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Introduction

Let M be a compact, connected oriented 4-manifold. Let g be a smooth
Riemannian metric on X. Then the Riemannian curvature tensor R=R,;;; is
defined naturally, and the Ricci tensor Ric=R,, and the scalar curvature R, by
the trace of the Riemannian curvature tensor and the trace of the Ricci tensor,
respectively.

Further we define the Weyl conformal tensor W=W,;,, by a linear com-
bination of R=R,;;;, Ric and R, in such a way that the tensor W is invariant
under a conformal change of metrics.

We will investigate in this paper the moduli &(M) of Ricci flat metrics on
certain 4-manifolds M from 4-dimensional conformal geometry. Here we mean
by the moduli the space of all Ricci flat metrics of volume one modulo diffeo-
morphisms of M.

Since a Ricci flat metric is Einstein, the moduli is considered naturally as
the moduli of Einstein metrics of R,=0.

We have indeed the following premoduli theorem due to K. Koiso ([16] and
(5D).

Given an Einstein metric g. Then there is a finite dimensional real analytic
submanifold & in a slice S at g such that (i) g%, (ii) T,Z coincides with the
space of infinitesimal Einstein deformations and (iii) the intersection &(M)NS,
called the premoduli around g, is a real analytic subvariety of Z.

We restrict ourself to Ricci flat 4-manifolds having topological invariant
X+(3/2)t=0, more precisely, manifolds whose universal covering is a K3 sur-
face. We can then apply the Torelli type theorem for K3 surfaces together
with the notion of anti-self-dual conformal structure and get a complete des-
cription of manifold structure of &(M).

By applying the Chern-Weil theorem for characteristic classes one has the
following identity which is valid for an arbitrary Riemannian 4-manifold (M, g)
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Here X(M)=32,(—1)*b,(M) is the Euler number and z(M) is the index b*(M)—
b~ (M) of the cup product qu: H*M, Z)XH*M, Z)-H*M, Z)=Z and W* de-
notes the self-dual Weyl conformal tensor, i.e., Wrel'(M, 2*Q2*) (2*=9% is
the self-dual 2-form bundle of M).

From this we observe the following

PROPOSITION 0.1. Let M be of X(M)+(3/2)z(M)=0.
Let g be a metric on M satisfying W*=0. Then the scalar curvature R,=0
if and only if g is Ricci flat.

For a 4-manifold M satisfying (X+(3/2)t)(M)=0 the moduli &(M) of Ricci
flat metrics on M coincides from this proposition with the quotient space of
metrics satisfying the equations W*(g)=0, R,=0 modulo the diffeomorphism
action.

Since the equation W*=0 as a section of 2*®£2* and the sign of constant
scalar curvature are conformal invariant, the latter space is regarded as the
moduli of anti-self-dual conformal structures of zero scalar curvature, which
we denote by H(M).

Metrics g and g, are said to be conformally equivalent if g,=fg for a
positive function f and then the conformal equivalence defines a conformal
structure [g] represented by g. We say a conformal structure [g] to be anti-
self-dual if W*(g)=0 and we define the moduli #(M) of anti-self-dual conformal
structures on M to be the space of all anti-self-dual conformal structures on M
modulo the diffeomorphism action so that we have

eM)=mOM)C HM) .

From the 4-dimensional speciality, for any (M, g) having W*=0 there exists
an elliptic complex which provides the moduli SH(M) a real analytic variety
structure.

In fact, the following sequence enjoys the ellipticity

0.1) 0—I'(M, T) —> I'(M, S¥T*)) —> I'(M, S}(2*)) —> 0

with cohomology groups H°, H', H? of finite dimension so that one gets a real
analytic variety theorem in terms of these cohomology groups ([11]).

The following theorem gives the characterization of Ricci flat 4-manifolds
of X+(3/2)r=0.

THEOREM 0.2 ([8]). Let (M, g) be a compact, connected oriented Riemannian
4-manifold.

(i) If (M, g) is Einstein, then X(M)+(3/2)ce(M)=0 and the equality X(M)+
(3/2)r(M)=0 holds if and only if g is Ricci flat and anti-self-dual (i.e., W*=0).

(ii) If (M, g) is Ricci flat and W*=0 (so that X+(3/2)r=0), then, either (a)
(M, g) is flat and is covered by a flat Riemannian 4-torus T* or (b) (M, g) is a
Kihler Einstein K3 surface (m,=1), a Kdhler Einstein Enriques surface (mi=Z12;)
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or the quotient of a Kdhler Einstein Enriques surface by a free anti-holomorphic
isometric involution (t,=Z,X Z5).

To state our theorems we begin with a technical preliminary in terms of
groups of diffeomorphisms.

We denote by Diff*=Diff*(M) the group of orientation preserving diffeo-
morphisms of M. We denote moreover by Diff’=Diff’(M) and Diff°=Diffo(M)
the normal subgroups of Diff* {¢<Diff*; ¢*=id on H* (M, Z)} and {p=Diff*;
¢=id,, isotopic}, respectively. Here two diffeomorphisms ¢ and ¢, are said to
be isotopic, if there exists a path in Diff* joining ¢ and ¢..

So Diff°cDiff’cDiff* and accordingly we have &(M), &(M) and &(M), the
isotopy-Teichmiiller moduli, the Teichmiiller modul: and the modulz, respectively.

There are canonical projections

0.2) E(M) — EM) —> &M)

such that eM)=EM)/I"(M) and EM)=EM)/T"'(M) where I'(M)=Diff*/Diff’
and ['(M)=Diff’/Diff° are the mapping class groups of M.

A K3 surface is the 4-manifold of which the moduli & is completely well
studied. Actually we have the so-called period map and the Torelli type theo-
rem (see [K, §12 in 5] or [14] for the details and we will give a brief argu-
ment of this theorem in §1).

THEOREM 0.3 (Torelli type Theorem). The Teichmiiller moduli € of Ricct
flat metrics on a K3 surface X is isomorphic to an open dense subset T of Gri s
=S0(3, 19)/SO3)XSO19). The modul: & is then isomorphic to the quotient of
T modulo the mapping class group I'(X)=Diff*/Diff’.

The space SO(3, 19)/SO(3)XS0O(19) is an irreducible symmetric space of
non-compact type whose dimension is 57.

The period map pe: &—Gri,, is the assignment of the naturally oriented
H*(g)c H*¥X, R) to each Ricci flat metric g and the Torelli type theorem asserts
that pe gives the embedding of the Teichmiiller moduli into the Grassmannian
manifold and exactly onto T (H*(g) is the space of self-dual harmonic 2-forms
on X, dimgH*(g)=3).

It follows from this theorem that the moduli & for a K3 surface X is a
locally symmetric orbifold. In fact the moduli carries finite group quotient
singuralities, since the isometry group I(g) of g is a finite group which is iso-
morphic to the isotropy at pe(g)=7T in the group Aut(H*X, Z), ¢x)N\SO(3, 19)
and I(g) varies when g moves (see [5]).

On the other hand, it is not difficult to show that the action of /7/(X) on
&(X) is free (see Proposition 2.5) so that the isotopy-Teichmiiller moduli & for
a 4-manifold underlying a K3 surface is a smooth manifold (possibly having
many components) of which each component is isometric to & (see Theorem
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2.6). The number of components is the order of ["(X)=Diff"(X)/Diff*(X).

By Theorem 0.2 an Enriques surface V' and a 4-manifold Z, a Z,-quotient
of Y, are written as quotients of a K3 surface X modulo the respective cover-
ing transformation groups Y. JXcCDiff*(X) induces isometric transformations of
the isotopy-Teichmiiller moduli for a K3 manifold X. Here isometries mean
transformations of the moduli preserving the “canonically equipped L? metric”.
It follows then that the fixedpoint set of the action of 2, which is totally geo-
desic as a submanifold in the moduli for X, provides the manifold structures
to the isotopy-Teichmiiller moduli for 4-manifolds Y and Z.

THEOREM 0.4. Let Y be a 4-manifold underlying an Enriques surface. Then
the isotopy-Teichmiiller moduli £X) is isometrically embedded in £(X) as a 29
dim totally geodesic submanifold. Each component of this totally geodesic sub-
manifold is via the period map isometric to a submanifold TNF i T where F
s the fixedpoint set of the involutive deck transformation, written in the form

Gri1wXGrs ,=(50(1, 9)/SO1)XSO9) X (SO, 10)/S0O(2)x SO(10)),
embedded in SO(3, 19)/SO(3)XSO(19).

For a Z,-quotient of an Enriques surface we have similarly

THEOREM 0.5. Let Z be a Zj-quotient of an Enrigues surface. Then the
isotopy-Teichmiiller moduli £(Z) is embedded in TCSO(3, 19)/SO(3)xSO(19) iso-
metrically and totally geodesically. This totally geodesic submanifold is 15
dimensional.

From Theorems 0.4 and 0.5 we have

COROLLARY 0.6. Let Y and Z be an Enriques surface and its anti-holomor-
phic Z,-quotient, respectively. Then the Teichmiiller moduli & and the moduli &
of Ricci flat metrics on Y or on Z admit at least an orbifold structure.

It is open whether & for Y and Z is smooth, or equivalently whether the
mapping class group Diff’/Diff® acts freely on the isotopy-Teichmiiller moduli &.

§1. The moduli of Ricci flat metrics on a K3 manifold

A K3 surface is, by definition, a compact, connected complex surface with
trivial canonical line bundle and b'=0 (for references of K3 surfaces see
[§ VIII, 47).

We say a compact 4-manifold which underlines a K3 surface as a K3 mani-
fold.

Example 1. Let ¢: T*>T?; (z,)—(—z,) be the involution defined on a 2-dim
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complex torus 7% The quotient 7%/¢ has sixteen singular points. By blowing
up these points we get a smooth surface, called a Kummer surface, which is
simply connected and the canonical line bundle K is trivial as a holomorphic
line bundle.

Example 2. A hypersurface of degree 4 in P3*(C) is simply connected and
has the first Chern class ¢;=0. So this complex surface is a K3 surface.

The following theorem is classical.

THEOREM 1.1. (i) Any K3 surfaces are diffeomorphic.
(i) ([18]) Every K3 surface has a Kdhler metric.
(iii) ([20]) Every K3 surface admits a Ricci flat Kdhler metric.

A K3 manifold X has the topological invariants; X=24, b,=22 and t=—16
so that #*=3, b~=19 where (b*, b~) is the signature of the cup product of
HYX; Z).

Consider the moduli &, & and & of Ricci flat metrics on X.

THEOREM 1.2 (Torelli type Theorem). Via the period map, the Teichmiiller
moduli £(X) is isomorphic to an open dense subset T of SO(3, 19)/SO(3)xSO(19).

To define the period map and explain the domain 7" we need to state the
cup product more precisely.

The cup product gy of a K3 manifold X has the form ¢y=@*(—E)PP*H
where E, is the Cartan matrix of type E; and H is <(1) (1))

Let g be a metric on X. Then from the harmonic theory the space H* X, g)
of g-harmonic 2-forms on X, which is isomorphic to the second cohomology
group H* X ; R), decomposes as the sum of the spaces H*(X, g) of self-dual
harmonic 2-forms and anti-self-dual harmonic 2-forms;

(LD HX, g)=H"X, e)DH (X, g)

for which ¢x>0 on H*(X, g) and ¢x<0 on H (X, g).

H*(g) and H (g) are orthogonal with respect to ¢x. Here we identify ¢y
on H* X, R) with the wedge product on deRham cohomology classes of closed
2-forms.

Now suppose the metric g is Ricci flat.

Then from Proposition 0.1 this metric is anti-self-dual and of zero scalar
curvature. So any harmonic self-dual 2-form must be parallel by the Weitzen-
bock-Bochner argument and induces up to a constant a complex structure / on
X compatible with g. The metric g is Ricci flat Kdhler with respect to the
complex surface (X, /).

We can assign from this fact a canonical orientation to H*(X, g).
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In fact, if we choose a, B H*(g), a# B, to which complex structures Jq,
J p associate, then we have another ye H*(g) such that J,=],°/s and hence
the orientation {a, B, y} for H*(g).

We therefore get the assignment

1.2) g mod Diff’ —— oriented pr(H*(g))

which yields the period map

L3 pe: E(X) —> Gri5»=S0(3, 19)/SO(3)xS0(19).

Here we regard first H*(g) as a 3-dim linear subspace of the infinite dimensional
vector space Z*(X), the space of all closed 2-forms on X and then take pr(H*(g)),
namely the deRham cohomology projection of H*(g) in H*X, R), as a subspace
in the 22-dim space H*X, R).

The subset T is defined as follows.

Let d={yeH¥X;Z); qx(7, )=—2} be the set of “roots” and, for any
oriented positive 3-plane I in HXX; R) we denote by IT* the g¢y-orthogonal
complement of I7; II*={acH¥X; R); qx(a, I1)=0}. Then T is the set of all
oriented positive 3-planes IIC H%X ; R) such that II*"N\4=0. T is the comple-
ment of countably many unions of codimension 3 submanifolds in Grf,. So,
T is connected and simply connected.

The reason why one excludes the complement of T from Gr{,, stems from
the fact that gy is even and the canonical line bundle is trivial so that an
arbitrary complex curve C in a K3 surface satisfies C-C>=—2 and if C.-C#—2,
then C-C=0 ([5], [13]).

We omit proving that the period map is isomorphic. See [5] for the refer-
ences and see also references cited there.

The space SO(3, 19)/SO(3)xSO(19) is the noncompact dual of an ordinary
Grassmannian manifold Gr; . So it is a symmetric space of noncompact type
and has the invariant metric. At the origin this invariant metric {,) is given
by the restriction of the negative Killing form of the Lie algebra 8o (3, 19).
Actually the tangent space at the orgin T, is identified with m= {319 matrices}
and the invariant metric is, up to constant,

(1.4) KU, Vy=tr (UV'4+VUY), U Vem.

We interpret this invariant metric in terms of Hom (H*, H-) as follows.

Take a Ricci flat metric g corresponding to the origin o. Then T,=m is
identified with the space of homomorphisms; H*(g)—~H (g). For a homomor-
phism f:H*—H~ we denote by f*: H —H* the adjoint of f, namely ¢x(f(a), B)
=gx(a, f*(B), acH* and Bc=H".

Then the invariant metric {,)> has the form

(1.5) S, fFo=—tr (f I+, f, Led*.
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§2. Anti-self-dual conformal structures on a K3 manifold

We will look at the moduli £(X) and £(X) by means of anti-self-dual con-
formal structures.

Before doing we prepare the notion of anti-self-dual conformal structure and
define several kinds of moduli of anti-self-dual conformal structures on X.

Suppose M is a compact, connected oriented 4-manifold. Let g be a metric
on M. Then the Weyl conformal tensor W of g gives a section of the bundle
Si(2*), the tracefree symmetric product of £2. This is because W, =—W;jis
=W, and Xk giszjkl:()-

Decomposing £°? into the sum as 2°=0Q+*PL2~ for the self-dual 2-form bundle
2% and the anti-self-dual 2-form bundle 2, we have the decomposition of W
as W=W+*, W-) where W*e (M, S¥2*)), W-I'(M, S¥Q7)) and the 2+R2"-
component of W vanishes.

DEFINITION ([2]). A metric g on M is called anti-self-dual if the S%Q7)-
component W+=0.

We say that a conformal structure [g] represented by g is anti-self-dual if
W*(g)=0.

Let ¢ be an orientation preserving diffeomorphism of M. Then the pull
back metric ¢* g by ¢ defines a conformal structure [¢*g] which we denote
by ¢*[g] so that ¢ gives a transformation of C(M) where C(M) is the space
of all conformal structures on M.

Since the self-dual Weyl conformal tensor W* of ¢* g is just the pull back
of W* of g by ¢, the space C~(M) of all anti-self-dual conformal structures on
M is invariant under the action of arbitrary ¢<Diff*(M). So we can get the
quotient spaces H(M)=C~(M)/Diff*, H(M)=c (M)/Diff’ and H(M)=c~(M)/Diff°
and we call them the moduli, the Teichmiiller moduli and the isotopy-Teichmiiller
moduli, respectively, of anti-self-dual conformal structures on M.

Let g be an anti-self-dual metric. Then it induces the following elliptic
complex ;

Lg D,
2.1) 0 —> I'(M, T) —> I'(M, ST*)) —> I"(M, S¥Q*)) —> 0

Here T, T* are the tangent, cotangent bundles and L=L, is the tracefree Lie
derivative of vector fields on X ; (L(U));,=V.U;+V;U;—1/2(3; V.U)g.,. Further
D=D, is the Fréchet derivative of the self-dual Weyl conformal tensor W+ ;
D(h)=d/dt|1=e W*(g:) for h=d/dt|.=o g

The cohomology spaces are H'={U[(T), L(U)=0}, H'={he ' (S¥T*));
D(h)=0, L*(h)=0} and H*={BeIl (S¥Q*)), D*B=0}.

The index of this elliptic complex is from the Atiyah-Singer index theorem
h'—h'+h2=1/2(297(M)+154M)) (h*=dim H?, :=1, 2, 3).
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Remark. Any diffeomorphism ¢e< Diff*(M) induces an isomorphism of
elliptic compleces

L, D
0 —> I'(M, T) —> I'(M, SYT*)) —> I'(M, S¥2*)) —> 0

I P
L¢*g D¢*B
0—> I'M, T) — I'(M, SXT*)) — I'(M, S¥2*)) — 0

so that if ¢ is an isometry of an anti-self-dual metric g, then ¢ induces an
isomorphism of H*, i=0, 1, 2.

Now consider a Ricci flat metric g on a K3 manifold X. From Proposition
0.1 g is anti-self-dual and has zero scalar curvature.

PROPOSITION 2.1. Let g be a Ricci flat metvic on a K3 manifold X. Then
the cohomology groups are H'=0, H'=R* and H*=R°.

Proof. H° is the space of conformal Killing fields. First we show that the
group of conformal transformations for the conformal structure [g] coincides
with the group of isometries for g. Since g is Ricci flat, it is a Yamabe metric
of Yamabe invariant zero for the conformal structure [g]. From [9] the uni-
queness of Yamabe metrics of nonpositive Yamabe invariant applies so that an
arbitrary conformal transformation for [g] is an isometry for g. Since con-
formal transformations generated by a conformal Killing field U are isometries,
U is a Killing field. Because of the Ricci flatness the 1-form & corresponding
to U must be parallel (by Theorem 2.3 in [15], for example) and hence &
vanishes from b,=0. So H°=0.

To compute dim H? we can apply the Weitzenb6ck-Bochner formula given
in [12] to the elliptic operator of fourth order D*D.

Actually, since g is Ricci flat, D*DB=(V*V):B for Bl (S¥£2")), where
V*V is the covariant Laplacian, so that BeH? if and only if B is a parallel
section of the bundle S2(2+*). Thus h®?=5. Here we used the fact that for a
K3 manifold X the orthonormal basis of H*(g) makes the bundle 2* trivial and
then S%£2*) has five, linearly independent parallel sections.

The index of the complex for X is —52 so that dim H'=57.

Now we state the real analytic variety theorem for the isotopy-Teichmiiller
moduli F(M) valid for a general 4-manifold M except for S*.

THEOREM 2.2. Let M be a compact, connected oriented 4-manifold and g an
anti-self-dual metric on M. Let [g] be the corresponding point in M(M) (here
we tdentify the conformal structure [g] and the point of the moduli derived from
[g] by the diffeomorphism quotient). Then (M) 1s isomorphic around [g] to
the real analytic variety {heH"; |h|<e, T(h)=0}/CY, where ¥: H'-H? is an
analytic map associated to the Kuranishi map, ¥(0)=0 and C3=C ,NDiff° denotes
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the group of conformal transformations of [g].

See (iv), Sect. 3 in [11] for the details. We explain here the action C% on
the complex (2.1). We noticed in the remark that any ¢ Diff*(M) acts on (2.1)
equivariantly. Since C¢ is compact except for the standard 4-sphere (for instance
see [9]), we can choose a metric g inside the conformal structure [g] in such
a way that C% is the isometries of g. Therefore C$ acts on the complex (2.1)
so that this action induces the action on the cohomology groups.

We see from Theorems 2.1, 2.2 that H(X) has dimension at most 57. More-
over, we have the following proposition from which M(X) is at [g] locally an
analytic subset of H'=R".

PROPOSITION 2.3. Let g be a Ricci flat metric on a K3 manifold X. Then
the conformal group C%Y(X)={idx}. Moreover C,/(X)={idx} where C,/(X)=
C ,NDiff"(X).

Proof. As shown in the proof of Proposition 2.1, C,’ consists of isometries
of g. So, let ¢ be an isometry of g in Diff’. Since ¢* acts as the identity
on H*X, Z) and hence on H*X, R), ¢*=id on H*g) and then ¢ must be an
automorphism of X with respect to a complex structure /J=J, induced from a
certain self-dual harmonic 2-form @. Therefore ¢=idy by Proposition 11.3
(the weak Torelli theorem), § VIII in [4]. This completes the proof.

PROPOSITION 2.4 (Proposition 4.2, [11]). The first cohomology group H' at
[g], where g is Ricct flat, is isomorphic to the tensor product H (g)QH*(g))*.

Proof. 1t suffices to show the following.

Let ¢iesH*(g), a=1, 2, 3 and ¢, =H(g), b=1, ---, 19 be harmonic self-dual
(anti-self-dual) 2-forms which constitute orthonormal bases of H*(g) and H~(g),
respectively. Then via the identification H*=(H*)* the tensor products

OR/PieH QHT, 1=<a<3, 1=b<19

form an orthonormal basis of H' with respect to the L%-metric.
So, identify

2.2) 0-®Q*(=Hom (2*, 0-)) —> S(T*)
(97, p*)—> h=(h,,),

by h., =28 nnnt.

For ¢*eH*, ¢~=H™~ we let hel'(S(T*)) be given by ¢~ Q¢* via the above
identification. To show heKer L¥*N\Ker D we first check that L*(h)=0 and
then D(h)=0.

We see easily L*(h)=0 because L*(h) is given by (L*(h));=—23;:87*Vihj..

Since g is Ricci flat, D(h) is for any h the S%2*)-component of U(h)e
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I'(2*®£02%), defined by
2.3 Uh)ijni=1/2VeV;hiu—ViV,hir—VVihj+V.Vihje)
so that for our &
U(R)i;0=1/2{(ViVspiXP*)i— (Vi V55X ()i} -

Now we may assume ¢*=w the Kéhler form. So by using the complex
indices we can show that D(h)=0.

It is not hard to show by Proposition 2.1 that ¢,®¢s, 1=a<19, 1<b=3
gives a basis, since the L*-inner product of ¢;Q¢¢ and ¢7QPE is 64c0pq-

Now we divide the moduli into three parts according to the sign of the
Yamabe invariant, in other words, the sign of constant scalar curvature;

(2.4) MX)=HOUMO LM,

where the Yamabe invariant is a conformal invariant of a conformal structure,
which is essentially the value of the constant scalar curvature of a Yamabe
metric (see [9]). A similar division is given for other moduli H(X) and (X).

Since a K3 manifold X has 5*>0, the Weitzenb6ck-Bochner formula for
harmonic self-dual 2-forms assures that there is no anti-self-dual conformal
structure of positive Yamabe invariant. On the other hand, from Proposition
0.1 in Introduction any anti-self-dual conformal structure of zero Yamabe in-
variant has the unique Ricci flat metric of volume one as a specific representa-
tive. So we can identify #®(X), #(X) and H>(X) with &(X), &(X) and
&(X), respectively.

PROPOSITION 2.5. The mapping class group Diff’/Diff° acts freely on M (X)
and hence on &(X).

Proof. Assume ¢<Diff’ fixes a point of A(X). It suffices to verify IS
Diff>. Let [g] be a conformal structure representing this point. Then there
is a ¢,=Diff* such that ¢*g=¢%g. So ¢.=(d-¢:")Diff’ fixes g. Since g is
Ricci flat, it follows from the argument in the proof of Proposition 2.3 that
¢.=idy, in other words, ¢=Diff>. This proves Proposition 2.5.

We have the following diagram

KA i, Pst
(2.5) /(Diff’ /Diff®) l l /(Diff’ /Diff°)

GO,

for which the Teichmiiller moduli & is the quotient of & by the fixed-point free
action of the discrete group Diff’/Diff>. Since, as explained in §1, £ has a
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smooth manifold structure, £ has also a smooth manifold structure. It is a
covering space over a simply connected manifold £ and is then considered as a
union of copies of £, where the number of copies is the order # Diff’/Diff°.

Return back to the moduli of conformal structures #®(X) and M@ (X).

As was shown in Theorem 2.2 any point of #(X) has a neighborhood in
M(X) of the form {heH'; |h|<e, ¥(h)=0}.

On the other hand, via the identification M‘®(X)=&(X) and by the argu-
ment just above the point in £(X) corresponding to this point has a neighbor-
hood in the Grassmannian manifold Gri s from Theorem 1.2. This neighbor-
hood is considered as an e-neighborhood in H~(g)Q(H*(g))*, which is from the
Grassmannian space structure just the tangent space at the 3-plane H*(g).

Since H'=H (g)Q(H*(g))* by Proposition 2.4 and an e-neighborhood in H*
corresponds to an &’-neighborhood of H (g)X(H*(g))*, we have the

ASSERTION. The map ¥'; H*—H? must be trivial for any Ricci flat metric g.
Thus the following is verified.

THEOREM 2.6. The moduli M(X) of anti-self-dual conformal structures of
zero Yamabe invariant is an open subset of M(X) and has a smooth manifold
structure (possibly not connected) of dimension 57, isomorphic to &(X).

Remark. 1t is not known whether (X)) is empty or not.

CONJECTURE. The mapping class group of second kind Diff’/Diff° consists
only of the identity, or equivalently &(X) coincides with £(X).

Remark that the mapping class group Diff*/Diff’ of a K3 manifold X is
identified with the index two subgroup Aut(H*X, Z), gx)NSO(3, 19) of the
group Aut (H¥X, Z), qx) of automorphisms ([5]). There are certain criteria on
the mapping class group relative to the lattice (H*(M, Z), qx) derived from the
surgery theory.

Actually, Wall showed the following ([19]); let N be a simply connected,
compact oriented 4-manifold with indefinite cup product g» or of rank H*N)<8.
If M is a connected sum N #(S*XS?), then every positive gy-automorphism of
H¥M, Z) is induced by a ¢<Diff*(M).

On the other hand, M. Kreck obtained in [17] that if M is a simply con-
nected compact, connected 4-manifold, then the group consisting of ¢< Diff*(M)
which is pseudo-isotopic to 7d, is isomorphic to Diff'(M). Here ¢ is pseudo-
isotopic to ¢’ if there is a diffeomorphism F of the product space MX[0, 1]
such that F(x, 0)=(¢(x), 0) and F(x, 1)=(¢"(x), 1) (see [6]).
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§3. L*metric on the moduli of conformal structures

In this section we will see how an L®-metric is defined on the moduli of
anti-self-dual conformal structures on a general 4-manifold M.

Since such a moduli is embedded in the ambient moduli, the moduli of all
conformal structures, in order to get such an L%-metric we will show that the
space C(M) of all conformal structures on M admits an L%metric ¢ which is
diffeomorphism-invariant, namely ¢*(Gr1)=0G4sc¢1, [gl=C(M), p<Diff".

Let [glec(M). The tangent space T,y to C(M) at [g] is then given by
the space I'(M, SiT*)) of tracefree symmetric covariant tensors h=(%,;). More-
over by the identification (2.3) T,; is identified with I"(M, Hom (2}, £23)). So
one can define an inner product ¢ by

(3.1) G(4, B)=1 /ZSM—tr (AB*+BA%)dV,

for A, BeI'(M, Hom (2%, £7)) (see Theorem 5 in [11]).

Here A*, B*<['(M, Hom (£2~, 2%)) mean the adjoint of A, B with respect
to the wedge product, respectively, that is, (A(@)A B=aA(A*(B)) for any acQ*
and Bef".

We need the minus sign in (3.1) since tr (AA*) is negative definite. This
negative definiteness stems from that the wedge product A is positive on 2*
and is negative on £ .

The action of diffeomorphism on C(M) induces the differential map T\, —
Tegrgr, Amd*(A)=((¢*) e Aeg).

So one has tr ((¢* A)(@* B)*)(x)=tr (AB*)(¢(x))=(d* tr (AB*))(x), x&M.

In order that the ¢ depends only on a conformal structure, not on a choice
of representative metric g we require that the volume form dV, g—dV,,
appeared in the definition (3.1), must satisfy the conformally invariant property
dV,;,=dV,. Moreover we require that dVgu,=¢*(dV,), the diffeomorphism
naturality, because of the diffeomorphism-invariance of &.

We call such a volume form a canonical volume form.

PROPOSITION 3.1. If M has b*(M)>0 or b=(M)>0, then M admits a canonical
volume form dV.

Proof. Assume for brevity b*>0. Let [g]eC(M) and g be a metric repre-
senting it. To prove the proposition we choose a basis {¢;} of H*(M, g) which
is gy-orthonormal, that is, ¢x([¢:], [¢;1)=0:, as cohomology classes, or equi-

Valently SM¢1;/\¢VJ~=5,'].
We define then dV, by

(3.2) V=5 ..
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Although this volume form dV, may be degenerate, it is positive almost every-
where. This is because ¢;A¢;=|¢;|*dv, and dV, vanishes exactly at points
where all ¢,’s vanish, and any nonzero harmonic 2-form does not vanish almost
everywhere.

To show the diffeomorphism naturality we first remark that any ¢<Diff*
induces the gy-isometry ; H*(M, g)—H*(M, ¢*g). So {¢*¢;} is a gy-orthonormal
basis of H*(M, ¢*g). Therefore,

AVgus= D ($* P N $* )= (Z hi Ap)=¢*(d V).

If b*(M)=0 but b~ (M)>0, then we need a minor change in the definition (3.2),
only the minus sign.

One can check the diffeomorphism-invariance of the L*-metric &, since the
integration over M is preserved by the action of diffeomorphisms so that

SMtr {(0* A)Y@*B)*+(¢*B)(@p* A)*} AV yup :Sﬂqﬁ*(tr (AB*+BA*)p*(dV,)

reduces to SMtr(AB*+BA*)dVg.

The L:metric ¢ on C(M) descends to the quotient spaces C(M)/Diff*,
C(M)/Diff’ and C(M)/Diff°, respectively so that

THEOREM 3.2. If b*(M)>0 or b~(M)>0, then the moduli admits an L:-metric
in such a way that (i) each of the following projections is isometric ;

MM —> (M) —> H(M)

and (ii) the mapping class groups [I’(M)=Diff’(M)/Diff(M) and I'(M)=
Diff*(M)/ Diff'(M) act as isometries on M(M) and H(M), respectively.

The following is then obtained.

THEOREM 3.3. The L%metric G on the moduli M ™(X) of anti-self-dual
conformal structures of zero Yamabe invariant on a K3 manifold X is isometric
up to constant to the invariant metric defined at (2.4) on the Teichmiiller moduli

EX.

Proof. For any Ricci flat metric g representing a conformal structure [g]
H*(g) consists only of parallel self-dual 2-forms so that each member of an
orthonormal basis {¢;} has the same constant norm. Thus the canonical volume
form is just a constant multiple of the ordinary Riemannian volume form dv,
of g.

By Proposition 2.4 and Theorem 2.6 the basis {¢:} together with an ortho-
normal basis {¢;} of H(g) give via the identification H'=H (g)®H*(g) an
orthonormal basis {¢;@¢?t} of the tangent space T,y of the moduli i with
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respect to the L*metric ¢ and gives again by the period map theorem (Theorem
1.2) together with the formula (1.5) an orthonormal basis, up to constant, of
the tangent space of the Grassmannian manifold Grj{,, at the corresponding
point.

Remark 1. Since the invariant metric is complete on Gri s, but not com-
plete on T, the L?metric ¢ is non-complete on M (X). The metric comple-
tion of M™(X) or of £(X) relative to the L*metric is the space which is iso-
metrically identified with the symmetric space G773 ;..

Remark 2. The complement of T, Gri,~\T consists of orbifold-singular
Ricci flat metrics on X ([1], [13]). Here an orbifold-singular Ricci flat metric
on X is a C* symmetric covariant 2-tensor on X of the form zn*g, where
m: M—V is a surjective real analytic map to a Ricci flat Einstein orbifold (V, g).

Moreover in the completion procedure we observe the bubbling off pheno-
mena ([13], [3]). In fact from Theorem 21 in [13], if {g;} is a sequence in T
having the limit g&Gr{,,\T, then (i) the curvature of g, concentrates near
some configurations E of embedded 2-spheres of self-intersection number —2,
(ii) if we rescale g, by the local maximum value of the curvature, then the
rescaled metrics &, converge to ALE gravitational instantons corresponding to
the simple singularities obtained by contracting the configurations E and (iii)
outside the singularities g, converges to the orbifold-singular metric g.

§4. The moduli on an Enriques manifold

Let Y be an Enriques manifold, namely a compact 4-manifold underlying an
Enriques surface. Here an Enriques surface is a compact complex surface ob-
tained by a holomorphic Z,-quotient of a K3 surface. ThenY is a Z,-quotient
of a K3 manifold X. Note that an Enriques surface has the trivial bundle K®?
([15, § VIII in 4]).

Let m:X—Y be a covering map yielding the Enriques manifold ¥ and let
¢ : X—X be the deck transformation of X, nee==x such that Y =X/<{¢).

The topological invariants of ¥ are X(Y)=(1/2)X(X)=12, =Y )=(1/2)7(X)=
—8 and hence b,(Y)=10, b*Y)=1, b~ (Y )=9.

The deck transformation ¢ induces the cup product isometry of the cohomo-
logy group L=H*X, Z)=@*—E)PDPD*H given by

4.1) 2Dy Pz:Dz:Dzs — yDxD—2:PD2:Dz.

so that the ¢-invariant sublattice L* is isomorphic to —2E,P2H and the uni-
modular lattice 1/2 L*, isomorphic to —E @H, gives the cohomology group of
an Enriques manifold ¥ with the cup product ¢y (see Lemma 19.1, § VIII in [4])
and thus b*=1, b==09.

From Proposition 0.1 same as in the K3 manifold case we identify the
moduli of unit volume Ricci flat metrics on ¥ with the moduli of anti-self-dual
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conformal structures of zero Yamabe invariant.

Let g be a Ricci flat metric on Y. Then, since g is anti-self-dual, as dis-
cussed in §2, it provides an elliptic complex defining local deformation of anti-
self-dual conformal structures :

L, D,
4.2) 0—I'(Y,T)—I'(Y, SUT*) — I'(Y, SY2%)) — 0.

The index is h°—h?+4h*=—26 from the topological invariants of V.

PROPOSITION 4.1. The elliptic complex (4.2) has the cohomology groups H*=0,
H'=R» and H*=R® for an arbitrary Ricci flat metric.

Proof. We apply the same proof of Proposition 2.1 to show H°=0. We
postpone the calculation of 4%*=dim H?® until just after Proposition 4.2. Actually
we will see there h*=3 and hence A!'=29.

The situation for an Enriques manifold is quite similar to the K3 manifold
case. So, J(Y) can be identified around the conformal structure [g] with the
C9-quotient of a real analytic variety {heH'; |h|<e, ¥(h)=0} where ¥': H'—
H?® is an analytic map, and C4=C,NDiff(Y’) denotes the group of conformal
transformations of [g].

ASSERTION. C%={idy}.

This is given as follows. Since g is Ricci flat, g is a Yamabe metric of
zero Yamabe invariant so that C9 consists only of isometries. Let ¢ be such
an isometry. Then it lifts up as an isometry ¢ of § commuting with ¢ where
g=mn*g. Since ¢=Diff*, § is also in Diff° of X. It follows then from Proposi-
tion 2.3 that ¢ is idyx and hence ¢ is idy.

On the other hand, a Ricci flat metric g on Y lifts up to a Ricci flat metric
g on X which is deck transformation invariant and vice versa so that one has

OBSERVATION. The moduli of Ricci flat metrics on Y is considered as the
space of a-invariant Ricci flat metrics § on X of Vol(g)=2.

Suppose that g is a Ricci flat metric on a K3 manifold X such that g=n*g.
Then we have the elliptic complex (2.1) over X associated to 3. Because g is
g-invariant, i.e., g*g=g, the deck transformation ¢ induces the involutive
endomorphism of the elliptic complex (2.1).

If we restrict ourself to the o-fixed parts, we derive the ¢-invariant elliptic
complex

4.3) 0 —> I'dX, T) —> I'd(X, SYT*)) —> I'o(X, S§(2*)) —> 0

with cohomology groups HZ, =0, 1, 2.
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PROPOSITION 4.2. Each cohomology group HY is canonically identified with
the linear subspace of HYX) of X consisting of o-fixed vectors.

So, we identify H! with the elementwise o-fixed linear subspace, HiC
H{(X).

Proof. For brevity we show the case i=1. By definition each 4 of H}
satisfies D;A=0 and (LU, h)=0 for all UeI'y(X, T).

Denote by (H')° the linear subspace in H'(X) of the above proposition.
Then we observe (H)°C H}:. Now we prove the converse implication. Let
heH!. Consider this as a section of SX7*). So from the harmonic decomposi-
tion A=h,+hst+hs, LheH'X), hoclm L;, hyelm D¥. Since D;A=0, it follows
that 7,=0. Then by the o-invariance of & we can write h,=L, U, UeI'yT).
Substitute this equality into (L,V, 7)=0 to get L,U=0. So the proof is com-
pleted.

We are now ready to complete the proof of Proposition 4.1, namely to show
dim H?*=3 for each Ricci flat metric on an Enriques manifold Y.

By Proposition 4.2 it is sufficient to assert dim H2=3 for any Ricci flat
metric § such that ¢*g=g. As we showed in the proof of Proposition 2.1,
H*® consists of parallel sections. Those sections of S%Q*) are of the form
e sPe@Pf, where ¢f, a=1, 2, 3 are parallel self-dual 2-forms giving a basis
of H*(g).

Before counting the dimension we prepare the following

PROPOSITION 4.3. For a g-invariant Ricci flat metric g on X H*(g) and
H~(g) split as
H*(g)=WidWwi,

(4.4) H(g)=WidWz,

into the subspaces of dimension dim Wi=1, dim Wi{=2, dim W1=9 and dim W3;=10
such that o*=id on Wi and o*=—id on Wj.

Proof. This proposition is obvious, since the deck transformation ¢ acts
on H¥YX, Z) as (4.1), or equivalently b*=1 and b~=9 for an Enriques manifold.

Return back to the counting. From this proposition the action of ¢ on
H*(g) is
o*di=¢1, o*Pi=—t , a=2,3

for a certain basis {¢¢} so we see easily that ¢IR¢T—PiR¢3, PTRPT—PIRP}
and ¢5RPi+¢PiR¢E give a basis of the o-invariant linear subspace H:.

The complex (4.3) is just the involution-invariant version of (4.2) so that
HMOY) and &) for an Enriques manifold Y are investigated by means of
involution-invariant portions of the corresponding #®(X) and &(X) for a K3
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manifold X.

Let [g] be an anti-self-dual conformal structure on an Enriques manifold
Y. Assume that it has zero Yamabe invariant. Then it is represented by a
Ricci flat metric g.

From the real analytic variety theorem a neighborhood of [g] in the moduli
M) has the form of the zero locus of ¥, in an ¢ ball C H:, where ¥,: H:—H?
is the analytic map associated to the o-invariant Kuranishi map. By Proposi-
tion 4.2 we can consider ¥, just as ¥': H'-H? over X restricted to the o-fixed
linear subspace. As was proved in §2, we have ¥=0 which assures that at
[g] M) is isomorphic to {AeHYX); |h|<e, o*h=h}.

Because an e-neighborhood of the first cohomology group over X gives a
neighborhood of MA®(X), we can get a neighborhood of [g] in J(Y) exactly
inside the proper submoduli #®(Y), the moduli of anti-self-dual conformal
structures of zero Yamabe invariant. Thus we get

THEOREM 4.4. The moduli A ), isomorphic to E(Y), is a smooth mani-
fold of dimension 29, whose tangent space is modelled by H}, the elementwise o-
fixed linear subspace H*(X).

Since any Ricci flat metric g on ¥ induces a metric § on X which is Ricci
flat, we have a natural map

¢: 8Y) — &(X)
g mod Diff’(Y') —— g mod Diff’(X)

In fact, arbitrary ¢<Diff’(Y") induces uniquely ¢<Diff’(X), because ¢ is gener-
ated by finite number of vector fields on ¥ and these vector fields lift up on X.

THEOREM 4.5. The map ¢: &Y )—E(X) gives an embedding and moreover
the image of this map s a totally geodesic submamifold of &(X) equipped with
the L*-metric.

Proof. Let g and g, be Ricci flat metrics on Y such that the lifted Ricci
flat metrics g and g, satisfy g,=¢*Z for a ¢=Diff’(X). Since g and g, are g-
invariant, it holds o*g*g=¢*c*g.

Hence goa+(¢) e C,NDiff’(X). Because by Proposition 2.3 C,NDiff"(X)
consists only of idy, § commutes with the deck transformation ¢ so that ¢
descends to a ¢=Diff*(Y’) such that g;=¢*g. So the map ¢ is injective.

From the identification &= M‘® for both ¥ and X and the first cohomology
groups give their local coordinates, it is seen that ¢ is smooth and has at every
point the maximal rank dim H}. Thus ¢ is an embedding.

To show the image is totally geodesic it suffices to verify that the image
is exactly the fixed points of an isometry in &(X). This isometry is just the
action of the deck transformation ¢ ; g mod Diff°(X)—c¢*g mod Diff°(X). We
must check that the action of ¢ is isometric. But we observed already at
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Theorem 3.2 that any orientation-preserving diffeomorphism preserves the con-
formally defined L?metric ¢ on H® and this metric agrees with the invariant
metric on £(X) via the period map (see Theorem 3.3 and also Theorem 6, [10]).
Thus ¢ yields an isometric transformation of M™(X)=&(X) preserving this
identification.

It is not hard to see that the image of ¢ is exactly the fixed points of this
isometry.

The isometry ¢ : &(X)—&(X) gives rise to an involutive isometry of the
Teichmiiller moduli, denoted by ¢ : é(X)—&(X), because o-¢-¢ *<Diff’ for any
¢<Diff’ in such a way that the following diagram commutes

2(X) &X)
(4.5) l l
EX) — s E(X).

To obtain geometrical feature of &(Y) for an Enriques manifold Y we in-
vestigate the space of ¢-fixed points in £(X) which we denote by &£,X).

So, we consider the period map pe: &(X)—S0(3, 19)/SO(3)xS0O(19). Then
¢ acts naturally as an isometry on the symmetric space by sending any oriented
positive 3-plane II to ¢*II so that the actions of ¢ commute through the period
map. Therefore, the image pe(£,(X)) is an open dense subset of (SO(3, 19)/
S0(3)xS0(19)),, where (SO(3, 19)/S0O(3)XxS0(19)), is the fixedpoint set of the
isometry o.

Obviously this fixedpoint set is a symmetric space of noncompact type,
totally geodesically embedded in the ambient symmetric space.

PROPOSITION 4.6 (Theorem 0.4 in Introduction). The fixedpoint set has the
structure of quotient space of the following form

(50G, 19)/SO(3)XS0(19)),
=(S50(1, 9)/SO1)xSO(9) X (S0(2, 10)/SO(2)x SO10)) .

The latter space is well embedded in SO(3, 19)/SO(3)x SO(19).

Proof. Let us assume that I7 is an arbitrary oriented positive 3-plane such
that o*II=1I. The gx-orthogonal complement /7* is then ¢-invariant. So we
have splittings of these subspaces II, II* like Proposition 4.3. Therefore it is
not difficult to get the proposition.
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§5. A Z;-quotient of Enriques manifold

Consider in this section the moduli of Ricci flat metrics on a 4-manifold Z
last appeared in Theorem 0.2, Introduction, namely a Z,-quotient Z of an Enri-
ques manifold Y.

The 4-manifold Z is written as Z=Y /<{8)> where §<Diff*(Y) is fixedpoint
free and involutive. So, the Euler number X(Z) is ¥(Z)=(1/2)X(Y)=6 and the
index ©(Z)=(1/2)c(Y)=—4. Since =, (Z)=Z,XZ, and hence b,(Z)=0, we have
b*(Z)=0 and b(Z)=4 so that the cup product ¢z of Z is negative definite.

Let g be a Ricci flat metric on Z. Then it lifts up to a @-invariant Ricci
flat metric g on Y. Since §*3=g, 0 induces an involutive action of H*(Y, g).

From b*(Y)=1 and b*(Z)=0, # acts as —id on H*Y, ), i.e., 0% a)=—a
for acH*(Y, 3).

Since from Proposition 0.1 g is an anti-self-dual metric of zero scalar cur-
vature, each element of H*(Y, g) is parallel in such a way that a certain ac
H*(Y, g) gives the Kihler form to the metric g with respect to a certain com-
plex structure J; a(u, v)=g(J(u), v). In other words, g is a K&hler metric on
a complex surface (Y, J). It follows then from @*a=—a, 0*g=g that §*/=
—J, i.e., 6 is an anti-holomorphic involution.

On the other hand, from the topological invariants b~(Y)=9, b (Z)=4, the
space H (Y, g) splits as

H-Y, 5)=VipVs; dimVi=4, dimV3;=5

where 6* is id on V1 and —id on V5.
In the same way as in the argument for an Enriques surface we have for
g an elliptic complex (2.1) whose index is 26/2=13.

PROPOSITION 5.1. The cohomology groups for a Ricci flat metric g on Z
are H'=0, H'=R"® and H?*=R*.

Proof. We see H°=0 in a same way as in the proof of Proposition 2.1.

Now we compute the dimension dim H?. For this we apply Proposition 4.2
to our situation. Actually H? for Z is isomorphic to the f-invariant linear
subspace (H?), of H*? for a Ricci flat Enriques manifold (Y, g). We can then
follow the argument given in [12]. We note that g is a Kdhler metric on an
Enriques surface (Y, J). The following decomposition of S 2*) is valid for
any complex Kéhler surface M ([7], [10]). As a real vector bundle

SL*)=RODKu)r DK )r

where @ is a certain parallel section of S%(2*), and K and K%? are the canonical
line bundle of M and its square, respectively. Moreover (K )r means the rank
two real vector bundle induced from Kj.

Since H?*=Ker DD* and DD*=(VV)? for an arbitrary Ricci flat 4-manifold,
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the subspace (H?), consists of @-invariant parallel sections of the tracefree
symmetric product bundle S¥£27). We have seen in the above that @ is anti-
holomorphic and #*a=—a where a is the Kihler form of the Kéhler metric g
(acH*(Y, 2)).

Moreover §*f=cp, c=C for a certain section 8 of unit norm of Ky. Be-
cause # is involutive, |¢| must be equal to 1.

Since @ has the following form ([10])

o= %az— % BB,
@ is f-invariant.

On the other hand, for an Enriques surface Y Ky is not trivial but K$? is
trivial as holomorphic bundles. So Ky does not admit but K§* admits a global
holomorphic and hence parallel section. This section may be identified with S
Thus we have two parallel sections of (K$*)z the real part @,=1/2(8*+ j?) and
the imaginary part @,=1/2+/—1(8*— ).

Of course 0*®,, §*@, are parallel in (Y, (K$*)g). Since 6*f=cp with ¢
of |c|=1, the 2x2 coefficient matrix of §*@, relative to @, has trace zero and
determinant —1 so that this matrix has eigenvalues -1, —1. Therefore,
'Y, (K€)g) has a 1-dim linear subspace generated by a +1-eigensection. Thus
we see dim H*=dim (H*Y ))s=2.

H' has the dimension dim H'=—(index)+dim H°+dim H*=15.

Therefore, in a quite similar way to the argument given for Theorem 4.2
we get

THEOREM 5.2. The isotopy-Teichmiiller moduli H(Z) of anti-self-dual con-
formal structures of zero Yamabe invariant, which is isomorphic to the isotopy-
Teichmiiller moduli &£(Z) of Ricci flat metrics on Z, admits a 15dim smooth
manifold structure whose tangent space at each point is modelled by H¥Y), the
elementwise 0-fixed linear subspace of the first cohomology group HY) for an
Enriques manifold Y.

Since ©,(Z)=Z,XZ, we can further regard Z as a Z,X Z,-quotient of a
K3 manifold X, Z=X/<{o, 8) where o, 6 are involutive diffeomorphisms of X
satisfying g-60=0-0.

So, via the covering map; X—Z an arbitrary Ricci flat metric g on Z is
considered as a Ricci flat metric g on X which is (¢, #)-invariant, i.e., o*g=
0*g=g and we have a natural map like the Ricci flat Enriques manifold case

J:8(Z)— &X)
g mod Diff°(Z) — g mod Diff*(X)

THEOREM 5.3. The map j: &(Z)—E(X) enjoys a totally geodesic embedding
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and the image 7(&(Z)) 1s a fixedpoint set of the isometries induced from the deck
transformations {a, 6> n &(X).

The isometries a, 0 : &(X)—&(X) yield isometries of the Teichmiiller moduli
&(X) and also of the Grassmannian manifold SO(3, 19)/SO(3)xSO(19) such that
the actions of these isometries commute via the period map pe: &(X)—S0O(3, 19)
/SO3)xS0O19). Thus we obtain Theorem 0.5 in the introduction.
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