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§1. Introduction.

Let R be an open Riemann surface. Let M (R) be the family of non-constant
meromorphic functions on R. Let P(f) be the number of values which are not
taken by f<=M(R). The Picard constant P(R) of R is defined by

P(R)=sup{P(f); fe M(R)}

Then we have P(R)=2. The significance of the Picard constant is in the fol-
lowing fact: [f P(R)<P(S), then there 1s no non-constant analytic mapping of
R into S (Ozawa [5]).

Let R be the ultrahyperelliptic surface defined by

(1.1 ¥*=G(2),

where G is an entire function having an infinite number of simple zeros and
no other zeros. For the class of this surfaces we have P(R)<4 from the value
distribution theory of two-valued algebroid functions.

We now consider a characterization of ultrahyperelliptic surfaces in terms
of the Picard constant. We first have

THEOREM A (Ozawa [6]). P(R)=4, if and only if there is a non-constant
entire function H (H(0)=0), an entire function F and constants v and 0 such that
G in (1.1) satisfies

(1.2) F(2)'G(2)=(e"® —7r)(e"®—=0),  rd(r—0a)+0.
When P(R)=3 we have

THEOREM B (Hiromi-Ozawa [1]). If P(R)=3, then there are two non-constant
entire functions H and L (H(0)= L(0)=0), an entire function F and non-zero con-
stants B, and B, such that G in (1.1) satisfies
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(1.3) F(z)?G(2)
:1_2‘81e1~1(2) _Z‘BZQL(z) +‘B,2e2H(” _2‘81132el{(z)+L(z) +‘82282L(”-

Conversely, if G satisfies (1.3), then the ultrahyperelliptic surface R defined
by (1.1) is of P(R)=3.

It is quite difficult to determine all ultrahyperelliptic surfaces with P(R)=3
and we have not perfectly succeed in it yet. However we have following:

THEOREM C (Ozawa [7]). Let R be the ultrahyperelliptic surface defined by
(1.1) with G satisfying (1.3). If H and L are polynomials, then P(R)=3 with
following four exceptional cases: (i) H=L; (ii) H=2L, 168,=pB.*; (iii) 2H=L,
B.°=168:; (iv) H=—L, 168,8:=1. In these exceptional cases we have P(R)=4.

From this theorem we conjecture that Theorem C is also true when H and
L in (1.3) are transcendental.
In this paper we shall prove the following :

THEOREM. Let R be the ultrahyperelliptic surfaces defined by (1.1) with G
satisfying (1.3). If H and L in (1.3) are transcendental entire functions such
that H(0)=L(0)=0 and

(1.4) L(z)=2H(z)+ K(z),
where A is a rational number and K is an entire function satisfying
(1.5) m(r, e®)=o(m(r, e?)), r— o,

outside a set of finite measure, then P(R)=3 with following four exceptional
cases: (i) H=L; (ii) H=2L, 168,=8,*; (iii) 2H=L, B8,°=168,; (iv) H=—1L,
16B.8:=1. In these exceptional cases we have P(R)=4.

Remark. Hiromi-Ozawa [1] proved this theorem when A=0 in (1.4).

We assume that the reader is familiar with the Nevanlinna theory of mero-
morphic functions and the usual notations such as T'(r, f), N(r, a, f), N\(r, a, f),
m(r, f) etc. (see e. g. [2]).

§2. Lemmas.

Here we state Lemmas needed in the proofs of our Theorem and Proposition.

LEMMA A ([1]). Let ay, -+, a, be meromorphic functions and H a non-
constant entive function. Suppose that

T(r, ay)=o(m(r, e")) (r— o) p=1,-,n
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hold outside a set of finite measure. Then the equation

71\ a,,(z)e‘”"“’ZO
un=1
cannot hold unless a,= --- =a,=0.
LEMMA B ([4]). Let a,,, (¢, v=0, 1, -+, m) be meromorphic functions and

H and M two non-constant entire functions such that
m(r, e") ~m(r, e¥) and T(r, a,.)=o(m(r, e"))  (r—c0)

hold for p, v=0, 1, -+, m, outside a set of r of finite measure. Further suppose
that

m

D au, (R)erHEO M@ =(),
7 v=0

(1) If @w, w(2)#0, then an (2)=ay, w(2)=0 and m(r, e"**")=o0(m(r, ")) (r—
) outside a set of r of finite measure.

(I If a, (2)=0 (v=0, 1, -+, m—1) and a, %0 or ao =0, then a, .(2)
=0 and m(r, e ")=o(m(r, e¥)) (r—) outside a set of r of finite measure.

Let N,(r, 0, f) be the counting function of simple zeros of the indicated
function f. We can deduce from Nevanlinna’s second fundamental theorem
that

LEMMA C (cf. [6]). Let H be a non-constant entire function and a (30) a
meromorphic function satisfying

T(r, a)=o(m(r, e®))  (r — co)
outside a set of r of finite measure. Then we have
Ny(r, 0, e¥—a) ~ m(r, e?) and N,(r, 0, e?—a)=o(m(r, %)) (r—oo)
outside a set of finite measure.

From Lemma 4 and Lemma 5 in [3] and Lemma C we can deduce

LEMMA D. Let H and a,(3=1, -+, p) be entire functions satisfying
m(r, a;)=o(m(r, e)) (r—0) =1 -, p
outside a set of finite measure. If the discriminant of the equation
Qu(x)i=x"4a,()x* '+ - +a,(2)=0
s not identically zero, then we have

(2.1) Ny(r, 0, Qule™)) ~ pm(r, ™) and Ny, 0, Que®)=0(m(r, e")) (r—oo)
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outside a set of finite measure.

We can easily deduce

LEMMA E. The discriminant D of the algebraic equation P(x):=x?4+ax+b
=0, where a and b are non-zero constants, is

Dz(_l)P(P-l)/2+(P—1) {(p_l)P-laP+(_l)P-1prP—1} .

Further, if D is zero, then the discriminant of the equation Q(x)=0 is not zero,

where
P(x)={x+pb/(p—1)a}*Q(x).

LEMMA F. The discriminant D of the algebraic equation P(x):=x%4ax? '+
b=0, where a and b are non-zero constants, is

D_—-_—(_I)Q(‘I—l)/Z"‘(Q-l)b(I—Z {(q._l)<1~laq+(_.l)¢1—qub} .

Further, of D is zero, then the discriminant of the equation Q(x)=0 is not zero,

where
P(x)={x+(g—1)a/q}*Q(x).

LEMMA G. Let p and q be coprime integers satisfying p>q>1. The alge-
braic equation

2.2) xP+ax?+b=0  (ab+0)
has a multiple root a, if and only if ’

Dy :=(p—q)P % a?+(— 1) p?b?P?=0.
Then a is only one double root and satisfies

a’=—aq/p and a'=—bp/a(p—q).

We here note that D, is equal to the discriminant of the algebraic equation
(2.2) modulo a non-zero.

§3. Proposition.

PROPOSITION. Let H and M be non-constant entire functions with H(0)=
M©0)=0 and a, (p=0, 1, -+, 2p) entire functions satisfying a,#0, a.,%0 and

3.1 m(r, a)=o(m(r, e?))  (r—o) ;=0,1, -, 2p,

outside a set of finite measure, where p is a positive integer. Further we assume

that
2p!

(3.2) 2(2)1= 33 a (et
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satisfies
(3.3)  Ny(r, 0, @) ~2pm(r, e™) and N,(r, 0, g)=o(m(r, e¥))  (r—o0)
outside a set of finite measure. If the identity
(3.4) [P (" —7) (eP"® —0)=g(2),

holds with a suitable meromorphic function f and two suitable constants 7 and 0
satisfying y0(r—0)+0, then we have

ap=—0yp(y +0)e” T ™0/7d,  ay=aspe®* /13,

(3.5)

Qop1= """ =App = Ap = - =0,=0, fi=a,,e*?7 /78,
or

Ap=—0sp(T+0)e? T, a,=a,,70e*?H ",
(3.6)

Qop-1= " Z=EQp1=0p 1= E(ZlEO, f2:a2pg2p(H‘M) X

Proof. It follows from Lemma C that
Nay(r, 0, (eP" —7)(e?" —0)) ~ 2pm(r, e¥),
Ny(r, 0, (e —7)(eP” —b))=o(m(r, e")), (r—o0)

outside a set of finite measure. Hence, considering simple zeros and multiple
zeros of the both sides of (3.4), from (3.1), (3.2), (3.3), (3.4) and the reasoning
of [4, p. 298] we can deduce that

m(r, e) ~ m(r, e¥),
3.7 i (r—o0)
T(r, H=0(m(r, e™)),  T(r, ['/f)=0(m(r, e™))
outside a set of finite measure. Differentiating both sides of (3.4) and using
(3.2) and (3.4) we obtain

2p

(38) E b#,,,(z)ef‘”“)”M(”:O,

o, v=0

where bzp.zp = (Zf'/f+2PM/)azp—(‘121/‘5‘2])‘121:1‘1’), b2p,0 = Ta(zazzif’/f_azp’—
2pas,H’), boep = @2f'/f4+2pM’)a,—a, and the others b, , are meromorphic
functions. It is clear from (3.7) and our assumption (3.1) that

T(r, b, =0(m(r, e™)) (r—o0) for g, v=0,1, -, 2p

outside a set of finite measure. We apply Lemma B to the identity (3.8).
Suppose that b;p 2,70. Then (I) of Lemma B yields b;p,,=b, :,=0 and

(3.9) m(r, e *My=o(m(r, e®))  (r—c0)

outside a set of finite measure. Hence we have [(2)’=ca,,(z)e??# ¥ =
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day(z)e ®® @ with non-zero constants ¢ and d. Substituting these relations
into (3.4) and using (3.2) we have

(1—c10)aspe®™ +asp 1e®? " PH+ - fay,,eP*0H
+(ap+c(r+0)a2pe” FH0)ePH Lg, 1o P VL ... fa,07 4 ay—cay 0P HHD =(),
Hence it follows from Lemma A and (3.9) that
(1—=cr0)asp=0, @sp-1= - =ap.,=0, ap+c(F+0)a;,e?#+*M =0,
Api= - =0,=0, ay—caz,e*?F =0,

Thus we have (3.5) because of a,,=0.
Next suppose that b., .,=0. Then we have f(z)?=ca,,(2)e??H®-H@) with
a non-zero constant ¢ and so (3.4) reduces to

2p

(3.10) Eocy,»(Z)e”H(””M(”:O,

where Cgplgpz(l_c)a“;, Cop-1,2p-1— -~'=Cl,1:co_0=0, CZPIOZ—CT(SCZ“,, Co,gp:bo and
the others c,,, are entire functions satisfying

T(r, cp)y=0(m(r, e¥))  (r—oo)

outside a set of finite measure. Since ¢;5,,%0 and ¢, ,70, (I) of Lemma B
implies (1—¢)a,,=0 and

(3.11) mr, e My=o(m(r, e®))  (r—co)

outside a set of finite measure. Hence, since a,,70 so c=1, the identity (3.10)
further reduces to

azp_le(zp—l)<H—M)e(2p—1>M_|_ +ap+le(p+l)(H—M)e(p+1)M
+(apeﬂ(H—M)+azp(r+6)eZP(H—M))epM
Fap e P TVHA P DML g, e MM gy — @y, 70PN =0,
Therefore it follows from (3.11) and Lemma A that

2p-D(H-M) = ... = 1) (H-M) —
Qap-,e@P V¢ = =a,,,0P 0 =0,

ape? M 4,y (7 40)e*?H- M =),
Qp P VHE M= =q,0"M=0, ay—as,70e*?H M =(.

Hence we have (3.6).
Thus the proof of our Proposition is complete.
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§4. Proof of Theorem.

It is sufficient to consider only the cases only the cases =0 and |A/=1 in
(1.4).

Eight main cases are to be considered.

(A) If 2=0 in (1.4), then our assumption (1.5) and Theorem C in Hiromi-
Ozawa [1] imply P(R)=3.

(B) Assume that A=1 in (1.4). Then (1.3) reduces to

4.1 8(2) 1 =F(2)*G(2)=(B1— Bae® ) * @ +-2(B1+ Bre® )" +1.

If K=const., then we have K =0 and so H=L, because of H(0)=L(0)=0
in (1.4), and (4.1) reduces to

g=F*G=4B.(e"*—(28,**)" Ve ?+(2B,}*)™), it Bi=p.,
and

g=FG=(B,—B "~ —10), it Bitfs,

where 7,=—(8,"2+8,"/*)*/(Bi—B:)* and 7.=—(B,'*—B./*)?/(B,—p.)*. Hence it
follows from Theorem A that P(R)=4. So this case corresponds the excep-
tional case (1i).

If K= const., then 8,—pB,¢¥#0. The discriminant of the equation Q(x):
=(B1— B @ Px? 2B+ B2¥?)x+1=0 is 168,B:eX®%£0 and g(z2)=Q(e"®) by
(4.1). Hence Lemma D yields

4.2) Ny(r, 0, g) ~2m(r, e¥) and N,(r, 0, g)=o(m(r, e™)) (r—o0)

outside a set of finite measure. Now assume P(R)=4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function f and constants 7 and J such that

4.3 f@PeM® =)™ —d)=g(z), M(0)=0,  76(r—06)+0.

Here, since (1.5) and (4.2) hold, we can apply our Proposition to the identity
(4.3) with (4.1). Put (4.1) into g(z)=ay(2)e??®+a,(z)e?®+a,z). Then Pro-
position implies that

0(&)=— @+ DD /15,  ay(@)=ax@)e T s
or
@@=+ D, ay@)=a@) e DN,

that is,
2(Bi+ 2K )= —(B,— 2K @)y +8)eH DM@ /15,

1= (ﬁl ‘BzeK(Z) eﬁ(HG)*M(Z))/TB
or
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2(B1+4 BoeX@)=—(B,— oK @)y )" @ -H @
1=(B,— BaeK ®)yderH®-M @)

This is a contradiction, because the function B;,—p.eX® has simple zeros since
K= const..

Thus we have showed that if K= const., then P(R)#4 and hence, by
Theorem B, P(R)=3.

(C) Assume that A=2 in (1.4). Then (1.3) is

(4.4) g:=F*G=P,"* e*" —2,B:e%*7 +(B,2—2B,0%)e*® —2B,e7 +1.
If K= const. and §8,°=168,, then K =0, so L=2H and (4.4) reduces to
g=F*G=(B,*/16%)(e™ —4B, (e —4(1+ /2 )*B, ) —4(1—/2)?B,7Y).
Hence we have
{F(16/B., (e —4B8, ) 1 2C=(e" —4(1+~/ 2 )* B, )" —4(1—+/2)*B,™Y)
and so theorem A implies P(R)=4. This case corresponds the exceptional
case (iii).
If K= const. or (8,°#168,, then (4.4) is rewritten as follows:
4.5) g(2)= e K ® gy(eM /%) gy /%) go(eH 1% g (7 ®12),

where
81(x)=x"+(B1/Bo)! P K 1P x — By %0 K12,

8o(x)=x>—(B1/Be)Pe K Px+ Py 20 K12,
go(x)=x>—(B1/Be)'Pe K Px — B, 20 K/,
g,,(x)=x2+(‘8‘/‘82)”2e"‘/2x+,82‘”2e‘K/2 .

Since K== const. or 8,°#168;, none of the discriminants of equations g;(x)=0
(y=1, ---, 4) vanish and these equations have no common algebroid solution.
Hence the discriminant of the equation g*(x)=0 is not identically zero, where
g¥(x)=gy(x)--» g«(x), and so (4.5) and Lemma D imply

(4.6) Ny(r, 0, g) ~4m(r, e?) and N,(r, 0, g =o(m(r, e¥)) (r—o0)

outside a set of finite measure. Now assume P(R)=4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function f and two constants 7 and 6 such that

@M =) —d)=g(z), M0)=0, yd(r—0)+0.

Then it follows from (1.5), (4.5), (4.6) and our Proposition that the coefficients
of ¥ and e in (4.4) must be identically zero, that is,
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2,81‘82(2’“”‘:‘—2,3150,

which contradicts S8,#0.
Thus we have showed that if K== const. or 8,2+#16f8,, then P(R)+4.
(D) Assume that A=—1 in (1.5). Then (1.3) is

47  g:=FGe*"=Be"" —2B,’" +(1—-2B,B:e")e* " —2BseX ™ + B,2e*K .

If K= const. and 168,8,=1, then K=0 and so L=—H, and if follows
from (4.7) that

{Fe® B, (e —1/4B) 7'} G =(e" —(1++/2)2/4B.)(e" —(1—~ 2)*/4B,).

Hence Theorem A implies P(R)=4. This case corresponds the exceptional
case (iv).
If K== const. or 168:8.#1, then (4.7) is rewritten as follows:

(48) g(z):Blzg‘(eH“)’Z)gg(e”(”’Z)gs(e"m”)g,(é“”“) ,

where
gi(x)=x*+B,7 2 x —(B2/B1) 2K,

Go(x)=x2— B, 2x +(B2/ 1) 12X 2,
go(x)=x2— B, 725 —(Bs/B) 252,
Gu(X) =20+ Py 7 x +(B/ ) 2R

Since K= const. or 168,8:.#1, none of the discriminants of equations g;(x)=0
(y=1, -, 4) vanish and these equations have no common algebroid solution.
Hence the discriminant of the equation g*(x)=0 is not identically zero, where
g¥(x)=gi(x)---gu(x), and so (4.8) and Lemma D imply

4.9) Ny(r, 0, g) ~4m(r, ef) and Ny(r, 0, g)=o(m(r, e*)) (r—o0)

outside a set of finite measure. Now assume P(R)=4. Then it follows from
Theorem A that there is a non-constant entire function M, a meromorphic
function f and two constants y and 0 such that

f@PEH O =) (P —0)=g(z), M(@0)=0, 73(r—8)+0.

Then it follows from (1.5), (4.8), (4.9) and our Proposition that the coefficient
—2B: of ¢*# in (4.7) must be identically zero, which contradicts f8,+0.

Thus we have showed that if K== const. or 168,81, then P(R)+4.

(E) Assume that A=p is an integer and p>2 in (1.4). Then (1.3) is

(4.10) g:=F?G=P,2e* e*®T —2B,B:eXeP*VHE —2B,0Ke?H 4 B,26*F —2B,e7+1

=B2"eF gi(e"/%) ga(e" /%) go(e™1*) gu(e™17),
where
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Gi(xX)=xP+(B1/ o) e K Px— By P07 K12,
Go(X)=xP—(B./Be) Pe K Px+ By 207K 2,
gs(x)=x7—(B,/Bs) P K /2x — By /2K 12,
g(x)=xP+(B1/Bo)"Pe K Px + By 207K/,

Suppose that K== const. or (p—17?728,? = p**8,. Then it follows from
Lemma E that none of the discriminants of equations g;(x)=0 (j=1, -+, 4)
vanish. Hence, since these equations have no common algebroid solution, (4.10)

and Lemma D imply
(4.11)  Ny(r, 0, @) ~2pm(r, ) and Ny(r, 0, g)=o(m(r, e¥))  (r—oo)

outside a set of finite measure. Since the coefficient of e®*V#® jin (4.10) is
—2B,B:¢¥®, which is not identically zero, our Proposition and Theorem A
imply that P(R)#4 if K==const. or (p—1)*P728,P =+ p*?B,.

Next we suppose that K =const. and (p—1)*?"*8,°=p**B,. Then it follows
from Lemma E that two of discriminants D, of equations g;(x)=0 (j=1, ---, 4)
are zero and the others are not zero. For example, D,=D,=0and D,=+D,#0
if (p—1)?7'B,P*=pPB,"* and p is even. Then (4.10) reduces to

g=F*G=PB:'(e" —a)* go(e")
and so we have
(4.12) {F(2)8: (e —a) '} 2G(2)= go(e# ™),
where a=p?/B.(p—1)* and
8o(») 1=y 2+ 2ay* P+ o +(p—1)aP*y?
a7+ -+ ay+H(p—1) B/ p B,

where a,, -+, a,_, are suitable constants. It follows from Lemma E that the
discriminant of equation g,(¥)=0 is not zero. So Lemma D implies

Ny(r, 0, go(e™)) ~ 2p—2)m(r, e¥),
Ny(r, 0, go(e™))=0(m(r, e®))  (r—oo)

outside a set of finite measure. Since 2p—3 > p—1 and the coefficient of
eC®POH®@ in g(e#®) is 2a, which is not zero, it follows from (4.12), Theorem
A and our Proposition that P(R)=4 if K =const. and (p—1)2P728,P=p*PR,.
Thus we have proved that P(R)+4 if A is an integer greater than 2.
(F) Assume that A=-—g¢+1 is an integer and A< —1, that is, ¢>2 in (1.4).
Then from (1.3) we have
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(4.13) g:——-(Fe(q"”H)ZG
=}912€2qﬁ-zﬁle(zq_‘)11+e(2q_2)H—ZﬁlﬁgexeqH—ZﬁzeKe(q")H—Fﬁzze“{
=B.2g:(e"7) go(e™/?) gy(e™/?) gi(e™?),

where
gl(x)=x"+,31"”2x“"‘—(‘82//31)‘/%"/2 ,

Ga(x)=2x1— B, 71220 +(Ba/ B1) PR,
ga(x)=x1— B, 720 —(By/ 1) PR 2,
8a(xX)=xT+B, 72X H(Be/ By) PR 2.

Suppose that K == const. or ¢*8,°'B,+# (¢—1)%. Then it follows from
Lemma F that none of the discriminants of equations g;(x)=0 (j=1, -, 4)
vanish. Hence, since these equations have no common algebroid solution, from
Lemma D we have

Ny(r, 0, @) ~ 2gm(r, e) and N,(r, 0, g)=o(m(r, e™)) (r—c0)

outside a set of finite measure. Further the coefficient of ¢® VH® jn (4.13)

is —28,, which is not zero. Hence we have P(R)+4 from our Proposotion and
Theorem A.

Next we suppose that K =const. and ¢*f,2'B;=(¢—1)*"%. Then it follows
from Lemma F that two of discriminants D, of equations g;(x)=0 (j=1, -, 4)
are zero and the others are not zero. For example, D;=D,=0 and D;=+D,
#0 if ¢?8,97 /% B, 2 =(¢g—1)*"" and ¢ is even. Then (4.13) reduces to

g=(Fe ™V H}G=B*(e" —B)* go(e™)
and so we have
(4.14) {F(2)e @V H@ B, ~1(e"® — )} 3G (2)=go(e" )
where B=(¢—1)*/¢*8, and
2o(9) =922 = (229 —1)/B1g") y** + Caq-a ¥+ o a1y + BB/,

where a,, -+, @y, are suitable constants. It follows from Lemma F that the
discriminant of equation g,(y)=0 is not zero. So Lemma D implies

Ny(r, 0, go(e™)) ~ (2q—2)m(r, &™),
Ny, 0, go(eM)=0(m(r, e?))  (r—oo)

outside a set of finite measure. Further 2¢—3>¢—1 and the coefficient of
e@NH® in  gi(ef®) is —2(2¢—1)/B.¢%, which is not zero. Hence we have
P(R)+4.
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Thus we have showed that P(R)#4 if 1 is an integer less than —1.

(G) Assume that 4 is a rational number greater than one in (1.4) and is
not an integer. We put A=p/q, where p and ¢(¢>1) are coprime integer
Then (1.3) is

(4.15) g 1 =FG=p,"¢**e*?S—28,B,eX > P*05 1 B,2¢%S
—2B.e%e?PS—2B,65+1

=B g1(e%)g2(e%)gs(e") gu(e%),

where S(z)=H(z)/2q and
81(x)=xP+(B1/Bo)"?e™ K Px1— By 207 K12,
Ga(x)=xP—(B1/B2)Pe K 2x1+ By 207K 12,
gs(x)=xP—(B./B2)Pe K 2x1—B, 20 K12,
Gu(X)=xP+(B:/Be)' Pe K PxT4- By Pe K12,

Suppose that Kz£const. or (p—q)* P g% B,P+ p**B,2. Then it follows from
Lemma G that none of the discriminants of equations g;(x)=0(=1, :--, 4)
vanish. Hence, since these equations have no common algebroid solution, (4.15)
and Lemma D imply

(4.16) Ny(r, 0, g) ~4pm(r, e5) and Ny(r, 0, g)=o(m(r, e5))  (r—)

outside a set of finite measure. Hence it follows from our Proposition and
Theorem A that P(R)#4, because the coefficient of ¢*?*0$® in (4.15) is
—2B:B:2¥®, which is not identically zero.

Next we suppose that K =const. and (p—g)*P 0¢*p,P=p*PB,1.

Further, if g=p—1, that is, p=¢+1>2, then the argument in the case (F)
is applicable to this case. So we can deduce that P(R)#4 in this case.

If p>q+1, then 4p—2>2p+2¢ and it follows from Lemma G that two of
discriminants D, of equations g;(x)=0(j=1, ---, 4) are identically zero and the
others are not identically zero. (4.15) reduces to

g=F*G=p{e**—(a+B)e5+apf}?g,(e’)
and so we have
(4.17) {F(2)B,7(e*3® —(a+B)eS® +ap) '} 2 G(2)=go(e5),

where a and B satisfy one of the following six cases:
(a) if p is even, ¢ is odd and D,=D,=0, then

aPt=—pg N (Bi/B),  at=p(p—0)"B",
B i=pq7 B/ B, B=—p(p—0) B,
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(b) if p is even, ¢ is odd and D.,=D,=0, then
aPI=pg (B /B)'?, at=p(p—) B,
Brt=—pg(B:/B)'?,  BI=—p(p—q) 7B,

(¢) if p is odd, ¢ is even and D,=D,=0, then
af t=—pg B/ B, a'=p(p—q@)7' B,
BPt=pq (B:/B)"?,  Bi=p(p—@) B,

(d) if p is odd, ¢ is even and D;=D,=0, then
af'=pg (B /B, a'=—p(p—q) 7B,
BPi=—pq(B/B)"  BI=—p(p—9) 'R,

(e) if p is odd, ¢ is odd and D,=D,=0, then
a? t=—pq B/ B at=p(p—q) B,
Br'=—pq'(Bi/B)"?,  Bi=—p(p—) B,

(f) if p is odd, ¢ is odd and D,=D;=0, then
a’ t=pg N (Bi/B)"?,  at=p(p—) 7B,
BPi=pq7 B/ B, Bl=—p(p—@) 7B

and
gu() =y =2a+B)y PP H(a— By P + aup -y P T o F a1yt a,

where a4, -+-, @, are suitable constants. It follows from Lemma G that the
discriminant of equation g,(y)=0 is not identically zero. So Lemma D implies

1V2(r’ 0) gO(eS)) ~ (41)‘4)"‘(7’; eS) ’
Ni(r, 0, go(e®))=o(m(r, e))  (r—o0)

outside a set of finite measure. Further 4p—6>2p—2 and the coefficients of
eWP PS® and @UP-OS® in g(¢5®) are —2(a+pB) and (a—p), respectively,
which are not simultaneously zero, because a0 and B=0. Hence we have
also P(R)+4.

(H) Assume that A is a rational number less than —1 in (1.4) and is not
an integer. We can put A=—¢/(p—¢q), where p and ¢ are coprime integer
such that 2¢.>p>¢+1>1. Then from (1.3) we have

(4.18) g::(Fequ)zG:‘Blze4ps_2‘8102(p+q>s+e4qS_zﬂl‘BzeKesz__zﬁzeKeZqS+‘82282K

=B:221(¢%) g2(e®) gs(e%) gu(e%),
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where S(z2)=H(z)/2(p—q) and

S(R)=2"+B,7 1 50— (Bo/ B) 0",
Go(X)=xP— By P20+ (Bo/ Br) PeX
go(x)=x7— B, P x1—(Bo/ B) e 12,
Gu(X)= 2P+ By P20 (Ba/ B 2R .

Therefore the same argument in the case (G) leads to P(R)+#4 in this case.
Thus the proof of our Theorem is complete.
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