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EQUIVALENCE OF EULERIAN AND LAGRANGIAN

WEAK SOLUTIONS OF THE COMPRESSIBLE EULER

EQUATION WITH SPHERICAL SYMMETRY

BY KIYOSHI MIZOHATA

1. Introduction

One of the typical equations in fluid mechanics is the compressible Euler
equation which describes the inviscid motion of^an isentropic gas. The com-
pressible Euler equation with an external force / in Rn is the (w-f-l)x(w + l)
system of conservation laws,

(1.1)

»

(ρut)t+ --(pu.Uj+δtjP^pf,, (ί=l, 2, •••, n)

where p is the density, #='(2/1, u2, •••, un) is the velocity, P is the scalar
pressure with dtj the Kronecker delta and f ( t , x ) = l ( f l f /2, •••, f n ) is the ex-
ternal force. For an isentropic gas P satisfies

(1.2) P=αy,

where α>0 and γ^l are given constants.
Let us consider the initial and boundary value problem for (1.1) in fϊ>0,

x<^Ωc:Rn with the following conditions.

(1.3) u(Q, x)=UQ(x), p(Q, x ) = p 0 ( x ) ,

(1.4) ϊ2 n^0 if xtΞdΩ,

where n is the unit vector normal to the boundary.
u(t, x) and p(t, x) are called weak solutions of (1.1), (1.3) and (1.4) if uτ, p

<EΞL°°((0, T)χβ) (/=!, 2, -, n), fat, ^)eL}oc((0, T)xfl) (ί = l, 2, -, w) and if
they satisfy the following n + 1 integral identities
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( Γ Γ Γ n Γ\ \ pφt+ *ΣpUjώXidxdt-{-\ p0(x)φ(Q, x)dx=Q,
J Q J Ω j=ι } JΩ

+ \QpMuoi(x)φt(09 x)dx=Q, (ι = l, 2, »., n)

for any T>0 and for any test functions 0eC"([0, T)xΩ) and ̂ eC~([0, T)xfl)

Generally speaking, no global weak solution of (1.1) has been known to
exist for the case n^2. In [3], we have presented global weak solutions in
Lagrangian coordinate with spherical symmetry first for the case n^2. How-
ever, it is not obvious that this result also implies the existence of global
weak solutions of (1.1). If solutions in Lagrangian coordinate are smooth func-
tions, we can show that u and p deduced from these solutions satisfy (1.1) by
using the chain rule. But if solutions are weak solutions, we must be more
careful. In this paper we shall prove that weak solutions in Lagrangian
coordinate are weak solutions in Eulerian coordinate at least they are spherically
symmetric and that vice versa. Instead of using the chain rule, we use the
fact that the Lagrangian transformation is a bi-Lipschitz homeomorphism to
prove that (u, p) is also weak solution of (1.1). This is the main idea of
Wagner [4]. He has showed the equivalence for the Cauchy problem in one
space dimension. In this paper we shall give the detailed proof of this equi-
valence for the more general case.

ASSUMPTION. / is supposed to be spherically symmetric, that is, there
exists a scalar function / such that

(1.6) ^t = ~ΠifΓ ̂ ' | ;c |) (ί<=1' 2' '"' n)

We look for the solutions with spherical symmetry, say, of the form

(1.7) Ui(t, *)=-pyw(f, \x\) (ί = l, 2, . . - , n}, p(t, x)=β(t, x \ ) 9

with the initial condition

(1.8) z/i(0, x)=——MO(!*|) (*=l/2, •••, n), ρ(Q, x ) = β 0 ( \ x \ ) .

Hereafter, we put Ω— {x x\ >Λ} with A>Q since we only deal with the solu-
tions with spherical symmetry. Then, denoting

(1.9) r=\x\, p = βrn-1,

(1.1), (1.3) and (1.4) become
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(1.10)

(1.11)

(1.12)

ft-1

w(0, r)=wo(r), p(Q, r ) = p 0 ( r ) ,

We call M and |0 weak solutions of (1.10), (1.11) and (1.12) if they satisfy

—0 for any

(1.13) { \Λ\^puφt+(pu2+Prn'1)ψr+(^^

\ po(r)u0(r)ψ(Qf r)dr=Q for any ^eC~([0, T)X(A,
JA

Denote Γ the Lagrangian transformation defined by

(1.14) Γ:(t,r)—>(f, £), ξ

0, T)χ[A oo)),

Suppose that /Ms a homeomorphism. Put

/ 1 -j r \ •*>• ~ j~i-1 — — Λ

p p , ^,

Then (1.10), (1.11) and (1.12) become,

(1.16) 1
(n-D(r- l ) <re-D ( -i)

'=A+\(ϋ(t,ζ)dζ,
Jo

where

(1.17)

(1.19) δ(ί, 0)=0.

We call ΰ and v weak solutions of (1.16), (1.18; and (1.19) if they satisfy

;=0 for any ^eC~([0, T)x[0,

f=0 for any 0, T)x(0,
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We now state our main result.

THEOREM 1.1. (Main result) Suppose that ΰ(t, ξ) and v(t, ξ) are weak solu-
tions of (1.16) satisfying

ΰ, ί><ΞΞL°°((0, T)X(0, oo)),
(1-21)

Q<δι£v(t, ξ)^Mlf \U(t, f)|^M2 a.e. in (0, T)X(0, oo).

Then ύ(t, x) and ρ(t, x) deduced from ϋ(t, ξ) and v(t, ξ) by using (1.7), (1.9), (1.15)
and (1.17) are weak solutions of (1.1) with spherical symmetry.

Conversely, if ύ(t, x) and p(t, x) are weak solutions of (1.1) with spherical
symmetry satisfying

n

(Q, T)xΩ) (ί=l, 2, .-, n),

(1.22) * M

then ΰ(t, ξ) and v(t, ξ) deduced from ύ(t, x) and p(t, x) by using (1.7), (1.9), (1.14)
and (1.15) are also weak solutions of (1.16).

The proof of this Theorem 1.1 consists of two steps. First, we shall prove
the "equivalence of weak solutions of (1.1) and (1.10)". Let us define the mean-
ing of "equivalence" precisely. We first show that if ύ(t, x) and p(t, x} are
weak solutions of (1.1) with spherical symmetry, then u(t, r) and p(t, r), defined
by (1.7) and (1.9), are weak solutions of (1.10). Next, we shall show that if
u(t, r) and p(t, r) are weak solutions of (1.10), then u(t, x) and p(t, x) defined
by (1.7) and (1.9) are weak solutions of (1.1). In this case we call that there
exists the equivalence of weak solutions of (1.1) and (1.10). We shall prove
this equivalence in section 2. In the second step we shall prove the equivalence
of weak solutions of (1.10) and (1.16), and this completes the proof of our main
result. The proof of this equivalence will be given in section 3.

In [2], we have obtained global weak solutions for (1.16) for the case f =1,
A— I and /=0 first for the case n^2.

THEOREM 1.2. ([2], Theorem 4.2) Let γ=l, Λ=l and /=0. Suppose that
initial data ΰ0(ξ) and £„(£) are bounded variation and that £o(?)^<5o>0 with some
positive constant dQ. Then Lagrangian equations (1.16) admit a global weak solu-
tion which satisfy

ΰ,V<EΞL"((Q, T)X(0, oo)),
(1.23)

\ΰ(t, ξ)\^M" a.e. in (0, T)χ(0, oo),

for any T>0.

Applying Theorem 1.1 to this result, we can say that global weak solutions



COMPRESSIBLE EULER EQUATION 73

of (1.1) are constructed.

COROLLARY 1.3. Suppose that f=Q, γ=l and Ω— {x \x\>l}. Let u0(x),
PO(X) be spherically symmetric and satisfy

(1.24) u0(x)\^M0, -r-^^pM^-r^r a.e.mΩ,
\ X I I X I

with <50>0 and M0, MQ<OO. T/zgn ί/i£Γ£ g.mί global weak solutions of (1.1).

This is the first result of the existence of global solutions of (1.1) for n^2.

Remark. In [3], we have obtained global weak solutions for (1.16) for the
case γ=l, A=l, n—3 and f= — M/r2. This corresponds to the model of an
isothermal gas around a star with radius 1 and mass M. The similar results
apparently hold for this case.

2. The equivalence of weak solutions of (1.1) and (1.10)

To show the equivalence of weak solutions of (1.1) and (1.10), we must
prove the following theorem.

THEOREM 2.1. Suppose that ύ(t, x)=t(ul(t) x), u2(t, x), ••-, un(t, x)) and p(t, x)
are weak solutions of (1.1) with spherical symmetry. Then ύ(t, r) and p(t, r)
defined by (1.7) and (1.9) are also weak solutions of (1.10). Conversely, if u(t, r)
and p(t, r) are weak solutions of (1.10), u(t, x) and ρ(t, x) defined by (1.7) and
(1.9) are also weak solutions of (1.1).

Proof. First we shall show that weak solutions of (1.1) with spherical
symmetry are weak solutions of (1.10). Suppose that u(t, x) and p(t, x) are
weak solutions of (1.1) with spherical symmetry. For any test function φ(t, r)
and f ( t , r), we put φ(t, x)=φ(t, \x ) and φt(tt x ) = x l / \ x \ ψ ( t , \x\). Then they
are also test functions. Thus the first equation of (1.5) becomes

(2.1)

If we put p — βrn~l

f (2.1) is the same equation as the first equation of (1.13).
The 2-th integral identity of the second equations of (1.5) becomes

= -
JA

On the other hand,
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xtx v d xt ~\

(2.3)

(2ί4) _ v-in/ 1*1-(*!/!*!) r

Summing (2.2) from ι — \ to w and using (2.3) and (2.4), we can derive the second
equation of (1.13). Thus we can conclude that ύ(t, r) and p(t, r) are weak solu-
tions of (1.10). This completes the first part of Theorem 2.1.

Next we shall prove the second part. Suppose that u(t, r) and p(t, r) are
weak solutions of (1.10). If we put β = p/rn~l, the first identity of (1.13) becomes

(2.5) prn-lφt + prn-luφrdrdt+ p0(r)rn-lφ(Q, r)dr=Q

for any

Let ιii(t, x) and |0(f, x) defined by (1.7), and for any test functions φ(t, r) and
ψ(t, r) we put

~ x
(2.6) φ(t, x)=φ(t, \ x \ ) , ψi(t, x}—-~-rφ(t, \ x \ ) .

Then (2.5) becomes

CTC n Γ

(2.7) \ \ /o0ί+ ^jpUjox.dxdt-\-\ po(x)φ(Q, x)dx—0>JojΩ j-ι J JΩ

for any test function ^eC^([0, T)xΩ) with spherical symmetry. Now we must
prove that (2.7) also holds for any test function 0eC^([0, T)χΩ). To show it,
we use the symmetry of ύ and p. It is enough to show the next Lemma.

LEMMA 2.2. Let g(t, *)eL°°((0, T)xfl) be spherically symmetric and satisfies

(2.8) Γf g(t, x)φ(t, x)dxdt=Q
Jo JΩ

for any test function ψ(t, z)eC"((0, T)xΩ) with spherical symmetry. Then (2.8)
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holds for any test function which is not necessarily spherically symmetric.

Proof. Put g(t, x)=g(t, x \ ) . If φ(t, x)=φ(t, \x\) is a test function with
spherical symmetry, we get, from (2.8),

(2.9) (TΓg(t, r)$(f, r)rn-1drdt=Q.

On the other hand, for any test function φ(t, ;e)eC~((0, T)xΩ) which is not
necessarily spherically symmetric,

\ng(t,
JΩ

, rω)dωrn~ldrdt

(2.10) f Γ f T O f

= \ \ g(t, r)\ φ(t, rώ)dωrn~ldrdt (by Fubini's Theorem)
JO JA J S71-1

= ίΓΓ^ft ΓW^ r)rn~ldrdt (φ(tt r)=f ώ(ί, rω)^)
J 0 J^l \ J571"1 /

-o,

since φ(t, r) is a test function. This completes the proof of Lemma 2.2. Π

Using Lemma 2.2, we can show that (2.7) holds for any test functions. We
also can prove that uτ and p satisfy the second part of (1.5) similarly. Thus
we obtain Theorem 2.1. Π

3. The equivalence of weak solutions of (1.10) and (1.16)

The following theorem describes that weak solutions of (1.16) are weak
solutions of (1.10).

THEOREM 3.1. Suppose that ΰ(t, ξ) and v(t, f) are weak solutions of (1.16)
satisfying

(0, T)x(0, oo)),
(3.1)

U(t, ί)|^M2 a.e. in (0, T)XfO,

Then u(t, r) and p(t, r) defined by (1.15) and (1.17) are weak solutions of (1.10).

Proof. For the sake of simplicity, we restrict ourselves to the case γ — l.
Suppose that ΰ(t, ξ) and v(t, ξ) are weak solutions of (1.16). That is, they satisfy
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(3.2)

They also satisfy

(3.3) (Kβ^iK

Put β = l / v . Then from (3,3),

(3.4) o<Ί^- l̂δ(ί, f)^4-
MI di

Now (3.2) becomes

(3.5)

a.e. in (0, T)x(0,

^M2 a.e. in (0, T)x(0,

S TΓ°°/ fJZ(M — 1) -\

( 7Γ~Γ +f)φdξdt.
°JΛ^+ ^^rfc ;

- - n -
o jθ(ί, 0

Put r=A+\ ~^τ—?r^C and denote by J the mapping (£, ί)—>(ί, r), namely,
Jo £(£, ζ)

(3.6) ^(ί, £)=», r).

We shall show that yl is a bi-Lipschitz homeomorphism. Let us calculate the
distribution derivatives of Λ. For ^eC£((0, T)x(0, oo)),

H'ίΓKJIiέ = (ΓΓf { _ i
J o j o j o p(t,

p(t, S)
φΛξdsdt (by Fubini's theorem)

Thus we obtain

(3.7)
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Next we calculate rt.

<rt, φy=-(r, φ t y

S r p o o / rξ I \ cτro=rξ 1
U + -Έ7Γ^ds)φtdξdt=-\ -^±

o j o \ Jo β(t, S) / r J o j o j o β(t,

S
TVoo 1 Λoo

Λ.Wϊ*\ f'(

*'(t s)dsdt

77

^-β(t, s)

= -{TΓΰφ9dsdt+Γ-=^-rφ(Ot s)ds (from (3.
Jo Jo τ Jo pQ(S)

= ( Γΰφdsdt=<u, φ y .
Jo Jo

5))

Thus we obtain

(3.8) Ίr = δ

Therefore we have r^Wl>0° from (3.4). Now we shall show the following
Lemma.

LEMMA 3.2. Let Ω be an open convex subset of Rn. Then

\uε(x)—uε(y)\ =

Proof. Suppose Qr is a compact domain in Ω and satisfies dist(dΩ, SΩ')^
ε0>0. Let u<E.Wl'°°(Ω). Put uε—^ε*w(0<ε^ε0) where p£ is a mollifier. Then

(3.9)

Moreover,

(3.10)

From (3.9) and (3.10) and by using Ascoli-Arzela's theorem, there exists a sub-
sequence of {uε} which converges to u uniformly on Ω'. So u is Lipschitz
continuous. On the other hand, us(x) converges to u in L[oc(Ωf) as ε^O. Then
it follows that u — u on Ω'. Since ε0 is an arbitrary small positive number
and the estimates of (3.9) and (3.10) are independent of ε0, u is Lipschitz con-
tinuous in Ω. D
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From Lemma 3.2, r is Lipschitz continuous with respect to ξ and t. Thus
we obtain that A is Lipschitz continuous. Moreover, an easy calculation shows
that A is a homeomorphism by (3.4). Next we shall show that Γ (inverse of
A) is Lipschitz continuous. Due to (3.7) and (3.8), we get

t-t'(*-*
Vr-r '

dtfΛ*-*'
(3.11) / I 0 χ / t_tf .

•-£' /'

t, £)+(!-

Using (3.4), we obtain

(3.12) \ξ-ξ

From (3.12), it follows that Γ is also Lipschitz continuous. The following
Lemma plays an important role in this section.

LEMMA 3.3. Let X, Y be measurable subsets of Rn and P be a mapping
from X onto Y. If P is Lipschiz continuous, J P (Jacobian) is defined a.e..
Moreover, if Pis bi-Lipschitz homeomorphism and satisfies \JP ^δ a.e. for
some d>0, then we have, for any u(x)^L\Rn),

(3.13)

For the proof, see [1].
Note that ΰ and v also satisfy (3.2) for Lipschitz test functions ψ and ψ

instead of smooth test functions. We can prove it by using the mollifier.
Consider an inhomogeneous partial differential equation

(3.14)

in (0, T)χ(0, oo ) with initial condition F(0, £)=F0(f). It's weak form is written as

(3.15) ^{"Fφt + Gφξ+Hφdξdt+ΓFoφφφ, ξ)dξ=Q.
Jo Jo Jo

Using Lemma 3.3 and (3.7), (3.15) becomes

(3.16)

Put φ—φ°Γ, F=F°Γ, p — β°Γ, etc. Since Γ is a bi-Lipschitz homeomorphism,
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the map φ-^φ—φ°Γ is a bijection on the set of Lipschitz test functions. This
idea is due to D. H. Wagner [3]. We then obtain, using (3.8),

(3.17) Fpφt+(G + puF)φr+Hpφdrdt+ 0(r)F0(r)^(0, r)dr=0.
J o J A J A

Let us substitute the first equation of (3.5). (i.e. F — l/β, G — — ΰ, //=0) Then
we get a trivial equation. To get a equation for the conservation of mass,
we put F=l, G=0 and /7=0. Then we get

(3.18) (T(°° pφt + puψrdrdt+Γ p0(J o J A J A

Similarly if we substitute the second equation of (3.5), using Lipschitz test
function ψ instead of φ, (i.e. F = ΰ, G = a2β and H = a2(n — l)/r+/),

T

(3.19)

+ Γ<δo(r)Mo(r)£(0, r)dr=0.

Recalling that P=a*β = a2p/rn~l, we obtain

(3.20) o A r

0, r)dr=0.
J A

Thus we have shown that u and p are weak solutions of (1.10). D

Next we shall show that the converse is also true.

THEOREM 3.4. Suppose that ύ(t, r) and p(t, r) are weak solutions of (1.10)
satisfying

u, pe=L°°((Q, T)x(A, oo)),
(3.21)

|^M4 α. e. m (0, T)x(Λ oo).

(ί, f) and v(t, ξ) defined by (1.14) and (1.15) ar# a/s<9 weak solutions of
(1.16).

Proof. We also restrict ourselves to the case γ=l for the sake of sim-
plicity. This proof is similar to above arguments. So we only give the outline
of the proof. Suppose that u(t, r) and p(t, r) are weak solutions of (1.10).
Then we can show

(1 99\ 3ί - 3<? -Λ(3.22) = p, - = -pu.
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The similar computation shows that Γ in (1.14) is bi-Lipschitz and homeomor-
phic and that u(t, ξ) and v(t, £) deduced from u(t, r) and p(t, r) by using (1.14)
and (1.15) satisfy

(3.23,

LEMMA 3.5.

(3.24)

m f/i£ Distribution sense.

Proof.

(ί, ζ)

=A \TΓφ(t, ξ)dtdξ+[TΓ\~ φ(t, Odζdrdt
Jo Jo Γ Jo JyίJί( ί .r)

(by Fubini's theorem)

o Jo
ί, Q-A)φ(t, Qdζdt

= < r ( t , ξ ) , φ ( t , ξ ) > .

This implies (3.24). Π

From (3.23) and Lemma 3.5, we can conclude that they are also weak solu-
tions of (1.16). Thus we obtain Theorem 3.4. D

Combining Theorem 2.1, Theorem 3.1 and Theorem 3.4, we obtain our
main result.
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