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§ 1. Introduction.

Let R be an open Riemann surface. Let M(R) be the family of non-constant
meromorphic functions on R. Let P(f) be the number of values which are not
taken by / G M ( / ? ) . The Picard constant P(R) of R is defined by

P(R)=sup{P(f); /eM(fl)}

Then we have P(R)^2. The significance of the Picard constant is in the fol-
lowing fact: // P(R)<P(S), then there is no non-constant analytic mapping of
R into S (Ozawa [5]).

Let R be the ultrahyperelliptic surface defined by

(1.1) / = G ( s ) ,

where G is an entire function having an infinite number of simple zeros and
no other zeros. For the class of this surfaces we have P(R)<k from the value
distribution theory of two-valued algebroid functions.

We now consider a characterization of ultrahyperelliptic surfaces in terms
of the Picard constant. We first have

THEOREM A (Ozawa [6]). P(/?)=4, if and only if there is a non-constant
entire function H (//(0)=0), an entire function F and constants γ and δ such that
G in (1.1) satisfies

(1.2) F(z)2G(z)=(eH<z)-rXeH™-δ), γδ(γ-δ)Φθ.

When P(R)=3 we have

THEOREM B (Hiromi-Ozawa [1]). // P(R)=3, then there are two non-constant
entire functions H and L (i/(0)— L(0)=0), an entire function F and non-zero con-
stants βι and β2 such that G in (1.1) satisfies
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(1.3) F{zfG{z)

Conversely, if G satisfies (1.3), then the ultrahyperelliptic surface R defined
by (1.1) is of

It is quite difficult to determine all ultrahyperelliptic surfaces with P(i?)=3
and we have not perfectly succeed in it yet. However we have following:

THEOREM C (Ozawa [7]). Let R be the ultrahyperelliptic surface defined by
(1.1) with G satisfying (1.3). // H and L are polynomials, then P(R)=3 with
following four exceptional cases: ( i ) H—L) (ii) H—2L, 16βi=β 2

2 ; (ϊή)2H=L,
β]*=l6β2; (iv) H= — L, 16j8ij82=l. In these exceptional cases we have P(/?)=4.

From this theorem we conjecture that Theorem C is also true when H and
L in (1.3) are transcendental.

In this paper we shall prove the following:

THEOREM. Let R be the ultrahyperelliptic surfaces defined by (1.1) with G
satisfying (1.3). // H and L in (1.3) are transcendental entire functions such
that 7/(0)=L(0)=0 and

(1.4) L{z)=λH{z)+K(z),

where λ is a rational number and K is an entire function satisfying

(1.5) m{χ, eκ)—oiχn{r, eH)), r-> oo,

outside a set of finite measure, then P(/?)=3 with following four exceptional
cases: ( i ) H=L; (ii) H=2L, 16β1=β2

2; (iii) 2H=L, /3i2=16β2; (iv) H=-L,
I6βιβ2=l. In these exceptional cases we have P(i?)=4.

Remark. Hiromi-Ozawa [1] proved this theorem when Λ=0 in (1.4).

We assume that the reader is familiar with the Nevanlinna theory of mero-
morphic functions and the usual notations such as T(r, f), N{r, a, /), Nι(r, a, f),
m{χ, f) etc. (see e. g. [2]).

§ 2. Lemmas.

Here we state Lemmas needed in the proofs of our Theorem and Proposition.

LEMMA A ([1]). Let au •••, an be meromorphic functions and H a non-
constant entire function. Suppose that

Tix, aμ)=oiχniχ, e11)) (r-> oo) μ=l} ... t n
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hold outside a set of finite measure. Then the equation

cannot hold unless a±= ••• = an=0.

L E M M A B ([4]). Let aμ,v (μ, v=0, 1, •••, m) be meromorphic functions and

H and M two non-constant entire functions such that

m(r, eH)^m{r, eM) and T(r, aμ,v)=o(m(r, eH)) (r^oo)

hold for μ, v=0, 1, ••• , m, outside a set of r of finite measure. Further suppose

that

( I ) // flfflι7n(2)ίθ, then αTO,o(z) = α o , m (z)=O and m(r, eII+M)=o(m(r, eH))(r->

oo) outside a set of r of finite measure.

(II) // av>v(z)=0 O = 0 , 1, •••, m—1) and amι0^0 or ao,m^O, then am.m(z)

=0 and m(r, eH~M)=o(m(r, eH)) (r->oo) outside a set of r of finite measure.

Let N2{r, 0, /) be the counting function of simple zeros of the indicated

function /. We can deduce from Nevanlinna's second fundamental theorem

that

LEMMA C (cf. [6]). Let H be a non-constant entire function and a (^ΞO) a

meromorphic function satisfying

T(r, a)=o(m(r, eH)) (r -> oo)

outside a set of r of finite measure. Then we have

N2(r,0,eπ-a)^m(r,eH) and N^r, 0, eH-a)=o(m{ry e11)) (r-»oo)

outside a set of finite measure.

From Lemma 4 and Lemma 5 in [3] and Lemma C we can deduce

L E M M A D. Let H and a3{j — l, •••, μ) be entire functions satisfying

m(r, aj)=o(m(r, eH)) (r->oo) J = lf . . . , μ

outside a set of finite measure. If the discriminant of the equation

Qμ(x):=x*ι + a1(z)χr-ι+ ••• +aμ(z)=0

is not identically zero, then we have

(2.1) N2(r, 0, Qμ{eH)) - μm{r, eH) and N x(r, 0, Qμ(eH))=o(m(r, eH)) (r->oo)
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outside a set of finite measure.

We can easily deduce

LEMMA E. The discriminant D of the algebraic equation P{x):—xVJrax-{-b
—0, where a and b are non-zero constants, is

Further, if D is zero, then the discriminant of the equation Q(x)—0 is not zero,
where

)={x + pb/(p-l)a\*Q(x).

LEMMA F. The discriminant D of the algebraic equation P(x):=xq+a xq~ljt
—0, where a and b are non-zero constants, is

Further, if D is zero, then the discriminant of the equation Q(x)—0 is not zero,
where

P{x)={x+{q-l)a/qVQ{x).

LEMMA G. Let p and q be coprime integers satisfying p>q>l. The alge-
braic equation

(2.2) x* + ax*+b=Q (abΦO)

has a multiple root a, if and only if

Do :=(p-qy-<ιqqav+(-iγ-ιplί)bv-(l^.

Then a is only one double root and satisfies

ap~q=-aq/p and aq=-bp/a(p-q).

We here note that DQ is equal to the discriminant of the algebraic equation
(2.2) modulo a non-zero.

§ 3. Proposition.

PROPOSITION. Let H and M be non-constant entire functions with H(0)=
M(0)=0 and aμ (μ=0, 1, •••, 2p) entire functions satisfying ao^O, a2p^0 and

(3.1) m{χ, aμ)^o(m(r, eH)) (r-><χ>) j=0f 1, ..., 2p,

outside a set of finite measure, where p is a positive integer. Further we assume
that

(3.2) g(z):=Σaμ(z)e"*™
0
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satisfies

(3.3) N2(r, 0, g) - 2pm(r, e11) and N^r, 0, g)=o(m(r, eH)) (r->oo)

outside a set of finite measure. If the identity

(3.4) f(z)\epMw-r) (epM<z)-δ)=g(z),

holds with a suitable meromorphic function f and two suitable constants γ and δ
satisfying Ίfδ(γ—δ)Φθ, then we have

ap=- a2p(γ+δ)ep<H+M>/γ
(3.5)

flίp.1= ••• ~ap+ι = ap^
or

flp=-α,p(r+3)β1><J7-Jf),
(3.6)

Proof. It follows from Lemma C that

r, 0, (ep*-r)(epM-δ))~2pm(rf eM),

rf 0, (eP J f-r)(e p l ί-δ))

outside a set of finite measure. Hence, considering simple zeros and multiple
zeros of the both sides of (3.4), from (3.1), (3.2), (3.3), (3.4) and the reasoning
of [4, p. 298] we can deduce that

m(r, eM) ~ m(r, eH),
(3.7) (r-*oo)

T(r, /)=O(m(r, eH)\ T(r, f'/f)=o(m(r, eH))

outside a set of finite measure. Differentiating both sides of (3.4) and using
(3.2) and (3.4) we obtain

(3.8) Σ bμ,v(z)et'Hw+i'M™=0,
μ, v=0

where b2p>2p = (2f'/f+2pM')a2p-(a2p'+2pa2pH')f b2p>0 = ϊδ(2a2pf'/f-a2p'-
2pa2pH

f), b0t2p — (2f'/f+2pM')a0 — a0' and the others bμ>v are meromorphic
functions. It is clear from (3.7) and our assumption (3.1) that

T(r, bμ,v)=o(m(r, eΉ)) (r^oo) for μ, j , = 0 , 1, •••, 2p

outside a set of finite measure. We apply Lemma B to the identity (3.8).
Suppose that b2p,2pΞ£0. Then (I) of Lemma B yields bip,o=bQ,2p=0 and

(3.9) mix, eH+M)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Hence we have f(z)2—ca2p{z)e2vHw =
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dao(z)e~2pMiz) with non-zero constants c and d. Substituting these relations
into (3.4) and using (3.2) we have

Hence it follows from Lemma A and (3.9) that

(l-cγδ)a2p=0, a2p^= •» = ap+1=0, ap+c(γ+δ)a2pe
p<H+M>=0,

Thus we have (3.5) because of a2p^0.
Next suppose that b2p,2p=0. Then we have f(z)*=ca2p(z)e2p<HW-MW) with

a non-zero constant c and so (3.4) reduces to

(3.10) Σ cμ,v(z)eμHW+vMw=0,
μ, v=Q

where c2Pt2p—(l—c)a2Pf c2p-i f2p-i= =c 1 , 1 =Co,o=0, c2p<0= — cγδa2p, cOι2p=bo and
the others ^ > r , are entire functions satisfying

7\r, cμ,v)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Since c2p>0^0 and cO ) 2 p^0, (II) of Lemma B
implies (1 — c)a2p^0 and

(3.11) m{r, eH-M)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Hence, since a2p^0 so c = l , the identity (3.10)
further reduces to

••• +ap+1e<p+ίnIί-M)ecp+1)M

Therefore it follows from (3.11) and Lemma A that

Hence we have (3.6).
Thus the proof of our Proposition is complete.
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§ 4. Proof of Theorem.

It is sufficient to consider only the cases only the cases λ=0 and |Λ |^1 in
(1.4).

Eight main cases are to be considered.
(A) If Λ=0 in (1.4), then our assumption (1.5) and Theorem C in Hiromi-

Ozawa [1] imply P(R)=3.
(B) Assume that λ=l in (1.4). Then (1.3) reduces to

(4.1) g(z):=F(zγG(z)=(βι-β2e
κ^γe2H^-i-2(βί+β2e

κ^)eH^ + l.

If ifΞΞconst., then we have K=0 and so H=L, because of J7(0)=L(0)=0
in (1.4), and (4.1) reduces to

i i / 2 ) - 1 ) , if β,=β2,
and

g=F*G=(β1-βtγ(eH-riXeH-r2), if βiΦβ*.

where ri=-(/V/2+/32

1/2)7(/3i-β2)
2 and r^-(β^^β^γ/(β^βtγm Hence it

follows from Theorem A that P(R)=4:. So this case corresponds the excep-
tional case (i).

If K^ const., then βi—β2e
κ^0. The discriminant of the equation Q(x):

=(βι-βieκ™)*x*+2(βί+βie
κ™)x + l=0 is 16fi&eK™m and g(z)=Q(eH™) by

(4.1). Hence Lemma D yields

(4.2) N2(r, 0, g) ~ 2m(r, eH) and N&, 0, g)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Now assume P(7^)—4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function / and constants γ and δ such that

(4.3) f(z)\eMW-γ)(eMw-S)=g(z), Af(O)=O, γδ(γ-δ)Φθ.

Here, since (1.5) and (4.2) hold, we can apply our Proposition to the identity
(4.3) with (4.1). Put (4.1) into g(z)=at(z)e2HW + aί(<z)eHW + a(i(z). Then Pro-
position implies that

or

that is,

or
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This is a contradiction, because the function βι—β2e
κ<iz) has simple zeros since

K=fc const..
Thus we have showed that if K^ const., then P(R)Φ4 and hence, by

Theorem B, P(R)=3.
(C) Assume that λ=2 in (1.4). Then (1.3) is

(4.4) g:=F2G=β2

2e2KeiH-2β1β2e
κeSH+(βι

2-2β2e
κ)e2H-2β1e

H+l.

If K= const, and βί

2=16β2f then K=0, so L = 2 # and (4.4) reduces to

Hence we have

and so theorem A implies P(/?) = 4. This case corresponds the exceptional
case (iii).

If K^ const, or βι2φl6β2> then (4.4) is rewritten as follows:

(4.5) g{z)=β2

where

Since K^ const, or βί

2φl6β2, none of the discriminants of equations gj(x)=0
(/=1, •••,4) vanish and these equations have no common algebroid solution.
Hence the discriminant of the equation g*(x)=0 is not identically zero, where
g*(x)=gι(x) -" gtix), and so (4.5) and Lemma D imply

(4.6) N2{r, 0, g)~4m(r, eH) and 7Vx(r, 0, g)=o(m(r, eH))

outside a set of finite measure. Now assume P(R)=4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function / and two constants γ and δ such that

f(z)\e2M^-γXe2M^-δ)=g(z), AΓ(0)=0, r3(r-3)^0.

Then it follows from (1.5), (4.5), (4.6) and our Proposition that the coefficients
of eZH and eH in (4.4) must be identically zero, that is,
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which contradicts βiΦO.
Thus we have showed that if K^ const, or βγ

2Φl§βly then P(R)ΦA.
(D) Assume that Λ = - l in (1.5). Then (1.3) is

(4.7) g:=F*Ge2H=βι

2e4H-2β1e
3H+a-2βίβ2e

κ)e2H-2β2e
κeH+β22e2K.

If K~ const, and l β β ^ ^ l , then K=0 and so L = -H, and if follows
from (4.7) that

Hence Theorem A implies P(R) = 4. This case corresponds the exceptional
case (iv).

If KΞ£ const, or Iββiβ 2 ^l, then (4.7) is rewritten as follows:

(4.8)

where

g,{x)=x2-βι-
ι'2x-{β2/βiy'2eκι2,

Since K^ const, or 16βiβ2=£l, none of the discriminants of equations gj(x)=Q
0 = 1 , -- ,4) vanish and these equations have no common algebroid solution.
Hence the discriminant of the equation g*(x)=0 is not identically zero, where
g*(x)=g1(x)- g4(x), and so (4.8) and Lemma D imply

(4.9) N2(r, 0, g)~4m(r, eH) and N^r, 0, g)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Now assume P(R)=4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function / and two constants y and δ such that

f(z)\e*Mw-γ)(e*Mw-δ)=g(z), Λf(O)=O, γδ(γ-δ)Φθ.

Then it follows from (1.5), (4.8), (4.9) and our Proposition that the coefficient
—2j8i of eZH in (4.7) must be identically zero, which contradicts βχφθ.

Thus we have showed that if KΞ£ const, or lββφtΦl, then P(R)Φ4.
(E) Assume that λ=p is an integer and p>2 in (1.4). Then (1.3) is

(4.10) g: = F2G=β2

2e2Ke2pH-2β1β2e
κe'p+^H~2β2e

κepH-{-β1

2e2H-2βιe
H+l

^βSe^g

where
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Suppose that KΈ£ const, or (£-l) 2 p - 2

i 3i p Φ p2pβz. Then it follows from
Lemma E that none of the discriminants of equations gj(x)=0 (/=1, - ,4)
vanish. Hence, since these equations have no common algebroid solution, (4.10)
and Lemma D imply

(4.11) N2(r, 0, g) ~ 2pm(r, eH) and N^r, 0, g)=o(m(r, eH)) (r^oo)

outside a set of finite measure. Since the coefficient of eCP+1)Hct) in (4.10) is
—2βίβ2e

κ<iz), which is not identically zero, our Proposition and Theorem A
imply that P(R)Φ± if ifξέconst. or (p-ϊ)*p-*βιpφp*pβ2.

Next we suppose that A"=const. and (p-l)2p~2β1

p=p2pβ2. Then it follows
from Lemma E that two of discriminants Ώ3 of equations gj(x)=0 O'=l, •••, 4)
are zero and the others are not zero. For example, D1=Ds=0 and D2=±D4Φ0
if (p-l)p-1βι

p/2=ppβ2

1/2 and p is even. Then (4.10) reduces to

and so we have

(4.12) {F(z)β%-\eHW-a)-VG(z)=g0(eH

where a=p2/βι(p-l)2 and

go(y):=y*p-*+2aytp-*+ ••• +{p-l)ap~2yp

where au •••, αp_i are suitable constants. It follows from Lemma E that the
discriminant of equation ^0(3;)=0 is not zero. So Lemma D implies

N2(r, 0, go(eH))~(2p-2)m(r, eH),

Ni(r, 0, go(eH))=o(m(r, eH)) (r-^oo)

outside a set of finite measure. Since 2/>-3 > p-1 and the coefficient of

ec2P-3)#c*) i n g^eHw) i s 2a, which is not zero, it follows from (4.12), Theorem
A and our Proposition that P(R)*4t if KΞΞconst. and (p—l)tp~2β1

p=p2pβt.
Thus we have proved that P(R)φ4 if λ is an integer greater than 2.
(F) Assume that λ=—#+1 is an integer and λ<—l, that is, q>2 in (1.4).

Then from (1.3) we have
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(4.13) g:

where

Suppose that K3= const, or q2qβι

q-1β2φ(q-l)2q-2. Then it follows from
Lemma F that none of the discriminants of equations gj(x)=Q (/=1, •••, 4)
vanish. Hence, since these equations have no common algebroid solution, from
Lemma D we have

N2(r,0, g)~2qm(r,eH) and N&, 0, g)=o(m(r, eH)) (r->oo)

outside a set of finite measure. Further the coefficient of ec9q~l)HW in (4.13)
is — 2βif which is not zero. Hence we have P(R)φ4 from our Proposotion and
Theorem A.

Next we suppose that A"—const, and q2qβ1

q-χβ2=(q—l)2q-2. Then it follows
from Lemma F that two of discriminants D3 of equations gj(x)=0 (; = 1, •••, 4)
are zero and the others are not zero. For example, D2=D4—0 and DΆ=±
Φθ if (fβ^-l)ι2β2

ι'2={q-iγ-1 and q is even. Then (4.13) reduces to

and so we have

(4.14) {F{z)e'q-l)

where β=(q-l)2/q2βί and

go(y) :=y2q-2-(2(2q-

where au •••, a2q.4 are suitable constants. It follows from Lemma F that the
discriminant of equation go(y)=Q is not zero. So Lemma D implies

N2{r, 0, go(eH))~(2q-2)m(r, eH),

N^r, 0, go(e*))=o(m(r, eH)) (r-oo)

outside a set of finite measure. Further 2q—3>q—l and the coefficient of

m go(gffc«>) i s ^2(2q—l)/β1q
2, which is not zero. Hence we have
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Thus we have showed that P{R)Φi if λ is an integer less than —1.
(G) Assume that λ is a rational number greater than one in (1.4) and is

not an integer. We put λ—p/q, where p and q(q>l) are coprime integer
Then (1.3) is

(4.15) g:=F2G=β2

2e2Ke4pS-2β1β2e
κe2'

-2β2e
κe2pS-2βιe

2qSΛ-l

where S(z)=H(z)/2q and

Suppose that #Ξ£const. or (p-qf^-^q^β^Φp^β^. Then it follows from
Lemma G that none of the discriminants of equations gj(x)=0(j=l, •••, 4)
vanish. Hence, since these equations have no common algebroid solution, (4.15)
and Lemma D imply

(4.16) JV8(r, 0, g) ~ 4pm(r, es) and N&, 0, g)=o(m(r, es)) (r->oo)

outside a set of finite measure. Hence it follows from our Proposition and
Theorem A that P(R)Φ4, because the coefficient of e

2cp+q)S^ in (4.15) is
—2β1β2e

Kcz), which is not identically zero.
Next we suppose that ifΞΞconst. and (p-qf^-vq^β^^p^βf.
Further, if q—p—l, that is, p—#+l>2, then the argument in the case (F)

is applicable to this case. So we can deduce that P(R)φ4 in this case.
If p>q+l, then 4p—2>2p+2q and it follows from Lemma G that two of

discriminants D3 of equations gj(x)=0(j=lt •••, 4) are identically zero and the
others are not identically zero. (4.15) reduces to

g=F*G=βι*{e*s-{a+β)e8+aβ)*gϋ(e8)

and so we have

(4.17) {F(z)βι-\e%8w-

where α and β satisfy one of the following six cases:
(a) if p is even, q is odd and D1=DB^=0f then

βq=- Pip-
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(b) if p is even, q is odd and D2=D4=0, then

βp~q= - Pq-\βJβ*)ιl\ βq= - PiP-gT'β^2,

(c) if p is odd, q is even and D^Dz—Q, then

(d) if p is odd, # is even and DZ=D4=O, then

«*-«= Pq-\βJβ*)ι'\ a«= - p(p-

β*-*= - pq-\βjβ%γ'\ jS«= - p{p

(e) if /> is odd, ^ is odd and Dί=D4=0> then

(f) if /> is odd, q is odd and D2=Dz=0, then

and

where a4p-7, •••, a0 are suitable constants. It follows from Lemma G that the
discriminant of equation gQ(y)=0 is not identically zero. So Lemma D implies

N2(r, 0, go(e 5))-(4/)-4)m(r, es),

N\(r, 0, g0(e8))=o(m(r, es)) (r->oo)

outside a set of finite measure. Further 4p—6>2p—2 and the coefficients of
e^P-vscz) a n d g(4p-β)5(«) i n gfasw) are -2(α+j8) and ( α - ^ ) 2 , respectively,
which are not simultaneously zero, because aφQ and /3^0. Hence we have
also P(R)Φ4.

(H) Assume that λ is a rational number less than —1 in (1.4) and is not
an integer. We can put λ=—q/(p—q), where p and q are coprime integer
such that 2q.>p>q+l>l. Then from (1.3) we have

(4.18) ^ ^ ( F ^ G ^ V ^ ^ ^

=βitgi(e8)gt(e8)g*(es)g<(e8),
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where S(z)=H{z)/2{p-q) and

Therefore the same argument in the case (G) leads to P(R)ΦA in this case.

Thus the proof of our Theorem is complete.
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