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Introduction

Let M be a compact, connected oriented 4-manifold. Let g be a smooth
Riemannian metric on X. Then the Riemannian curvature tensor R—Rljkt is
defined naturally, and the Ricci tensor Ric—RXJ and the scalar curvature Rg by
the trace of the Riemannian curvature tensor and the trace of the Ricci tensor,
respectively.

Further we define the Weyl conformal tensor W=Wιjkι by a linear com-
bination of R—RιjkU Ric and Rg in such a way that the tensor W is invariant
under a conformal change of metrics.

We will investigate in this paper the moduli 6{M) of Ricci flat metrics on
certain 4-manifolds M from 4-dimensional conformal geometry. Here we mean
by the moduli the space of all Ricci flat metrics of volume one modulo diffeo-
morphisms of M.

Since a Ricci flat metric is Einstein, the moduli is considered naturally as
the moduli of Einstein metrics of Rg=0.

We have indeed the following premoduli theorem due to K. Koiso ([16] and
[5]).

Given an Einstein metric g. Then there is a finite dimensional real analytic
submanifold % in a slice S at g such that (i) g^Z, (ii) TgZ coincides with the
space of infinitesimal Einstein deformations and (iii) the intersection <S(M)Γ\S,
called the premoduli around g, is a real analytic subvariety of Z.

We restrict ourself to Ricci flat 4-manifolds having topological invariant
X+(3/2)τ=0, more precisely, manifolds whose universal covering is a K3 sur-
face. We can then apply the Torelli type theorem for K3 surfaces together
with the notion of anti-self-dual conformal structure and get a complete des-
cription of manifold structure of €(M).

By applying the Chern-Weil theorem for characteristic classes one has the
following identity which is valid for an arbitrary Riemannian 4-manifold (M, g)
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Here %(M)=Σ*(-l)*δ*(M) is the Euler number and τ{M) is the index b+(M)-
b~(M) of the cup product qM\H\M, Z)xH\M, Z)-*H\M, Z)=Z and W+ de-
notes the self-dual Weyl conformal tensor, i.e., W+^Γ(M, Ω+®Ω+) (Ω+=Ω+

g is
the self-dual 2-form bundle of M).

From this we observe the following

PROPOSITION 0.1. Let M be of Z(M)+(3/2)r(M)=0.

Let g be a metric on M satisfying W+=:0. Then the scalar curvature Rg—0
if and only if g is Ricci flat.

For a 4-manifold M satisfying (Z+(3/2)r)(M)=0 the moduli €(M) of Ricci
flat metrics on M coincides from this proposition with the quotient space of
metrics satisfying the equations W+(g)=Q, Rg=0 modulo the diffeomorphism
action.

Since the equation W+=0 as a section of Ω+(g)Ω+ and the sign of constant
scalar curvature are conformal invariant, the latter space is regarded as the
moduli of anti-self-dual conformal structures of zero scalar curvature, which
we denote by Jί/(0)(M).

Metrics g and gx are said to be conformally equivalent if gi=fg for a
positive function / and then the conformal equivalence defines a conformal
structure [g] represented by g. We say a conformal structure [g] to be anti-
self-dual if W+(g)=0 and we define the moduli JM(M) of anti-self-dual conformal
structures on M to be the space of all anti-self-dual conformal structures on M
modulo the diffeomorphism action so that we have

From the 4-dimensional speciality, for any (M, g) having W+=0 there exists
an elliptic complex which provides the moduli 3ί{M) a real analytic variety
structure.

In fact, the following sequence enjoys the ellipticity

(0.1) 0 — > Γ{M, T) — > Γ(M, 5o2(T*)) — ^ Γ{My S\(Ω+)) — > 0

with cohomology groups H°, H\ H2 of finite dimension so that one gets a real
analytic variety theorem in terms of these cohomology groups ([11]).

The following theorem gives the characterization of Ricci flat 4-manifolds
of Z+(3/2)r=0.

THEOREM 0.2 ([8]). Let (M, g) be a compact, connected oriented Riemannian
A-manifold.

(i) // (M, g) is Einstein, then %(M)+(3/2)τ(M)^0 and the equality Z(Λf)+
(3/2)τ(M)=0 holds if and only if g is Ricci flat and anti-self-dual {i.e., ^ + = 0 ) .

(ii) // (M, g) is Ricci flat and W+=0 (so that *+(3/2)τ=0), then, either (a)
(M, g) is flat and is covered by a flat Riemannian A-torus T4 or (b) (M, g) is a
Kάhler Einstein K3 surface (πί=l), a Kdhler Einstein Enriques surface (πί=Z2)
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or the quotient of a Kdhler Einstein Enriques surface by a free anti-holomorphic
isometric involution (πί=Z2XZ2)»

To state our theorems we begin with a technical preliminary in terms of
groups of diffeomorphisms.

We denote by Diff+=Diff+(M) the group of orientation preserving diffeo-
morphisms of M. We denote moreover by Diff'=Diff'(M) and Diff°=Diff°(M)
the normal subgroups of Diff+ {0eDiff+; 0*=id on H\M, Z)\ and {0eDiff+;
^ = id^, isotopic}, respectively. Here two diffeomorphisms^ and φλ are said to
be isotopic, if there exists a path in Diff+ joining φ and φλ.

So Diff°cDiff'cDiff+ and accordingly we have £{M)f £{M) and 8{M), the

isotopy-Teichmύller moduli, the Teichmuller moduli and the moduli, respectively.
There are canonical projections

(0.2) ε{M) —> ε{M) —> e(M)

such that 8(M)=£(M)/Γ(M) and £(M)=£(M)/Γ'(M) where Γ(M)=Όiff+/Όiff'
and JΓ

/(M)=Diff//Diff° are the mapping class groups of M.

A K3 surface is the 4-manifold of which the moduli 8 is completely well
studied. Actually we have the so-called period map and the Torelli type theo-
rem (see [K, § 12 in 5] or [14] for the details and we will give a brief argu-
ment of this theorem in § 1).

THEOREM 0.3 (Torelli type Theorem). The Teichmuller moduli £ of Ricci
flat metrics on a K3 surface X is isomorphic to an open dense subset T of Grt, 22
=SO(3, 19)/SO(3)XSO(19). The moduli 8 is then isomorphic to the quotient of
T modulo the mapping class group Γ(Z)=Diff+/Diff/.

The space SO(3, 19)/SO(3)xSO(19) is an irreducible symmetric space of
non-compact type whose dimension is 57.

The period map pe: £~*Gri>22 is the assignment of the naturally oriented
H+(g)aH2(X, R) to each Ricci flat metric g and the Torelli type theorem asserts
that pe gives the embedding of the Teichmύller moduli into the Grassmannian
manifold and exactly onto T (H+(g) is the space of self-dual harmonic 2-forms
on X, άιmRH+{g)=3).

It follows from this theorem that the moduli 8 for a K3 surface I is a
locally symmetric orbifold. In fact the moduli carries finite group quotient
singuralities, since the isometry group I(g) of g is a finite group which is iso-
morphic to the isotropy at pe(g)^T in the group Aut(H\X, Z), qx)nSO(3, 19)
and I(g) varies when g moves (see [5]).

On the other hand, it is not difficult to show that the action of Γ'(X) on
£(X) is free (see Proposition 2.5) so that the isotopy-Teichmϋller moduli £ for
a 4-manifold underlying a K3 surface is a smooth manifold (possibly having
many components) of which each component is isometric to £ (see Theorem
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2.6). The number of components is the order of Γ'(X)=DΊfϊ'(X)/ΌΊfΐ°(X).
By Theorem 0.2 an Enriques surface Y and a 4-manifold Z, a Z2-quotient

of Y, are written as quotients of a K3 surface X modulo the respective cover-
ing transformation groups Σ. ΣdΌΊff+(X) induces isometric transformations of
the isotopy-Teichmuller moduli for a K3 manifold X. Here isometries mean
transformations of the moduli preserving the "canonically equipped L2 metric".
It follows then that the fixedpoint set of the action of Σ, which is totally geo-
desic as a submanifold in the moduli for X, provides the manifold structures
to the isotopy-Teichmuller moduli for 4-manifolds Y and Z.

THEOREM 0.4. Let Y be a k-manif old underlying an Enriques surf ace. Then
the isotopy-Teichmuller moduli ε(Y) is isometrically embedded in S(X) as a 29
dim totally geodesic submanifold. Each component of this totally geodesic sub-
manifold is via the period map isometric to a submanifold TΓ\F in T where F
is the fixedpoint set of the involutive deck transformation, written in the form

GriioXGrilt=(SO(l, 9)/5O(l)X 50(9)) X (50(2, 10)/SO(2)X50(10)),

embedded in SO(3, 19)/SO(3)XSO(19).

For a 2Γ2-quotient of an Enriques surface we have similarly

THEOREM 0.5. Let Z be a Z2-quotient of an Enriques surface. Then the
isotopy-Teichmuller moduli 6{Z) is embedded in T c S 0 ( 3 , 19)/SO(3)xSO(19) iso-
metrically and totally geodesically. This totally geodesic submanifold is 15
dimensional.

From Theorems 0.4 and 0.5 we have

COROLLARY 0.6. Let Y and Z be an Enriques surface and its anti-holomor-
phic Z2-quotient, respectively. Then the Teichmuller moduli 6 and the moduli β
of Ricci flat metrics on Y or on Z admit at least an orbifold structure.

It is open whether S for Y and Z is smooth, or equivalently whether the
mapping class group DiffVDiff0 acts freely on the isotopy-Teichmuller moduli 6.

% 1. The moduli of Ricci flat metrics on a K3 manifold

A K3 surface is, by definition, a compact, connected complex surface with
trivial canonical line bundle and bλ=0 (for references of K3 surfaces see
CSVIII, 4]).

We say a compact 4-manifold which underlines a K3 surface as a K3 mani-
fold.

Example 1. Let c: T2-^T2 (zt)-*(—zt) be the involution defined on a 2-dim
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complex torus T2. The quotient T2/c has sixteen singular points. By blowing
up these points we get a smooth surface, called a Kummer surface, which is
simply connected and the canonical line bundle K is trivial as a holomorphic
line bundle.

Example 2. A hypersurface of degree 4 in PS(C) is simply connected and
has the first Chern class Ci=0. So this complex surface is a K3 surface.

The following theorem is classical.

THEOREM 1.1. (i) Any K3 surfaces are diffeomorphic.
(ii) ([18]) Every K3 surface has a Kdhler metric.
(iii) ([20]) Every K3 surface admits a Ricci flat Kdhler metric.

A K3 manifold X has the topological invariants; X—2A, b2—22 and τ= —16
so that b+=3, b~=19 where (b+, b~) is the signature of the cup product of
H\X Z).

Consider the moduli <?, 8 and β of Ricci flat metrics on X.

THEOREM 1.2 (Torelli type Theorem). Via the period map, the Teichmuller
moduli S(X) is isomorphic to an open dense subset T of SO'(3, 19)/S0(3)XSO(19).

To define the period map and explain the domain T we need to state the
cup product more precisely.

The cup product qx of a K3 manifold X has the form <7χ = Θ 2 ( - £ 8 ) Θ Θ 3 #

where E8 is the Cartan matrix of type E8 and H is L A

Let g be a metric on X. Then from the harmonic theory the space H2(X, g)
of g-harmonic 2-forms on X, which is isomorphic to the second cohomology
group H2(X R), decomposes as the sum of the spaces H*(X, g) of self-dual
harmonic 2-forms and anti-self-dual harmonic 2-forms;

(1.1) H\X, g)=H+(X, g)@H-{X, g)

for which qx>0 on H+(X, g) and qx<0 on H~{X, g).
H+(g) and H~{g) are orthogonal with respect to qx. Here we identify qx

on H\X, R) with the wedge product on deRham cohomology classes of closed
2-forms.

Now suppose the metric g is Ricci flat.
Then from Proposition 0.1 this metric is anti-self-dual and of zero scalar

curvature. So any harmonic self-dual 2-form must be parallel by the Weitzen-
bock-Bochner argument and induces up to a constant a complex structure / on
X compatible with g. The metric g is Ricci flat Kahler with respect to the
complex surface (X, / ) .

We can assign from this fact a canonical orientation to H+(X, g).
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In fact, if we choose a, β^H+(g), aφβ, to which complex structures /«,
Jβ associate, then we have another γ(=H+(g) such that Jγ—Ja°Jβ and hence
the orientation {a, β, γ\ for H+(g).

We therefore get the assignment

(1.2) g mod Diff' «—• oriented pr(H+(g))

which yields the period map

(1.3) pe : S(X) — > Grit22=SO(3, 19)/SO(3)XSO(19).

Here we regard first H+(g) as a 3-dim linear subspace of the infinite dimensional
vector space Z\X), the space of all closed 2-forms on X and then take pr(H+(g)),
namely the deRham cohomology projection of H+(g) in H\Xy R), as a subspace
in the 22-dim space H\X, R).

The subset T is defined as follows.
Let J={γ^H2(X;Z); qx(γ, r ) = - 2 } be the set of "roots" and, for any

oriented positive 3-plane Π in H\X R) we denote by 77 x the ^-orthogonal
complement of 77; ΠL^{a^H\X R); qx(a, /7)=0}. Then T is the set of all
oriented positive 3-planes ΠaH2(X R) such that ΠLΓ\Δ=$. T is the comple-
ment of countably many unions of codimension 3 submanifolds in Grt,22> So,
T is connected and simply connected.

The reason why one excludes the complement of T from Gri,22 stems from
the fact that qx is even and the canonical line bundle is trivial so that an
arbitrary complex curve C in a K3 surf ace satisfies C C^—2 and if C-Cφ— 2,
then C C^O ([5], [13]).

We omit proving that the period map is isomorphic. See [5] for the refer-
ences and see also references cited there.

The space SO(3, 19)/SO(3)XSO(19) is the noncompact dual of an ordinary
Grassmannian manifold Grs, 22 So it is a symmetric space of noncompact type
and has the invariant metric. At the origin this invariant metric <, > is given
by the restriction of the negative Killing form of the Lie algebra §o(3, 19).
Actually the tangent space at the orgin To is identified with m= {3x19 matrices}
and the invariant metric is, up to constant,

(1.4) <U, V^tviUVt+VU1), U, Fern.

We interpret this invariant metric in terms of Horn (H+, H~) as follows.
Take a Ricci flat metric g corresponding to the origin o. Then T 0 ^ m is

identified with the space of homomorphisms H+(g)~-+H~(g). For a homomor-
phism / : H+~^H~ we denote by /* : H~-+H+ the adjoint of /, namely qx{f(a), β)
=qχ(a, f*(β)), a^H+ and β<=H~.

Then the invariant metric <, > has the form

(1-5) </, /i>=-tr(//ί+/,/*), /,
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§2. Anti-self-dual conformal structures on a K3 manifold

We will look at the moduli S(X) and £(X) by means of anti-self-dual con-
formal structures.

Before doing we prepare the notion of anti-self-dual conformal structure and
define several kinds of moduli of anti-self-dual conformal structures on X,

Suppose M is a compact, connected oriented 4-manifold. Let g be a metric
on M. Then the Weyl conformal tensor W of g gives a section of the bundle
Sl(Ω2), the tracefree symmetric product of Ω2. This is because Wijki^—Wjiki
=WkllJ and Σtk gikWXJkl=0.

Decomposing Ω2 into the sum as Ω2=Ω+Q)Ω~ for the self-dual 2-form bundle
Ω+ and the anti-self-dual 2-form bundle Ω~, we have the decomposition of W
as W=(W+, W~) where W+tΞΓ(M, S2(Ω+)), W~^Γ(M, S2(Ω~)) and the Ω+®Ω~-
component of W vanishes.

DEFINITION ([2]). A metric g on M is called anti-self-dual if the S2

0(Ω+)-
component W+=0.

We say that a conformal structure [g] represented by g is anti-self-dual if
W+(g)=0.

Let φ be an orientation preserving diffeomorphism of M. Then the pull
back metric φ* g by φ defines a conformal structure [φ*g~\ which we denote
by φ*ίgl so that φ gives a transformation of C{M) where C(M) is the space
of all conformal structures on M.

Since the self-dual Weyl conformal tensor W+ of φ* g is just the pull back
of W+ of g by φ, the space C~(M) of all anti-self-dual conformal structures on
M is invariant under the action of arbitrary 0eDiff+(M). So we can get the
quotient spaces ^(M)=£-(M)/Diff+, Jί(M)=C-(M)/Diff/and Jk(M)=C-(M)/Όiff°
and we call them the moduli, the Teichmύller moduli and the isotopy-Teichmύller
moduli, respectively, of anti-self-dual conformal structures on M.

Let g be an anti-self-dual metric. Then it induces the following elliptic
complex

Ls Dg

(2.1) 0 — > Γ(M, T) —> Γ(M, SJ(T*)) — > Γ(M, S2(Ω+)) — > 0

Here T, T* are the tangent, cotangent bundles and L = Lg is the tracefree Lie
derivative of vector fields on X {L{U))iJ=ViUj+VjUi--l/2{'Σik VkUk)glr Further
D—Dg is the Frechet derivative of the self-dual Weyl conformal tensor W+

D(h)=d/dt\t=0W
+(gt) for h = d/dt\t=0gt.

The cohomology spaces are H°={U^Γ(T)f L(ί/)=0}, Hι={h<=ΞΓ(S&T*))',
D(h)=0, L*(Λ)=0} and H2={B(ΞΓ(S2

0(Ω+)), D*B=0}.
The index of this elliptic complex is from the Atiyah-Singer index theorem

(hι=άimH\ ι = l , 2, 3).
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Remark. Any diffeomorphism 0eDiff+(M) induces an isomorphism of
elliptic compleces

0 — > Γ(M, T) - Λ Γ(M, SJ(T*)) —'-> Γ{M, S%Ω+)) — > 0

\Φ*

0 —•> Γ(M, T) L-^l Γ(M, SJ(Γ*)) ^Γ(M, S*(Ω+)) —* 0

so that if 0 is an isometry of an anti-self-dual metric g, then φ induces an
isomorphism of H\ i=Q, 1, 2.

Now consider a Ricci flat metric g on a K3 manifold X. From Proposition
0.1 £ is anti-self-dual and has zero scalar curvature.

PROPOSITION 2.1. Lei g be a Ricci flat metric on a K3 manifold X. Then
the cohomology groups are H°=0, H^R51 and H2^R\

Proof. H° is the space of conformal Killing fields. First we show that the
group of conformal transformations for the conformal structure [g] coincides
with the group of isometries for g. Since g is Ricci flat, it is a Yamabe metric
of Yamabe invariant zero for the conformal structure [#]. From [9] the uni-
queness of Yamabe metrics of nonpositive Yamabe invariant applies so that an
arbitrary conformal transformation for [#] is an isometry for g. Since con-
formal transformations generated by a conformal Killing field U are isometries,
U is a Killing field. Because of the Ricci flatness the 1-form ξ corresponding
to U must be parallel (by Theorem 2.3 in [15], for example) and hence ξ
vanishes from ^ = 0 . So H°—0.

To compute dim/P we can apply the Weitzenbδck-Bochner formula given
in [12] to the elliptic operator of fourth order D*D.

Actually, since g is Ricci flat, D*DB=(V*V)2B for BeίΓ(S2

0(Ω+)), where
V*V is the covariant Laplacian, so that B^H2 if and only if B is a parallel
section of the bundle Sl(Ω+). Thus h2=5. Here we used the fact that for a
K3 manifold X the orthonormal basis of H+(g) makes the bundle Ω+ trivial and
then Sl(Ω+) has five, linearly independent parallel sections.

The index of the complex for X is —52 so that άimHi=57.

Now we state the real analytic variety theorem for the isotopy-Teichmύller
moduli A{M) valid for a general 4-manifold M except for S4.

THEOREM 2.2. Let M be α compact, connected oriented ^-manifold and g an
anti-self-dual metric on M. Let [g] be the corresponding point in 3ί(M) (here
we identify the conformal structure \_g~] and the point of the moduli derived from
\_g~] by the diffeomorphism quotient). Then JA{M) is isomorphic around \jf\ to
the real analytic variety {h^H1 |Λ |<e, Ψ(h)=0\/C°g, where Ψ: Hι^H2 is an
analytic map associated to the Kuranishi map, ψ(Q)=Q and C°g=CgΓ\DΊff° denotes
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the group of conformal transformations of [_g].

See (iv), Sect. 3 in [11] for the details. We explain here the action C°g on
the complex (2.1). We noticed in the remark that any 0eDiff+(M) acts on (2.1)
equivariantly. Since C°g is compact except for the standard 4-sρhere (for instance
see [9]), we can choose a metric g inside the conformal structure \_g~] in such
a way that C°g is the isometries of g. Therefore C°g acts on the complex (2.1)
so that this action induces the action on the cohomology groups.

We see from Theorems 2.1, 2.2 that 3l(X) has dimension at most 57. More-
over, we have the following proposition from which Jά(X) is at \_g~] locally an
analytic subset of Hι=R*\

PROPOSITION 2.3. Let g be a Ricci flat metric on a K3 manifold X. Then
the conformal group C°g(X)= {idx}. Moreover Cg'(X)={iάx} where Cβ'(X)=
CgΓΛΌiff'(X).

Proof. As shown in the proof of Proposition 2.1, Cg consists of isometries
of g. So, let φ be an isometry of g in DifP. Since φ* acts as the identity
on H\X, Z) and hence on H\X, R), ώ*=iά on H\g) and then φ must be an
automorphism of X with respect to a complex structure J=Ja induced from a
certain self-dual harmonic 2-form a. Therefore φ=iάx by Proposition 11.3
(the weak Torelli theorem), § VIII in [4]. This completes the proof.

PROPOSITION 2.4 (Proposition 4.2, [11]). The first cohomology group H1 at
[g], where g is Ricci flat, is isomorphic to the tensor product H~(g)ξZ)(H+(g))*.

Proof. It suffices to show the following.
Let ψi(ΞH+(g), α = l, 2, 3 and φϊ&H'ig), fc=l, •••, 19 be harmonic self-dual

(anti-self-dual) 2-forms which constitute orthonormal bases of H+(g) and H~{g),
respectively. Then via the identification i/+ = (//+)* the tensor products

form an orthonormal basis of H1 with respect to the ZΛmetric.

So, identify

(2.2)

by htj=Σιkig

For ψ+<=H+, ψ-£ΞH- we let /ZGΞΓ(S*(T*)) be given by φ~®Φ+ via the above
identification. To show /zeKer L*nKer D we first check that L*(Λ)=0 and
then D(λ)=0.

We see easily L*(A)=0 because L*(h) is given by
Since g is Ricci flat, D{h) is for any h the S?(β+)-component of
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Γ(Ω2®Ω2), defined by

(2.3)

so that for our h

Now we may assume φ+=ω the Kahler form. So by using the complex
indices we can show that D{h)—Q.

It is not hard to show by Proposition 2.1 that φa®ψt> I ^ α ^ l 9 , l^/>^3
gives a basis, since the ZΛinner product of φa(£)φb and φ^®φt is δacδbd-

Now we divide the moduli into three parts according to the sign of the
Yamabe invariant, in other words, the sign of constant scalar curvature

(2.4) M(X)=M(+)U<M(0)UM{-) ,

where the Yamabe invariant is a conformal invariant of a conformal structure,
which is essentially the value of the constant scalar curvature of a Yamabe
metric (see [9]). A similar division is given for other moduli 3ί(X) and JΆ(X).

Since a K3 manifold X has b+>0, the Weitzenbock-Bochner formula for
harmonic self-dual 2-forms assures that there is no anti-self-dual conformal
structure of positive Yamabe invariant. On the other hand, from Proposition
0.1 in Introduction any anti-self-dual conformal structure of zero Yamabe in-
variant has the unique Ricci flat metric of volume one as a specific representa-
tive. So we can identify M^(X), 3ί^(X) and Jί ( 0 )(X) with e(X), S(X) and
S(X), respectively.

PROPOSITION 2.5. The mapping class group Diff'/Diff0 acts freely on Jft(0)(X)
and hence on 6{X).

Proof. Assume ^eDiff fixes a point of 3ί(0)(X). It suffices to verify φ(=
Diff0. Let [g] be a conformal structure representing this point. Then there
is a 0i<ΞDiff° such that φ*g=φ*g. So φ2—(φ°φ^1)^Diff' fixes g. Since g is
Ricci flat, it follows from the argument in the proof of Proposition 2.3 that
φ2—idχy in other words, 0eDiff°. This proves Proposition 2.5.

We have the following diagram

(2.5) /(DiffVDiff0) I I /(DiffVDiff0)

for which the Teichmϋller moduli S is the quotient of έ by the fixed-point free
action of the discrete group DiffYDiff0- Since, as explained in § 1, S has a
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smooth manifold structure, 6 has also a smooth manifold structure. It is a
covering space over a simply connected manifold 6 and is then considered as a
union of copies of £, where the number of copies is the order # Diff'/Diff0.

Return back to the moduli of conformal structures Jl(0)(X) and Jϋ{*\X).
As was shown in Theorem 2.2 any point of 3iw(X) has a neighborhood in

Jtl(X) of the form {h^H1 | A | < e , Ψ(h)=Q}.

On the other hand, via the identification <3ί{0)(X)^e(X) and by the argu-
ment just above the point in e(X) corresponding to this point has a neighbor-
hood in the Grassmannian manifold Grft 22 from Theorem 1.2. This neighbor-
hood is considered as an ε-neighborhood in H~(g)(g)(H+(g))*, which is from the
Grassmannian space structure just the tangent space at the 3-plane H+(g).

Since H^H'ig^iH+ig))* by Proposition 2.4 and an ε-neighborhood in H1

corresponds to an ε'-neighborhood of //~(g)(S>(#+(£))*> we have the

ASSERTION. The map Ψ; Hι-*H2 must be trivial for any Ricci flat metric g.

Thus the following is verified.

THEOREM 2.6. The moduli Jά{{i)(X) of anti-self-dual conformal structures of
zero Yamabe invariant is an open subset of Λ(X) and has a smooth manifold
structure (possibly not connected) of dimension 57, isomorphic to £(X).

Remark. It is not known whether Jά{~\X) is empty or not.

CONJECTURE. The mapping class group of second kind Dijf'/Diff0 consists
only of the identity, or equivalently β{X) coincides with 8(X).

Remark that the mapping class group Diff+ /Diff' of a K3 manifold X is
identified with the index two subgroup Aut (H\X, Z), qx)Γ\SO(3, 19) of the
group Aut(H2(X, Z), qx) of automorphisms ([5]). There are certain criteria on
the mapping class group relative to the lattice (H\M, Z), qM) derived from the
surgery theory.

Actually, Wall showed the following ([19]) let N be a simply connected,
compact oriented 4-manifold with indefinite cup product qN or of rank H\N)<,8.
If M is a connected sum N%(S2xS2), then every positive ^-automorphism of
H2(M, Z) is induced by a 0eDiff+(M).

On the other hand, M. Kreck obtained in [17] that if M is a simply con-
nected compact, connected 4-manifold, then the group consisting of 0eDiff+(M)
which is pseudo-isotopic to idM is isomorphic to Diff(M). Here φ is pseudo-
isotopic to φ' if there is a diffeomorphism F of the product space Mx[0, 1]
such that F(x, 0)=(φ(x), 0) and F(x, l)=(<£'(x), 1) (see [6]).
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§3. /Λmetric on the moduli of con formal structures

In this section we will see how an IΛmetric is defined on the moduli of
anti-self-dual conformal structures on a general 4-manifold M.

Since such a moduli is embedded in the ambient moduli, the moduli of all
conformal structures, in order to get such an ZΛmetric we will show that the
space C(M) of all conformal structures on M admits an ZΛmetric Q which is
diffeomorphism-invariant, namely φ*(Gίgl)=Gφ*ίg2, [#]eC(M), 0eDiff+.

Let \_g]<=C(M). The tangent space Tίgl to C(M) at [_g] is then given by
the space Γ(M, S%(T*)) of tracefree symmetric covariant tensors h=(htj). More-
over by the identification (2.3) Tίg2 is identified with Γ(M, Hom(i2£, Ω^j). So
one can define an inner product Q by

(3.1) S(A, B)=l/2\ -tr(AB*+BA*)dVβ
JM

for A, BtΞΓ(M, Hom(β+, Ω~)) (see Theorem 5 in [11]).
Here A*, B*^Γ(M, Hom(fl", Ω+)) mean the adjoint of A, B with respect

to the wedge product, respectively, that is, (A(a))Λβ=aΛ(A*(β)) for any α e f i +

and β^Ω~.
We need the minus sign in (3.1) since tr (AA*) is negative definite. This

negative definiteness stems from that the wedge product Λ is positive on Ω+

and is negative on Ω .
The action of diffeomorphism on C(M) induces the differential map Tίgl-*

Tίφ*gl, A
So one has tr(iφ*A)(φ*B)*)(x)==tr(AB*Xφ(x))=(φ*tr(AB*))(x)9 XEΞM.

In order that the Q depends only on a conformal structure, not on a choice
of representative metric g we require that the volume form dV, g^>dVg,
appeared in the definition (3.1), must satisfy the conformally invariant property
dVfg — dVg. Moreover we require that dVφ*g—φ^(dVg), the diffeomorphism
naturality, because of the diffeomorphism-invariance of G.

We call such a volume form a canonical volume form.

PROPOSITION 3.1. // M has b+(M)>0 or b~(M)>0, then M admits a canonical
volume form dV.

Proof. Assume for brevity b+>0. Let [g]e£(M) and g be a metric repre-
senting it. To prove the proposition we choose a basis {</>J of H+(M, g) which
is <?M-orthonormal, that is, qM{[φi], ίψjD^δij as cohomology classes, or equi-

valently \ ψiΛψj=δij.
J M

We define then dVe by

(3.2) dV^ ΣψiΛψi.
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Although this volume form d Vg may be degenerate, it is positive almost every-
where. This is because φi/\φi—\φi\ιdvg and dVg vanishes exactly at points
where all φi's vanish, and any nonzero harmonic 2-form does not vanish almost
everywhere.

To show the diffeomorphism naturality we first remark that any 0eDiff+

induces the ^-isometry H+(M, g)-+H+(M, φ*g). So {φ*ψi} is a ^^-orthonormal
basis of H+(M, φ*g). Therefore,

If b+(M)=0 but b~(M)>0, then we need a minor change in the definition (3.2),
only the minus sign.

One can check the diffeomorphism-invariance of the ZΛmetric Q, since the
integration over M is preserved by the action of diffeomorphisms so that

tτ{(φ*A)(φ*B)*+(φ*B)(φ*A)*}dVφ*8 = [ φ*(tτ(AB*+BA*))φ*(dV8)
' J M

reduces to f tr(AB*+BA*)dVg.
J M

The ZΛmetric Q on C(M) descends to the quotient spaces C(M)/Diff+,
£(M)/Diff' and £(M)/Diff0, respectively so that

THEOREM 3.2. // b+(M)>0 or ί r(M)>0, then the moduli admits an L2-metric
in such a way that (i) each of the following projections is isometric

Jί(M) —> MM) —> MM)

and (ii) the mapping class groups Γ'(M)=Diff'(M)/Diff°(M) and Γ(M) =
Diff+(M)/Diff'(M) act as isometries on 3t(M) and 3l(M), respectively.

The following is then obtained.

THEOREM 3.3. The L2-metήc Q on the moduli 3ίm(X) of anti-self-dual
conformal structures of zero Yamabe invariant on a K3 manifold X is isometric
up to constant to the invariant metric defined at (2.4) on the Teichmϋller moduli

Proof. For any Ricci flat metric g representing a conformal structure [g]
H+(g) consists only of parallel self-dual 2-forms so that each member of an
orthonormal basis {ψi} has the same constant norm. Thus the canonical volume
form is just a constant multiple of the ordinary Riemannian volume form dvg

of g.
By Proposition 2.4 and Theorem 2.6 the basis {φi\ together with an ortho-

normal basis {̂ 7} of H~(g) give via the identification Hι = H~{g)®H+(g) an
orthonormal basis {φ~j®φ\} of the tangent space Tίgl of the moduli 3ί(0) with
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respect to the ZΛmetric Q and gives again by the period map theorem (Theorem
1.2) together with the formula (1.5) an orthonormal basis, up to constant, of
the tangent space of the Grassmannian manifold Grit22 at the corresponding
point.

Remark 1. Since the invariant metric is complete on Grit 22, but not com-
plete on T, the ZΛmetric Q is non-complete on 3t(0)(X). The metric comple-
tion of 3i(0)(X) or of £{X) relative to the ZΛmetric is the space which is iso-
metrically identified with the symmetric space Gr£ 2 2.

Remark 2. The complement of T, Grt,22^T consists of orbifold-singular
Ricci flat metrics on X ([1], [13]). Here an orbif old-singular Ricci flat metric
on I is a C°° symmetric covariant 2-tensor on X of the form π*g, where
π : M->V is a surjective real analytic map to a Ricci flat Einstein orbifold (V, g).

Moreover in the completion procedure we observe the bubbling off pheno-
mena ([13], [3]). In fact from Theorem 21 in [13], if {gι} is a sequence in T
having the limit g^Grit22^T, then (i) the curvature of gt concentrates near
some configurations E of embedded 2-spheres of self-intersection number —2,
(ii) if we rescale gt by the local maximum value of the curvature, then the
rescaled metrics g% converge to ALE gravitational instantons corresponding to
the simple singularities obtained by contracting the configurations E and (iii)
outside the singularities gt converges to the orbifold-singular metric g.

§4. The moduli on an Enriques manifold

Let Y be an Enriques manifold, namely a compact 4-manifold underlying an
Enriques surface. Here an Enriques surface is a compact complex surface ob-
tained by a holomorphic Z2-quotient of a K3 surface. Then Y is a Z2-quotient
of a K3 manifold X. Note that an Enriques surface has the trivial bundle K®2

([15, § VIII in 4]).
Let π: X—>F be a covering map yielding the Enriques manifold Y and let

σ: X^X be the deck transformation of X, π°a — π such that Y—
The topological invariants of Y are Z(r)=(l/2)Z(Jϊ)=12, r

- 8 and hence b2(Y)=10, ft+(F)=l, b~(Y)=9.
The deck transformation σ induces the cup product isometry of the cohomo-

logy group LΞ=H2(X, Z)^@\-E,)®®"H given by

(4.1) *®3>®*i0*2®*e • • y®x®~zι®zz®z2

so that the σ-'mvariant sublattice L+ is isomorphic to —2E8φ2H and the uni-
modular lattice 1/2 L+, isomorphic to —E8φH, gives the cohomology group of
an Enriques manifold Y with the cup product qγ (see Lemma 19.1, § VIII in [4])
and thus 6 + = l , ft-=9.

From Proposition 0.1 same as in the K3 manifold case we identify the
moduli of unit volume Ricci flat metrics on Y with the moduli of anti-self-dual
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conformal structures of zero Yamabe invariant.
Let g be a Ricci flat metric on Y. Then, since g is anti-self-dual, as dis-

cussed in §2, it provides an elliptic complex defining local deformation of anti-
self-dual conformal structures:

Lg Dg

(4.2) 0 — > Γ(Y, T) —> Γ(Y, S0

2(T*)) — > Γ(Y, S2(Ω+)) —•* 0.

The index is h*—hlJrh2——2§ from the topological invariants of Y.

PROPOSITION 4.1. The elliptic complex (4.2) has the cohomology groups H°=0,
HX=R29 and H2^RS for an arbitrary Ricci flat metric.

Proof. We apply the same proof of Proposition 2.1 to show H°=0. We
postpone the calculation of h2=άimH2 until just after Proposition 4.2. Actually
we will see there h2—?> and hence /iJ=29.

The situation for an Enriques manifold is quite similar to the K3 manifold
case. So, JA{Y) can be identified around the conformal structure [g] with the
Q-quotient of a real analytic variety f/ieff |A |<e, Ψ(h)=0] where Ψ'.H1-^
H2 is an analytic map, and C°g=CgΓ\Diff°(Y) denotes the group of conformal
transformations of [g].

ASSERTION. C°g = {iάγ}.

This is given as follows. Since g is Ricci flat, g is a Yamabe metric of
zero Yamabe invariant so that C°g consists only of isometries. Let φ be such
an isometry. Then it lifts up as an isometry φ of g commuting with σ where
g=zπ*g. Since 0eDiff°, φ is also in Diff0 of X. It follows then from Proposi-
tion 2.3 that φ is idx and hence φ is idγ.

On the other hand, a Ricci flat metric g on Y lifts up to a Ricci flat metric
g on X which is deck transformation invariant and vice versa so that one has

OBSERVATION. The moduli of Ricci flat metrics on Y is considered as the
space of σ-invariant Ricci flat metrics g on X of Vol{g)—2.

Suppose that g is a Ricci flat metric on a K3 manifold X such that g = π*g.
Then we have the elliptic complex (2.1) over X associated to g. Because g is
σ-invariant, i.e., σ*g=g, the deck transformation σ induces the involutive
endomorphism of the elliptic complex (2.1).

If we restrict ourself to the σ-fixed parts, we derive the σ-invariant elliptic
complex

(4.3) 0 — ^ ΓJίX, T) — > Γσ(X, SJ(T*)) — > ΓJίX, S2(Ω+)) — > 0

with cohomology groups Hi, i=0, 1, 2.
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PROPOSITION 4.2. Each cohomology group Hi is canonically identified with
the linear subspace of H\X) of X consisting of σ-fixed vectors.

So, we identify Hi with the elementwise σ-fixed linear subspace, Hid
H\X).

Proof. For brevity we show the case i=l. By definition each A of Hi
satisfies D8h=0 and (LBΠ, A)=0 for all Π^Γσ(Xf T).

Denote by (Hι)σ the linear subspace in H\X) of the above proposition.
Then we observe (WYcHi. Now we prove the converse implication. Let
AeUΓί. Consider this as a section of SJ(T*). So from the harmonic decomposi-
tion h = hi+h2+hZ) hΊ^HXX), ft2elm L§, A3elml>f. Since Dgh=0, _it follows
that A3=0. Then by the σ-invariance of h we can write hz—LgU, U^Γσ(T).
Substitute this equality into (L8V, A)=0 to get LgΠ=0. So the proof is com-
pleted.

We are now ready to complete the proof of Proposition 4.1, namely to show
dim/f 2 =3 for each Ricci flat metric on an Enriques manifold Y.

By Proposition 4.2 it is sufficient to assert d i m # J = 3 for any Ricci flat
metric g such that σ*g—g. As we showed in the proof of Proposition 2.1,
H2 consists of parallel sections. Those sections of $l(Ω+) are of the form
Ίla,bψi<S)ψt, where φt, a—lt 2, 3 are parallel self-dual 2-forms giving a basis
of H\g).

Before counting the dimension we prepare the following

PROPOSITION 4.3. For a σ-invariant Ricci flat metric g on X H+(g) and
H~(g) split as

(4.4) H-(g)=

into the subspaces of dimensionάimWi—1, aim Wi—2, aim W^—9 and aim W^=10
such that σ*=id on W% and σ*=-id on W%.

Proof. This proposition is obvious, since the deck transformation σ acts
on H\X, Z) as (4.1), or equivalently b+—1 and b~=9 for an Enriques manifold.

Return back to the counting. From this proposition the action of a on

H+(g) is
σ*φt=φΐ, σ*φ+

a=-φi, a=2,3

for a certain basis {φi} so we see easily that φ\®φX—φt(&ψ1ι, φ\®φ\—φ\®φ%
and φί®φt-\-φX®φ% give a basis of the <τ-invariant linear subspace HI.

The complex (4.3) is just the involution-invariant version of (4.2) so that
Ji ( 0 ) (F) and β(Y) for an Enriques manifold Y are investigated by means of
involution-invariant portions of the corresponding Jί ( 0 ) (Z) and £(X) for a K3
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manifold X.
Let [g] be an anti-self-dual conformal structure on an Enriques manifold

Y. Assume that it has zero Yamabe invariant. Then it is represented by a
Ricci flat metric g.

From the real analytic variety theorem a neighborhood of [g] in the moduli
M(Y) has the form of the zero locus of Ψσ in an ε ball dHi, where Ψσ: Hi-^Hl
is the analytic map associated to the <x-invariant Kuranishi map. By Proposi-
tion 4.2 we can consider Ψσ just as Ψ: Hι~^H2 over X restricted to the σ-fixed
linear subspace. As was proved in § 2, we have Ψ=0 which assures that at
[g ] Jί(Y) is isomorphic to {h^H\X); \h\<ε, σ*h=h\.

Because an ε-neighborhood of the first cohomology group over X gives a
neighborhood of ^ί(0)(X), we can get a neighborhood of [_g~] in 3ί(Y) exactly
inside the proper submoduli 3l(0)(Y), the moduli of anti-self-dual conformal
structures of zero Yamabe invariant. Thus we get

THEOREM 4.4. The moduli J£ ( 0 )(F), isomorphic to ε(Y)} is a smooth mani-
fold of dimension 29, whose tangent space is modelled by Hi, the elementwise σ-
fixed linear subspace H\X).

Since any Ricci flat metric g on Y induces a metric g on X which is Ricci
flat, we have a natural map

c: S(Y) —+ β(X)

g modDiff°(7)ι—>g modDiff°(X)

in fact, arbitrary 0<=Diff°(F) induces uniquely ^<=Diff°(X), because φ is gener-
ated by finite number of vector fields on Y and these vector fields lift up on X.

THEOREM 4.5. The map c: S(Y)-+S(X) gives an embedding and moreover
the image of this map is a totally geodesic submamfold of 6{X) equipped with
the L2-metric.

Proof. Let g and gλ be Ricci flat metrics on Y such that the lifted Ricci
flat metrics g and ^i satisfy gi—φ^g for a φ^Dif£°(X). Since g and gx are a-
invariant, it holds σ*φ*g=φ*σ*g.

Hence φoσ^φY^σ^CgίΛDiίί'iX). Because by Proposition 2.3 C^πDiff^Z)
consists only of idx, φ commutes with the deck transformation σ so that φ
descends to a 0eDiff°(F) such that gi—φ^g. So the map c is injective.

From the identification β=M(0) for both Y and X and the first cohomology
groups give their local coordinates, it is seen that c is smooth and has at every
point the maximal rank dim Hi. Thus c is an embedding.

To show the image is totally geodesic it suffices to verify that the image
is exactly the fixed points of an isometry in 6{X). This isometry is just the
action of the deck transformation σ g mod Difΐ°(X)^σ*g mod Diff°(Z). We
must check that the action of σ is isometric. But we observed already at
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Theorem 3.2 that any orientation-preserving diffeomorphism preserves the con-
formally defined ZΛmetric Q on J i ( 0 ) and this metric agrees with the invariant
metric on έ(X) via the period map (see Theorem 3.3 and also Theorem 6, [10]).
Thus σ yields an isometric transformation of 3ii<))(X)^£(X) preserving this
identification.

It is not hard to see that the image of c is exactly the fixed points of this
isometry.

The isometry a: β(X)-*β(X) gives rise to an involutive isometry of the
Teichmύller moduli, denoted by σ: £(X)—>3(X), because tfo^oσ^eDiff' for any

in such a way that the following diagram commutes

e{X)

(4.5) I

ε{X)-

To obtain geometrical feature of ε(Y) for an Enriques manifold Y we in-
vestigate the space of σ-fixed points in S(X) which we denote by £σ(X)

So, we consider the period map pe: <?(Z)-»5O(3, 19)/5O(3)X 50(19). Then
a acts naturally as an isometry on the symmetric space by sending any oriented
positive 3-plane 77 to σ*77 so that the actions of a commute through the period
map. Therefore, the image pe(βσ(X)) is an open dense subset of (50(3, 19)/
50(3) X 50(19)),, where (50(3, 19)/5O(3)X 50(19)), is the fixedpoint set of the
isometry a.

Obviously this fixedpoint set is a symmetric space of noncompact type,
totally geodesically embedded in the ambient symmetric space.

PROPOSITION 4.6 (Theorem 0.4 in Introduction). The fixedpoint set has the
structure of quotient space of the following form

(50(3, 19)/5O(3)X 50(19)),

=(50(1, 9)/5O(l)X 50(9)) X (50(2, 10)/5O(2)X 50(10)).

The latter space is well embedded in 50(3, 19)/5O(3)X 50(19).

Proof. Let us assume that 77 is an arbitrary oriented positive 3-plane such
that σ^Π—Π. The #z-orthogonal complement 77 x is then σ-invariant. So we
have splittings of these subspaces 77, ΠL like Proposition 4.3. Therefore it is
not difficult to get the proposition.
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§5. A Z2-quotient of Enriques manifold

Consider in this section the moduli of Ricci flat metrics on a 4-manifold Z
last appeared in Theorem 0.2, Introduction, namely a Z2-quotient Z of an Enri-
ques manifold Y.

The 4-manifold Z is written as Z=Y/<Θ> where 0eDiff+(F) is fixedpoint
free and involutive. So, the Euler number X(Z) is X(Z)=(1/2)X(Y)=6 and the
index τ(Z)=(l/2)τ(r)=—4. Since π1(Z)=Z2xZ2 and hence b1(Z)=0) we have
b+(Z)=0 and b~(Z)=4 so that the cup product qz of Z is negative definite.

Let g be a Ricci flat metric on Z. Then it lifts up to a ^-invariant Ricci
flat metric g on Y. Since θ*g=g, θ induces an involutive action of H+(Y, g).

From b+(Y)=l and b+(Z)=0, θ acts as -id on i/ + (F, g), i.e., 0 * ( α ) = - α
for α e / / + ( F , g).

Since from Proposition 0.1 g is an anti-self-dual metric of zero scalar cur-
vature, each element of H+(Y, g) is parallel in such a way that a certain α e
H+(Y', g) gives the Kahler form to the metric g with respect to a certain com-
plex structure / a(u, v)=g(J(u), v). In other words, g is a Kahler metric on
a complex surface (Y, J). It follows then from θ*a=-a, θ*g=g that 0 * / =
—/, i.e., 0 is an anti-holomorphic involution.

On the other hand, from the topological invariants b~(Y)=9, b~{Z)—^, the
space H~(Y, g) splits as

H~(Y, g)=V-χ®V-2 d i m F l = 4 , dim V~2 = 5

where 0* is zd on V~λ and —ίrf on V2.
In the same way as in the argument for an Enriques surface we have for

g an elliptic complex (2.1) whose index is 26/2=13.

PROPOSITION 5.1. The cohomology groups for a Ricci flat metric g on Z
are H°=0, H=RU and H2^R\

Proof. We see //°=0 in a same way as in the proof of Proposition 2.1.
Now we compute the dimension dim/F. For this we apply Proposition 4.2

to our situation. Actually H2 for Z is isomorphic to the ^-invariant linear
subspace (H2)β of H2 for a Ricci flat Enriques manifold (F, g). We can then
follow the argument given in [12]. We note that g is a Kahler metric on an
Enriques surface (Y, J). The following decomposition of Sl(Ω+) is valid for
any complex Kahler surface M ([7], [10]). As a real vector bundle

where Φ is a certain parallel section of Sl(Ω+), and KM and K%2 are the canonical
line bundle of M and its square, respectively. Moreover (KM)R means the rank
two real vector bundle induced from KM>

Since H2=Ker DD* and DD*=(VV)2 for an arbitrary Ricci flat 4-manifold,
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the subspace (H2)θ consists of ^-invariant parallel sections of the tracefree
symmetric product bundle S%(Ωγ). We have seen in the above that Θ is anti-
holomorphic and θ*a— — a where a is the Kahler form of the Kahler metric g
(a<ΞH+(Y, g)).

Moreover O*β=cβ, c<=C for a certain section β of unit norm of Kγ. Be-
cause θ is involutive, \c\ must be equal to 1.

Since Φ has the following form ([10])

Φ is ^-invariant.
On the other hand, for an Enriques surface Y Kγ is not trivial but Kψ is

trivial as holomorphic bundles. So Kγ does not admit but Kψ admits a global
holomorphic and hence parallel section. This section may be identified with β2.
Thus we have two parallel sections of (Kψ)R the real part Φi=l/2(08+j58)and
the imaginary part Φ2=l/2V=l{β%-β2).

Of course Θ*ΦU Θ*Φ2 are parallel in Γ(Y, (Kf2)R). Since θ*β=cβ with c
of | c | = l , the 2x2 coefficient matrix of Θ*ΦX relative to Φ% has trace zero and
determinant —1 so that this matrix has eigenvalues + 1 , —1. Therefore,
Γ(Y, {Kψ)R) has a 1-dim linear subspace generated by a +l-eigensection. Thus
we see dimff ϊ =dim(JΪ 2 (r)) ί ? =2.

H1 has the dimension άimH1=—(index)+dim H°+dim H2—15.

Therefore, in a quite similar way to the argument given for Theorem 4.2
we get

THEOREM 5.2. The isotopy-Teichmiiller moduli 31{O)(Z) of anti-self-dual con-
formal structures of zero Yamabe invariant, which is isomorphic to the isotopy-
Teichmiiller moduli S(Z) of Ricci flat metrics on Z, admits a 15 dim smooth
manifold structure whose tangent space at each point is modelled by Hl(Y), the
elementwise θ-fixed linear subspace of the first cohomology group Hι(Y) for an
Enriques manifold Y.

Since πί(Z)=Z2xZ2, we can further regard Z as a Z2xZ2-quotient of a
K3 manifold X, Z=X/(σ, θ> where σ, θ are involutive diffeomorphisms of X
satisfying σ°θ = θ°σ.

So, via the covering map X-+Z an arbitrary Ricci flat metric g on Z is
considered as a Ricci flat metric g on X which is <<τ, #>-invariant, i. e., σ*g=
0*g=g and we have a natural map like the Ricci flat Enriques manifold case

g modDiff°(Z) —>g modDiff°(X)

THEOREM 5.3. The map j : ε(Z)~>έ(X) enjoys a totally geodesic embedding
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and the image j(β(Z)) is a fixedpoint set of the isometries induced from the deck

transformations <<τ, 0} in δ(X).

The isometries σ, θ: δ(X)-+δ(X) yield isometries of the Teichmϋller moduli

S{X) and also of the Grassmannian manifold SO(3, 19)/SO(3)xSO(19) such that

the actions of these isometries commute via the period map pe : £(X)—>SO(3, 19)

/SO(3)XSO(19). Thus we obtain Theorem 0.5 in the introduction.
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