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1. Introduction

In this paper the term "meromorphic function" will mean a meromorphic
function in C. We will use the standard notations of Nevanlinna theory : T(r, / ) ,
m{r, c, /) , N(r, c, /) , N(r, c, /), Nk(r, c, /) , Nk(r, c, f) (ceCU{oo|, fe=l, 2, »0,
and we assume that the reader is familiar with the basic results in Nevanlinna
theory as found in [3]. Further, we will use the notations and terminology
defined in the following (i )-(vi):

( i ) Let / and g be distinct nonconstant meromorphic functions. For
r>0, put T(r)=max{T(r, /) , T(r, g)\. We write σ(r)=S(r) for every function
σ: (0, oo)^(— oo, co) satisfying (τ(r)/T(r)—>0 for r-*oo possibly outside a set of
finite Lebesgue measure.

(ii) For two nonconstant meromorphic functions /, g and c<=Cvj {oo} we
denote by n{r, c)=n(r, c; f, g) (resp. nx{r, c)=nι(ry c; f, g), ή s(r, c)=nz(r, c;
f, g)) the number of distinct roots of at least one of the equations f=c and
g=c in | z | ^ r (resp. the number of distinct common roots of f=c and g—c
with the same multiplicities in \z\^ry the number of distinct c-points of / or
g which are not common to / and g in \z\<r). We write

N{r, c)=N{r, c; f, g)=^ {n(t, c)-ή(0, c)\/t dt+ή(O, c)\ogr,

Nj(r, c)=Nj(r, c f, g)=[ {fifi, c)-ή/0, c)\/t dt+ή/fl, c) logr (y=l, 3)
Jo

and

JV2(r, c)=N(r, ^-N^r, c).

Further, for a complex number a(Φ0, 1) we write

N(r)=N(r, 0)+Λ?(r, ϊ)+N(r, oo)+iV(r, α),

Nj(r)=Nj(r, O)+ΛF,(r, l)+JV/r, oo)+^(r , a) ( ;=1, 2).
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(iii) We say that / and g share the value c IM" (resp. CM") if Λf3(r, c)
=S(r) (resp. JV,(r, c)=S(r)).

These notions IM" and CM" are slight generalizations of IM (See [2,
p545].) and CM (See [2, p545].) (or " C M " (See [5, p 172].), respectively. It
is easily seen that Theorem F, Corollary 1, Lemma 2 in [2] and Theorem B'
in [5] remain valid if IM and "CM" are replaced by IM" and CM", respec-
tively. And so, using the argument of the proof of Theorem 1 in [5], we see
that Theorems E and 2 in [2] are still true if IM and CM are replaced by
IM" and CM", respectively. The function ψ defined in [4, 5, 7] satisfies
N(r, oo, ψ)=S(r) and ra(r, oo, φ)—S{r) if IM is replaced by IM", and
hence Lemma 2 in [7] remains true if /Mis replaced by IM". (For convenience
sake we state in § 3 only a part of these facts without proof- which will be
used to prove our results.)

(iv) For a given complex number a(Φθ, 1) and two nonconstant meromor-
phic functions / and g we write

n{k)(r, c)=#{zc^C \zc\^r, zc is a c-point with multiplicity p for
/ and with multiplicity q for g, where p and q satisfy
max(/>, q)^k + l. zc is counted max(/>, <?)— & times.}
(c=0, 1, oo, fl; &=0, 1, 2), and

dt+n<kKO, c)\ogr

(c=0, 1, oo, α; k=0, 1, 2).

(v) Let N(r, f—g—c with {p, q)) denote the counting function of the c-
points with multiplicity p for / and with multiplicity q for g, each point counted
once. Further, we denote such a c-point by zc{p, q).

(vi) Let α(-^0, 1) be a complex number, and let / and g be two noncon-
stant meromorphic functions. For c=Q, 1, a, CXD we use the following notation :

ήn(r, c)=#

f"(zc)=g"(ze), fm(ze)
(c=0, 1, α), where

(a and j8 may depend on
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tf,,(r, c)=Γ {»„(*, c)-nn(0, e)\/t dt+ήn(O, c)logr.
JO

Further, we write

iV11(r)=i711(r, 0)+ffn(r, 1)+Λrn(r, oo)+JVn(r, α).

2. Results

In this section we give some estimates for meromorphic functions sharing
four values /AP. Without loss of generality we may assume that these four
shared values are 0, 1, oo and a.

In Theorems 1-4 we assume that / and g are distinct nonconstant mero-
morphic functions sharing four values 0, 1, oo and a IM". Further, we assume
in Theorems 1-3 that g is not any Mobius transformation of /.

The following Theorem 1 is a refinement of a well known theorem of R.
Nevanlinna [6, p 122].

THEOREM 1. 2T(r)+3Nn(r)^3N2(r)+S(r).

Our Theorem 2 contains a corresponding result to an author's uniqueness
theorem for meromorphic functions sharing three values CM [9, Theorem 2].

THEOREM 2. 2T(r)+3{iV11(r, Ϊ)+Ftn(r, α)} + {N(2>(r, l)+JV<«>(r, a)}

^3{ΐV(r, 0)+ff(r, oo)}+2{ΪV2(r, 0)+ff,(r, oo)}+S(r).

Our Theorem 3 is a refinement of so called 2-2-Theorem of G. Gundersen

[2].

THEOREM 3. ( i ) There exists a positive constant Kx satisfying

2T(r)+3iV11(r)+{N(2)(r, l)+ΛM2>(r, a)}

r, oo)}+5(r).

We may take / f i=l l if a ——1, αn<i /Ci=17 otherwise.
(ii) Particularly if Nλ{r, 0)=/Vn(r, 0)+S(r) αncί /Vx(r, oo) = JVn(r, oo)+S(r)

2T(r)+3{iV11(r, l)+iVn(r, α)} + {ΛΓ<2)(r, 1)+N< f'(r, α)}

^(13/2){iV2(r, 0)+iV2(r, oo)}+S(r).

Finally, using a method of E. Mues [4], we prove

THEOREM 4. ( i ) There exist positive constants K2 and K3 satisfying

r, oo)+S(r).
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We may take (K2, Ks)=(ll/2, 19/2) if a = - 1 , 1/2 or 2, and (tf2, /Q = (10, 17)
otherwise. __

(ii) Particularly if N(r, f=g=c with (2, 1))+N(r, /=,gr=c u ΛA (1, 2))=
5(r) /or c=0, 1 and a, ίAβn

T(r)^Nί(rf (V+N^r, D+Nfc, a)+2N(r, oo)+S(r).

(iii) Λsswmβ ίAaί i72(r, c, f)+N2(r, c, g)=S(r) for c=0, ljznd a, and fAaf
/or βacA c=0, 1 and a N(r, f=g=c with (2, l))=S(r) or Λί(r, f=g=c with
(1, 2))=S(r). 5#/)osβ /wrίAer ίAaί */ #{^c(2, 1)}^2 (res/). #{zβ(l, 2)^2), ίÂ n
^'(^(2, l))=const. C β ( 2 t l ) /or a// zc(2, l)'s (resp. f'(ze(l, 2))(=const. Cc(1>2) for
all zc(l, 2)'s). TAen w β have

T(r)^2{/V1(r, OJ+^fr, D+N^r, a)+^7(r, oo)}+5(r).

Remark 1. The estimates of Theorems 1, 2 and 3 (ii) are sharp in the
case of a = —ω, where ω(Φl) is a third root of 1. Consider the two functions
F, G and two values A, B in [8, p94]. If we put f=F/A, g=G/A, and α =
B/A(=— ω), then / and g are distinct meromorphic functions sharing four
values 0, 1, α, ©o IM, and g is not any Mδbius transformation of /. Further,
/ and g satisfy the estimates of Theorems 1, 2 and 3 (ii) with equality.

Remark 2. The estimate of Theorem 4 (ii) is sharp in the case of a —
—1, 1/2 or 2. For α =—1 this is illustrated by the pair of F and G in [7,
Theorem 1]. For α=l/2 or 2 we can obtain an example from these F and
G with the aid of a Mδbius transformation.

Remark 3. The estimate of Theorem 4 (iii) is sharp in the case of a —
-1/8, - 8 , 1/9, 9, 8/9 or 9/8. For β = - l/8 this is illustrated by the pair of
/=:(g«+l)/(0«-l)* and g=(ez+l)2/8(ez-l). This example is due to G. Gundersen
[1]. For a = — 8, 1/9, 9, 8/9 or 9/8 we can obtain an example from these / and
g with the aid of a Mδbius transformation.

3. Lemmas

In this section, we assume that / and g are distinct nonconstant meromo-
rphic functions sharing four values 0, 1, oo, α IM". Then the following (3.1)
(3.8) hold:

(3.1) T(r, /)=T(r)+S(r), T(r, g)=T(r)+S(r);

(3.2) ΛT(r)=2T(r)+S(r);

(3.3) N(r, 0, f-g)=N(r, 0, f-g)+S(r)=R(r, 0)+ff(r, l)+ff(r, α)+S(r);

(3.4) JV< >(r, oo)=JV(r, oo, / _ ^ ) + S ( r ) ,

r, oo)+/V(r, oo)+S(r);
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(3.5) // N0(r, 0, /') refers only to those roots of / '=() such that /=£θ, 1 and a,
and if NQ(r, 0, g') is similarly defined, then N0(r, 0, f')=S(r) and N0(r, 0,
gO=S(r) (cf. [2, Lemma 2]);

(3.6) Tλ<? function

f'g'(f-g)2

satisfies T{r, φ6)=S(r) (cf. [4, p 113]);

(3.7) m{r, oo, / '/(/-#))+Λ«r, oo, / ' / (/-#))

m(r, oo, g'/(g-f))+Ny!ίτ, oo, g'/(g-f))=S(r) (cf. [7, Lemma 2]);

(3.8) Suppose further that f and g share two values of 0, 1, oo, α CM".

α = —1, 1/2 or 2. /n ί/w's case / awrf g /s connected with exactly one of
the following relations: f+g=0(a = — l), fg=l(a = -l), f+g=l(a=l/2),
(/-l/2)te-l/2) = l/4(a = l/2), /+5r=2(a=2), ( / - l ) ( ^ - l ) = l(fl=2) (cf.
[5, Theorem 1]).

For (3.1), (3.2) and the second equation of (3.4), see [4, Hilfssatz 1]. (3.3) and
the first equation of (3.4) are easily verified by using the function ^-which we
denote by φ5 in this paper-in the proof of [4, Hilfssatz 1].

4. Proof of Theorems

4.1. Proof of Theorem 1. Consider the functions

( 4 1 } φ = 7 ^ -

(42) A - / / ( / ~ ΰ ) 8>{g-a)

(4 2) φ%-Ίϊf=W~
(4.3) φt=- Γ f -•- 8 ' 8

(4.4)

(/-iX/-α) (g-ΪXg-a) '

f g'
/(/-iX/-α) g(g-D(g-a)

If φk=O for k—l, 2, 3 or 4, then it is easily seen that / and g share four
values 0, 1, a, <χ> CM". Hence by (3.8) g is a Mδbius transformation of /,
which contradicts our assumption.

Now, consider the case φk^0 for all k—\, 2, 3, 4. We first note from the
fundamental estimate of the logarithmic derivative and (3.1) that

(4.5) m(r,φk)=S(r) for £=1,2,3,4.

By substituting into (4.1) the Taylor expansions of / and g at a zλ (1, 1) which
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is counted into nn (r, 1), we see that φx has a zero whose multiplicity is at
least four at this point. Hence from (4.1), (3.1), the first fundamental theorem
and (4.5) it follows that

(4.6) N(r, l )+3N u (r, l)£N(r, 0, φι)+S{r)^T{r9 φ1)+S(r)

=N(r, oo, φ1)-{-S(r)<N2(r, 0)+N2(r, α)+iV2(r, oo)+S(r).

In the same way, we deduce from (4.2), (4.3) and (4.4) that

(4.7) JV(r, α)+3JVπ(r, a)£N2(r, 0)+JV2(r, l)+tf,(r, oo)+S(r),

(4.8) N(r, 0)+3Wn(r, 0)^iV2(r, 1)+N2(r, α)+Λ?2(r, oo)+S(r)

and

(4.9) ΐV(r, oo)+3tfn(r, oo)^N2(r, 0)+/V2(r,

respectively. Taking (3.2) into consideration, the combination of (4.6)-(4.9)
yields the estimate of Theorem 1. B

4.2. Proof of Theorem 2. Define φ3 (/=1, 2) by (4./). From the argument
of the first part of the proof of Theorem 1 we deduce that φj^Q(j=l, 2). In
this case, (4.6) and (4.7) hold, and so,

(4.10) N^r, Y)+Nx(r, a)+3{Nn(r, ΐ)+N11(r9 a)}

^2{JV2(r, 0)+N2(r, oo)}+S(r).

Next, by (3.1), (3.2) and the first fundamental theorem

(4.11). N(r, 1, f)+N(r, a, f)+N(r, 1, g)+N(r, a, g)^4T(r)+S(r)

=2{N(r, 0)+N(r, l)+JV(r, α)+N(r, oo)}+S(r).

Since 2{ΪV(r, 1)+N(r, α)}+iV(1)(r, D+N ( 1 ) (r, a)£N(r, 1, f) + N(r, a, f)+N(r, 1,
g)+N(r, a, g)+S(r) by the definition of /M", it follows from (4.11) that

(4.12) Λf(1>(r, 1)+N ( 1 )(r, a)£2{N(r, 0)+N(r, oo)}+S(r).

Further, from (3.3) and the definition of N{k)(r, c) we deduce that

(4.13) Nt(r, l)+#s(r, β)+7V(2>(r, l)+7V(2>(r, α)

Thus the combination of (3.2), (4.10), (4.13) and (4.12) yields the estimate of
Theorem 2. •

4.3.1. Proof of Theorem 3. ( i ) Define φ3 (/=1, 2) by (4./), and further
define φ3 (/=5, 6, 7, 8, 9) as follows:



( 4 U ) ό

(4.14) φt

(4.15) φ1=ί^
if
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f'g'(f-gY
' fg(f-lXg-lXf-aXg-a)'

f /-I f-ai [g' g g-

(4.16) φ,=φ<?

and

(4.17) φ9=φ7*

Consider the case that ^ = 0 for 7=8 or 9. Then from (4.16), (4.17) and
(3.6) we have T(r, φj)=S(r) for / = 6 or 7. Noting that N(r, 00, φj)=N£r, 0)+
N2(r, 00)+S(r) (j=6, 7) from (4.14), (4.15) and (3.5), we obtain N2(r, 0)+W*(r, 00)
= S(r), which implies that g is a Mobius transformation of / in view of (3.8).

Now, assume that φj^O for j=S and 9. The substitution into (4.16) (resp.
(4.17)) of the Taylor (resp. Laurent) expansions of / and g at a z0 (1, l)(resρ.
*oo(l, 1)) gives φ8(z0a, D) = 0 (resp. ^ 9 ( ^ ( 1 , l)) = 0). (See [5, pp. 174-175].)
Especially if zQ (1, 1) (resp. 200 (1, 1)) is counted into ήn(r, 0) (resp. ήn(r, 00)),
then 0 8 (resp. 09) has a zero whose multiplicity is at least two at this point.
Hence, from (3.1), (3.3)-(3.6), the first fundamental theorem and the fundamental
estimate of the logarithmic derivative it follows that

(4.18) N1(r9 0)+ΛUr, 0)^iV(r, 0, φ8)+S(r)<T(r, φ8)+S(r)

=2T(r, φ6)+S(r)=2{N2(r, ΰ)+N2{r, ™)}+S{r)

and

(4.19) Nx{r, oo)+tfn(r, oo)£N(r, 0, φ9)+S(r)£T(r, φ9)+S(r)

=2T(r, 07)+S(r)-2{iV2(r, 0)+iV2(r, oo)}+S(r).

Combining (4.18) and (4.19) with the estimate of Theorem 2, we have

(4.20) 27(r)+3N 1 1(r)+N ( 2 )(r, l)+JV(2)(r, a)

N2(r, 0)+iV2(r, oo)}+S(r)

with ^ = 1 7 .
Finally, we consider the case a —— I. In this case we note that φ6(z0(l, 1))

—0 and ̂ 7(^00(1, l))=0 (Especially if zQ(l, 1) (resp. ^ ( l , 1)) is counted into
ftn(r, 0) (resp. nn(r, 00)), then φ6 (resp. φΊ) has a zero whose multiplicity is
at least two at this point.), and so the above estimates (4.18) and (4.19) can be
replaced by
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(4.18/ N^r, O)+iV11(r, Q)£N(r, 0, φ6)+S(r)^T(r, φ6)+S(r)

=R*(r, 0)+N2(r,
and

(4.19/ /VΛr, oo)+Rn(r, oo)^JV(r, 0, φΊ)+S(r)£T(r, φΊ)+S(r)

=R*(r, 0)+ΐV2(r, oo)+S(r),

respectively. Thus the combination of (4.18)', (4.19)' and the estimate of
Theorem 2 yields (4.20) with 7^=11. •

4.3.2. Proof of Theorem 3. (ii) Define φ10 and φn by

respectively. Assume first that 0iO=O. In this case we have / '//(/—l)(/—α)
^Lg'g/{g—l)(g—a) with a nonzero constant L. If L = l, then / and g share
four values 0, 1, oo, a CM", and so by (3.8) g is a Mobius transformation of / .
Unless L==l, then JV(r, 0)=N1(r> 0)+S(r) = iVn(r, 0)+S(r) = S(r) and iVx(r, 1)+
Λ/Ί(r, α)+Λ/Ί(r, oo)=S(r). Applying Theorem 4 ( i ) -which will be proved later-
to 1// and 1/g with shared four values oo, 1, 0, 1/α IM", we conclude that
there does not exist such a pair of / and g. The case of φn=Q can be handled
in the same way as the one of φίo=0.

Now, consider the case of φio^O and φn^0. By substituting the Taylor
(resp. Laurent) expansions of / and g at a z0 (1, 1) (resp. z* (1, 1)) which is
counted into ήn(r, 0) (resp. nn(r, oo)) into (4.21) (resp. (4.22)), we see that φί0

(resp. ^n) has a zero whose multiplicity is at least two at this point. Hence
from (4.21) and (4.22) it follows that

aVχ(r, 0)=2Nn(r, 0)+S(r)£N(r, 0, φlo)+S(r)

)=N2(r, 0)+S(r)φ
and _ _

2Nί(r, oo)=2/Vn(rf oo)+S(r)<N(r, 0, ^

^T(r , φn)+S(r)=N2(r, oo)+S(r),

respectively. Combining these with the estimate of Theorem 2, we obtain the
estimate of Theorem 3 (ii). •

4.4.1. Proof of_Theorem 4. ( i ) By (3.1) we easily see that T(r, f')+
T(r, g')£2TJr)+2N(r, oo) + S(r), _and from (3.3) and (3.5) it follows that
N(r, 0, f')+N(r, 0, #') = ΛT2(r, 0)+ΛΓ2(r, 1)+N2(r, α) + S(r). Hence using (3.2),
we get



MEROMORPHIC FUNCTIONS 337

(4.23) m(r, 0, f')+m{r, 0, gΊ+N^r, 0, Π+N^r, 0, g')

Now, we define two auxiliary functions 0 1 2 and φn '•

f" ί f f f i e" (β' e' ε' )

f ' y f / - I f—a) g' \g g—1 g-a I

f-8
and

(4.25) φι,=2^T^{^-
g {g

g '-2/ '
8-f '

Making use of (3.3), (3.4), (3.5) and (3.7), we obtain the following estimates for
N{r, oo, φl2) and N(r, oo, φls)

(4.26) i7!(r, 0)+i7,(r, l)+tf,(r, a)+iV2(r, ~)+2P i 3iV(r, / = ί = 0 , 1 or α

with (/., l))+S(r)^iV(r, oo, 0lt)^ff,(r, O + ^ r , D+N^r, β)

+J7(r, c«)4-ΣPasiV(r, / = ί = 0 , 1 or a with (/>, 1))+S(r),

(4.27) N^r, 0)+N1(r, D+Nfr, a)+N,(r, ~)+Σ«3ίV(r, f=g=0, 1 or α

with (1, q))+S(r)£N(r, oo, φn^N^r, 0)+Nl(r, D+Λ^r, α)

+iV(n oo)+2ίi3JV(r, / = ί = 0 , 1 or a with (1, ς))+S(r).

According to E. Mues' calculations (See [4, pp. 116-117].) we have

zι(2, l))=(2-α)2, (^uV^ X^l, 2))=(2-α)2,

za(2, l))=(2α-l)2 and (^HV^ Xί.d, 2))=(2α-l)2.

As will be shown later

(4.28) φι2y2φ5m(a+D\ (2-α)2, (2α-l)2

and

(4.29) φ13°/2φ5φ(a+l)\ (2-α)2, (2α-l)2

hold. Hence from (3.6), (3.7), (4.26), (4.27) and (4.23) we deduce that
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(4.30) N(r, f=g=0, 1 or a with (2, 1))+N(r, f=g=0, 1 or a with

(1, 2))£N(r, (a+l)\

+N(r, (2α-l)2, φ

+N{r, {2-a)\ φιι*/2φl)+N(r, (2α-l)2, 013

^6{N(r, co, φ^+Nir, oo, φlt))+S(r)

<12 {Nι(r, O)+N1(r, 1)+J7,(r, α)+N(r, oo)}

+6Σp«iV(r, /=«=0, 1 or a with (/», 1))

+6Σί£5iV(r) / = ί = 0 , 1 or α with (1, q))+S(r)

£18{Rι(r, Q)+N1(r, 1)+Nι(r, α)}+30iV(r( oo)+S(r).

Together with (3.2) and (4.23), this yields

2T(r)=N(r)+S(r)={N1(r, Q)+Nι(r, D+N^r, a)}

+ {Nz(r, 0)+N2(r, 1)+N,(r, a)\+N(r, co)+S(r)

^ {N1(r, OnN^r, 1)+J7t(r, o)} +iV(r, / = s = 0 , 1 or α with (2, 1))

+iV(r, / = g = 0 , 1 or a with (1, 2 ) ) + ^ ^ , 0, /')+M(r, 0, g')+

i(r, α)}+34iV(r, oo)+S(r).

This gives the estimate of Theorem 4 (i) with (Kt, Kt)=(l0, 17).
Consider the case of α = - l . Then, α + l = 0 and (2-α) 2=(2α-l) 2 hold, so

that (4.30) is replaced by

N(r, f=g=Q, 1 or a with (2, l))+iV(r, f=g=0, 1 or α with (1, 2))

J, φlt)+N(r, oo, 013)}+S(r)

r, a)}+15N(r, oo)+S(r).

Combining this with (3.2) and (4.23), we obtain the estimate of Theorem 4 (i)
with (Kι, Kt)=(ίl/2, 19/2). The cases of α=l/2 and 2 can be handled in the
same way.

It remains to show (4.28) and (4.29). We prove only that φ^/2φ^(a+lf
since the other cases can be handled in the same way. We assume that φλ% =
2(α+l)206, and will seek a contradiction. Consider first the case of aφ — l.
By the symmetry of φB on / and g we have

(4.31) φ 1 2 * φ φ

If Niir, °o)ΦS(r), then by (3.4) there exists a zjl, 1) satisfying Res(z«,(l, 1),
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/)=£Res(*co(l, 1), g). Let α=Res(Zoo(l, 1), /) and α'=Res(Soo(l, 1), g). Simple
computations on (4.31)_ give {(2a-a/)/(a-a/)}2=0={(2a/-a)/(a/-a)}2

} which
is impossible. Hence Nx{r, oo)—S{r), so that equality (up to an S(r) term) must
hold everywhere in (4.26) and (4.27), and further by (3.6) and (4.31) all sides of
(4.26) and (4.27) are equal to S(r). Together with (4.23) this yields

m(r, 0, /)+m(r, 1, f)+m(r, a, f)+m(r, 0, g)

+ m(r, 1, g)+m{r, a, g)=S(r),

N^r, 0, n+Nx(r9 0, g')=S(r)
and _ _ _

Nx{r, ϋ)+Nx(r9 D+Niir, a)=S(r),

so that for c=0, 1 and a we have

(4.32) T(r)=T(r, l/(/-c))+S(r)=m(r, c, f)+N(r, c, f)+S(r)

<m(r, c, /)+Nχ(r, c)+2N(r, f=g=c with (2, 1))

+N(r, f=g=c with (1, 2))+3M(r, 0, / 0 + 3 ^ ( r , 0, ^)+S(r)

=:2Λ (̂r, f=g=c with (2, l))+iV(r, / = ^ = c with (1, 2))+S(r)

<2N(r, f=g=c with (2, l))+iV(r, c, g)/2+S(r)

r, f=g=c with (2, l))+T(r)/2+S(r).

(4.32) guarantees the existence of all of zo(2, 1), ztf, 1) and za(2, 1) (cf. [4, p.
116]), which implies that (α + l) 2 =(2-α) 2 =(2α-l) 2 . This is impossible. Next,
consider the case of α = -l . φl2=0 yields f'/f+f'/(f-l)+f'/(f+l)-(f'-2g')/
(f-g)+g'/g+g'/(g-D+g'/(g+l)-(g'-2f')/(g-f)=0, i.e.,

(4.33) ( / - ^ ) 8 / / ( / - l ) ( / + l ) ^ - l ) ( ^ + D = ^

with a nonzero constant A. If iV^r, oo)^S(r), then by (3.4) there exists a
Zoo(l, 1) satisfying Res(̂ oo(l, 1), /)^Res(2Όo(l, 1), ̂  ). By substituting the Laurent
expansions of / and g at such a point 2r«,(l, 1) into (4.33) we obtain ^4=0,
which is a contradiction. Hence A/Ί(r, oo)=S(r), and so using the same argu-
ment as in the case of aΦ — 1, we arrive at a contradiction.

This completes the proof of Theorem 4 (i). •

4.4.2. Proof of Theorem 4. (ii) From our assumption and (4.23) we have
N2(r, 0) + N2(r, 1) + N2(r, α)_= N(r, 0J') + N(r,J), g') + S(r) = N^r, 0, /') +
Ni(r, 0, ̂ 0+S(r)^Nx(r, 0)+Nχ(r, l)+iV^r, α)+3^V(r, oo)+S(r). Hence by (3.2)

r, oo)+S(r). •

4.4.3. Proof of Theorem 4. (iii) We make use of the proof of Theorem
4 (i). Simple calculations give φ12(z0(2, l))=-2g\zQ{2, l))(l+l/α), 0i2(zi(2, 1))-
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2g\zι{2, 1)){1+1/(1—α)}, 0l2(s«(2, l))=2s'(z«(2, l)){l/α + l/(α-l)}, 0i,(zo(l, 2))=
-2/'(zo(l, 2))(l+l/α), ^1,(^1(l,2))=2//(^ι(l,2)){l+l/(l-fl)} and 0l8(z«(l, 2))=
2/'Oα(l, 2)){l/α+l/(α—1)}. Hence, if neither φί2 nor 013 is constant, using our
assumptions the above estimate (4.30) can be replaced by

(4.30)' R(r, /=g=0, 1 or a with (2, l))+ΛΓ(r, /=g=0, 1 or a

with (1, 2))̂ 3{ΛΓi(r, 0)+/Vx(r, 0)+J7x(r, l)+ίVi(r, fl)+i7(r, oo)}.

Further, under mir assumption, N2(r, 0)+N2(r, 1)+/V2(r, a) = N(r, f=g—0, 1 or
a with (2, 1))+N(r, f=g=0, 1 or a with (1, 2))+S(r) holds. Thus the estimate
of Theorem 4(iii) follows from (4.30)' and (3.2). It remains to consider the
case that φ12 or φ13 is constant. In each case, we easily obtain (f—g)3/
{fg(i—^Xg—^){f—O'){g—ci))=eAz^ with two constants A and B. This implies
that Nx{rf ϋ)+Nι{rί l)+Nx(χ, a)+N(r, oo)= S(r). But by Theorem 4 ( i ) there

does not exist such a pair of / and g. •
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