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Abstract

In this paper, we discuss the equality between invariant quantities, such
as the Teichmiiller distance and the Carathéodory distance, in Teichmiiller
spaces. We shall give some conditions under which these quantities are the
same at some points. Examples of Fuchsian groups will be constructed in
relation to the conditions above. In particular, we shall construct a Teich-
miiller disk 1n T(1) determined by a quadratic differential with a simple zero
where the Teichmiiller distance and the Carathéodory distance are the same.
We also give an estimate of the variation of critical exponent quasi-Fuchsian
groups In terms of Grunsky coefficients.

1. Introduction

Let S be a hyperbolic Riemann surface. Then there exists a Fuchsian
group /7 acting on the unit disk presenting S. From an identification called
the Bers embedding, the Teichmiiller space T(S) of S is regarded as a bounded
domain 7'(I") of the Banach space of bounded holomorphic quadratic differentials
for I'. Therefore, a natural complex structure of the Teichmiiller space is
induced via the embedding. Under this complex structure, various analytic
properties of Teichmiiller spaces are obtained (cf. [1], [3], [5] etc.). On the
other hand, from the construction of the Bers embedding each point of the
Teichmiiller space is the Schwarzian derivative of a univalent function outside
the unit disk. Thus, the method of univalent function theory is useful to study
Teichmiiller spaces. In fact, Grunsky’s inequality for univalent functions yields
a lot of properties of Teichmiiller spaces (cf. [14], [15], [18]). The main pur-
pose of this paper is to investigate invariant metrics of Teichmiiller spaces from
the view point of the univalent function theory.

First, we shall discuss two invariant distances, the Teichmiiller-Kobayashi
distance and the Carathéodory distance in relation to Grunsky’s inequality. As
for these distances, when S is a (hyperbolic) Riemann surface of finite type,
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namely, I' is a finitely generated Fuchsian group of the first kind, Kra [6]
shows that the two distances are the same on Teichmiiller disks defined by
bounded holomorphic quadratic differentials with zeros of even order only.
Recently, Krushkal’ [8], using a family of holomorphic functions on T(1)
defined by Grunsky’s coefficients, has shown that they are also the same on
similar Teichmiiller disks as above when " is the trivial group, namely, in the
case of the universal Teichmiiller space. In this paper we shall give a condi-
tion on /" under which such a phenomena occurs, in terms of Poincaré series
(Theorem 2.1). (Note that even to elementary groups, Krushkal’s result can not
be extended immediately, since, in general, Poincaré theta operator gives no
information about the orders of zeros of quadratic differentials.) The main tool
is the recent development for Poincaré series by C. McMullen [10], [11]. The
comparison of the Caratnéodory distance on Teichmiiller spaces of elementary
groups to that of the universal Teichmiiller space will be discussed.

Next, we shall estimate the variation of the critical exponent of Fuchsian
groups in the Bers embeddings in terms of the norm of Grunsky inequalities
(Theorem 2.2). Our estimate implies the estimate of the Hausdorff dimension
of limit sets for finitely generated Fuchsian groups (Corollary 2.2).

In the last section, we shall give examples of holomorphic disks in Teich-
miiller spaces where the Teichmiiller-Kobayashi distance and the Carathéodory
distance are the same while the Carathéodory distance is given without using
Grunsky’s coefficients.

The authors are grateful to the referee for reading carefully the first draft
of this paper and pointing out some erroneous arguments.

2. Preliminaries and main results

In this paper, we denote by 4 the unit disk and by Y its exterior C—4J
where C=C U {o0} is the Riemann sphere. For a Fuchsian group I” acting on
Y (and 4), we consider the Banach space B,(Y, I') of bounded holomorphic
quadratic differentials for /I". Namely, the space B.(2, I') is the set of holo-
morphic functions ¢ on X satisfying

oy’ (2)?=¢(z)  for all zX and for all y=I”
and
o(z2)=0(lz|™*)  near z=oo
with norm
lells,e= sup A5(2)?|p(2)| <o,

where As(2)|dz| is the Poincaré metric on 2.

For each ¢ =B,(X, I') there exists a locally univalent holomorphic function
W, on 2 such that W (2)=z+3%-1 a,z™" near z=co and the Schwarzian deriva-
tive {W,, 2t =(Wg/W,Y(2)—1/2)W§/W,(2))? is equal to ¢(2) (z=2). The Teich-
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miiller space T(I") of I" is the set of p=B,y(2, I') such that W, admits a I'-
compatible quasiconformal extension to C. Since W, yW;' is still a Mébius
transformation for y=I", I'*=W ,I'W,' is a Kleinian group. Hence, T(I") is
regarded as the set of such Kleinian groups that are quasiconformal deforma-
tions of /. When [ is the trivial group, we call T({id.}) the universal Teich-
miiller space and denote it by 7°(1). For any Fuchsian group I” the Teichmiiller
space T(I") is a subset of T'(1), since By(4, 1)>B,(4, I').

Take the Grunsky coefficients bn,(¢) of W, which are determined by the
expansion :

1% o
(Z; C <p(C) m§=1bmn(¢)z_m§_n .

Then it is known (cf. [4]) that W, is univalent in X if and only if the in-
equality, called the Grunsky inequality,

S VAR (@) Xk a | Sl x|
m, n=1
holds for all x=(x,, x,, ---)=[% where ||x|*=37-1 |x,|% It is easy to see that
Grunsky coefficients b,, are holomorphic functions on T(I7).
When W, has a quasiconformal extension with the Beltrami differential g,
we denote the quasiconformal mapping of C by w*. Using the variational

method of quasiconformal mappings, we obtain the following variational formula
of Grunsky coefficients ([8]).

PROPOSITION 2.1. Let u be a Beltrami coefficient on C which vanishes in 3.
Then

bualtpl=— (| w2z tdxdy+o(2]) (t-0),

where {bma[tpl}m, 2= are Grunsky coefficients of w'*.

Let ¢<=T (") such that W, has a K-quasiconformal extension to C. Then,
it is known that

P

’m§=lenbmn(¢)xmxn K+1

We set

£(¢)= sup l Z‘ «/mnbmn(wxmxn.

|1xl|=l

From the above inequality, we see that
000, k(@) =7r(0, P)=t7 )0, ¢), 1

where po(-, -) is the Poincaré distance in 4, z7(-, -) and zr(-, +) are the
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Teichmiiller distances in T=T() and in T(I"), respectively.

We define another Banach space A,(4, I') of all integrable holomorphic
quadratic differentials for /" in 4. The space A,(4, I') consists of holomorphic
functions ¢ in 4 such that

dr(2)r'(2)=¢(z)  for all z=4 and for all y=I"
and

181ara =, 16@dxdy<too.
The Poincaré theta operator @, defined by
e r(¢)(2)=r§r¢(7’(2))7"(2)2 )

is a bounded operator of A,(4, 1) onto A4, I'). The norm ||@r| of O is less
than or equal to one. C.McMullen ([10], [11]) shows that for most of Fuchsian
groups, |@r|<1. Ohtake [13] characterizes Fuchsian groups /" with |@r|=1
in terms of geometric conditions for 4/1".

Here we recall extremal Beltrami coefficients. Let M (4, I') be the space
of all Beltrami coefficients on 4 for I, namely, Beltrami coefficients such that
por-7'/r'=p for all y=I'. For each Beltrami coefficient p¢ in 4, we extend p
to the whole plane by setting 0 outside 4. Let w* be the quasiconformal auto-
morphism of the Riemann sphere with Beltrami coefficient ¢ which is normalized
at oo so that

wH(©)=L+0(ILI™)

near {=co. The assignment p—{w* -} induces a holomorphic mapping of
M@, I') onto T(I"). For each p=M(4, I'), the point in T(I") determined by
¢ is denoted by [px].

Two Beltrami coefficients g, v=M (4, I') are said to be equivalent (with
respect to the equivalence relation for 7°(/")) if they determines the same point
in T(I"). A Beltrami coefficient p is said to be extremal if its supremum norm
l#lle is not greater than that of any other elements in its equivalence class.
A Beltrami coefficient p=M (4, I') is extremal if and only if there exists a

sequence {@,} -1 A4, I') with |@,ll4,r,,<1 such that lim”““lgga/r”'é" = || ¢l

Such a sequence {¢,}5%-, is called a Hamilton sequence for p. (See, for example,
Lehto [9].) In particular, a Beltrami coefficient of the form t¢/|¢| with t=4
and ¢=A,(4, I') is extremal. Such a Beltrami coefficient is called a Teichmiiller
differential.

For an extremal Beltrami differential u=M (4, I"), we define a holomorphic
mapping of 4 into T(I") by

F,O=[tp/lpl-],
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for t=A. Then for each t=4,
00, =770, F (D).

We shall denote by D(g) the image of 4 by F, and call a geodesic disk deter-
mined by the extremal Beltrami coefficient p=M (4, I'). For a Teichmiiller
differential ¢4/|¢|, we shall abbreviate D(t3/|¢!) by D(¢) and call it a Teich-

miiller disk.
By utilizing Grunsky’s coefficients, Krushkal’ [8] has shown the following;

PROPOSITION 2.2. Let p=M(4, 1) be an extermal Beltrami coefficient. As-
sume that there exists a Hamilton sequence for p consisting of quadratic differ-
entials in A4, 1) of even order only. Then the Carathéodory distance is equal
to the Teichmiiller-Kobayashi distance on D(p). In fact,

00, £(@)=cru0, ©)=77r1>0, @)
for all o= D(p).

We extend the above result as follows.

THEOREM 2.1. (a) Let I' be an elementary Fuchsian group acting on 4.
Let p=M (4, I') be an extremal Beltrami coefficient. Assume that there exists a
Hamilton sequence for p consisting of quadratic differentials in A4, I') with
zeros of even order only. Then the Carathéodory distance is equal to the Teich-
miiller-Kobayashi distance on D(p)

(b) Let I' be a torsion free Fuchsian group acting on the unit disk 4. Then
there exists ¢ =T(I") such that

000, £(p)=t7r00, )=77r1(0, @)
if and only if |@r|=1.
Let ¢r(ry(-, -) be the Carathéodory distance on T'(/"). Then, by the distance
decreasing property,
crery(p, Pzerad, @,
e (D, PDZTraXp, @)

and
TT(F)(p’ q)ZCT(F)(p; q)y
for p, geT(I"). It is known that if " is an elementary Fuchsian group, then

tr(D, Q=try(p, g0 for any p, g=T(I"). We show a similar result for the
Carathéodory distance on geodesic disks D(p).

COROLLARY 2.1. Let I" and p be as in Theorem 2.1 (a). Then, crry=Trr
=crumy=Tra on D(y). Furthermore,



366 HIROSHIGE SHIGA AND HARUMI TANIGAWA

00, k(@)=cr>0, ¢)=17.r0, ¢)
for all p= D(p).

Next, we shall state our results about critical exponents of an arbitrary
Fuchsian group I acting on 4.

DEFINITION 2.1. Let G be a Kleinian group. We suppose that o is an
ordinary point of G and not an elliptic fixed point of G. Then the critical ex-
ponent &(G) of G is defined by

5(G)=sup{#:g§(;|cl‘2”=+oo, g(2)=(az+b)/(cz+d) (ad—bc=1)}
=inf{p: 8§G|c|"2”<+°0, g(2)=(az+b)/(cz+d) (ad—bc=1)}.
We estimate §(7"¢) in terms of x(p) and o(I").
THEOREM 2.2. Let I' be an arbitrary Fuchsian group acting on 4. Suppose
that oo is not an elliptic fixed point of I'. Then for o=T("),

) ol’)
Tty =0 =Ty

Sullivan [16] shows that for a geometrically finite Kleinian group the critical
exponent is equal to the Hausdorff dimension of the limit set. Thus, we have

COROLLARY 2.2. Let I' and ¢ be as the same ones as above. Furthermore,
we assume that I' is finitely generated. Then

H() - H(I)
1+x(p) = 1—x(p)’
where H(G) is the Hausdorff dimension of the limit set of G.

H(I')<

Remark. Put K(p)=e® for d=171,(0, ¢). Since W, is a K (¢p)-quasiconformal
mapping in the plane, it is K (¢)™* Holder continuous. Therefore, it is easy to
see that

K(@) ' H(M<SH(')<K(@HT) .

We know that K(¢)=(1+#(p)/1—£(p)) because t715(0, ¢)=p(0, £(¢p)). Thus, our
estimate is an improvement of the above one.

3. Proofs of Theorem 2.1 and Corollary 2.1

Proof of (a). For the sake of simplicity, we shall give a proof in the case
of a Teichmiiller disk D(¢) defined by a quadratic differential g=A,(4, I') with
zeros of even order only. The general cases can be proved in the same way.
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If I'=<r> is a finite group, then it is an Abelian group and obviously
A4, I A4, 1). Thus for ¢=A,(4, I')— {0} with zeros of even order only,
the equality c¢ruy=trq, holds on D(¢) from Proposition 2.2. From the distance
decreasing property, we have crg,<cr. On the other hand, since I” is an
Abelian group, truy=trr, (cf. [12] Theorem 1). Thus we have tr<Zcram
and the desired equality. It means also the proof of Corollary 2.1.

We shall show the theorem for elementary groups of infinite order.

LEMMA 3.1. Let p be an extremal Beltrami differential for o<T(I"), that
is, p is a measurable function in 4 with

1+ ¢l

and
L@ @r'(2)=pz),

for all y=I" and for almost all z.=4. Then, the followings are equivalent :
1. 000, k(e)=1r 0, ¢).

2. Sup.SSAMSl:SUPlSSA/F#QF(@‘:“””“’ where the supremum is taken over

all ¢ which are squares of holomorphic functions on 4 with |@lls=1.

Proof of Lemma 3.1. This is an immediate consequence of Krushkal [7]
which shows that x(go):suPHSA#ﬂ:SUPUSA Fu@p(gb)l where the supremum is
/

taken over all functions ¢ as above. O

Although the similar argument in Krushkal’ [7] yields the proof of the
following lemma, we give a sketch of the proof because we use the argument
and notations later.

LEMMA 3.2. Let I' be a Fuchsian group acting on 4. Suppose that ¢=
A4, I') admits a sequence {¢,}n_.<A(4, 1) such that each ¢, has zeros of even
order only, Or(¢g)=¢ (n=1,2, ---) and |Palls,\—I@llar.1 as n—oo. Then the
statements of Theorem 2.1 (a) and Corollary 2.1. hold on D($).

Proof of Lemma 3.2. From the Schwarz lemma and usual normal family
argument of bounded holomorphic functions, for the proof of Theorem 2.1, it
is sufficient to show that there is a sequence {f.}7-: of holomorphic functions
fnof T(I') to {z=C : |z|<r,} (n=1, 2, ---) such that lim,..7,=1 and

lim (f,e Fy) (=1, @)

where Fy(t)=[t3/l¢l].
We may assume that [|@]ls,r.,=1. Since {¢.}7-1<A:(4, 1) be a sequence for
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¢ as above, we have
limligal s, =l arra =1 ®)

Since ¢, < A,(4, 1) have zeros of even order only, by the argument in Krushkal’
[8], we have

gbn(z):an(z)Z:% i VEIxM x MR- g 22 z=4 4)

k 1

where ¢,=1/+/7 22, VEx{Mz*'dz are Abelian differentials for I” in 4 and
x™=(x{™, x®, ---)=l*. Note that [[x™||=|nlis:-
We define a holomorphic function f, » of T(I") by
N R
Zl‘; VEIXEP b)), (5)

1

fn,N(‘P):'

k

where by (¢) (p=T(I")) are Grunsky coefficients of W, defined in Sec. 2. The
Grunsky inequality implies that

| fa. n(@)| k(@ x| =6(@) | Pnll 4.1 6)

for every pT(').
From Proposition 2.1, we have

y 1 5 _
Yo FY@== 3 2 150 VRIximxmzt et xdy.

Since ¢/|@| is a Beltrami coefficient for I,

(fn,N°F¢)’(0)=_—l‘ % SS i\/l?lxé’”x{"’@r(z“l‘z)

T kT=1 A/P[¢|
- £ :
== 1§, i3 Or@n®,

where @, v(2)=1/+v7 DX Vkx{Mz*'dz. Since {Or(a2 y)}%-1 converges to ¢,
we conclude that

Hence, from (6) and from the diagonal argument, we can take desired holo-
morphic functions of T(I") satisfying (2). Considering the relation (1), we
verify that the statement of Corollary 2.1 holds. O

Next, we show :

LEMMA 3.3. Let I' be a cyclic Fuchsian group gemerated by a hyperbolic
Mobius transformation. If ¢=A(d4, I') is a square of an Abelian differential
for I, then the statements of Theorem 2.1. (a) and Corollary 2.1. hold on D(g).
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Proof of Lemma 3.3. Without loss of generality, we may consider the upper
half plane U instead of 4, and assume that /" is generated by 7(z)=21z (A>1)
and that |@lly, r=1. We set

do(z)=2z"%d2*.
Obviously, ¢,=A,(U, I'). It is easily seen that
O r(d)=a,,

where ¢y(2)=(1—2) {z(z—1)(z—A)} "'dz*c A,(U, 1). Since ¢= A,(U, I') is regarded
as a holomorphic quadratic differential on an annulus A=U/I'={weC : 1<|w|
<R}, ¢/d, is a square of a holomorphic function g(w)=3f-.c,w® in A.

On the other hand, on 2={1<|z|<4}, a fundamental domain for I,

SS.QW)':SSQ b,
and |¢,|=1z"%dz*| is “bounded” in 2. Therefore,

SS lgw)*ldwAdwW =27 S e IszQ<m
B0 Rt

I¢o|<°°

Hence, for g(w)=3}-_; c,w* (I=N)
SSAIg(w)—gl(w)lzldw/\dwl >0 (as I—oo). @)
Denote by Z,(z) (z=U) the lift of g,(w) on U, which is an automorphic function

for I'. Then, ¢,=g(2)*), belongs to A,(U, 1) because g, is a bounded holo-
morphic function. Put

Prn= 2n+l 2 T (n=1, 2, ),
then @ r(¢i,.)=6r(¢). According to a result by McMullen [10], [11],
Li.r.?o 1, nllo. =16 r($Dilvir,: -
Since &% is an automorphic function for I, we have

@1 n(2)= ot +1 2 81(2) (K 2)A¥

_ &z 2 1 g At .
T 2n+1,5h Z(Z’z 1 zf-lz—1>dz
gl(z)z i A-n-t .
T 2n+1 z(l"z 1 2‘"“2—1>dz

_ g~.l(2)2 _1‘ QA r-t_qn

2
=ontlz Pe—Da =1 %%
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Noting that #j(z) has zeros of even order only, we conclude that {¢: .}5-
is an efficient sequence for @r(¢;) with zeros of even order. Namely, ¢, :=
O r(¢)=§i¢, admits a sequence {¢f; »}%-, with zeros of even order only such
that & (g .)=¢: and that lim [l [l \ =l @illoi 7.

We define a holomorphic mapping f4 y of T(I") for ¢, and ¢, (n. N=
1, 2, ---) as (5). Then by the same argument as in the proof of Lemma 3.2, we

have
zlvii{l,(fln.N°F¢)'<0>:_SSW%¢Z '

and
}ég}oﬂf%.wﬁméflsbz,nilv.l .

By (7) we see that |@—¢lly, r—0 as [—oo. Thus, we have

z,lirfi I{}{g(f%.qus)’(O) =|@lo/r.,=1.
Therefore, the equality of the Carathéodory and the Teichmiiller distances is
proved. Similarly, we see that the statement of Corollary 2.1 holds on D(¢).
We have established the proof of Lemma 3.3.

We proceed to prove Theorem 2.1 (a). We have already shown the theo-
rem in case I” is a hyperbolic cyclic group and ¢=A,(4, I') is a square of an
Abelian differential for I". In case I" is a hyperbolic cyclic group but ¢ is not
a square of any Abelian differential for /", ¢ is a square of an Abelian differ-
ential for I"*={r*> because ¢ has zeros of even order only. Thus, the state-
ments of Theorem 2.1 (a) and Corollary 2.1 hold for D(¢)cT(I'?). By the
same argument in the beginning of this section, we verify that the Carathéodory
distance is the same as the Teichmiiller distance on D(¢)cT(I") as well as
Corollary 2.1. Similarly, we also verify that if " is a Z, extension of hyper-
bolic cyclic group, then we have the desired results.

We assume that I'=<7> is a parabolic cyclic group. We may assume that
I’ is generated by a parabolic 7 with the fixed point z=1.

Let p be an arbitrary point on D(¢)cT(I') determined by Beltrami co-
efficients t¢/16| (t4). We set

Agz{zed; lz—lﬂ\ >1—c}

2 2

the outside of horodisk tangent at z=1. Note that 4.—4 as c—1. We denote
by G. the Riemann mapping from 4 onto 4, with G.(0)=0 and G0)>0. Then,
I'e=(G)7'I'G. is a hyperbolic cyclic group on 4 and ¢ ,=¢-G(G:)? is in
A4, I'e). Thus, ¢, is regarded as a holomorphic quadratic differential on
A.=4/I'. which is contained in a punctured disk A,=4/I". Since G. converges
to the identity uniformly on every compact subset of 4 as ¢—1 (Carathéodory
convergence theorem), ¢ ,(z)—@(z) (c—1) as a holomorphic quadratic differential

for 0<e<1,
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in A.cA,.

Since ¢< A,(4, I') has zeros with even order only, é., has also zeros of
even order only. We can take a sequence of holomorphic functions {f$§}#%-.
from ¢, like (5) in the proof of Lemma 3.2. The functions f§ (N=1, 2, --*)
are bounded holomorphic functions on 7'(1) as well as on T(I"). Thus, f§-Fg
is well defined for every ¢. Noting that ¢ lls/r,.1=<l¢lls/r..=1, we verify that
lime, ool f§le<1. Applying the same argument as in the proof of Lemma
3.2 and Lebesgue’s dominated convergence theorem, we have

limes, e /59 F @1 =|§] 570|=1g00r=1.

The proof of (a) is now complete.

Proof of (b). First, we note:

Suppose that ||@r||=1. It is shown (Ohtake [13] Theorem 1) that |6 | =1
if and only if I" satisfies one of the following conditions:

(0,) For any r>0, there exists a hyperbolic disk D in 4 with radius »
such that

DNnyD=for all y=I'—{1}.

(0,) For any &>0, there exists a hyperbolic element 7</" whose multiplier
A satisfies 1<A<l+e.

Suppose that 4/ satisfies (0,). For a sequence {r,}5-, of positive numbers
with lim,_. 7,=o0, there exists a sequence {D,}5-, of disks in 4/I" such that
the radius of D, is greater than », for each n. Then by the same argument
as in [13] p. 59, we can take ¢,=A,(4) (n=1, 2, ---) such that ¢, has no zeros
in 4, |I¢n”4,1=17

Liglg 10 r(¢gu)larr. =1 )

and
tim [ 16r(p1=1.

From the above formulae the sequence {@r(¢,)} converges to 0 uniformly on
compact subsets of 4/I". There exists a Beltrami differential g for I" such
that the sequence {0 r(¢.)}%-, is a Hamilton sequence for u (cf. Tanigawa [17]).
Namely,

Sup{HSmrmp\ : HSDH‘HF’él}:}»iP}olSSA/I'”@F@")

Since

[, 60 .

we have
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SL’T*#%

where m: 4—4/I" is a universal covering mapping. This implies that {¢,}%-,
is still a Hamilton sequence for z#*y. It follows that p4 and m*p are extremal
Beltrami differentials on 4/I" and 4, respectively. Hence from Lemma 3.1, the
Beltrami differential g has the desired property.

Next, we suppose that 4/I" satisfies (O,). Then, there exists a sequence
of hyperbolic transformations {r,}5-, in I” such that their multiplies coverge
to one. Using the same argument as in Ohtake [13] again, we can take ¢,=
Ay(4, 1) with no zeros in 4 (n=1, 2, --) such that @,=0 p(¢,)= A,(4, I') satisfis
LHE 1Dallasr.,=1 and the weight of @, almost concentrates in a (maximal)

=i7* el

Il plzsup{[(| mug|: 191,21} 2lim

collar for I'. By the same argument as above, we can construct a Beltrami
differential g for [” with the desired property.
Conversely, Suppose that there exists a point ¢=7(/") such that

00, £lp)=1r1(0, @)= (0, ¢).

Let 4 be an extremal Beltrami differential for psT("). It follows from
Lemma 3.1 that

ol =], 9 | =1

Since [@r||<1, it means that |@r|=1. |

4. Proof of Theorem 2.2

For r<l’ we set y,=W r(W,)"'. From the definition of Grunsky coefficients

W @) —W,a@)_  « , e
g~ 2@ @

The left hand side is
o W¢(T(Z))—W¢(T(C))_1 ToW o(2))—1,(W ,(0))

0—10 T 10-10
=10g T¢(W¢<Z))“T¢(W¢(Q) .W¢<Z)—th(c) . Z_'C
W (2)—W () z2—C 1@)—1Q)
— T(/J(W(p(z))—rqa(wgo(C» W(p(z)'"ng(c) Z_C
=g oW, T8 T

Using the formula
72— Q)=r"@"*r' " (z—0),
we verify that
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1 1 (W (@)1 (W (L) g -
5 log 7@ L%lbu(go)z = l%1b1,(¢)r(2) Q. )
Taking the limit as z, {—o0, we have
C a\-t/ya\-J
2 log5;=—l,;glbw<¢>(7) (%),

where 7(z)=(az+b)/(cz+d) (ad—bc=1) and 7,(2)=(a,z+b,)/(c,z+d,) (a,d,—
b,c,=1). Put x,=n"'*c/a)* (n=1,2, ) in the definition of the Grunsky
norm, then we have

2k

——coie (1-| 2]

Here, we note that |¢/a|=]7()| '<1 because 7(4)=4. Hence we have

<1_1§_ 2>x(¢>/2§‘c£ §<1_~% 2)—5((/))/2
(4

2108 <0 B35

and
2)—1:((,0)/2

C |2\x(p)/2 I

-1 N < -l -1 R

el \a Y =le =1 (1 |a

Since 7 preserves the unit circle, it is easy to see that |a| ?=(1—|c/al?). On

the other hand, since /" acts discontinuously on 2 and |a/c|=|7(e0)|, for every

number r>1, 1<|a/c!<r for all but finite number of elements of /". Thus
except for finite number of elements,

r~x(¢) I c | —1-x(p) § [ Cgo | —lérx(y?) |(,‘| —1+e(p) |

Summing up them, we obtain the desired inequality for critical exponents. [

5. Examples

First, we give an example of a Teichmiiller disk in 7'(1) defined by a
quadratic differential with a simple zero on which c¢ro)(-, )=7rw(-, +). In
particular, for each point ¢ in the Teichmiiller disk, 0(0, £(¢))<crw(0, ¢)=
rw(0, ¢) by the result of Krushkal’.

Example 5.1. Let D=D(2rz/3) be the Teichmiiller disk in 7(1) determined
by the quadratic differential ¢(z)=2rz/3=A,(4, 1), namely, setting p,=2/|z!,
the Teichmiiller disk D is defined by D={[wpy,]; w=4}, where [wpy,] denotes
the point of 7T(1) determined by the Beltrami coefficient wy,. Then for any
points ¢, and ¢, in D, cruy(@1, @2)=Trw (@1, P2).

We shall show this i the following. For each Beltrami coefficient g in 4,
we extend p to the whole plane by setting 0 outside 4. Let w* be the quasi-



374 HIROSHIGE SHIGA AND HARUMI TANIGAWA

conformal automorphism of the Riemann sphere with Beltrami coefficient g
which is normalized at oo so that

w*()=C+0(¢1™)
near {=oo. Let

wHO=L+ 3 ba(pC " (10)

be the expansion at {=oco. Then, as is well-known, b,(¢) is a holomorphic
function on 7(1) for each n. By Schiffer’s inequality (cf. Duren [4] Theorem
4.6), |b(p)|<2/3 for any Beltrami coefficient p, hence the assignment p—
3by(#)/2 induces a bounded holomorphic function F([p])=3b:(¢t)/2 on T(1) with
| Flle=1, where [¢] stands for the point in 7(1) determined by p.

Now, let f:4—D be the holomorphic mapping defined by f(w)=[wy,].
We shall verify that the mapping F-f: 4—4 is an isomorphism of 4. We use
the variational formula

wi©=¢—] B2 oq iy,

where z=x+iy, {=2Y and p is a Beltrami coefficient on 4. We rewrite this
in the form;

1 [--]
wQ=C+ || w BLrerdxdy+ 0
=+ Se || e dray -0 (11)
n=1 b4 A” # ot
Comparing this expansion with (11),

b=\ | @zt xdy+ 00112, (12

Hence the derivative of the holomorphic function F-f at the origin is

3 _
Py O =5z || o edxdy| =1. (13)
Therefore, we have shown cru,(-, -)=trw(+, -) on D. O

Next, we construct an example in relation to Theorem 2.1 (b). By the
argument of the proof of Lemma 3.1, for a point ¢=T(I") if the equality
000, k(@))=tr(0, ¢) is valid then ¢ corresponds to an extremal Beltrami co-
efficient g on 4 with a Hamilton sequence {¢,} A4, I') in the form ¢,=
Or(¢,) with §,=A,(d, 1) such that all of the zeros of ¢, are of even order
for each n and 770, ©)=7ru)(0, ¢).

Now, conversely, assume that ¢=T(I") satisfies 77 (0, ¢)=77r1 (0, ¢) and
that ¢ is represented by an extremal Beltrami differential g for I" with a
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Hamilton sequence of the form {@,(J,)}, where ¢, & A,(4, 1) has no zeros of odd
order (here, ||¢,|l is not necessarily assumed to tend to 1, while [|© r(¢)lar
=1 from the definition of Hamilton sequence.) Does it follow that p(0, £(¢))
=7r)(0, ¢)? The answer is no, since ¢ may have several essentially different
Hamilton sequences, some of them may have inverse images via @, with norms
tending to 1, others may have inverse images via @ without zeros of odd
order, and these conditions need not occur at the same time. We construct a
counterexample as follows.

Example 5.2. There exists a Fuchsian group /'#1 and a point ¢=T(")
such that

000, k() <tr (0, P)=77r1,(0, @),

while ¢ is represented by an extremal Beltrami differential ¢ with a Hamilton
sequence of the form {@,(J,)}, where ¢, has no zeros of odd order.

Let S, be a compact Riemann surface and S’ be a covering surface of S,
whose covering group is a cyclic group of infinite order generated by a con-
formal automorphism f:S’—S’. Divide S’ by a smooth dividing curve C into
two ends e; and e; such that fe;cej. There exists a sequence of smooth non-
dividing curves {C,} in ef so that e{—\Um-, C, is conformally equivalent to an
annulus. We set S=S5"—\Ug-, Cn, e;=¢i—\U3-, Cn and e,=e}. The Riemann
surface S has two ends e, and e,, and it is easy to see that e, satisfies condi-
tion (0O,) in the proof of Lemma 3.3, while ¢, satisfies neither (0O,) nor (O,).
We shall construct a Beltrami differential g, on S which has the desired pro-
perty.

Let /" and I’ be Fuchsian groups acting on 4 with 4/I'=S and 4/I''=5".
We identify A,(4, I') and the space A,(S) of integrable holomorphic quadratic
differentials on S, and in the same way A,(4, I'’) and A,(S’). We construct
two sequences in the closed unit ball of .4,(S) whose weights converge to ideal
boundaries determined by e, and e, respectively.

First, fix a quadratic differential §® < A4,(4, 1) without zeros of odd order
and put ¢@=0,(F?)/10r(F®)| and ¢P=(f""*$®). Then there exists a
subsequence {¢;)} of {¢;’} and a sequence of disjoint compact subsets {K}

in ¢, such that lim,mSSKJM,‘E;l:l and Ni, Uy K,=@. In fact, let @ =g
and K, be an arbitrarily fixed compact set of ¢,. There exists a compact set
F, in S’ such that SSF2|¢‘2’|>1—1/2. Take a positive integer n, so that f™2(F,)
is contained in e, and disjoint from K,. Put K,=f"2(F,), and we have
SSK2|¢§3; =SSF2|¢<2)|>1——1/2. Inductively, we can take a compact set F, in S’

and a positive integer n, such that K,=f"i(F,) is disjoint from K, -+ UK,_,
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and SS |9 —SSF7|¢<2>|>1—1/21-1. Restrict each ¢® = A,(S") to S and denote

the restrlctlon by the same symbol.

Next, since the ideal boundary of e, is a free border, we can take a sequ-
ence of disjoint hyperbolic disks D, with hyperbolic radius 7 whose centers
accumulates only to the ideal boundary. Let E be the Dirichlet fundamental
region in 4 for I" centered at 0. Lift each D, and K, on E and denote the
lifts by D, and I?J respectively and let p, denote the center (in hyperbolic
geometry) of l~7,. Put §®(2)=2nz/3 for z=4 and $PM=r%F®, where 7,(2)=
(z—p;)/(1—p,z). Then by the argument of Ohtake [13], lim,.. |@ g lls, =1

and 1'1mMSSDj( Ord®|=1.
Now, set O,¢V=¢®, and define a Beltrami differential g, on S by
o0/l in D,
o=y $/1¢$ 1, in K,
0, elsewhere

Then for each 2=4 the Beltrami coefficient Ay, is an extremal Beltrami differ-
ential on S with Hamilton sequences {¢{"} and { </J‘2’ The Beltrami differential
o is lifted on 4, which will be denoted by the same symbol.

Let ¢;=T(I") denote the point determined by Ay, for A=4. We shall show
that these points Ay, have the desired property. First, note that 770, ¢:)=
trwy(0, ¢2), since Ay, has Hamilton sequence {~]“)} and {¢s}. The Beltrami
coefficient 4y, also has Hamilton sequence {¢;2’}, which is the image by Or of
a sequence in A,(4, 1), with no zeros of odd order. Now we show p(0, £(¢))<
r(0, ¢) by contradiction. If p(0, £(¢2))=77r(0, ¢2), then by the argument
of the proof of Lemma 3.1, the Beltrami coefficient Ay, is extremal not only in
the equivalence class in 7(J7) but also in the equivalence class in 7°(1), and
has a Hamilton sequence {¢,} ©A,(4, 1) with no zeros of odd order such that

tim {26+ Ep“s fim ,EFSSS'T*mi:l. (14)
On the other hand,
JIPZAE AN AN
=2 5|\, +|[]
-2, )). 06
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=J§1 rer SS IZ]r SS to
—_—él rer SS(p(O 2)<J)]2| R SS /1091‘(¢n)l

Here, it is easy to see (cf. Krushkal’ [7]) that

W innes® 129

sup ! ‘= sup Sg igb‘
6 0 SS 161 1811000, r<n =11 ) J 0. 23<01 | 2|
(00, 2)<7}
<
!¢u~ Sgdlzlsb‘
<2+4/2/3<1,

where the supremum is taken over the subclass of A,(4, 1) consisting of all
elements with no zeros of odd order. (The first inequality is shown by rescal-
ing.) Hence we have

[

7=1

=225 5 (gl +|[f wor.
2y

BT CHE W

In view of (14) and the assumption that the discs {rlN)]} are pairwise disjoint
and lim, .. l@.lls.,=1, it follows that

tim| {16

However, the end e, satisfies neither condition (O,) nor (O,), hence by the
argument of Ohtake [13]

sup |0 r(@n)larr./lI@nllan<1.

=lim({ 16r@,)=1. (15)

From (15), it follows that lim inf |@,]4,,>1. This contradicts the assumption
lim e ||¢ IIAI O

Added n Proof. We can show for elementary groups [ ,=<r,>, where
7p(2)=e*"'Pz for p=2, that Crr =T, On D(z?7%/|z|?"%) in the same way
as Example 5.1.
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