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1. Introduction and statement of result

Let M be the set of all countable subsets 5 of R (d=2) satisfying Ng(%)
< for any compact subset K, where N(7) is the number of points of 7 in
ACR?. M is equipped with B(M) the o-field which is generated by {peM:
Nup)=n}, AcB(R?), neN. For neM, r>0 and two disjoint regions A, and
A, in R? we say that a continuous curve 7 is an occupied (resp. a vacant)
connection of A, and A, in a region A with respect to (y, 7) if yNA#0, 1NA,
#0, 7CA and yCUL(y) (resp. yNU(p)=0), where U,(5) stands for the r-neigh-
borhood of % and U,(x) is the abbreviated form for U,({x}). A continuum
percolation model is obtained if a distribution v on the space [0, co) XM is
given. In this paper we consider the case v=0,Qu1, ¥>0, 2>0, where 0, is
the Dirac measure corresponding to the point » and g, is a Poisson distribution
on I with intensity measure Adx, that is, for any disjoint system {A,, A4,

-, An}CB(R?) such that ]A1|=SA dx <o, i=1,2, ..., m No(n), .., Na,(7)
are independent random variables on the probability space (M, B(M), p2) and

(414.D)"

ol exp(—A4l4.]), i=1,2, ..., m neNU{0}.

pa(Ng,=n)=
This percolation model is called the ‘Poisson blob model’. (See Grimmett [9].)
It should be viewed as a continuum analogue of the discrete site percolation
model. Instead of sites being independently occupied we have a Poisson process
on R¢ with each Poisson point being the center of an occupied ball of radius 7.
Now we define two regions in R?,
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BROWNIAN MOTION 229
W(x, 5, r)={y : 3 an occupied connection of {x} and {y} in R? w.r.t. (,7)},
W*(x, 9, ¥)={y: 3 a vacant connection of {x} and {y} in R® w.r.t. (3,7},

i.e., the occupied and vacant cluster of x, respectively. The critical values
are defined as follows :

A (r)=inf{2>0: p;(W(0, ») is unbounded)>0},
A¥(r)=sup{A>0: p,(W*(0, r) is unbounded)>0}.

It was shown that A.(r)=2%(r), »>0 in the case where d=2 by Roy [16].

In this paper we study a homogenization problem of a reflecting barrier
Brownian motion in an unbounded occupied (or vacant) cluster of the Poisson
blob model.

Let A be a Lipschitz domain in R¢, that is, the boundary éA of A can be
locally represented as the graph of a Lipschitz function defined on some open
ball of R¢"!. We define a Dirichlet form (&4, H*(A)) on L*A, dx) by

e, v)=%SAdeu(x).Vv(x), u, ve H'(A),

H'(A)y={us L¥ (A, dx): |Vule L*(4, dx)}.

It is known that {u|,:usC3(R%)} is dense in H'(A). (See Stein [17].) We
introduce measurable subsets M and M., x=R? of M defined by

M= {neM A: W(0, 5) is unbounded},

M= {nsM\A: W(x, 5)+0},
where
A={peM: |x—y|=2r for some x, y&y}.

In case nEM,, W(x, ) is a Lipschitz domain and (Ew ., H'W(x, 5))) is a
regular Dirichlet form on L*(W(x, %), dx). Hence, by the theory of Dirichlet
forms, we can construct the associated diffusion process starting from x, which
is called a reflecting Brownian motion. (See Fukushima [7], [8], Bass and Hsu
[1].) We denote by (2, &, P2, X(#)) this diffusion process if M. ; otherwise
X(@t)==x, t=0. The process X() is conservative and has a transition density
p7(@t, x, v). For a probability measure g on It with p(‘ﬁt)>0 we put

R _1a@(n)
aldn)= PED) pdn).

Changing the role of W(x, 3) into W*(x, 5), we define *, M%, X*@), p*(¢, x, y)*
and g* by the same way as W, M., X(¢), p"@¢, x, v) and g2, respectively. For
a probability measure x on M we put

pr={_ptan)py.
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Our main result is the following theorem.

THEOREM 1. (i) If A>A[(r), then the process eX(t/e*) on (2, &, P’fl\) con-
verges to &(A)B(t) in distribution on the space C([0, o)—R?) equipped with the
local uniform topology, where B(t) is a d-dimensional Brownian motion and &(2)
S a positive constant.

() If A<AX(r), then the process eX*(t/e?) on (Q, F, P*1) converges to
6*(A)B(A) in distribution on the space C([0, «o)—R?) equipped with the local uni-
form topology, where 6*(2) is a positive constant.

Central limit theorems for stochastic processes in random sets were studied
by many authors. De Masi, Ferrari, Goldstein and Wick [5] proved a central
limit theorem for a random walk in the Bernoulli percolation cluster.. Tane-
mura [19] generalized their result to a jump type Markov process in a con-
tinuum percolation cluster. Bhattacharya [2] and Ochi [14] studied homogeni-
zation problems of reflecting barrier Brownian motions in the case of periodic
domains and Osada [15] studied the problems in the case of domains with
stationary scatterers under certain geometric conditions.

We prove the uniqueness of unbounded cluster of the continuum percolation
model (Proposition 3.1). The unbounded cluster, say W(y), is regarded as a
domain with stationary scatterers. If W(y) satisfied the geometric conditions
in [15], Theorem 1 would be derived from [15]. However, W(y) does not
satisfy the conditions. The conditions were essentially used in [15] to prove
the tightness and the nondegeneracy of the limit. Then we can obtain the
convergence of finite dimensional distributions in the same way as [15] (Sec-
tion 3).

The tightness of the rescaled diffusion processes is proved in Section 2.
Lyons and Zheng [13] obtained a decomposition of additive functionals of re-
versible Markov processes associated with Dirichlet forms. This decomposition
is useful to check tightness. (See Takeda [18].) By virtue of the translation
invariance of p; we can apply their decomposition and show the tightness of the
rescaled processes (Proposition 2.1). The technique used in Section 2 is thought
to be applicable to more general situation.

We show the positivity of the diffusion constant () in Section 4. The
positivity of the diffusion constant 6*(4) can be proved by the same way. We
introduce jump type Markov processes X(t), n€ N in the continuum percolation
cluster. The diffusion constant &(4) is bounded from below by the inferior
limit of the diffusion constants &,(1) of X*(¢), n&N. In the case of the random
walk in the Bernoulli percolation cluster, the positivity of the diffusion constant
was shown in [5] by using an estimate of the effective conductivity associated
with this process. Their technique was generalized to jump type Markov pro-
cesses in continuum percolation clusters in [19]. Then the key part for prov-
ing the positivity of (1) is to estimate the effective conductivities associated
with X"(t) uniformly in n (Lemma 4.2). The proof of Lemma 4.2 is given in
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Section 5 by using a result about the continuum percolation model given in
[201.

2. Tightness

In this section we establish the tightness of the rescaled processes eX(#/¢?),
e>0.

PROPOSITION 2.1. Let p be a translation invariant probability measure on M.

(i) If p)>0, then {P?<(eX(-/e®)*: e (0, 1)} is tight in the space C([0, )
—R?) equipped /u<z'th the local uniform topology.

(i) If pM*)>0, then {P/‘A*o(eX*(-/ez))“: es(0, 1)} s tight in the space
C([0, 0)—>R?) equipped with the local uniform topology.

We give a proof of (i). A proof of (ii) is obtained similarly. For any
0>0, put

Vi, r={weC([0, «)—R?) P sup [w(t)—w(s)| >6}.
AT

Then it is sufficient to show that

lim sup Pﬂo(sx(e;z))"w,,,r):o, VT>0.

h-0 e€(0,1)

Using the translation invariance of g, we obtain

Pre(eX(55)) Vo) ={ stan)Pre(eX(55)) i)
= Tlﬁsvm)dysmﬂ(d n)Pg-v7 °(EX(6—'2‘))-1(V}!, r)

1 < \\~1
ot D (757 P (H(G)) Ve,
for any (>0, where t.p={x+y:yen}. Put Q%°=P%.(eX(-/¢*))"". Then
 \\~-1 1
° —_ = _ Vi
Pro(eX(5)) Vo =) @ G ) 5@ V),

where aA={ax: x A} for ACR?, a>0. Hence, Proposition 2.1 follows from
the following lemma. We show the lemma by the same procedure as in Theo-
rem 3.1 in Takeda [18].

LEMMA 2.1. For any nEM

lim sup dxQ%(V4,r)=0, vT>0.

h—0 56(0,1)3eUT(77)nU1(0)
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Proof. From the definition of X(t) this lemma is trivial if p€A. So we
assume nEIMNA. Suppose that xeeU.(y). Then (w(t), Q%% is a diffusion
process associated with the Dirichlet form (€., (p, H'(eU.(7))) starting from x.
For any e=(0, 1) there exists an increasing sequence {a,}.eny such that n+42<
a,=n+3 and A;[n]=eU(9)NU,,(0) is a Lipschitz domain for any ne N with
Ay[np]+#0. We denote the diffusion process starting from x associated with the
Dirichlet form (& presee HY(A5[9])) by (w@®), Q%*™). Then,

en  {,  dxQrWn
< i S 1O S (0= w0 > W)+ QE (V1)
<14 011Q™*"( sup [w®—w(0)>m+Q*"(Va.n),
[0,
where

Qren = dxQuen,

o)
| AL[n]] 45
From the decomposition obtained by Lyons-Zheng [13] we claim

@D wO—uw(s) =5 MO-ME+ 3BT~ TT—s), Qrer—as.

where M(t) and M(t) are d-dimensional Brownian motions with respect to
Q7 =" Denoting by Py a Wiener measure on C([0, «)—R?), by Doob’s in-
equality we obtain

2.3) Q7™ ts[l‘x)pTJ!w(t)—w(O)I >n)

Q7™ sup [M®)|>n)

tero. T

+Qnen( sup |M(T—t)—M(T)|>n)
tero, T

gZS Pw(dw)exp (|w(T)|) exp (—n),

C([0,0)->RE)

2.4) Qmen(Va, = Qme"( sup | M®H—M()|>0)

1t-31h

Qv sup, L= () >0
1t~si=h

2T

0
S Pl s, 1w 01>3)
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Setting n=[—log A] and combining (2.1), (2.3) and (2.4), we conclude that

dxQ%(Va,r)

SEUT(ﬂ)f\Ul(U)

<wo, . Prawesqump+22i)

C ([0, 00)> Re

(3—log h)eh,

where [a] denotes the integer part of a nonnegative constant a. Therefore,
this completes the proof of Lemma 2.1. m

We denote the expectation with respect to P? and P# by E% and E*, re-
spectively. We show a lemma which ensures the existence of the moment
ER[1X())P] (resp. EM*[|X*@®)|?]) for any pN and any translation invariant

probability measure gz on M with p(@)>0 (resp. /z(il/JE\*)>O).

LEMMA 2.2. Let p be a translation invariant probability measure on WM. For
any t€(0, ) and any (0, =)

(i) P#( sup IX(t)l>l)<2Pw( Sup lw®l =),
tero, 71

(ii) Pe( sup | X*@t)|=ZDZ2Py( sup |w®)|=D),
tero. 7] tero, 71

where Py is a Wiener measure on C([0, co)—R?).
Proof. Let n&A. There exists an increasing sequence {b,}.en such that
(n+Di<b,=(n+2) and A(n, n)=U.(9)NU,,(0) is a Lipschitz domain for any

neN with A(n, p)#0. We denote the diffusion process starting from xe&
A(n, 7) associated with the Dirichlet form (€4, y, H'(A(n, 7)) by (X(), P%™)

and put P7"=(1/]|A(n, 7])1)5.4(7; q)de?c'n-
PH( sup |X(®)] 21)=Smﬂ<d MPY sup |X(0)]20)
1
a7 T Yy P 38,1 X1 20

1
= D 7 7 L PH S5, XO—XO1 2
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< y(dn)——l——g dxPE™( sup | X()—X(©0)| 20)
T Jma IUnz(O)I A(n, ) T N tero,Ta -

=

(n+2

n )dSWl\A‘u(dﬂ)Pv' n(tes[lﬁlgd | X(6)—X(0)| =)

From the decomposition obtained by Lyons-Zheng [13] we claim
X(t)—X(s)=%(N(t)—N(s))—l—%(ﬁ(T—t)—ﬁ(T—s)), Pri_as.

where N(¢) and N(t) are d-dimensional Brownian motions with respect to P7'™.
For this reason, we get

Prn( sup | X(®)—X©0)| =)
tefo, I']
<P7*( sup |N@)|=)+P7™( sup |MT—)—NT)|=1)
tero,. 7] tero, 7]

ZZPW( sup I w(t)l ZZ) ’
tefo, 7'}

and conclude that

n

+2)de( sup |w@®)| =), YneN.
te[o. 7]

P g X005

This completes the proof of (i) of Lemma 2.2. We can prove (ii) by the same
way. W

3. Convergence of finite dimensional distributions

The purpose of this section is the following theorem.

THEOREM 3.1. (i) If pi(M)>0, then the process eX(t/e?) on (R, F, P)
converges to 8(A)B(t) in the sense of finite dimensional distributions, where &(2)
is a nonnegative constant determined by

5(1P=lim %Eﬁz[Xl(t)zj .

N o

(i) If pi(M*)>0, then the process eX*(t/e?) on (2, F, PP) converges to
6*(A)B(t) in the sense of finite dimensional distributions, where 6*(2) is a non-
negative constant determined by

X A= ltim % ER[X*@)] .

Let W(x, ») and W*(x, ») be the occupied cluster and the vacant cluster
containing x for %, which is defined in Section 1. We denote the collections
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of all unbounded clusters for % by #(y) and W*(n):
W)= {W(x, n): W(x, ) is unbounded, xeR?},
W)= {W*(x, ) : W*(x, 5) is unbounded, xR?}.

We first study the number of elements of 9/(y) and 9#*(5). Burton and Keane
[3] proved the uniqueness of the infinite cluster of a site percolation model on
Z°® under a translation invariant finite energy probability measure. Using their
technique, we show the uniqueness of the unbounded cluster under a Poisson
distribution p;,.

PROPOSITION 3.1. (i) If p:(M)>0, then $W(n)=1 for ps-almost all 7.
() If pa(@%)>0, then $ W*(p)=L for pi-almost all 7.

Proof. First, note that $9/(y) is constant, p;-a.s. from the ergodicity of
#2 under translation. Suppose that #9W(y)=n, pi-a.s. , 2<n<co. There
exists /,>0 such that

3.1 (WU, (0)#0, YWew)>0.

We define measurable subsets A:(/, a), 4., a), I, a>0, of M by
M, e)={neM: WNU.1,0)#0, YWew(H\U,0))},
Ao, )={neM: U,(pNUL0))DU1,40)}.

Since any cluster W is open set, from (3.1) we can choose a,[0, 7) such that
pa(Aillo, ao))>0. It is easy to see that ui(Ayl, a))>0, a<[0, ). From a
property of a Poisson distribution we have pa(A:i(l, ao)N\Aslls, @))>0. On the
other hand, if neAi(l, a)NA:l, ), then $W(n)=1. Then, p,EFW=1)>0.
It is a contradiction. Hence,

(3.2) 212 W<00)=0.

Suppose that §W(n)=oco, ps-a.s. . We introduce the following notion.
Let />0. A point x&lZ*? is called an /-encounter site for yeM, if W(x, ) is
unbounded and W(x, p)\U,.(x) has exactly three unbounded connected com-
ponents. Denote by J,(») the number of unbounded connected components of
the open set W(0, p)\U,(0). We define a measurable subset A, @), I, a>0, of
m by

Ay, )= {neM: H{IWeW(U.(0)): WNU1,40)#0} 23}.

By the same argument as the above we see that there exist /,>0 and a;>0
such that pa(As(ly, a)NAs(ly, a))>0. If pe s, a)N Ay, ay), then Tyyan(n)
=3. Then,

[,21(3211+Tg3)>0 .
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Since J1.(y) is a right continuous increasing function and satisfies for p;-a.s. 7
T(n)—J.-(p)=1 for all />0, there exists />0 such that

1a(I,2=3)>0.
Then, we have

#2({n:0 is an /,-encounter site for n})=¢>0.
It follows from the ergodic theorem that for almost all 7
3.3 the number of /,-encounter sites for 5 in V,=0(k?), k—oco,
where V,=[—(k+1/2)ls, (k+1/2)l,]%, keN. Put W(n)={W.(n), Wiy), ...} and
Yy(p)={Y :Y is an unbounded connected component of W;(p)\V,}.

Any [l,-encounter site x for » with xeW(9)NV, determines a partition P(x)
={Pi(x), Py(x), Py(x)} of (). If partitions P(x)={Py(x), Py(x), Py(x)} and
P(y)={Pi(y), Pyy), Py(y)} of 4i(n) are determined by l,-encounter sites x, ye
Wip)NV 4, x#y, then P(x)#P(y) and there is an ordering of each such that
P,(y)DP(x)UPyx). Using Lemma 2 in [3], if # 2,+#0, then

$2(n=8Y(n)—2,

where £i(n) is the collection of all partitions of @j,(y) determined by /,-encounter
sites for » in Wi(p)NV,. Since |Y NV esrip V)| = |Ux0)| for any Y €9(y)
with #2,+0, we have

2 #Y(=0?""), koo,

1 HP#0

and so

(3.4) the number of [;-encounter sites for % in V,=0(k%?), k-,
This contradicts (3.3). Hence, we have

3.5) pa§W=0)=0.

This completes the proof of (i). We can prove (ii) in the same way. ®

We introduce the environment process 7(t) (resp. n*(t)) seen from X(t) (resp.
X*(t)) defined by n(t)=t_xwn (resp. p*@E)=r_x+yy). We denote by O(n) (resp.
O*(7)) the union of all/&lements of W(y) (resp. W*(y)). From Proposition 3.1,
if pz(‘fﬁ)>0 (resp. pi(M*)>0), then O(n) (resp. O*(y)) is a connected open set
for pi-almost all . Then we can show the following by the same procedure
as Theorem 2.1 in [15].

LNMMA 3.2. (i) Let p(M)>0. Then the process (9(t), P*1)is an ergodic re-
versible Markov process with transition density



BROWNIAN MOTION 237
PAX(®)eA,), if ne,,

PG, 1, A>={ ' 7 7=
0,(A4), otherwise,

>0, nem, Acg)t\, where A,={x€R*: t_n}.
(i) Let p,(M*)>0. Then the process (y*(), P2} s an ergodic reversible
Markov process with transition density

PiX*edy), if neME,

P*(t, g, /1)={
0,(4), otherwise,

>0, neMm, ACI.

Proof of Theorem 3.1. We introduce the measurable subset % of C(R—M)
defined by

U= {{eC(R-M): IpeM\E s.t. L) (y), Vt=0},
where & and ['(y) are measurable subsets of M given by
E={peM: p=r.y for some usR*\{0}},
I'(p={r_on: xeWO, )}, peMm.
We define a functional F, on U by
F@Q(-N=x@t)—=x0), t€[0, =),

where x(-)eC([0, ©)—R?) such that 7.)-z{(0)={(#). The functional F; is
additive and antisymmetric, that is,

Fios@)=F.Q()+Ft+-), F,C()=—F.Ct—")).
From the definition of the process #(t) we have
X(s)—X(0)=Fs(n(-)), Pfara.s.

Then, (X(t), P?1) is a square integrable antisymmetric additive functional of the
ergodic reversible Markov process (3(t), P?2). Applying Theorem 2.1 in [5],
we obtain that the process ¢X(t/e?) converges to DB(t) in the sense of finite
dimensional distribution. (See Section 3 in [15].) Here D is a symmetric and
nonnegative definite d Xd matrix determined by

(D2)y= lim + EMCXOX 0],

however, by the rotation invariance of X(¢) the matrix D must be a constant
multiple of the unit matrix. We have thus proved (i) of Theorem 3.1. We can
prove (ii) in the same way. W
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4. Positivity of the diffusion constants

Combining Proposition 2.1 and Theorem 3.1, we see that the rescaled pro-
cesses ¢X(t/e?) and eX*(t/e?) converge to &(A)B(t) and 4*(A)B(), respectively.
Then, the only assertion left to be proved is positivity of the diffusion con-
stants () and 6*(4). Let ¢(2) and ¢*(4) be nonnegative constants determined by

0(1)2=1‘im —tlE M[X ()], g*(A)r= ltim —:—E“[X’}‘(t)zj .

It is easy to see that 3(2)2::(0'(2)2/#1(972)) and 3*(2)2=(a*(2)’/m(95l})). Then, it
is enough to show the following proposition.

PROPOSITION 4.1. (i) If A>2.(r), then a(A)>0.
(i) If A<AX(r), then a*(A)>0.

For a subset A of R? and 8>0, we define a measurable kernel ¢g?[A] on
RiX B(R?%) by

d+2d
PPLANx, d)= Pl 1 s 2— DALy .
Uy lz|*dz

We abbreviate ¢"[U,(y)] to gy for pM, neN. Denote by (2, &, P1, X"(#)) a
right continuous Markov process starting from x with generator

Liun={ 01z, dy)u)-u),  ueCRY,

where C.(R%) is the space of continuous functions ¥ on R? such that u(x)—0
as |x|—o. Clearly L} can be regarded as a bounded linear operator on
L*(Re, dx).

LEMMA 4.1. Let p be a translation invariant probability measure on M. For
any te(0, o)
lim EX[X3(0]=E*[X,(t)"] .

Proof. Let &M A and W(x, 9)#0. Since €w s,y is a Dirichlet form, by
a standard result there is a nonpositive selfadjoint operator L, with D((—L,)"?)
=H'W(x, ) such that

Ewz, n)(u’ v)=((—Lﬂ)l/2u7 ("Lv)llzv)Lﬁ(W(z, 7.dz) -
Put

JT-‘{‘M!W(;_ 7. ueC‘;,’(R“), %hu—=0 a.e. dS on 6W(x, 77)},
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where S is the surface measure for 6W(x, %) and n is the interior normal. We
can show that A is a core for L,. (See [7].) On the other hand it is easy to
see that for any ued

Liggo Lru(y)=Au(y)=L,u(y), VyeW(x, ),
sup sup Lju(y)<eco,
neN yeW(x.n)

and so
Lyu— L,u, as n—oo in LA W(x, 5), dx).

Applying Theorem 5.2 in Trotter [21], we obtain that for any ue L*(W(x, 5), dx)
and (0, o)
Trtu —> T y(Hu as n—oo in L*W(x, 3), dx),

where T7(t) and T,(t) are semigroups on L*W(x, 5), dx) associated with L}
and L7, respectively. Hence, for any u, ve L R¢, dx)

lim |, dyByLuXOp& o=, dyEJuXOMEO].
Noting that X"(t)=X(t)=y, t€[0, o), Pl-a.s. if y&U,(»), we obtain
@) tm{ B OREneN={, | dyEuEOPE®)] .
From the translation invariance of ¢ we have

4.2) E* [u(X"(t))]=Sm/1(d77)EZEu(X "®)]

1
T U0

[, 8] @D 7 U X ()= X(O)]
1 n n
= gdn) e, dxELUX - X))
Similarly,
4.3) El‘[u(X(t))]:Sm;;(dn)ﬁSvl(o)de’;[u(X(t)—X(O))].
Hence, from (4.1), (4.2) and (4.3) we arrive at

4.9 lim E*[u(X"@)]=E*[w(X®)],

for any ueCy(R?%) and t=(0, ). Then for the proof of the lemma it is suf-
ficient to show that

lim sup E#[X7%#)?: X32(@)*>M]=0.

M-~ neN



240 HIDEKI TANEMURA
This equality is derived from the estimate
sup E4[1X1(@0)[°]1<e0,
neN
which can be shown by the same argument as in the proof of Lemma 2.2. =

We give the definition of an electrical network and an effective conductivity
in the context of an electrical network, which is a generalization of that in
Doyle and Snell [6]. Let (¢, m) be a pair of a measurable kernel ¢ on R?¢X
B(R?% and a Radon measure m on R? satisfying

g(x, dyym(dx)=q(y, dx)ym(dy).

We call the pair (¢, m) an electrical network. Throughout this paper, we con-
sider the case where ¢(-, A) is bounded for any bounded set A. For 2N, the
effective conductivity in (g, m) is defined by

34(q, m= min { mdn| e dyeo;) -y,

[-k-1/2, k+1/2)8

where u ranges all measurable functions u on [—k—1/2, k+1/2)¢ satisfying
u=0on [—k—1/2, —k+1/2)X[—k—1/2, k+1/2)¢"! and u=1on [k—1/2, k+1/2)
X[—k—1/2, B+1/2)¢"1,

We state the following result whose proof is given in Section 5.

LEMMA 4.2. Let 2>2.r). Then there exists a positive constant c(A) such
that
Li_m(Zk)z“dJk(q,’,‘, dx)zc(d), pi—a.s. VneN.

Now, we are in a position to prove Proposition 4.1.
Proof of Proposition 4.1. In [19] we have shown that X"(t) is an anti-

symmetric additive functional of a reversible Markov process. By the same
calculation as in the proof of Theorem 2.2 in [5], we obtain that

prxr@1=t]_pidn | 030, duut

-—ZS:dsS:dem/Jx(dﬂ)G(n)SoG(ﬂ) ,

where S, is the semigroup on L*(R, p;) associated with the reversible process

and G(;y):SquZ;(O, du)u,. Since S; is symmetric, we see that

4.5) lim + ESXI0TTS T EMIXIOF], VIS, ).

On the other hand, we proved in [19] that
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(4.6) lim + EX1012 _patdn) lim 220 -294(a3, 4.

Then, from Lemmas 4.1 and 4.2 we conclude that

o(@P= lim — EFLX (1]

— lim % lim EA[X(0)°]

t—oco n-oo

-0 (-0

> lim lim —i—E“[X’f(t)ﬂ

2 tim | pa(dy) lim 22k 454(g, dx)

=2¢(A).

This completes the proof of (i). A proof of (ii) is obtained similarly. m

5. Proof of Lemma 4.2

In this section we give the proof of Lemma 4.2. First we introduce a site
percolation model on Z¢. For each x=(x,, x,, ..., x4) and y=(y1, ¥s, ..., Ya)
we write {x, y> and say that x is adjacent to y if 3%, |x;—y,;]=1. The ele-
ment x&Z¢ is called a site. Put X=1{0, 1}?* and equip X with the o-field
generated by {£€X : &x)=0}, x&Z¢. For écX, asite x&Z % is called occupied
(resp. vacant), if &(x)=1 (resp. &x)=0). We write x<y if there is an occupied
path from x to y; there is a sequence x°=x, x!, ..., x"=y of occupied sites
so that <(x™-! x™, 1<m<n. For A, A,CZ® we write A~ A, if there are
sites x€ A;, yE A, such that x«—y. We define a region in Z¢ by

Clx, &)={yeZ’: xoy},

i.e., the occupied cluster containing the site x. For a given /N define a
measurable function z;: M—X by
1 if Dy(x)N\p=+0,

T (n)(x)= .
0 if Dy(x)Ny=0,

pEM, xZ?, where Dy(x) denotes the union of the cubes

I0)=11]y—7, »+7)

=1

with yeZ? and I(y)cU(x). Define a probability measure P, on X by P,=
2o-Lpomi', where 6(Q)=1—exp(—21) and 6! is the inverse function of §. The
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critical value is defined as follows:
pe=p)=Inf {p>0: P,(§ C(0)=00)>0}.

For £X we denote by 31,(£) the maximal number of disjoint occupied paths
in a cube {—Fk, —k+1, ..., k}? from {—Fk}Xx{—Fk, —k+1, ..., k}%* to {k}X
{—k, —k+1, ..., k}¢7', In Tanemura [20] we obtain the following proposition
which is an analogue of the result shown by Grimmett and Marstrand [11] in
the case of the Bernoulli percolation model.

PROPOSITION 5.1. If p>pe., then there exist c(p), co(p)>0 such that
Py(Tezci(p)k® ) z1—exp(—cs(p)k®™), VkEN.

Put 3:(11, m)=(2k)*"%9,(q, m) and §Z\,(é)=k“d72,,(5) and introduce the non-
negative constant cs(8, c¢) defined by

G.1) (B O=inf{5P[I[£]], dx): keN, X with M@zcl,
for B3>0 and ¢>0, where I[G]zﬂ})jﬂ[(x).

LEMMA 5.1. Suppose that B(0, 1/+/d+3) and ¢>0. Then, cs(B, c)>0.

Proof. Let (G, m), §&X be the electrical network defined by
Ge(x, dy)=1za(x)E(x) EdE(u)(?u(dy), mdx)= 3 0.,(dx).
ucz uezd

(U, x)
It was already shown that for any ¢>0
5.2) cc)=inf {9x(Ge, M): kEN, é€X with T3@)=c}>0.

(See Section 6 in Grimmett and Kesten [10] or Section 3 in Chayes and Chayes
[4].) Put

de(x, dy)= 2 Ge(u, (vl (X)rm(3)dy .
u,0ezd
Then, we have

53) 0%, dy)SeBPLITENx, dy), it pe(0, oter),

where cs(ﬁ)=‘8‘d'zdg |z|%dz.

Uy
It is easy to see that for any é€X

(5'4) Jk(qE: m)=‘5k(@€r dx): VkENy

and



BROWNIAN MOTION 243

65 e d0SBIGUTED, dn), VheN, V(0 ),
from (5.3). Combining (5.4) and (5.5), we obtain Lemma 5.1 from (5.2). m

Proof of Lemma 4.2. Note that (ui, 7)=(paas, ap) for any a>0. Then,
we see that A.(r)=a®A(ar), a>0. Let A>A(r). Choose d,>0 such that 1>
(r/(r—00))%A(r)=A(r—08,). We first show that there exist a, /&N with a>

/d+3 satisfying
1
(5.6) U,-go(n)cﬁf[nn,(narl)]CU,(rj), YpeM, VneN.

From the definition we have U,__z(x)CDy(x)cU,(x) for any xeR*. Then

Ui_2ja(np)C U Ix)c U I(x)
zez¢ zezd
Ul-,\/&‘(‘t)"‘v#, Dy(x)nn#0

=I[mplC U, Ix)CUwa(),
U[(J.;zsfmaeﬂ

for any /€N and peM. Hence

1 1
U(l/a)-(z\/zlna)(yl)zHUnl—z\/a(na”)CE I [mn(nay)]

1
[ h—aTUnlh/ii(na’]):U(l/a)+(¢E/na)(?) .

Choosing [ and a such that r—d,<(1/a){—2+4/d)<(1/a)(++/d)<r, we obtain
(5.6).

Let 7’€(A(r—0,), A). Then, for u;-a.e. 5, U._5(7) contains an unbounded
connected component and so I[7,(an)] contains an unbounded connected com-
ponent. Hence, /[7,(n)] contains an unbounded connected component for pg-a;:-
a.e. 5, and so 8(a"?A)>60(a )= p.(). In view of Proposition 5.1 putting c¢i=
c(0(a~22) and cj=c,(6(a"%2)), we obtain

Pra-an(Mizc)z1l—exp(—cik®™), VEEN,
and hence
paipeMm: :ﬁk(m(m)))_Z_c{)z1——exp(——c;k“‘1) s VkeN.
Noting that nI[7,(p)]CI(@a(nn)], we obtain es(many)=Me(mi(n). Accord-
ingly,
N
6.7 pAEM: Tnp(mni(nan))Zc)=1l—exp(csk®™?), Vk, VneN.
Since ¢;(x, dy)=¢"[(1/na)][7 (nan)]](x, dy) from (5.6), we get
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Ii(gy, dx)ZJk(q"[zlo?I[nm(nan)]], a’x) ,  VYpem.

A S
We see that J,(¢P[A], dx)=I..(qP'"[nA], dx) by simple calculation. Then

5.9

S L Itrnan], dx)2Frate U [za(nan)]], d2), ¥yem

From (5.1), (5.7), (5.8) and (5.9) we have

m(ges,m : J/:(q,’;‘, dx)zCs(zl;, c{))
zpz(rzeim : @(q"[%ltﬂm(nar))]], dx)zcs(%, ci))

2 (7€M Franlg" U [entnan], d0)zes( 3, cf))

T~
zu(neM: mnak(nnl(naﬂ))gci)

=1—exp(—csk®™Y).

Since ¢3(1/a, ¢1)>0 from Lemma 5.1, Lemma 4.2 is obtained by Borel-Cantelli’s
Lemma. W=
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