26) and (4.27), and further by (3.6) and (4.31) all sides of (4.26) and (4.27) are equal to $S(r)$. Together with (4.23) this yields

$$
\begin{aligned}
& m(r, 0, f)+m(r, 1, f)+m(r, a, f)+m(r, 0, g) \\
& \quad+m(r, 1, g)+m(r, a, g)=S(r) \\
& N_{1}\left(r, 0, f^{\prime}\right)+N_{1}\left(r, 0, g^{\prime}\right)=S(r)
\end{aligned}
$$

and

$$
\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)=S(r),
$$

so that for $c=0,1$ and a we have

$$
\begin{align*}
T(r)= & T(r, 1 /(f-c))+S(r)=m(r, c, f)+N(r, c, f)+S(r) \tag{4.32}\\
\leqq & m(r, c, f)+\bar{N}_{1}(r, c)+2 \bar{N}(r, f=g=c \text { with }(2,1)) \\
& +\bar{N}(r, f=g=c \text { with }(1,2))+3 N_{\mathbf{1}}\left(r, 0, f^{\prime}\right)+3 N_{1}\left(r, 0, g^{\prime}\right)+S(r) \\
= & 2 \bar{N}(r, f=g=c \text { with }(2,1))+\bar{N}(r, f=g=c \text { with }(1,2))+S(r) \\
\leqq & 2 \bar{N}(r, f=g=c \text { with }(2,1))+N(r, c, g) / 2+S(r) \\
\leqq & 2 \bar{N}(r, f=g=c \text { with }(2,1))+T(r) / 2+S(r) .
\end{align*}
$$

(4.32) guarantees the existence of all of $z_{0}(2,1), z_{1}(2,1)$ and $z_{a}(2,1)$ (cf. [4, p. 116]), which implies that $(a+1)^{2}=(2-a)^{2}=(2 a-1)^{2}$. This is impossible. Next, consider the case of $a=-1$. $\phi_{12} \equiv 0$ yields $f^{\prime} / f+f^{\prime} /(f-1)+f^{\prime} /(f+1)-\left(f^{\prime}-2 g^{\prime}\right) /$ $(f-g)+g^{\prime} / g+g^{\prime} /(g-1)+g^{\prime} /(g+1)-\left(g^{\prime}-2 f^{\prime}\right) /(g-f) \equiv 0$, i.e.,

$$
\begin{equation*}
(f-g)^{3} / f(f-1)(f+1) g(g-1)(g+1) \equiv A \tag{4.33}
\end{equation*}
$$

with a nonzero constant A. If $\bar{N}_{1}(r, \infty) \neq S(r)$, then by (3.4) there exists a $z_{\infty}(1,1)$ satisfying $\operatorname{Res}\left(z_{\infty}(1,1), f\right) \neq \operatorname{Res}\left(z_{\infty}(1,1), g\right)$. By substituting the Laurent expansions of f and g at such a point $z_{\infty}(1,1)$ into (4.33) we obtain $A=0$, which is a contradiction. Hence $\bar{N}_{1}(r, \infty)=S(r)$, and so using the same argument as in the case of $a \neq-1$, we arrive at a contradiction.

This completes the proof of Theorem 4(i).
4.4.2. Proof of Theorem 4. (ii) From our assumption and (4.23) we have $\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)=\bar{N}\left(r, 0, f^{\prime}\right)+\bar{N}\left(r, 0, g^{\prime}\right)+S(r)=\bar{N}_{1}\left(r, 0, f^{\prime}\right)+$ $\bar{N}_{1}\left(r, 0, g^{\prime}\right)+S(r) \leqq \bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+3 \bar{N}(r, \infty)+S(r)$. Hence by (3.2) $2 T(r) \leqq 2\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)\right\}+4 \bar{N}(r, \infty)+S(r)$.
4.4.3. Proof of Theorem 4. (iii) We make use of the proof of Theorem $4(\mathrm{i})$. Simple calculations give $\phi_{12}\left(z_{0}(2,1)\right)=-2 g^{\prime}\left(z_{0}(2,1)\right)(1+1 / a), \phi_{12}\left(z_{1}(2,1)\right)=$
$2 g^{\prime}\left(z_{1}(2,1)\right)\{1+1 /(1-a)\}, \phi_{12}\left(z_{a}(2,1)\right)=2 g^{\prime}\left(z_{a}(2,1)\right)\{1 / a+1 /(a-1)\}, \phi_{13}\left(z_{0}(1,2)\right)=$ $-2 f^{\prime}\left(z_{0}(1,2)\right)(1+1 / a), \quad \phi_{13}\left(z_{1}(1,2)\right)=2 f^{\prime}\left(z_{1}(1,2)\right)\{1+1 /(1-a)\}$ and $\phi_{13}\left(z_{a}(1,2)\right)=$ $2 f^{\prime}\left(z_{a}(1,2)\right)\{1 / a+1 /(a-1)\}$. Hence, if neither ϕ_{12} nor ϕ_{13} is constant, using our assumptions the above estimate (4.30) can be replaced by

$$
\begin{align*}
& \bar{N}(r, f=g=0,1 \text { or } a \text { with }(2,1))+\bar{N}(r, f=g=0,1 \text { or } a \tag{4.30}\\
& \text { with }(1,2)) \leqq 3\left\{\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}(r, \infty)\right\} .
\end{align*}
$$

Further, under our assumption, $\bar{N}_{2}(r, 0)+\bar{N}_{2}(r, 1)+\bar{N}_{2}(r, a)=\bar{N}(r, f=g=0,1$ or a with $(2,1))+\bar{N}(r, f=g=0,1$ or a with (1, 2)) $+S(r)$ holds. Thus the estimate of Theorem 4 (iii) follows from (4.30)' and (3.2). It remains to consider the case that ϕ_{12} or ϕ_{13} is constant. In each case, we easily obtain $(f-g)^{3} /$ $\{f g(f-1)(g-1)(f-a)(g-a)\} \equiv e^{A z+B}$ with two constants A and B. This implies that $\bar{N}_{1}(r, 0)+\bar{N}_{1}(r, 1)+\bar{N}_{1}(r, a)+\bar{N}(r, \infty)=S(r)$. But by Theorem 4 (i) there does not exist such a pair of f and g.

Acknowledgement. The author is very grateful to the referee for valuable comments.

References

[1] Gundersen, G.G., Meromorphic functions that share three or four values, J. London Math. Soc., 20 (1979), 457-465.
[2] Gundersen, G.G., Meromorphic functions that share four values, Trans. Amer. Math. Soc., 277 No. 2 (1983), 545-567.
[3] Hayman, W.K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] Mues, E., Bemerkungen zum Vier-Punkte-Satz, Complex Methods on Partial Differential Equation, Mathematical Research, 53, Akademie-Verlag, Berlin, 1989, 109-117.
[5] MuEs, E., Meromorphic functions sharing four values, Complex Variables Theory Appl., 12 (1989), 169-179.
[6] Nevanlinna, R., Le Théorème de Plcard-Borel et al Théorie des Fonctions Méromorphes, Chelsea, New York 1974.
[7] Reinders, M., A new example of meromorphic functions sharing four values and a uniqueness theorem, Complex Variables Theory Appl., 18 (1992), 213-221.
[8] Steinmetz, N., A uniqueness theorem for three meromorphic functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 13 (1988), 93-110.
[9] Ueda, H., Unicity theorems for meromorphic or entire functions, II, Kodai Math. J., 6 No. 1 (1983), 26-36.

