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UNICITY THEOREMS FOR ENTIRE FUNCTIONS

By HONG-XUN YI

1. Introduction
For any set S and any meromorphic function f let

ES)= \J, {21 f@)—a=0},

where each zero of f—a with multiplicity m is repeated m times in E(S) (cf.
[1]). It is assumed that the reader is familiar with the standard notations of
Nevanlinna’s theory that can be found, for instance, in [2]. It will be con-
venient to let £ denote any set of finite linear measure on 0<r< oo, not neces-
sarily the same at each occurrence. We denote by S(», f) any qtantity satisfy-
ing S(r, )=0o(T(r, f)) (r—oo, r&E).

R. Nevanlinna proved the following well-known theorem.

THEOREM A (see [3], [4]). Let S;={a;} (=1, 2, 3, 4), where a,, a,, a; and
a, are four distinct complex numbers (a,=co is allowed). Suppose that f and g
are nonconstant meromorphic functions satisfying E (S;)=E.(S,) for 1=1, 2, 3, 4.
Then either f=g, or f is a linear fractional transformation of g, two of the
values, say a, and a,, must Picard values, and the cross ratio (a,, a,, as, a,)=—1.

It is easy to see from Theorem A that there exist three finite sets S,
(y=1, 2, 3) such that any two nonconstant entire functions f and g satisfying
E(S)=E,(S;) for j=1, 2, 3 must be identical. In [5] F. Gross asked the follow-
ing open question (Question 6): Can one find two finite sets S, (j=1, 2) such
that any two nonconstant entire functions f and g satisfying E(S,)=E.S;)
for j=1,2 must be identical? In [5] F. Gross wrote: “The author and S.
Koont have studied pairs of sets, each containing no more than two elements.
In these cases one can probably prove that Question 6 can be answered nega-
tively. If the answer to Question 6 is affirmative, it would be interesting to
know how large both sets would have to be.”

Throughout this paper we shall use w and u to denote the constants
exp(2zxi/n) and exp(2ni/m) respectively, where n and m are positive integers.

In this paper we answer the question posed by F. Gross. In fact, we prove
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more generally the following theorems.

THEOREM 1. Let S,={a+b, a+bw, ---, a+bw™ '}, S,={c}, where n>4, a,
b and c are constants such that b+0, c#a and (c—a)*"#b*". Suppose that f and
g are nonconstant entire functions satisfying E ;(S,)=E,(S;) for j=1,2. Then
f=g.

THEOREM 2. Let S;={a,+b,, a;+byw, -, a;+bw™ '}, So={a,+b.,, a,+b,u,
o, Ay tbou™ ), where n>4, m>4, a,, by, a, and b, are constants such that
bib,#0 and a,+a,. Suppose that f and g are nonconstant entive functions satisfy-
ing Eq(S)=EFE.S;) for j=1,2. Then f=g.

Using Theorem A, we can prove that there exist four finite sets S, (j=
1, 2, 3, 4) such that any two nonconstant meromorphic functions f and g satisfy-
ing E (S;))=E,(S;) for j=1, 2, 3, 4 must be identical. Now it is natural to ask
the following question: Can one find three finite sets S, (j=1, 2, 3) such that
any two nonconstant meromorphic functions f and g satisfying E(S;)=E.(S;)
for j=1, 2, 3 must be identical? In this paper we answer the above question.
In fact, we prove the following theorem which is an extension of Theorem 2.

THEOREM 3. Let S,={a,+b,, a;+bw, -, a;+b,w"*}, Se={a,+b,, a;+b,u,
-, @ytb,u™ ) and Ss={oo}, where n>6, m>6, a,, b, a, and b, are constants
such that b,b,#=0 and a,+a,. Suppose that f and g are nonconstant meromorphic
functions satisfying E (S)=ES;) for j=1,2,3. Then f=g.

2. Some Lemmas

LEMMA 1 (see [3]). Let fi, fo, ==+, fn be linearly independent meromorphic
functions satisfying X27-, f;=1. Then for k=1, 2, -+, n we have
1
fi

~N(r, ) +oTC) B,

T, 1)< SN(r, 7)+ N, fO+NG, D)= SN, £)

where D denotes the Wronskian

fl fz fn

I N

and T(r) denotes the maximum of T(r, f,), =1, 2, -, n.

Using the second fundamental theorem, it is easy to deduce the following
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result which is a special case (#=2) of Lemma 1.

LEMMA 2. Let f and g be two nonconstant meromorphic functions, and let
¢1, ¢; and ¢y be three nonzero constants. If ¢ f+c.g=cs, then

T, <N(r, 5)+8(r, 5 )+ 80, 450, 1.

LEMMA 3 (see [6]). Let fi, f. and fs be three meromorphic functions satisfy-
ing 2;:1 f,:-l, and let g1=—fs/fz, g2=l/f2 and g3=_f1/fz- If f1, foand fs
are linearly independent, then g, g, and g; are linearly independent.

3. Preliminary Theorems

In [7] F. Gross and C.F. Osgood proved the following theorem.

THEOREM B. Let S;={—1, 1}, S,={0}. If f and g are entire functions of
finite order such that E ;(S;)=E(S;) (=1, 2), then f==+g or fg==+1.

The present author [8] and independently G. Brosch [9] proved the follow-
ing result which is an improvement of Theorem B.

THEOREM C. Let S;={—1, 1}, S;={0}, Ss={co}. If f and g are noncons-
tant meromorphic functions such that E(S;)=ES,) (=1, 2, 3), then f=xg or
fg==1

The present author [10] and independently K. Tohge [11] proved the fol-
lowing result which is an extension of the above results.

THEOREM D. Let S,={a+b, a+bw, ---, a+bw™ '}, S;,={a} and S;={},
where n>1, a and b (+0) are constants. If f and g are meromorphic functions
such that E (S;)=E,(S,) (=1, 2, 3), then f—a=t(g—a), where t"=1, or (f—a)
(g—a)=s, where s"=b*".

In this paper we prove the following interesting results which are some
improvements of the above theorems. These results will be needed in the proof
of our theorems.

THEOREM 4. Let S;={a+b, a+bw, ---, a+bw" '}, S;={co}, where n>6, a
and b (#0) are constants. If f and g are meromorphic functions such that E ;(S,)
=FE,(S;) (=1, 2), then f—a=1i(g—a), where t*"=1, or (f—a)(g—a)=s, where a
and o are Picard values of f and g, and s™=b*".

Proof. Let S;={1, w, ---, w™™'}, and let F=(f—a)/b and G=(g—a)/b. By
E(SH=E.S;) (j=1, 2), we obtain E z(S;)=Es(S;) (=2, 3). Then, from Nevan-
linna’s second fundamental theorem, we have
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bS] L G)+S(r, G
(n=DT(r, G)< ZN(7, m)wm )+S(r, G)

=S N(r, = )+N<r F)+S(r, G)

k=0

<(n+1T(r, F)+S(r, G). (1)
Thus
T(r, G)=0(T(r, F)) (r&E). (2)
Again by Ep(S;)=E&S;) (7=2, 3), we obtain
Fr—1=eMG"—-1), (3)

where A is an entire function. From (1) and (3), we have

T(r, e"):T(r, —g:—:l)

<T(r, F»+T(r, G*)+0(l)

n(n-l—l)

<nT(r, F)+ T(r, F)+S@, F).

Thus
T(r, e")=0(T(r, F)) (r&E). (4)

Let us put f,=F", f,=e", fs=—e"G", and T(r) denote the maximum of
T(r, 7, =1, 2,3. From (2), (3) and (4), we obtain

3

2f=1 (5)
and
T(r)=0(T(r, F)) (r&E). (6)

We discuss the following three cases.

a) Suppose neither f, nor f; is a constant.

If f, f» and f, are linearly independent, applying Lemma 1 to functions
f;, (=1, 2, 3), from (5) and (6) we have

T, 19< ZN(r, ) =N(r, )+ N, DI=NGr, F=NG, 9+S0, F), (T)
where
fl fz fs
D=\fi fi fi (8)
1o sal.
We note that
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;N<r, —%}—):nN(r, —%,—)+nN(r, —Cl;—) (9)
and
N(r, %)z nN(r, %)——21\7(7*, —11;)+nN(r, %)——21\7(7’, é) (10)
From (5) and (8) we get
A S
i f\

and hence

N(r, D)=N(r, f)—N(r, f)<N(r, (G")")—N(r, G")

=2N(@, G). (11
From (7), (9), (10) and (11) we deduce
nT(r, F)<21V(r, —;;)—}—ZN(r, ~é‘)+21V(r, G)+S(r, F)
<2T(r, F)+4T(r, G)+S(r, F). (12)

Let gi=—fs/fo=G", g,=1/f,=e" and gs=—fi/f,=—e *F". From (5) we
obtain

3
=Eg,:l.

J=1

By Lemma 3 we know that g;, g, and g, are linearly independent. In the same
manner as above, we have

nT(r, G)<4T(r, F)+2T(r, G)+S(r, F). (13)
Combining (12) and (13) we get
(n—6)T(r, F)+(n—6)T(r, G)S(r, F). (14)

Since n>6, (14) is absurd. Hence f,, f, and f; are linearly dependent. Then,
there exist three constants (c;, ¢,, ¢5)=(0, 0, 0) such that

le1+62f2+03f320. (15)
If ¢,=0, from (15) ¢,#0, ¢;#0 and

__ &
fa= s )2

and hence
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which is impossible. Thus ¢;#0 and

flz_& 2‘——cs—f3~ (16)

¢, c

Now combining (5) and (16) we get

(1= fot(1= 2 =1 (17

¢y Cy

Since neither f, nor f, is a constant, from (17) we have c¢;+¢, and c¢;#¢Cs.
Again from (17) we obtain

(l——-ci)G"-i-e"‘:l—fz—. (18)
Cy 1

By Lemma 2 and (18) we get
nT(r, G><N(r, %)Jrsv, G)

<T(r, G)+S(r, G),

which is again a contradiction.
b) Suppose that f,=c (+0).
If ¢#1, from (5) we have

f1+f3=1_c
that is
Fr—cGr=1—c. (19)

By Lemma 2 we have

nT(r, F><N(r, %)—H\-f(r, —cl;—)—{—ﬁ(r, F)+S(r, F)
L2T(r, F)+T®, G)+S@, F),
and
nT(r, G)<T@, F)+2T(r, G)+S(r, G).
Hence,
(n—3)T(r, F)+(n—3)T(r, G)<S(r, F)+S(r, G),

which is impossible. Thus ¢=1. From (19) we deduce F*"=G" and F=!G,
where t"=1. Thus f—a=#(g—a), where t"=1.

¢) Suppose that fs=c (¢0).

If ¢#1, from (5) we have

fitfe=1—¢
that is
Fri4et=1—c. (20)

By Lemma 2 we have
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nT(r, F)<N(r, %)—{—S(r, F)

<T(r, F)+S(r, F),

which is impossible. Thus ¢=1. From (20) we have F*=—¢", G"=—e¢ " and
F*G"=1. Thus (f—a)(g—a)=s, where a and o are Picard values of f and g,
and s"=b%".

This completes the proof of Theorem 4.

When f and g are nonconstant entire functions, N(r, f)=N(, g)=0. Using
the above result, and proceeding as in the proof of Theorem 4, we can prove
the following theorem.

THEOREM 5. Let S={a+b, a+bw, ---, a+bw™"'}, where n>4, a and b
(3£0) are constants. If f and g are nonconstant entire functions such that E ;(S)
=E,(S), then f—a=t(g—a), where t"=1, or (f—a)g—a)=s, where a is a
Picard value of f and g, and s"=b*".

4. Proof of Theorem 1
By the assumption E;(S,)=F,(S;), we have from Theorem 5

f—a=tg—a), 21)
where t"=1, or
(f—a)g—a)=s, (22)

where a is a Picard value of f and g, and s®=5b%". We discuss the following
two cases.

a) Suppose that f and g satisfy (21).

If ¢ is a Picard value of f, by the assumption E(S,)=F,(S,), we know
that ¢ is a Picard value of g. Again from (21), we know that a+#(c—a) is a
Picard value of f. Since f is an entire function, we have c=a+i(c—a). Thus
t=1, and hence f=g.

If ¢ is not a Picard value of f, then exist z, such that f(z,)=g(z,)=c. By
(21), we obtain c—a=1(c—a). Thus t=1, and hence f=g.

b) Suppose that f and g satisfy (22).

It is easy to see that ¢ is not a Picard value of f. Then exist z, such that
f(z0)=g(zy)=c. By (22), we obtain (c—a)*=s. Thus (¢—a)**=s"=b*", this
contradicts the assumption.

This completes the proof of Theorem 1.

5. Proof of Theorems 2 and 3

5.1. Proof of Theorem 3
By the assumption E(S;)=FE,(S,) (=1, 3), we have from Theorem 4
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f—a,=t(g—ai), (23)
where t,"=1, or
(f—a)(g—ai)=s, (24)

where a, and oo are Picard values of f and g, and s,"=5,%". In the same
manner as above, by the assumption E(S;)=E (S, (j=2, 3), we have

f—az:tz(g’az)r (25)
where #,™=1, or
(f—a.)(g—ay)=s., (26)

where a, and oo are Picard values of f and g, and s,™=b,"".
We discuss the following four cases.
a) Suppose that f and g satisfy (23) and (25). Then

a,—a;=(h—t)g+(t.a.—1a,). 27)

Since g is not a constant, and @, #a,, we have from (27), {,=f,=1. Thus f=g.

b) Suppose that f and g satisfy (23) and (26). Then a, and oo are Picard
values of f and g. From (26), we know that f+#g. Again from (23), we know
that #,#1 and a,+#(a,—a,) is a Picard value of f. Thus a,, a,+6(a,—a,)
and oo are Picard values of f, which is impossible.

¢) Suppose that f and g satisfy (24) and (25). Similar to the case b), we
have again a contradiction.

d) Suppose that f and g satisfy (24) and (26). Then, a,, a, and c are
Picard values of f, which is impossible.

This completes the proof of Theorem 3.

5.2. Proof of Theorem 2
Using Theorem 5, and proceeding as in the proof of Theorem 3, we can

prove Theorem 2.
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