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UNICITY THEOREMS FOR ENTIRE FUNCTIONS

BY HONG-XUN Yl

1. Introduction

For any set 5 and any meromorphic function / let

£/(S)= U {*l/(*)-α=0},
a&S

where each zero of /— a with multiplicity m is repeated m times in Ef(S) (cf.
[1]). It is assumed that the reader is familiar with the standard notations of
Nevanlinna's theory that can be found, for instance, in [2]. It will be con-
venient to let E denote any set of finite linear measure on 0<r<oo, not neces-
sarily the same at each occurrence. We denote by S(r, /) any qtantity satisfy-
ing S(r, /)=0(T(r, /)) (r->oo, r£E\

R. Nevanlinna proved the following well-known theorem.

THEOREM A (see [3], [4]). Let Sj={aj} (/=!, 2, 3, 4), where a l f a2, α3 and
a4 are four distinct complex, numbers (a:=co is allowed). Suppose that f and g
are nonconstant meromorphic functions satisfying Ef(Sj)—Eg(Sj) for .7 = 1, 2, 3, 4.
Then either f—g, or f is a linear fractional transformation of g, two of the
values, say a± and aZ} must Picard values, and the cross ratio ( a ί } az, α3, a*)= — l.

It is easy to see from Theorem A that there exist three finite sets Sj
(/=!, 2, 3) such that any two nonconstant entire functions / and g satisfying
Ef(Sj)=Eg(Sj) for y=l, 2, 3 must be identical. In [5] F. Gross asked the follow-
ing open question (Question 6): Can one find two finite sets S, O'=l, 2) such
that any two nonconstant entire functions / and g satisfying Ef(Sj)=Eg(Sj)
for /=!, 2 must be identical? In [5] F. Gross wrote: "The author and S.
Koont have studied pairs of sets, each containing no more than two elements.
In these cases one can probably prove that Question 6 can be answered nega-
tively. If the answer to Question 6 is affirmative, it would be interesting to
know how large both sets would have to be."

Throughout this paper we shall use w and u to denote the constants
exp(2πι/n) and exp(2τπ/ra) respectively, where n and m are positive integers.

In this paper we answer the question posed by F. Gross. In fact, we prove
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more generally the following theorems.

THEOREM 1. Let S1={a+b, a+bw, •••, a+bw"'1}, Sz={c}, where n>4, a,
b and c are constants such that b^Q, cφa and (c—a)2nφbzn. Suppose that f and
g are nonconstant entire functions satisfying Ef(Sj)—Eg(Sj) for /—I, 2. Then

f=g

THEOREM 2. Let Sι= {fli+fti, fli+ftiu;, •••, aί+b1w
n~1}, S2={a2+b2, a2+b2u,

••• , az+b2u
m~1}, where n>4, m>4, alf blf a2 and b2 are constants such that

bίbzΦQ and a^-pa^ Suppose that f and g are nonconstant entire functions satisfy-
ing Ef(Sj)=Eg(Sj) for /=!, 2. Then f=g.

Using Theorem A, we can prove that there exist four finite sets S, (j—
1, 2, 3, 4) such that any two nonconstant meromorphic functions / and g satisfy-
ing Ef(Sj)=Eg(Sj) for /=!, 2, 3, 4 must be identical. Now it is natural to ask
the following question: Can one find three finite sets S} (/=!, 2, 3) such that
any two nonconstant meromorphic functions / and g satisfying E f(S j)= E g(S j)
for /—I, 2, 3 must be identical? In this paper we answer the above question.
In fact, we prove the following theorem which is an extension of Theorem 2.

THEOREM 3. Let Sl—{al

J

Γbl) a,ι+bιW9 •••, αi+Λi^'1}, S2— {a2+b2, a2+b2u,
•••, a2+b2u

m~1} and S3— {°°}, where n>6, m>6, a l f bl} a2 and b2 are constants
such that bίb2 ^Q and a^a2. Suppose that f and g are nonconstant meromorphic
functions satisfying Ef(Sj)=Eg(Sj) for j— 1, 2, 3. Then f—g.

2. Some Lemmas

LEMMA 1 (see [3]). Let flf f2) ••• , fn be linearly independent meromorphic
functions satisfying ΣjLi/ — 1 Then for k = l, 2, ••• , n we have

T(r, /,)< Σ Λ Γ r , +JV(r, fk}+N(r, D)-

-N(r, -L

where D denotes the Wronskian

Λ

D= f( fί -f'n

Γ-" /ί-1' -/in-

αrarf T(r) denotes the maximum of T(r, f}), j=l, 2, •••, n.

Using the second fundamental theorem, it is easy to deduce the following
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result which is a special case (n— 2) of Lemma 1.

LEMMA 2. Let f and g be two nonconstant meromorphic functions, and let
cίf c2 and cz be three nonzero constants. If Cι/+c2g— c3, then

T(r, f)<N(r, ^)+N(r, ^)+N(r, f)+S(r,

LEMMA 3 (see [6]). Let f1} f2 and /3 be three meromorphic functions satisfy-
ing ΣJ-ι/,=l, and let gι = -fs/fz, #2=l//2 and £8=— /i/Λ // /i, Λ and /3

are linearly independent, then g1} gz and g3 are linearly independent.

3. Preliminary Theorems

In [7] F. Gross and C. F. Osgood proved the following theorem.

THEOREM B. Let Sί={ — 1, 1}, S2— {0}. // / and g are entire functions of
finite order such that E f(S j)= E g(S j) (/=!, 2), then f=±g or fg=±l.

The present author [8] and independently G. Brosch [9] proved the follow-
ing result which is an improvement of Theorem B.

THEOREM C. Let Sί={ — 1, 1}, S2— {0}, S3= {<*>}. // / and g are noncons-
tant meromorphic functions such that E f(S ^)= E g(S ;) (/=!, 2, 3), then f—±g or

fg=±l

The present author [10] and independently K. Tohge [11] proved the fol-
lowing result which is an extension of the above results.

THEOREM D. Let S1={a-{-b) a+bw, •••, a+bw71'1}, S2={a} and S3={oo},
where n>l, a and b (^0) are constants. If f and g are meromorphic functions
such that Ef(Sj)=Eg(Sy) 0 = 1, 2, 3), then f—a=t(g—a), where tn = l, or (/— α)
(g — α)= s, where sn=bzn.

In this paper we prove the following interesting results which are some
improvements of the above theorems. These results will be needed in the proof
of our theorems.

THEOREM 4. Let Sί={a-\-bf a+bw, •••, a+bw71'1}, S2={oo}, where n>6, a
and b (^0) are constants. If f and g are meromorphic functions such that E f ( S 3 )
=Eg(Sj) 0=1, 2), then f-a=ί(g-a), where tn=l, or (f—ά)(g—a)=s, where a
and oo are Picard values of f and g, and sn—bzn.

Proof. Let S8={1, w9 -, wn-1}, and let F=(f-a)/b and G=(g-a)/b. By
Ef(Sj)=Eg(Sj) 0=1, 2), we obtain EF(Sj)=Eβ(Sj) (j=2, 3). Then, from Nevan-
linna's second fundamental theorem, we have
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(n-l)T(r, , G)+S(r, G)

, F)+S(r, G)

Thus
<(n+l)T(r, F)+S(r, G).

T(r, G)=0(T(r, F))

Again by EF(SJ)=E0(SJ) (;=2, 3), we obtain

F»-l=β*(G"-l),

where A is an entire function. From (1) and (3), we have

rin/ -h \ rT(r, eΛ)=.

(1)

( 2 )

(3)

r, Fn)+ T(r, Gn)+0(l)

<nT(r, F)+ n(njh1) T(r, F)+S(r, F).

Thus

r, eh)=0(T(r, F)) (4)

Let us put /i— F71, fz=eh, fz— — eflGn

) and T(r) denote the maximum of
T(r, /,-), j = l, 2, 3. From (2), (3) and (4), we obtain

and

, F))

(5)

(6)

We discuss the following three cases.
a) Suppose neither /2 nor /3 is a constant.
If /i, Λ and /s are linearly independent, applying Lemma 1 to functions

, (/=!, 2, 3), from (5) and (6) we have

T(r,

where

£>=

/i /, /a

fί f ί f ί

f'( f'ί f'l

, F), ( 7 )

(8)

We note that
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(9)

and

From (5) and (8) we get

f ί f ί
D=

and hence

N(r, D}-N(r, f2)-N(r, fz}^N(r, (Gn}")-N(r, Gn)

=2N(r,G). (11)

From (7), (9), (10) and (11) we deduce

nT(r, F)<2Λf(r, ^)+2JΫ(r, -i-)+2Λf(r, G)+S(r, F)

<2T(r, F)+4Γ(r, G)+S(r, F). (12)

Let gι = -fιlfι=Gn, g2=l/f2=e~h and ^s=-/1//2=-0-ΛFn. From (5) we
obtain

By Lemma 3 we know that gίt gz and g3 are linearly independent. In the same
manner as above, we have

nT(r, G)<4T(r, F)+2Γ(r, G)+S(r, F). (13)

Combining (12) and (13) we get

(n-6)T(r, F)+(n-6)T(r, G)<S(r, F). (14)

Since n>6, (14) is absurd. Hence flf fz and /8 are linearly dependent. Then,
there exist three constants (ci, c2) c3)^(0, 0, 0) such that

^1/1 + ^2/2 + ^3/3 = 0. (15)

If cι=0, from (15) c2^0, Cs^O and

y ^2 /•

and hence
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which is impossible. Thus dΦΰ and

Λ = — £-/,--£-/,. (16)
Cι LI

Now combining (5) and (16) we get

Since neither /2 nor /3 is a constant, from (17) we have Cι^cz and
Again from (17) we obtain

n+e-h=l--. (18)
Cι / Ci

By Lemma 2 and (18) we get

nT(r, G)<Jv(r, 4~)+S(r> G)

<T(r, G)+S(r, G),

which is again a contradiction.
b) Suppose that /2— c (^0).
If c--£l, from (5) we have

/ι+/.=l-c
that is

Fn-cGn=l-c. (19)

By Lemma 2 we have

nT(r, F)<ΛTr, +^r, - + ^ ( r > ^)+^(r, F)

<2T(r, F)+T(r, G)+S(r, F),
and

nT(r, G)<T(r, F)+2T(r, G)+S(r, G).
Hence,

(n-3)T(r, F)+(n-3)T(r, G)<S(r, F)+S(r, G),

which is impossible. Thus c=l. From (19) we deduce Fn—Gn and F—tG,
where ίn = l. Thus f—a=t(g—a), where ιfn=l.

c) Suppose that /3— c (c^O).
If cφl, from (5) we have

fl+ft=l-c

that is
Fn + g^=l-c. (20)

By Lemma 2 we have



UNICITY THEOREMS FOR ENTIRE FUNCTIONS 139

nT(r, F)<N(r, -p)+S(r, F)

<T(r, F)+S(r, F),

which is impossible. Thus c—1. From (20) we have Fn=—eh, Gn— — e~h ana
FnGn=l. Thus (f—α)(g—ά)=s, where a and oo are Picard values of / and g,
and sn=*2n.

This completes the proof of Theorem 4.
When / and g are nonconstant entire functions, N(r, f)=N(r, g)=0. Using

the above result, and proceeding as in the proof of Theorem 4, we can prove
the following theorem.

THEOREM 5. Let S— (α+b, α+bw, •••, α+bw"'1}, where n>4, α and b
(=^=0) are constants. If f and g are nonconstant entire functions such that Ef(S)
=Eg(S), then f—a—t(g—a)y where tn—l, or (f—a)(g—a)=s, where a is a
Picard value of f and g, and sn—bzn.

4. Proof of Theorem 1

By the assumption Ef(Sι)=Eg(Sι')f we have from Theorem 5

f-a = t(g-a), (21)
where ίn=l, or

where α is a Picard value of / and g, and sn=b2n. We discuss the following
two cases.

a) Suppose that / and g satisfy (21).
If c is a Picard value of /, by the assumption Ef(S2)=^Eg(S2)) we know

that c is a Picard value of g. Again from (21), we know that a-{-t(c—a] is a
Picard value of /. Since / is an entire function, we have c—a+t(c—α). Thus
ί=l, and hence f=g.

If c is not a Picard value of /, then exist z0 such that f(z0)=g(zϋ)=c. By
(21), we obtain c—a=t(c—a). Thus ί=l, and hence f=g.

b) Suppose that / and g satisfy (22).
It is easy to see that c is not a Picard value of /. Then exist ZQ such that

f(Zo)=g(zQ)=c. By (22), we obtain (c-a)2=s. Thus (c-a)2n=sn=b2n, this
contradicts the assumption.

This completes the proof of Theorem 1.

5. Proof of Theorems 2 and 3

5.1. Proof of Theorem 3
By the assumption Ef(Sj)=Eg(Sj) (j=l, 3), we have from Theorem 4
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/-fli^te-βi), (23)
where tιn— 1, or

(/-flι)te-βι)=sι, (24)

where GI and oo are Picard values of / and g, and sιn=bιzn. In the same
manner as above, by the assumption Ef(Sj)—Eg(Sj) (j=2, 3), we have

/-fl.=fste-fli), (25)
where tz

m = l, or

α»)=S2, (26)

where α2 and oo are Picard values of / and g, and s2

m=b2

2m.
We discuss the following four cases.
a) Suppose that / and g satisfy (23) and (25). Then

α2-α1=(ί1-ί2)g+(ί2fl2-ίιαι) . (27)

Since g is not a constant, and a1^a2) we have from (27), ^=^=1. Thus f—g.
b) Suppose that / and g satisfy (23) and (26). Then α 2 and oo are Picard

values of / and g. From (26), we know that f-£g. Again from (23), we know
that tiφl and α1+ίι(α2— αj is a Picard value of /. Thus α2, α14 /ι(α2— fli)
and oo are Picard values of /, which is impossible.

c) Suppose that / and g satisfy (24) and (25). Similar to the case b), we
have again a contradiction.

d) Suppose that / and g satisfy (24) and (26). Then, aίt az and oo are
Picard values of /, which is impossible.

This completes the proof of Theorem 3.

5.2. Proof of Theorem 2
Using Theorem 5, and proceeding as in the proof of Theorem 3, we can

prove Theorem 2.
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