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1. Introduction and statement of result

Let Wl be the set of all countable subsets η of Rd (d^Z) satisfying Nκ(η)
<oo for any compact subset K, where NA(y}) is the number of points of rj in
AaRd. $1 is equipped with 33(̂ 01) the σ-field which is generated by {η<=m:
NA(η)—n}f A<=$5(Rd), n^N. For η^SΪR, r>0 and two disjoint regions Λi and
A2 in Rd, we say that a continuous curve γ is an occupied (resp. a vacant)
connection of Λ1 and A2 in a region A with respect to (η, r) if γΓ\AλΦ®, γΓ\A2

Φ®, γaA and γcUr(η) {resp. γΓλUr(η)=9), where Ur(rj) stands for the r-neigh-
borhood of η and Ur(x) is the abbreviated form for Ur({x\). A continuum
percolation model is obtained if a distribution v on the space [0, oo)χ$ft is
given. In this paper we consider the case v—hr®μχ, r>0, λ>0, where dr is
the Dirac measure corresponding to the point r and μλ is a Poisson distribution
on ffl with intensity measure λdx, that is, for any disjoint system {Au A2)

-,Am}ci®(Rd) s u c h t h a t | Λ I = ( dx<oo,i = l,2,...,m,NΛι(η),...,NΛiΛ(η)

are independent random variables on the probability space (3ft, 39(3ft), μx) and

μx(NA=n)= U l ^ i r exp(-AlΛl), ί = l , 2, ..., m,

This percolation model is called the Toisson blob modeΓ. (See Grimmett [9].)
It should be viewed as a continuum analogue of the discrete site percolation
model. Instead of sites being independently occupied we have a Poisson process
on Rd with each Poisson point being the center of an occupied ball of radius r.
Now we define two regions in Rd,
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W(x, η, r)={y : 3 an occupied connection of {x} and {y} in Rd w.r.t. (η,r)},

W*(x, η, r)—{y : 3 a vacant connection of {x} and {y} in Rd w.r.t. (η,r)},

i.e., the occupied and vacant cluster of x, respectively. The critical values
are defined as follows:

λe(r)=]nf{λ>0: μλ(W(O, r) is unbounded)>0},

λ*(r)=suρ{λ>0: μλ(W*(O, r) is unbounded)>0}.

It was shown that λc(r)=λf(r), r > 0 in the case where ά—2 by Roy [16].
In this paper we study a homogenization problem of a reflecting barrier

Brownian motion in an unbounded occupied (or vacant) cluster of the Poisson
blob model.

Let A be a Lipschitz domain in Rd, that is, the boundary dΛ of A can be
locally represented as the graph of a Lipschitz function defined on some open
ball of Rd\ We define a Dirichlet form (βA, H\A)) on L2(Ά, dx) by

H\A)={u(=L2(A, dx): \Vu\<=L\A, dx)}.

It is known that {u\A: UEΞC^R*)} is dense in H\A). (See Stein [17].) We
introduce measurable subsets Hk and Wlx, x^Rd of %R defined by

0> η) is unbounded},

mx={ηςΞWl\
where

: \x—y\=2r for some x,

In case ηtΞfflx, W(x, η) is a Lipschitz domain and (£Wu,V), H\W(x, η))) is a

regular Dirichlet form on L\W(x, 77), dx). Hence, by the theory of Dirichlet
forms, we can construct the associated diffusion process starting from x, which
is called a reflecting Brownian motion. (See Fukushima [7], [8], Bass and Hsu
[1].) We denote by (Ω, %, Pη

Xi X(t)) this diffusion process if η^W*; otherwise
X(t)=x, ί^O. The process X(t) is conservative and has a transition density
Pη(f, x, y). For a probability measure μ on ffll with μ($R)>0 we put

Changing the role of W(x, η) into W*(x, η), we define $ϊ*, $ί*, X*(t), pn(t, x, y)*
and β* by the same way as %R, 90L, X(t), pn(t, x, y) and β, respectively. For
a probability measure μ on 9tt we put



230 HIDEKI TANEMURA

Our main result is the following theorem.

THEOREM 1. (i) // λ>λc(r), then the process εX(t/ε2) on (Ω, $, P™) con-
verges to σ(λ)B(t) in distribution on the space C([0, oo)-*Rd) equipped with the
local uniform topology, where B{t) is a d-dimensional Brownian motion and σ(λ)
is a positive constant.

(ii) // λ<λ?(r), then the process εZ*(ί/ε2) on (Ω, 3, P&) converges to

σ*{λ)B(λ) in distribution on the space C([0, oo)-*Rd) equipped with the local uni-

form topology, where σ*(λ) is a positive constant.

Central limit theorems for stochastic processes in random sets were studied
by many authors. De Masi, Ferrari, Goldstein and Wick [5] proved a central
limit theorem for a random walk in the Bernoulli percolation cluster. Tane-
mura [19] generalized their result to a jump type Markov process in a con-
tinuum percolation cluster. Bhattacharya [2] and Ochi [14] studied homogeni-
zation problems of reflecting barrier Brownian motions in the case of periodic
domains and Osada [15] studied the problems in the case of domains with
stationary scatterers under certain geometric conditions.

We prove the uniqueness of unbounded cluster of the continuum percolation
model (Proposition 3.1). The unbounded cluster, say W(η), is regarded as a
domain with stationary scatterers. If W(η) satisfied the geometric conditions
in [15], Theorem 1 would be derived from [15]. However, W(η) does not
satisfy the conditions. The conditions were essentially used in [15] to prove
the tightness and the nondegeneracy of the limit. Then we can obtain the
convergence of finite dimensional distributions in the same way as [15] (Sec-
tion 3).

The tightness of the rescaled diffusion processes is proved in Section 2.
Lyons and Zheng [13] obtained a decomposition of additive functionals of re-
versible Markov processes associated with Dirichlet forms. This decomposition
is useful to check tightness. (See Takeda [18].) By virtue of the translation
in variance of μλ we can apply their decomposition and show the tightness of the
rescaled processes (Proposition 2.1). The technique used in Section 2 is thought
to be applicable to more general situation.

We show the positivity of the diffusion constant σ{λ) in Section 4. The
positivity of the diffusion constant $*(Z) can be proved by the same way. We
introduce jump type Markov processes Xn(t), neiVin the continuum percolation
cluster. The diffusion constant σ(λ) is bounded from below by the inferior
limit of the diffusion constants σn{λ) of Xn(t), n^N. In the case of the random
walk in the Bernoulli percolation cluster, the positivity of the diffusion constant
was shown in [5] by using an estimate of the effective conductivity associated
with this process. Their technique was generalized to jump type Markov pro-
cesses in continuum percolation clusters in [19]. Then the key part for prov-
ing the positivity of σ(λ) is to estimate the effective conductivities associated
with Xn(t) uniformly in n (Lemma 4.2). The proof of Lemma 4.2 is given in
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Section .5 by using a result about the continuum percolation model given in
[20].

2. Tightness

In this section we establish the tightness of the rescaled processes εX(t/ε2),
ε>0.

PROPOSITION 2.1. Let μ be a translation invariant probability measure on Wl.
(i) // μ(βί)>0, then {P^εXG/ε2))-1: εe(0, 1)} is tight in the space C([0, oo)

—>/2d) equipped with the local uniform topology.
(ii) // μ(Φ)>0, then {P?*°(εX*(-/ε2))-1: ε<Ξ(0, 1)} is tight in the space

C([0, oo)-^Rd) equipped with the local uniform topology.

We give a proof of (i). A proof of (ii) is obtained similarly. For any
δ>0, put

: sup
\t-s\ύh

Then it is sufficient to show that

lim sup P"o(eX(-^))~\vh.τ)=0, VT>0 .

Using the translation invariance of μ, we obtain

for any />0, where τ ^ = { x + ^ : 3^^^}. Put OS^Pϊ/.Ke^C /e8))-1. Then

where αA={αx:xeΛ} for ^4c/2d, α>0. Hence, Proposition 2.1 follows from
the following lemma. We show the lemma by the same procedure as in Theo-
rem 3.1 in Takeda [18].

LEMMA 2.1. For any η^W

lim sup [ dxQ*ε(Vh,τ)=0, VT>0.
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Proof. From the definition of X{t) this lemma is trivial if ηGΔ. SO we
assume η<=W\A. Suppose that x^εUr(η). Then (w(t), QY) is a diffusion
process associated with the Dirichlet form (£εur(V), H\εUr(η))) starting from x.
For any εe(0, 1) there exists an increasing sequence {an}n^N such that n+2<

and Aε

n[_η]—εUr(η)Γ\Uarβ) is a Lipschitz domain for any neiVwith
Q. We denote the diffusion process starting from x associated with the

Dirichlet form (eΛiw, H\Aε

nlη2)) by {w(t\ QY'n). Then,

(2.1) \ dxQr(Vh,τ)

dx{QV\*}Ά_ Iw(t)-w(ff)\>n)+QVn(yh,τ)}

ε>n( sup

where

From the decomposition obtained by Lyons-Zheng [13] we claim

(2.2) w(t)-w(s) = j(M(t)-M(s))+j(M(T-t)-M(T~s)), ρ* ε w-a.s.

where M(t) and M(t) are cί-dimensional Brownian motions with respect to
Qη.s.n^ Denoting by Pw a Wiener measure on C([0, oo)->Λd), by Doob's in-
equality we obtain

(2.3) Qv* n( sup |w;(0-M;(0)|>n)

'n( sup |Af(ί)l>n)
ίeco.Γ]

?>ε 7l( sup \M{T-t)-M(T)\>n)
teco.Γ]

(2.4) Q^ n(V f t f Γ)^Q* w( jmp \M(t)-M(s)\>δ)

i t-s 11 ft

ε>n( SUp
Iί-*ISΛ
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Pw{dw)\w(2h)V
( ί 0 ) R d )

Λ-VdT

Setting n=[—log Λ] and combining (2.1), (2.3) and (2.4), we conclude that

| J2

where [or] denotes the integer part of a nonnegative constant a. Therefore,
this completes the proof of Lemma 2.1. •

We denote the expectation with respect to PS and Pμ by E\ and Eμ, re-
spectively. We show a lemma which ensures the existence of the moment
Eμt\X(t)\pl (resp. £^*[I^*(OIP]) for any peN and any translation invariant
probability measure μ on W with μ(^l)>0 (resp. μ(W*)>0).

LEMMA 2.2. Let μ be a translation invariant probability measure on SSI. For
any

(i) P"( sup |Z(0l^0^2P^( sup
ίGCO.Γ] ίGCO.Γ]

(ϋ) P"{ sup |Z*(ί)|έ/)^2P^( sup

Pμr 2S a Wiener measure on C([0, oo)^Rd).

Proof. Let 37^Δ. There exists an increasing sequence {frnke v such that
(n+l)Kbn^(n+2)l and i4(n, η)=Ur(η)r\Ubn(0) is a Lipschitz domain for any
neiV with J4(W, η)Φ0. We denote the diffusion process starting from I G
i4(n, η) associated with the Dirichlet form (εA(n>vh H\Λ(n, η))) by (X(t), Pηχn)

and put Pi'n=(l/\A(n, η)\)\ άxP\n.
JA(.n, η)

P'( sup | Z ( f ) | ^ ) = ( μ(dη)P% sup

L I d*Pί-'( sup7 L I

=ί
J

Fnί<0)
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From the decomposition obtained by Lyons-Zheng [13] we claim

X(t)-X(s)=j(N(t)-N(s))+j(N(T-t)-N(T-s)), P*»-a.s.

where N(t) and N(f) are d-dimensional Brownian motions with respect to
For this reason, we get

P* n( sup \X(t)-X(ΰ)\^l)

^pv-n( sup \N(f)\^l)+Pi'n( sup \N(T~t)-N(T)\^ί)
teco.Γ] ίeco.Γ]

=2PW( sup |

and conclude that

sup \X(t)\>l)^2(^^-)pw( sup

This completes the proof of (i) of Lemma 2.2. We can prove (ii) by the same
way. •

3. Convergence of finite dimensional distributions

The purpose of this section is the following theorem.

THEOREM 3.1. (i) // μλ$ί)>0, then the process εX(t/ε2) on (Ω, ff,
converges to σ(λ)B(t) in the sense of finite dimensional distributions, where σ(λ)
is a nonnegative constant determined by

(ii) // ^^(^*)>0, then the process εX*(t/ε2) on (Ω, <3, Pβt) converges to
σ*(λ)B{t) in the sense of finite dimensional distributions, where σ*(λ) is a non-
negative constant determined by

Let W(x, η) and W*(x, η) be the occupied cluster and the vacant cluster
containing x for η, which is defined in Section 1. We denote the collections
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of all unbounded clusters for η by W(η) and <F*(^):

<W(η)={W(x, η):W(x, η) is unbounded, x<ΞRd},

<W*(-η)={W*(x, η):W*(x, η) is unbounded, x<=Rd}.

We first study the number of elements of W(η) and W*(η). Burton and Keane
[3] proved the uniqueness of the infinite cluster of a site percolation model on
Zd under a translation invariant finite energy probability measure. Using their
technique, we show the uniqueness of the unbounded cluster under a Poisson
distribution μχ.

PROPOSITION 3.1. (i) // μλ$l)>0, then %<w(7])=l for μλ-almost all η.
(ii) // μχ$l*)>0, then #<F*O?)=1 for μχ-almost all η.

Proof. First, note that $W(η) is constant, μλ-z. s. from the ergodicity of
μλ under translation. Suppose that %<w(η)=n9 μχ-a.s. η, 2^rc<oo. There
exists /<>>0 such that

(3.1)

We define measurable subsets Aι(l, a), Λ2(l, a), /, α>0, of $R by

Axil, a)=lη(Ξm:WrMJι+a(O)Φ&,

Since any cluster W is open set, from (3.1) we can choose αoe[O, r) such that
μx(Λi(l0, ao))>0. It is easy to see that μχ(Λ2(h, α))>0, α6[0, r). From a
property of a Poisson distribution we have μχ{Λι(lQf aQ)Γ\Λ2{l0y ao))>O. On the
other hand, if η^Ax{lQy ao)r\Λ2(lQ, a0), then %W(η)=L Then, μλ(%W=l)>0.
It is a contradiction. Hence,

(3.2) ^ ( 2 ^ # < F < o o ) = 0 .

Suppose that ^<W(η)—oo> μλ-a. s. η. We introduce the following notion.
Let />0. A point x^lZd is called an /-encounter site for η&Wl, if W(x, η) is
unbounded and W(x, η)\Uι/2(x) has exactly three unbounded connected com-
ponents. Denote by ΐϊliiη) the number of unbounded connected components of

the open set W(0, η)\Uι(0). We define a measurable subset A*(l, a), I, a>0, of
m by

By the same argument as the above we see that there exist /i>0 and aι>0
such that μχ(Aι(li, «i)nΛ(/i, «i))>0. If η^A2(llt a^ΓΛASu ax\ then mh+r(η)
^ 3 . Then,
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Since 71.(η) is a right continuous increasing function and satisfies for μλ-a. s. η
mι-(η)£l for all />0, there exists /2>0 such that

μlIί/a=3)>0.

Then, we have

μx({η:0 is an /2-encounter site for η})=ε>0.

It follows from the ergodic theorem that for almost all η

(3.3) the number of ^-encounter sites for η in Vk=O(kd), &-»oo ,

where 7* = [-(fe + l/2)/8, (ϋ?+l/2)/8]
d, &eiV. Put W(?)= {WΊfy), Wίfy), ...} and

Qfi(η)={Y :Y is an unbounded connected component of Wi(η)\Vk}.

Any /2-encounter site x for ^ with x^Wi(η)Γ\Vk determines a partition P(x)
= {Pi(x), P.(χ), P3(*)} of <y,(9). If partitions P(*)={Pi(*), P 2(*), PZ(X)} and
P(3θ={Pi(3θ, P2(3>), Pa(^)} of ^i{η) are determined by /2-encounter sites x, y^
Wi(η)Γ\Vk, *Φy> then P(x)φP(y) and there is an ordering of each such that
P1(y)-DPι(x)UP2(x). Using Lemma 2 in [3], if #S»t=£θ, then

where ^(07) is the collection of all partitions of Qiiiyj) determined by /2-encounter
sites for η in W^)nVk. Since \YΓ\{Vk+ihlh)Wk)\^\Uh®)\ for any
with # ^ t ^ 0 , we have

and so

(3.4) the number of ^-encounter sites for η in Vk=O(kd~1), k-+os .

This contradicts (3.3). Hence, we have

(3.5) μλ(^<W=zoo)z=:0.

This completes the proof of (i). We can prove (ii) in the same way. •

We introduce the environment process η(t) (resp. η*(t)) seen from X(t) (resp.
X*(f)) defined by η(t)=τ.χU)η (resp. η*(t)=τ-X ίt)η)- We denote by O(η) (resp.
O*(η)) the union of all elements of W(η) (resp. W*(η)). From Proposition 3.1,
if μλ(m)>0 (resp. μλ(m*)>0), then O(η) (resp. O*(η)) is a connected open set
for μλ -almost all η. Then we can show the following by the same procedure
as Theorem 2.1 in [15].

LNMMA 3.2. (i) Let μλ(βt)>Q. Then the process (η(t), Ph) is an ergodic re-
versible Markov process with transition density
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Pl{X(J)ξΞΛη)y if
P(t,η,Λ) = t

δv(Λ)y otherwise,

t>0, η<^Έl, ΛdW, where Λη=

(ii) Let μχQΰl*)>Q. Then the process (η*(t), P^x) is an ergodic reversible
Markov process with transition density

ft(t)v), if
P*(ί, η, Λ)={

{ δη(Λ), otherwise,

*>o,

Proof of Theorem 3.1. We introduce the measurable subset % of
defined by

ί $Ξ s.t. ζ(ί)eΓ( ?), Vί^O},

where Ξ and Γ(η) are measurable subsets of Wl given by

:η=τuη for some u(=Rd\{0}},

We define a functional Ft on 5ί by

Ft(ζ( ))=x(t)-x(0),

where x( )eC([0, oo)-+Rd) such that Tχ(0)-Λ(ί)C(0)=ζ(0. The functional F£ is
additive and antisymmetric, that is,

From the definition of the process η(t) we have

X(s)-X(O)=FS(V( )), P'j-a.s.

Then, (Z(0, P^^) is a square integrable antisymmetric additive functional of the
ergodic reversible Markov process (η(t), P^x). Applying Theorem 2.1 in [5],
we obtain that the process εX(t/ε2) converges to DB(t) in the sense of finite
dimensional distribution. (See Section 3 in [15].) Here D is a symmetric and
nonnegative definite dxd matrix determined by

however, by the rotation invariance of X(t) the matrix D must be a constant
multiple of the unit matrix. We have thus proved (i) of Theorem 3.1. We can
prove (ii) in the same way. •
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4. Positivity of the diffusion constants

Combining Proposition 2.1 and Theorem 3.1, we see that the reseated pro-

cesses εX(t/ε2) and εX*(t/ε2) converge to σ(λ)B(t) and d*(λ)B(t), respectively.

Then, the only assertion left to be proved is positivity of the diffusion con-

stants σ(λ) and d*(λ). Let σ(λ) and σ*(λ) be nonnegative constants determined by

It is easy to see that d(λ)*=(σ(λ)*/μχ(β)) and δ*(λ)2=-{σ*(λ)2/ μλ(W*)). Then, it
is enough to show the following proposition.

PROPOSITION 4.1. (i) // λ>λc(r), then σ(λ)>0.
(ii) // λ<λf(r), then σ*(λ)>0.

For a subset A of Rd and β>Q, we define a measurable kernel #^[^4] on
RdX$(Rd) by

qβlA](x, dy)=c

 βd+2d lί0Λ/β)(\x-y\)lA(x)lΛ(y)dy .

We abbreviate qn[Ur(η)~l to q% for ^e3«, n(ΞN. Denote by (β, £F, P%, Xn(t)) a
right continuous Markov process starting from x with generator

where Coo(Rd) is the space of continuous functions w on Rd such that w(
as I JC 1 —>oo. Clearly L% can be regarded as a bounded linear operator on
L\Rd, dx).

LEMMA 4.1. Let μ be a translation invariant probability measure on -Jtt. For
any t^(0, oo)

lim

Proof. Let η<^yR\A and W(x, η)Φ&. Since <?»r(x,̂ ) is a Dirichlet form, by
a standard result there is a nonpositive self adjoint operator L^ with £)((—Lv)

1/2)
=H\W{x, η)) such that

ew(χ,V)(u, v)={(-Lη)
lί2u, (-Lvy

/2v)L2(W(χ,V),dχ).

Put

{ ) , | ^ = 0 a.e. dS on
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where S is the surface measure for dW(x, η) and n is the interior normal. We
can show that JL is a core for LΨ (See [7].) On the other hand it is easy to
see that for any

lim L»u(y)=Au(y)=Lvu(y), Vy(ΞW(x, η),

sup sup L^u(y)<oo,

and so

L%u —> Lvuy as n->oo in L\W(x, η), dx).

Applying Theorem 5.2 in Trotter [21], we obtain that for any u^L\W(x, η), dx)
and ίe(0, oo)

T»(t)u —> Tv(t)u as n->oo in L\W{x, η\ dx),

where T%(t) and Tη(t) are semigroups on L\W{x, η)f dx) associated with L?
and L^y respectively. Hence, for any w, v^L2(Rd, dx)

lim ( dyEllu(X*(O))v(Xn(tm=[ dyE\lu(X®MX(tm .

Noting that Xn(t)=X(t)-y, ίe[0, oo), P|-a.s. if y£Ur(η), we obtain

(4.1) lim ( dyElίu(Xn(O))v(Xn(t))l= \

From the translation invariance of μ we have

(4.2) £'[tt(*Λ(0)] = [

Similarly,

(4.3) £ '

Hence, from (4.1), (4.2) and (4.3) we arrive at

(4.4) lim E"lu{Xn{t)y]=E"ίu(X(t))'] ,
π - -oo

for any u^C0(Rd) and ίe(0, oo). Then for the proof of the lemma it is suf-
ficient to show that

lim
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This equality is derived from the estimate

which can be shown by the same argument as in the proof of Lemma 2.2. •

We give the definition of an electrical network and an effective conductivity
in the context of an electrical network, which is a generalization of that in
Doyle and Snell [6]. Let (q, m) be a pair of a measurable kernel q on Rdx
$(Rd) and a Radon measure m on Rd satisfying

q(x, dy)m(dx)=q(y, dx)m(dy).

We call the pair (q, m) an electrical network. Throughout this paper, we con-
sider the case where q( , A) is bounded for any bounded set A. For k<=N, the
effective conductivity in (q, m) is defined by

, m)= min | τ \ m(dx) \ q(x, dy){u(y)-u(x))At

U I 2 Jί-k-l/2, fc + l/2)<* J [ - * - l / 2 . * + l/2) d J

where u ranges all measurable functions u on [—& —1/2, k-\-l/2)d satisfying
u=0 on [-£-1/2, - & + l / 2 ) x [ - £ - l / 2 , k+l/2)d'1 and u=l on [A?-1/2,

We state the following result whose proof is given in Section 5.

LEMMA 4.2. Let λ>λc(χ). Then there exists a positive constant c(λ) such
that

\im(2k)2-dJk(q" dx)^c(λ), μλ-a.s. VneiV.
k-*°o

Now, we are in a position to prove Proposition 4.1.

Proof of Proposition 4.1. In [19] we have shown that Xn(t) is an anti-
symmetric additive functional of a reversible Markov process. By the same
calculation as in the proof of Theorem 2.2 in [5], we obtain that

qn

η{^ du)u\

where St is the semigroup on L2(#R, μχ) associated with the reversible process

and G(η)=\ ^(0, du)ux. Since St is symmetric, we see that

(4.5) lim ±-E^[XmΊ ^ ^E^lXm2! , Vf e(0, «>).
t-*oo

On the other hand, we proved in [19] that



BROWNIAN MOTION 241

Then, from Lemmas 4.1 and 4.2 we conclude that

σ(λ)2= lim j

= lim — lim
ί-»oo t n-*oo

JΞ> lim lim —

^ Hm \ μλ(dη)\im2(2k)2-dJk(q«, dx)
n-*oo J9Ji £-»oo

This completes the proof of (i). A proof of (ii) is obtained similarly.

5. Proof of Lemma 4.2

In this section we give the proof of Lemma 4.2. First we introduce a site
percolation model on Zd. For each x=(xlf x2, ..., Xa) and y=(yu jy2, ..., yd)
we write (x, yy and say that x is adjacent to y if S/=i \χj—yA=1^- ^ n e e^e"
ment x<=Zd is called a site. Put X={0, l}zd and equip X with the <y-field
generated by {ξ^X : ξ(x)=0}, x<=Zd. For ξ^X, a site ^ e Z d is called occupied
(resp. vacant), if ξ(x)=l (resp. ξ(x)=0). We write x*-*y if there is an occupied
path from x to y there is a sequence x°=x, x\ ..., xn—y of occupied sites
so that <*m"1, %m>, l ^ m ^ n . For ^4i, Λz(ZZd we write Ai<->A2 if there are
sites X G 4 y e ^ a such that x*-*;;. We define a region in Z d by

i.e., the occupied cluster containing the site x. For a given /eΛΓ define a
measurable function π Σ : $l-*X by

1 if Dι(x)Γ\ηφQ,

0 if Z?ιWΓ\37=0,

, x e Z d , where JD (X) denotes the union of the cubes

with 3^eZd and I(y)C.Uι(x). Define a probability measure P p on X by 7^=
μθ-Up)0^!1, where θ(λ)=l—exp(—λ) and ^ - 1 is the inverse function of θ. The
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critical value is defined as follows :

pe=pM=wi{p>0: Pp(# C(0)=oo)>0}.

For ξ&X we denote by ϋlk(ζ) the maximal number of disjoint occupied paths
in a cube {-ft, - f t + 1 , ..., k)d from {-ft}χ{-ft, - f t + 1 , ..., k}d~ι to {ftjx
{—ft, —ft+1, ..., ft}*"1. In Tanemura [20] we obtain the following proposition
which is an analogue of the result shown by Grimmett and Marstrand [11] in
the case of the Bernoulli percolation model.

PROPOSITION 5.1. // p>pc, then there exist cx{p\ c2(P)>0 such that

1), VfteiV.

Put $l(q, m)=(2ky-dJk(gf m) and ^k(ξ)=k1'dmk(ξ) and introduce the non-
negative constant cz(β, c) defined by

{(5.1) Uβ, c)=inf{Jk(q^Uίξ']l dx):k^Nf ξ^X with mΛ(ξ)>c],

for β>0 and c>0, where /[f]= U I(x).

LEMMA 5.1. Suppose that j8e(0, l/Vd+3) and c>0. T/ι^, c,(j8, c)>0.

Proof. Let (^, wί), ξ&X be the electrical network defined by

fax, dy)=lM*(x)ξ(x) Έβu)δu(dy), m(dx)= Σ δu(dx).
Z* Zd

It was already shown that for any c>0

(5.2) c4(c)=mf{Jk(q$> in): k&N, ξ<=X with

(See Section 6 in Grimmett and Kesten [10] or Section 3 in Chayes and Chayes
[4].) Put

qξ(x, dy)=

Then, we have

(5.3) qζ(x, dy)£cι(β)qfiUlξΎKx, dy)9 if j8€=(θ, J J + 3 ) ,

where c,(β)=β'd-2d[ \z\2dz.

It is easy to see that for any ξ e l

(5.4) Jk(qξ, m)=Sk{qξ> dx), VfteiV,

and
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(5.5) Jk(qξ, dx)£c5(β)Jk(qtUtξn dx), V&eiV,

from (5.3). Combining (5.4) and (5.5), we obtain Lemma 5.1 from (5.2). •

Proof of Lemma 4.2. Note that (μχ, η)=(μa

dλ, a?)) for any α>0. Then,
we see that λc{r)=adλc{ar)f a>Q. Let λ>λc(r). Choose δo>Q such that λ>
(r/(r-δo))dλe(r)=:λc(r-δo). We first show that there exist α, /eiV with α>
Vd+3 satisfying

(5.6) Ur.δJίη)(Z^ILXni(naη)lc:Ur(η)9 V)?e^, VrceiV.

From the definition we have Uι_^a{x)(zDι{x)CiUι(x) for any χ(=Rd. Then

U /(x)C U
GZd x<ΞZd

? U

for any /eiVand ^e^Jl. Hence

λr})— — Unι_wd-(naη)(Z —
na na

C

Choosing / and a such that r-δo<(l/a)(l-2Vd)<(l/aXl+ Vd)<r, we obtain
(5.6).

Let λ'e(λe(r—δ0), λ). Then, for /i^-a. e. η, Ur-δ0(η) contains an unbounded
connected component and so I\πι(aη)~] contains an unbounded connected com-
ponent. Hence, I[πι(η)] contains an unbounded connected component for μa-dχ<-
a. e. η, and so θ(a~dλ)>θ(a~dλ')^pc(l). In view of Proposition 5.1 putting cί=
c1(θ(cΓdλ)) and cί-Ci{θ(a~dλ))} we obtain

and hence

Noting that nlίπtiηflcllπniinηy], we obtain mnk(πni(nη))^fnk(πι(η)). Accord-
ingly,

(5.7) μxiη^m: ^ ( ^ ^ ( n ^ ^ ^ c D ^ l - e x p ^ ^ ^ 1 ) , Vfe,

Since qftx, dy)^qnl(l/na)I[_πnl(naη)T]{x, dy) from (5.6), we get
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(5.8) jk(q*, dx)^Jk(qn[-^Itπnl(naη)^, dx),

We see that jl(qβίA], dx)^Jnk(qβ/nLnA'], dx) by simple calculation. Then

(5.9) ^k(gn[^Iίπnl(naV)-]\, dx)^J^(Q1/aUίπnl(naη)21 dx),

From (5.1), (5.7), (5.8) and (5.9) we have

Since cs(l/a, cί)>0 from Lemma 5.1, Lemma 4.2 is obtained by Borel-Cantelli's

Lemma. •
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