UNICITY THEOREMS FOR ENTIRE FUNCTIONS

By Hong-Xun Yi

1. Introduction

For any set S and any meromorphic function f let

$$
E_{f}(S)=\bigcup_{\alpha \in S}\{z \mid f(z)-a=0\},
$$

where each zero of $f-a$ with multiplicity m is repeated m times in $E_{f}(S)$ (cf. [1]). It is assumed that the reader is familiar with the standard notations of Nevanlinna's theory that can be found, for instance, in [2]. It will be convenient to let E denote any set of finite linear measure on $0<r<\infty$, not necessarily the same at each occurrence. We denote by $S(r, f)$ any qtantity satisfying $S(r, f)=o(T(r, f))(r \rightarrow \infty, r \notin E)$.
R. Nevanlinna proved the following well-known theorem.

Theorem A (see [3], [4]). Let $S_{j}=\left\{a_{j}\right\}(j=1,2,3,4)$, where a_{1}, a_{2}, a_{3} and a_{4} are four distinct complex numbers $\left(a_{J}=\infty\right.$ is allowed). Suppose that f and g are nonconstant meromorphic functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $\jmath=1,2,3,4$. Then either $f=g$, or f is a linear fractional transformation of g, two of the values, say a_{1} and a_{2}, must Picard values, and the cross ratio $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=-1$.

It is easy to see from Theorem A that there exist three finite sets S, ($j=1,2,3$) such that any two nonconstant entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$ must be identical. In [5] F. Gross asked the following open question (Question 6): Can one find two finite sets $S,(j=1,2)$ such that any two nonconstant entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$ must be identical? In [5] F. Gross wrote: "The author and S. Koont have studied pairs of sets, each containing no more than two elements. In these cases one can probably prove that Question 6 can be answered negatively. If the answer to Question 6 is affirmative, it would be interesting to know how large both sets would have to be."

Throughout this paper we shall use w and u to denote the constants $\exp (2 \pi i / n)$ and $\exp (2 \pi i / m)$ respectively, where n and m are positive integers.

In this paper we answer the question posed by F. Gross. In fact, we prove

[^0]more generally the following theorems.
Theorem 1. Let $S_{1}=\left\{a+b, a+b w, \cdots, a+b w^{n-1}\right\}, S_{2}=\{c\}$, where $n>4, a$, b and c are constants such that $b \neq 0, c \neq a$ and $(c-a)^{2 n} \neq b^{2 n}$. Suppose that f and g are nonconstant entire functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1$, 2. Then $f=g$.

ThEOREM 2. Let $S_{1}=\left\{a_{1}+b_{1}, a_{1}+b_{1} w, \cdots, a_{1}+b_{1} w^{n-1}\right\}, S_{2}=\left\{a_{2}+b_{2}, a_{2}+b_{2} u\right.$, $\left.\cdots, a_{2}+b_{2} u^{m-1}\right\}$, where $n>4, m>4, a_{1}, b_{1}, a_{2}$ and b_{2} are constants such that $b_{1} b_{2} \neq 0$ and $a_{1} \neq a_{2}$. Suppose that f and g are nonconstant entire functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$. Then $f=g$.

Using Theorem A, we can prove that there exist four finite sets $S,(j=$ $1,2,3,4)$ such that any two nonconstant meromorphic functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3,4$ must be identical. Now it is natural to ask the following question: Can one find three finite sets $S_{j}(j=1,2,3)$ such that any two nonconstant meromorphic functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$ must be identical? In this paper we answer the above question. In fact, we prove the following theorem which is an extension of Theorem 2.

Theorem 3. Let $S_{1}=\left\{a_{1}+b_{1}, a_{1}+b_{1} w, \cdots, a_{1}+b_{1} w^{n-1}\right\}, S_{2}=\left\{a_{2}+b_{2}, a_{2}+b_{2} u\right.$, $\left.\cdots, a_{2}+b_{2} u^{m-1}\right\}$ and $S_{3}=\{\infty\}$, where $n>6, m>6, a_{1}, b_{1}, a_{2}$ and b_{2} are constants such that $b_{1} b_{2} \neq 0$ and $a_{1} \neq a_{2}$. Suppose that f and g are nonconstant meromorphic functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$. Then $f=g$.

2. Some Lemmas

Lemma 1 (see [3]). Let $f_{1}, f_{2}, \cdots, f_{n}$ be linearly independent meromorphic functions satisfying $\sum_{j=1}^{n} f_{j}=1$. Then for $k=1,2, \cdots, n$ we have

$$
\begin{aligned}
T\left(r, f_{k}\right)< & \sum_{j=1}^{n} N\left(r, \frac{1}{f_{j}}\right)+N\left(r, f_{k}\right)+N(r, D)-\sum_{j=1}^{n} N\left(r, f_{j}\right) \\
& -N\left(r, \frac{1}{D}\right)+o(T(r)) \quad(r \notin E)
\end{aligned}
$$

where D denotes the Wronskian

$$
D=\left|\begin{array}{lll}
f_{1} & f_{2} & \cdots f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots f_{n}^{\prime} \\
\cdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots f_{n}^{(n-1)}
\end{array}\right|
$$

and $T(r)$ denotes the maximum of $T\left(r, f_{j}\right), j=1,2, \cdots, n$.
Using the second fundamental theorem, it is easy to deduce the following
result which is a special case ($n=2$) of Lemma 1.
Lemma 2. Let f and g be two nonconstant meromorphic functions, and let c_{1}, c_{2} and c_{3} be three nonzero constants. If $c_{1} f+c_{2} g=c_{3}$, then

$$
T(r, f)<\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}(r, f)+S(r, f)
$$

Lemma 3 (see [6]). Let f_{1}, f_{2} and f_{3} be three meromorphic functions satisfying $\sum_{j=1}^{3} f_{j}=1$, and let $g_{1}=-f_{3} / f_{2}, g_{2}=1 / f_{2}$ and $g_{3}=-f_{1} / f_{2}$. If f_{1}, f_{2} and f_{3} are linearly independent, then g_{1}, g_{2} and g_{3} are linearly independent.

3. Preliminary Theorems

In [7] F. Gross and C. F. Osgood proved the following theorem.
Theorem B. Let $S_{1}=\{-1,1\}, S_{2}=\{0\}$. If f and g are entrre functions of finite order such that $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)(j=1,2)$, then $f= \pm g$ or $f g= \pm 1$.

The present author [8] and independently G. Brosch [9] proved the following result which is an improvement of Theorem B.

Theorem C. Let $S_{1}=\{-1,1\}, S_{2}=\{0\}, S_{3}=\{\infty\}$. If f and g are nonconstant meromorphic functıons such that $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)(j=1,2,3)$, then $f= \pm g$ or $f g= \pm 1$.

The present author [10] and independently K. Tohge [11] proved the following result which is an extension of the above results.

Theorem D. Let $S_{1}=\left\{a+b, a+b w, \cdots, a+b w^{n-1}\right\}, S_{2}=\{a\}$ and $S_{3}=\{\infty\}$, where $n>1, a$ and $b(\neq 0)$ are constants. If f and g are meromorphic functions such that $E_{f}\left(S_{j}\right)=E_{g}\left(S_{\jmath}\right)(\jmath=1,2,3)$, then $f-a=t(g-a)$, where $t^{n}=1$, or $(f-a)$ $(g-a)=s$, where $s^{n}=b^{2 n}$.

In this paper we prove the following interesting results which are some improvements of the above theorems. These results will be needed in the proof of our theorems.

ThEOREM 4. Let $S_{1}=\left\{a+b, a+b w, \cdots, a+b w^{n-1}\right\}, S_{2}=\{\infty\}$, where $n>6, a$ and $b(\neq 0)$ are constants. If f and g are meromorphic functions such that $E_{f}\left(S_{j}\right)$ $=E_{g}\left(S_{j}\right)(j=1,2)$, then $f-a=t(g-a)$, where $t^{n}=1$, or $(f-a)(g-a)=s$, where a and ∞ are Picard values of f and g, and $s^{n}=b^{2 n}$.

Proof. Let $S_{3}=\left\{1, w, \cdots, w^{n-1}\right\}$, and let $F=(f-a) / b$ and $G=(g-a) / b$. By $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)(j=1,2)$, we obtain $E_{F}\left(S_{j}\right)=E_{G}\left(S_{j}\right)(\jmath=2,3)$. Then, from Nevanlinna's second fundamental theorem, we have

$$
\begin{align*}
(n-1) T(r, G) & <\sum_{k=0}^{n-1} N\left(r, \frac{1}{G-w^{k}}\right)+N(r, G)+S(r, G) \\
& =\sum_{k=0}^{n-1} N\left(r, \frac{1}{F-w^{k}}\right)+N(r, F)+S(r, G) \\
& <(n+1) T(r, F)+S(r, G) \tag{1}
\end{align*}
$$

Thus

$$
\begin{equation*}
T(r, G)=O(T(r, F)) \quad(r \notin E) . \tag{2}
\end{equation*}
$$

Again by $E_{F}\left(S_{j}\right)=E_{G}\left(S_{j}\right)(j=2,3)$, we obtain

$$
\begin{equation*}
F^{n}-1=e^{n}\left(G^{n}-1\right), \tag{3}
\end{equation*}
$$

where h is an entire function. From (1) and (3), we have

$$
\begin{aligned}
T\left(r, e^{h}\right) & =T\left(r, \frac{F^{n}-1}{G^{n}-1}\right) \\
& <T\left(r, F^{n}\right)+T\left(r, G^{n}\right)+O(1) \\
& <n T(r, F)+\frac{n(n+1)}{n-1} T(r, F)+S(r, F) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
T\left(r, e^{h}\right)=O(T(r, F)) \quad(r \notin E) \tag{4}
\end{equation*}
$$

Let us put $f_{1}=F^{n}, f_{2}=e^{h}, f_{\mathbf{3}}=-e^{h} G^{n}$, and $T(r)$ denote the maximum of $T\left(r, f_{j}\right), j=1,2,3$. From (2), (3) and (4), we obtain

$$
\begin{equation*}
\sum_{j=1}^{3} f_{j}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r)=O(T(r, F)) \quad(r \notin E) \tag{6}
\end{equation*}
$$

We discuss the following three cases.
a) Suppose neither f_{2} nor f_{3} is a constant.

If f_{1}, f_{2} and f_{3} are linearly independent, applying Lemma 1 to functions $f_{j}(j=1,2,3)$, from (5) and (6) we have

$$
\begin{equation*}
T\left(r, f_{1}\right)<\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)-N\left(r, \frac{1}{D}\right)+N(r, D)-N\left(r, f_{2}\right)-N\left(r, f_{3}\right)+S(r, F) \tag{7}
\end{equation*}
$$

where

$$
D=\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \tag{8}\\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right|
$$

We note that

$$
\begin{equation*}
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)=n N\left(r, \frac{1}{F}\right)+n N\left(r, \frac{1}{G}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{D}\right) \geqq n N\left(r, \frac{1}{F}\right)-2 \bar{N}\left(r, \frac{1}{F}\right)+n N\left(r, \frac{1}{G}\right)-2 \bar{N}\left(r, \frac{1}{G}\right) . \tag{10}
\end{equation*}
$$

From (5) and (8) we get

$$
D=\left|\begin{array}{ll}
f_{2}^{\prime} & f_{3}^{\prime} \\
f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right|
$$

and hence

$$
\begin{align*}
N(r, D)-N\left(r, f_{2}\right)-N\left(r, f_{3}\right) & \leqq N\left(r,\left(G^{n}\right)^{\prime \prime}\right)-N\left(r, G^{n}\right) \\
& =2 \bar{N}(r, G) . \tag{11}
\end{align*}
$$

From (7), (9), (10) and (11) we deduce

$$
\begin{align*}
n T(r, F) & <2 \bar{N}\left(r, \frac{1}{F}\right)+2 \bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}(r, G)+S(r, F) \\
& <2 T(r, F)+4 T(r, G)+S(r, F) \tag{12}
\end{align*}
$$

Let $g_{1}=-f_{3} / f_{2}=G^{n}, g_{2}=1 / f_{2}=e^{-h}$ and $g_{3}=-f_{1} / f_{2}=-e^{-h} F^{n}$. From (5) we obtain

$$
\sum_{j=1}^{3} g_{j}=1
$$

By Lemma 3 we know that g_{1}, g_{2} and g_{3} are linearly independent. In the same manner as above, we have

$$
\begin{equation*}
n T(r, G)<4 T(r, F)+2 T(r, G)+S(r, F) \tag{13}
\end{equation*}
$$

Combining (12) and (13) we get

$$
\begin{equation*}
(n-6) T(r, F)+(n-6) T(r, G)<S(r, F) \tag{14}
\end{equation*}
$$

Since $n>6$, (14) is absurd. Hence f_{1}, f_{2} and f_{3} are linearly dependent. Then, there exist three constants $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$ such that

$$
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}=0 \tag{15}
\end{equation*}
$$

If $c_{1}=0$, from (15) $c_{2} \neq 0, c_{3} \neq 0$ and

$$
f_{3}=-\frac{c_{2}}{c_{3}} f_{2}
$$

and hence

$$
G^{n}=\frac{c_{2}}{c_{3}},
$$

which is impossible. Thus $c_{1} \neq 0$ and

$$
\begin{equation*}
f_{1}=-\frac{c_{2}}{c_{1}} f_{2}-\frac{c_{3}}{c_{1}} f_{3} \tag{16}
\end{equation*}
$$

Now combining (5) and (16) we get

$$
\begin{equation*}
\left(1-\frac{c_{2}}{c_{1}}\right) f_{2}+\left(1-\frac{c_{3}}{c_{1}}\right) f_{3}=1 \tag{17}
\end{equation*}
$$

Since neither f_{2} nor f_{3} is a constant, from (17) we have $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$. Again from (17) we obtain

$$
\begin{equation*}
\left(1-\frac{c_{3}}{c_{1}}\right) G^{n}+e^{-h}=1-\frac{c_{2}}{c_{1}} \tag{18}
\end{equation*}
$$

By Lemma 2 and (18) we get

$$
\begin{aligned}
n T(r, G) & <\bar{N}\left(r, \frac{1}{G}\right)+S(r, G) \\
& <T(r, G)+S(r, G)
\end{aligned}
$$

which is again a contradiction.
b) Suppose that $f_{2}=c(\neq 0)$.

If $c \neq 1$, from (5) we have
that is

$$
\begin{equation*}
f_{1}+f_{3}=1-c \tag{19}
\end{equation*}
$$

$F^{n}-c G^{n}=1-c$.
By Lemma 2 we have

$$
\begin{aligned}
n T(r, F) & <\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+S(r, F) \\
& <2 T(r, F)+T(r, G)+S(r, F)
\end{aligned}
$$

and

$$
n T(r, G)<T(r, F)+2 T(r, G)+S(r, G)
$$

Hence,

$$
(n-3) T(r, F)+(n-3) T(r, G)<S(r, F)+S(r, G)
$$

which is impossible. Thus $c=1$. From (19) we deduce $F^{n}=G^{n}$ and $F=t G$, where $t^{n}=1$. Thus $f-a=t(g-a)$, where $t^{n}=1$.
c) Suppose that $f_{3}=c \quad(c \neq 0)$.

If $c \neq 1$, from (5) we have

$$
f_{1}+f_{2}=1-c
$$

that is

$$
\begin{equation*}
F^{n}+e^{h}=1-c . \tag{20}
\end{equation*}
$$

By Lemma 2 we have

$$
\begin{aligned}
n T(r, F) & <\bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \\
& <T(r, F)+S(r, F)
\end{aligned}
$$

which is impossible. Thus $c=1$. From (20) we have $F^{n}=-e^{h}, G^{n}=-e^{-h}$ and $F^{n} G^{n}=1$. Thus $(f-a)(g-a)=s$, where a and ∞ are Picard values of f and g, and $s^{n}=b^{2 n}$.

This completes the proof of Theorem 4.
When f and g are nonconstant entire functions, $N(r, f)=N(r, g)=0$. Using the above result, and proceeding as in the proof of Theorem 4, we can prove the following theorem.

Theorem 5. Let $S=\left\{a+b, a+b w, \cdots, a+b w^{n-1}\right\}$, where $n>4$, a and b $(\neq 0)$ are constants. If f and g are nonconstant entire functions such that $E_{f}(S)$ $=E_{g}(S)$, then $f-a=t(g-a)$, where $t^{n}=1$, or $(f-a)(g-a)=s$, where a is a Picard value of f and g, and $s^{n}=b^{2 n}$.

4. Proof of Theorem 1

By the assumption $E_{f}\left(S_{1}\right)=E_{g}\left(S_{1}\right)$, we have from Theorem 5

$$
\begin{equation*}
f-a=t(g-a), \tag{21}
\end{equation*}
$$

where $t^{n}=1$, or

$$
\begin{equation*}
(f-a)(g-a)=s \tag{22}
\end{equation*}
$$

where a is a Picard value of f and g, and $s^{n}=b^{2 n}$. We discuss the following two cases.
a) Suppose that f and g satisfy (21).

If c is a Picard value of f, by the assumption $E_{f}\left(S_{2}\right)=E_{g}\left(S_{2}\right)$, we know that c is a Picard value of g. Again from (21), we know that $a+t(c-a)$ is a Picard value of f. Since f is an entire function, we have $c=a+t(c-a)$. Thus $t=1$, and hence $f=g$.

If c is not a Picard value of f, then exist z_{0} such that $f\left(z_{0}\right)=g\left(z_{0}\right)=c$. By (21), we obtain $c-a=t(c-a)$. Thus $t=1$, and hence $f=g$.
b) Suppose that f and g satisfy (22).

It is easy to see that c is not a Picard value of f. Then exist z_{0} such that $f\left(z_{0}\right)=g\left(z_{0}\right)=c$. By (22), we obtain $(c-a)^{2}=s$. Thus $(c-a)^{2 n}=s^{n}=b^{2 n}$, this contradicts the assumption.

This completes the proof of Theorem 1.

5. Proof of Theorems 2 and 3

5.1. Proof of Theorem 3

By the assumption $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)(j=1,3)$, we have from Theorem 4

$$
\begin{equation*}
f-a_{1}=t_{1}\left(g-a_{1}\right), \tag{23}
\end{equation*}
$$

where $t_{1}{ }^{n}=1$, or

$$
\begin{equation*}
\left(f-a_{1}\right)\left(g-a_{1}\right)=s_{1}, \tag{24}
\end{equation*}
$$

where a_{1} and ∞ are Picard values of f and g, and $s_{1}{ }^{n}=b_{1}{ }^{2 n}$. In the same manner as above, by the assumption $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)(j=2,3)$, we have

$$
\begin{equation*}
f-a_{2}=t_{2}\left(g-a_{2}\right), \tag{25}
\end{equation*}
$$

where $t_{2}{ }^{m}=1$, or

$$
\begin{equation*}
\left(f-a_{2}\right)\left(g-a_{2}\right)=s_{2}, \tag{26}
\end{equation*}
$$

where a_{2} and ∞ are Picard values of f and g, and $s_{2}{ }^{m}=b_{2}{ }^{2 m}$.
We discuss the following four cases.
a) Suppose that f and g satisfy (23) and (25). Then

$$
\begin{equation*}
a_{2}-a_{1}=\left(t_{1}-t_{2}\right) g+\left(t_{2} a_{2}-t_{1} a_{1}\right) . \tag{27}
\end{equation*}
$$

Since g is not a constant, and $a_{1} \neq a_{2}$, we have from (27), $t_{1}=t_{2}=1$. Thus $f=g$.
b) Suppose that f and g satisfy (23) and (26). Then a_{2} and ∞ are Picard values of f and g. From (26), we know that $f \neq g$. Again from (23), we know that $t_{1} \neq 1$ and $a_{1}+t_{1}\left(a_{2}-a_{1}\right)$ is a Picard value of f. Thus $a_{2}, a_{1}+t_{1}\left(a_{2}-a_{1}\right)$ and ∞ are Picard values of f, which is impossible.
c) Suppose that f and g satisfy (24) and (25). Similar to the case b), we have again a contradiction.
d) Suppose that f and g satisfy (24) and (26). Then, a_{1}, a_{2} and ∞ are Picard values of f, which is impossible.

This completes the proof of Theorem 3.

5.2. Proof of Theorem 2

Using Theorem 5, and proceeding as in the proof of Theorem 3, we can prove Theorem 2.

Acknowledgement. I am grateful to the referee for valuable comments.

References

[1] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc., 131 (1968), 199-214.
[2] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] R. Nevanlinna, Le Théorèms de Picard-Borel et la Théorie des Fonctions Méromorphes, Gauthier-Villars, Paris, 1929.
[4] G.G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc., 277 (1983), 545-567.
[5] F. Gross, Factorization of meromorphic functions and some open problems, Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Ky. 1976), Lecture Notes in Math., vol. 599, Springer, Berlin, 1977, pp. 51-69.
[6] Hong-Xun Yi, Meromorphic functions that share two or three values, Kodai Math. J., vol. 13 no. 3 (1990), 363-372.
[7] F. Gross and C. F. Osgood, Entire functions with common premages, Factorization Theory of Meromorphic Functions, Marcel Dekker, 1982, 19-24.
[8] Hong-Xun Yi, Meromorphic functions with common preimages, J. of Math. (PRC), 7 (1987), 219-224.
[9] G. Brosch, Eindeutigkeitssätze für meromorphe Funktionen, Thesis, Technical University of Aachen, 1989.
[10] Hong-Xun Yi, On the uniqueness of meromorphic functions, Acta Math. Sin., 31 (1988), 570-576.
[11] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J., 11 (1988), 249-279.

Department of Mathematics
Shandong University
Jinan, Shandong, 250100
People's Republic of China

[^0]: Project supported by the National Natural Science Fundation of PRC.
 Received April 14, 1993 ; revised July 13, 1993.

