
D J . HALLENBECK AND K. SAMOTIJ

KODAI MATH. J.

17 (1994), 273—289

ON THE SHARP GROWTH OF ANALYTIC

CAUCHY-STIELTJES TRANSFORMS

BY D. J. HALLENBECK AND K. SAMOTIJ*

Introduction

Let A={z: | z | < l } and Γ={z: \z\=l}. Let 31 denote the set of complex-
valued Borel measures on Γ. For each «^0 the family £Fα of functions analytic
in Δ is defined as follows. If a>0 then /e£F α provided that there exists μ e
Jά such that

( 1 N f(?\— f (7)— \ - —
\ L ) J \z) — J μ\zJ— \ „ (A ?_>

for | z | < l . Also, /e£F 0 provided that there exists μ<=<3ί such that

(2)

for \z\<l (Here and throughout this paper every logarithm means the principal
branch.). The classes £Fα for α^O were first studied in [3] and [4]. Of course,
the case a—I is classical and well studied in the literature. The mapping from
M to £Fα given by μ-*fμ is not one-to-one, i.e., the correspondence between
measures and functions in 9*a is not unique. Suppose that μ<=<M. Let \μ\
denote the total variation norm of μ and let \\μ\\ = \μ\(Γ). For | ζ | = l and 0<
x^π let J(ζ, x) denote the closed arc on Γ centered at ζ and having length
2x. A function w is defined on [0, π] by

(3) w(x)=\μ\V(ζ, x)) for 0<x£π and u;(0)=0.

To indicate the dependence of w on ζ and x we sometimes write w(x)=w(x,
μ) or w(x)=w(x, μ). As explained in [1] formula (1) is equivalent to

where g is a complex-valued function of bounded variation on [—π, π~]. Similar
remarks apply to (2). We point out, that in the standard way, our measures
may be regarded as being defined on [—π, π] rather than on Γ. This is noth-
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ing more than a technical convenience which we will use in Theorems 1 and 2.
In [1] and [2] the authors examined the interplay between local and global

aspects of radial and nontangential limits for functions in £Fα(α^0) and how
this depends on an analysis of properties of the representing measures.

In this paper we intend to describe precisely in what sense the following
two theorems from [1] and [2] respectively can be said to be sharp.

THEOREM A. Let a^O. Suppose that /effα and (1) or (2) holds where μ
e M . Let w be defined by (3) where ζ—eiθ and —π<Lθίίπ. Then there are
positive constants A and B depending only on a such that

x for 0£r<l.

THEOREM B. Suppose that α ^ l , g is a complex-valued function of bounded
variation on [—π, π] and let

for | z | < l . Assume that g is differentiable at some θ in [— π, π] . // a>l
then (l—e~iθz)a~1f(z) has the nontangential limit zero at eiθ. If a=l then
f(z)/log(l/(l—e~iθz)) has the nontangential limit zero at eiθ.

In Theorems 1 and 2 to follow we show that Theorem A [1] is sharp and
in Theorem 3 we show that Theorem B [2] is sharp. We note that when 1<;
a^2, Theorem B was shown to be "sharp" in [Theorem 5, 1].

In our Theorem 3 we strengthen this result by replacing "lim sup" by "lim"
and extend the range of a to all α ^ l . This result for £Fα classes is analogous
to the result of G.D. Taylor [5] for Hp spaces.

PROPOSITION 1. Let α > 0 and μ be a non-negative measure on [—π, π]. Then

and

(5)

where w(x)=w(x, 1, μ) and re[O, 1). Also the constants A and B depend only
on a.

Proof. The proof of (5) can be found in [1]. To prove (4) we first remark
that it is easy to use the identity |1—rβ t x | 2 =(l—r) 2 +4rsin 2 (x/2) and the ine-
quality sin I x I ̂  I x I to prove that

II—
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when I G / F [ - ( 1 — r ) t 1—r], and that

(7) 1 > L *
v ; | l - r έ ? ι * | V 2 |JV 2 |JC|

when X G / F [ - π , T Γ ] ^ .

It follows from (6) and (7) that

w(X—r)
~~2^7*(1_r)α

An integration by parts gives

From (8), (9) and the fact that w(π)=\\μ\\ we infer that (4) holds.

LEMMA 1. Suppose 0 < α < 2 . Then we have

(l—re~ιt) — V 4

whenever t^.\_—π, π~\ and r e [ 0 , 1).

Proof. Note that since both sides of (10) are even functions of ί, it is
enough to prove the lemma for 0 < ί ^ π . To this end note that for r e [ 0 , 1)
and 0 < ί ^ π we have —π/2<Arg(l/(l—re~it))^Q, where Arg denotes here (and
elsewhere in this paper) the principal argument. Hence we have — (ττ/4)α^
(π/4:)a+a Arg (\/(l-re-u))^(π/A)a. Using this fact, the fact that 0 < α < 2 and
the identity

gt88n(t)Oc«/4) ^ cos(α

( l r - * 1 ) " "rβ-*1)" " \l-re'u\a

we obtain (10).
In Theorem 1 to follow we prove that Theorem A is sharp when 0 ^

THEOREM 1. Suppose 0 ^ α < 2 and μ is a complex measure on [— π, π] .
/zer^ e m ί s α function / , e ϊ α SMC/Z ίΛαί | y | — \μ\ and a constant Λ a de-

pending only on a such that

(ID

where w(x)—w(x, 1, /i) αncί r e [ 0 , 1).

Proof. We suppose α>0. The proof for a=0 is similar and we do not
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give it here. For a complex measure μ on [—π, π~\ define a measure v by
dp(t)=et9*nιtUπa/A)d\μ\(t) and, consequently,

)-n Q.-e-uz)a

for Z G A . Note that IMI = ||j"ll. It follows from (12) that

S π r «tsgn(t)(ffα/4)

_ π

R e [ ( i- r g -*y
We infer from (4), (10) and (13) that (11) holds for Aa=(min(a, π'a)/2a/i) cos
(πα/4).

Remark. Theorem 1 shows that for 0^a<2, Theorem A in [1] is sharp
in the most strict possible manner. For a>2 we are not able to do quite as
well. The case α=2(and also a=6, 10, 14, •••) remains open.

LEMMA 2. For any ε>0 there are positive constants a, b, and T such that
^π and for all r e [ 0 , 1) we have

(14) Arg-
1

whenever O^t<a(l—r) and

(15)

whenever b(l—r)<t^T.

<ε

(l-re-u) ^ 2
-w <£

Proof. To verify the first inequality we note that without loss of generality
we may assume that ε<tan"1(π/2). Let α=tanε. Then for 0^t^a(l—r) we
have

r sin t ^ rt

1—r cos t ~ l-r

=tan ε,

which gives (14).
We may assume without loss of generality that ε<(π/2) and is such that

,4=tan(ττ/2-ε)>l. Let b=2πΛ and T=(2/b). Then we have T=l/πΛ. Noting
that b>2π and T<π we see that the set of ί's such that b(l—r)^t^T when
0<Jr<l/2 is vacuous. So to prove (15) we may assume r e [1/2, 1). The ine-
qualities b(l—r)<t£T are equivalent to 2πA(l—r)^t<(l/πA), which implies
(l—r)/t<l/2πλ and rί/2<l/27rΛ Adding the last two inequalities we obtain
(X-r)/t+rt/2<l/πA. This can be rewritten as A<l/π(t/l-r+(rt2/2)). Since

we deduce that
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2ί r . It r rsint
(16) ( 7 ) < Ί _ κ l _ y / g ) ) ^ Ί

It is clear that (15) follows from (16).

LEMMA 3. Let a>0 with (α+2)/4^Z. Let β—{{π/2)a—2kπ)/2, where k is the
greatest integer less than or equal to (α-j-2)/4. Then there exist positive constants
a, b, T, 0<T<τr, and cx such that

(17) Re,, ' " ' '(l-re-u)a = \l~re-u\a

for every re[0, 1) and every t such that Q<ίt<a(l — r) or b(l — r)^t<T or t—π.

Proof. By the definition of β it follows that βe(—π/2, π/2). Choose ε>0
such that [β—aε, β+aε^\c(—π/2, π/2). Let a, b and T be such that Lemma 2
holds. We have the equality

nκ\ R e~tβ - cos(]8-αArg(l/(l-rg-")))
U δ ; Ke (l-re-'r ~ \l-re~u\a

Suppose Q<t^a(l—r). Then (14) gives

(19) - ^ < β - ^

Let d=max{|j8—αe|, \β+aε\\ and note that -π/2<d<π/2. Therefore (18)
and (19) imply (17) with Ci=cos d.

Now suppose b(l-r)£t£T. Then (15) implies

(20) ~a

Using the definition of β and a short computation, (20) gives

(21) β ^

Again (18) and (21) give (17) with c^cos d.
Finally, if ί=ττ then, since cos/3>cosύί, (17) holds also in this case.

LEMMA 4. Suppose 0 ̂  r < l , O^r^π, 0<a<l<b and a(l—r)<τ<b(l — r).
Then

(22) ^ l l r " ! ^

whenever

(23)

whenever t}>(π/a)τ.
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Proof. We note that if O^t^τ then

(24) l-r<\l-re-u\^(l-r)+t^ — + τ ^ — τ
a a

and (24) clearly implies (22) since τ/b<l—r. By the inequality sin x>,(2/π)xy

2, we have

(25) 1 | i _ β i ί | = s ί n - ^ 1 .

When t>(π/a)τ, (25) implies

(26) l l 1 - ^ ^
Hence

|l-rg-«| = |e*t- r |^|g<t-l|_(l_

It also follows from (26) that

ύ\eu-l\^~^\eu-l\ + ~\eu-
d Li

<2\eu-\\.

So (23) holds.
We remark that in this paper we assume the notation

L E M M A 5, Let « > 0 . Then for each positive sufficiently small number q
there is an η>0 so that for each sequence μ Q , •••, μ k , •••, μ ^ of non-negative
numbers with Σ i = ~ / i i < + ° ° there are sequences v0, vu •••, Vk, •••, *><*> of non-
negative numbers, and τ0, τίf •••, τk, •••, T™ satisfying

(27) vo=μ<>, and η2^μt^ Σ° | | J

(28) τo=JΓ, Γoo^O, τk=q2kπ or q2k'^, k = l, 2,

such that for each k^l we have either

or

2
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where a, b and cx are numbers from Lemma 3.

(31)

Proof. Let q be any positive number such that

2«+\2a+ba)qaba ^ 2~a

We introduce the auxiliary sequence {θk) defined by

In the case when Σ>ιι=ΐμι=0 we put 0* = 1. Conditions (27), (29) and (30) may
by rewritten as the following conditions on (θk)

(32) η2£θk<l, k=0, 1, •••, 00=0! = ].,

and

(34) b^<-^2-

with

(35) Vk — Qk Σμi — Ok+i Σ μj^O, /?=0, 1, ••• and with κ«=0 if ^oo==0.

If //JO>0 then (35) implies ΣΓ=o(0*-0*+i)~ ̂  (l/^ΣΓ-o^ik. This fact together
with the inequality Σ*U(#* — 0*+i)+^ΣΓ=o(#* — 0*+i)"+supΛ 0^ — inf* 0* implies
Σ*°=o|0* — 0 A + I I < + °°. Therefore lim^^oo^^ exists and we define iΛx>=(lim*_>oo0ft)
j«oo in this case.

We will construct sequences (θk) and (τk) inductively. To start this induc-
tion set 0 O = 0 ! = 1 , τo=π. Next suppose that n ^ l and that θ0, •••, 0n and r0,
- , Tn-i are already selected so that (28), (32), (33) or (34), and (35) hold for
k=l, .», n-l. If (33) or (34) is satisfied with k = n, τn=q2nπ, and θn+ι=θn;
then, naturally, set τn=q2nπ and θn+i=θn. Then vn—θnμn^. Now assume
that this is not the case, i.e., we have

(36) 2a(n2nπ)a < [ i§> l l - g - t Γ H " + T ?

and

J 1 1 — i <r i I /v I

(^2nτr)α 2

We now consider 4 cases.

Case 1. If
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71-1 yt Qn l-oo

( 3 8 ) Σ \l-

then set τn—q2n'ιπ, θn+ι—θn, and, consequently, vn=0nμn. Then (38) combined
with (36) gives

which can be rewritten as

τ£ ^ a" it* \l-e~tτι\a '

Clearly, by our choice of q, (31) and (39) imply (34) with k — n.

Case 2. If (38) does not hold and l^θn>rj, then we set τn=q2nπ and

(40) θn+ί = ηθn.

Note that (40) gives 7]2<ηθn = θn+i£r]<l and that

(41) Vn^θnll μι — yθn if μι>θ nμn^0.

Combining the negation of (38) with (37) we obtain

(q*»π)« > 2 Δ {g)

Inequality (42), together with (40) and (41) implies

>
τl η 2-2ab*a τl ι&xμ%

Clearly (43) implies (33) (with k = n) if only η is sufficiently small.

Case 3. If (38) does not hold, θn^η and

(44) - 'Σ μι<Έμι,

then we set τn = q2nπ, and θn+1 = (l/η)θn. Note that rf ^ (θn/η) = θn+i^h
Moreover, by (44), we have vn = θnΣ,ιι=nμι-(θn/r])Σlι=n+iμι^O. Also since we
may require that η<l, we have vn = θnμn-{-θn(l-(l/η))Σιι=n+iμι<Onμn. This
last inequality together with the negation of (38) applied to (36) yields

(45) § ^ ^ l ξ

Inequality (45) may be rewritten as
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bavn . 9 2 2aba(2a+ba) aa

Cl θn+1 ι~
T a C a'/L T l = n + l

which clearly implies (34) with k — n if η is sufficiently small.

Case 4. It only remains to deal with the case when θn<η and neither (38)
nor (44) hold. In this case put

τn=glnπ and θn+1=~~ θn.
Σ μι

l=n+l

Since (44) is not true we have η2£θn^θn+1£(l/η)θn^(η/η)=l. A simple cal-
culation shows that vn=0 and so (34) is trivially satisfied.

LEMMA 6. Suppose that α > 0 is such that (α+2)/4 is not an integer. Let cx

be the constant from Lemma 3, and let a, b, and T be the constants from Lemma
3. Let §<q<mm(a/b, T/π, a/π). Then there is a constant c 2>0 such that for
any sequences: {τk satisfying (28) of Lemma 5, and non-negative vOf -•, Vk, -- ,
Voo which for each k, k~ly 2, •••, satisfies either (29) or (30) of Lemma 5 we have

(46)

for O ^ r ^ l .

Proof. Note that for any positive integer k the inequality (29) of Lemma
5 implies that

Vk ^n^Λ Vl

\l-re-"k\« ="ftk \\-re-χτι\a '

when α(l—r)<τk<b(l—r), while the inequality (30) of Lemma 5 implies that

(48)
- 2 iΨk

where a(l — r)<τk<b(l—r). Indeed, since τk<qτι^(a/π)τu the first inequality
of (23) in Lemma 4 gives

Then, since τk<b(l—r) we have

Finally, applying the second inequality of (22) Lemma 4 we get
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(51)
bavk

2ατf ~ \l-re~ιτ*\a

Combining (49), (50) and (51) with (29) we obtain (47). The proof of (48)
which we do not give here can be given in a similar fashion. If {r*}ίΞ?Λ
(α(l—r), b(l—r)) = 0, then since τιiίqπ<LT we have {τfe}f=~c[0, α(l—r)~\VJ
[b{l-r), T]\j{π}. Then, by Lemma 3 we have

^ Σ^Re-
ί=oo

-^ciΣ-

with β from Lemma 3. If this is not the case, then since (τι+1/τι)^g<(a/b),
1=0, 1, •••, we have α(l—r)<τk<b(l—r) for exactly one k, k ̂  1. By what
was proved earlier, either (47) or (48) holds for this case. If (47) holds then
we have

\l-re'ιτ*\

If (48) holds, then, since all terms of (τ{) except for τk are in [0, α(l —r)]W
r), T]W{τr}, applying Lemma 3 and the fact that 0<Ci<l we get

\l-re~ιτ*\a

^άi \l-re~ιτι\

which completes the proof.

Before we state Theorem 2 we recall the notation

0 f=0

and likewise for ̂ . Note that this implies

[πf(t)dw(t, v)=(*
Jo J -

for each / continuous on [0, π] .

THEOREM 2. For each a>2 with (α+2)/4 an integer there is a positive
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constant c
3
 depending only on a such that for any measure μ on [—π, π] there

is a measure v on [0, π] such that

(52) w(t, v)^w{t, μ)

for O^t^π, and

for r e [ 0 , 1) where fv is defined by (1).

Remark. Note that by Proposition 1, the right-hand side of (53) in the
theorem may be replaced by

and so Theorem 2 proves that Theorem A in [1] is sharp.

Proof. Without loss of generality we may and so assume that μ is a non-
negative measure with support contained in [0, π] . Let a sequence μ0, μlf ••• ,
/£oo be defined by the formula

and μoo=μ({0}), where q is a positive number for which both Lemma 5 and
Lemma 6 hold. Note that q depends only on a. Let (τk) and (vk) be sequences
constructed in Lemma 5 for this q. Define measures β and v by the formulas

and

Since the measure β is obtained by "sweeping" the mass from the interval
(q2k+2π, q2kπ\ to the point τk(k—0, 1, •••), which is given by (28) of Lemma 5,
and which is located to the right of the interval, without moving the mass
concentrated at 0 and at π we have

(54) w(t, β)£w(t, μ)

for 0£t£π. Moreover, since \l-re~tst\ ^s\l—re'u\ for 0<f, s > l , st<π and
r e [ 0 , 1), we have

( 5 5 ) f dP<t) = μ - , f f
K J Jco.π: \\-re~u\a ( l - r ) β ifeΌJ^
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= f- i ^ μ*

= μ~ . fi / r * γ μ
{l-r)a *=o\ #2*+2;τ / I\-r

Note that (54) and the second inequality in (27) of Lemma 5 give (52).
We next prove that

f d*» > ̂ a [ d^
Jco,« I l-re- u \« = 2 Jco,« 1 1 - r e " " | a

for 0 ^ r < l . First note, it follows from (27), the choice of τk and the fact that
w(t, β) is nondecreasing that w(t, v)^r)2w(qH, μ) for 0<Lt<π and ι^(π, v)^>η2w(π,
μ). Using the foregoing facts, the inequality (l/\l-re-ιq~H\a)^a(l/\l-re~it\a)
whenever 0^t^q3π and the fact that l/\l—re~tq3t\a is nondecreasing, it is
readily proved that

, v) >2[
πdw(qH,β)C<ι** dw(t, fi) > y ? 2 / J

J ) J
Jo | i_πr« |«=' ' Jo \l-re-

u\a

and

dw(t, v) 2 BaC
π dw(t, μ)

l-re-it\a=ΎJQ h** \l-re'u\a '

These last two inequalities imply (56).
Combining (55) and (56) with (46) of Lemma 6 we obtain (53) with cz—q*aη2c2/2.
The following two lemmas are technical results needed for the proof of

Theorem 3.

LEMMA 7. Let α > l . Then there is a δ>0 such that for each positive non-
decreasing C1 function ε(t), 0<t<π, satisfying

™ T ^ « . o<«,.
we have

for all sufficiently small s>0, where

h(s)= [\s+it)~a~e(t)dt, s > 0 .
Jo
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Proof. Note that

(58)

Choose Uι and u2, 0<ul<l<u2<-\-oof so that

(59)

and

(60) u\~a<

Note that (58), (59) and (60) imply that

(61) \[U\l+iu)-*-*du
3 1

4 a—I

Choose (5 so that 0<3<(α—1)/2 and that

( 6 2 )

Note that (57) implies that for any ίo^(0, 1) we have

(63)

and

(64)

If s<(π/u2), then we may write

(65) h(s)=

where

and

Is=[π\l-\-iu)-aέ(su)du.

Since ε(f) is non-decreasing we obtain, by (59),

(66) |Λ|

While (63), with to=su2, and (60) yield
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\It\^['"\l+iu\-"i{su)du

\l+iu\-°i(su2)(—) du

^ \ u~aέ(su2)uδu'2'
δdu

U

By (64), with to=suίί, and by (62), we have

(68) KsuAU\l+iu)-"du-

= |^2(l+«M)-α[£(SM2)-έ(SM)]ύ!M

S("211+fuI-'i(sut)(l-(-^-)')du

~ 8(α-l) *

Combining (65), (66), (67) and (68) we obtain

h(s)-s1-aέ(su2)[U\l+iu)-adu ^ o o - - .
j«i o α—1

This, together with (61) and the fact that έ is nondecreasing gives

3έ(sw2) . * e(s)

when

LEMMA 8. Let a>l. Then

lim

Proof. Denote the integrand in the preceding expression by k(s, t). Note
that

(69) ?

for some constant c>0. On the other hand since \(s+it)—(s+(l—e~u))\^t*,
0<^t<π, we may write

fe(s, O(70)
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where the supremum is taken over the closed line segment joining s+it and

s+(l-e-u). If s^(l/4) and 0<t<(VΊ/2) then for each z in this interval we

have

t,s).

Hence for those z's we have

(71)

3 Λ-*-1 _ V Ί

T
3̂
4

Combining (69), (70) and (71) we get for

(f 0"
(I

Applying these estimates to \ k{s, t)dt we easily obtain the Lemma.
Jo

Our next result shows that Theorem B is sharp. When l<La<2 a weaker
sharpness result containing a limit superior was obtained in [2].

THEOREM 3. Let α > l and let ε(r) be a positive function on 0 ^ r < l with
lim r_i-s(r)=0. Then there is a differentiable function g(t), —π<t<π, so that

lim iy*
β(rXl-r)1"

= + oo.

Proof. Denote e(i)=Ve(l—ί), 0 < ί ^ l , and ε(f)=Ve(0), l<t<π. Note that
if the assertion of the theorem is true with ε{r)=ει{r) and εzi^^ε^r), then it is
also true with ε(r)=εg(r). Hence, by replacing ε(r) with a larger function we
may assume additionally that:

i ) έ is C1 and nondecreasing on (0, π],

ii) lim *
ε(s

(Lemma 8 is used to ensure this),
iii) (d log ε(t)/d \ogt)^δ, 0<t^π, with δ being the positive constant from

Lemma 7.
To obtain iii) note that for each bounded above real function a(s) defined

on a semifinite right-bounded interval with lims_>_ootf(s) = — co there is a C1

function αi defined on the same interval, and such that lims__cx>αi(s) = — <χ> and
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(daι(s)/ds)^δ. Then take α(s)=log ε(es) with έ satisfying ii) and replace ε(ί)
with exp(αi(log f))

Let us define
0,

)=\ rt

[ \e(u)du,

Clearly gεC^-ff, π].
Note that

Let Λ(s)=Γ(s+Λ)"αe(0^ί. By Lemma 7 we have
Jo

(72)

for all sufficiently small positive s.
Observe now that

i{t)dt

dt.

By (ii) above, the last expression multiplied by (1—r)α"Vέ((l—r))/r tends to 0
when r approaches 1. Hence, by (72) with s=(l—r)/r, for all r sufficiently
close to 1 we have

Therefore, ( l-r^^l/WI/sW ^ l/(8(α-l)Ve(r)) for such r's. But since
limr_i-e(r)=0, the proof is complete.

Remark, When a—I it is possible to prove that for any ε(r) as in Theorem
3, there is a differentiate function g(t), —π<,t^π, so that

If* \og(l/a-re-u))dg(t)
:~* IJ-«lim

r-*l β(r)logl/(l-r)

We do not give the details. Such a result with a limit superior replacing the
limit was obtained in [2].
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