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Abstract

In this paper, we discuss the equality between invariant quantities, such
as the Teichmiiller distance and the Caratheodory distance, in Teichmuller
spaces. We shall give some conditions under which these quantities are the
same at some points. Examples of Fuchsian groups will be constructed in
relation to the conditions above. In particular, we shall construct a Teich-
muller disk m T(l) determined by a quadratic differential with a simple zero
where the Teichmuller distance and the Caratheodory distance are the same.
We also give an estimate of the variation of critical exponent quasi-Fuchsian
groups in terms of Grunsky coefficients.

1. Introduction

Let 5 be a hyperbolic Riemann surface. Then there exists a Fuchsian
group Γ acting on the unit disk presenting 5. From an identification called
the Bers embedding, the Teichmuller space T(S) of S is regarded as a bounded
domain T(Γ) of the Banach space of bounded holomorphic quadratic differentials
for Γ. Therefore, a natural complex structure of the Teichmuller space is
induced via the embedding. Under this complex structure, various analytic
properties of Teichmuller spaces are obtained (cf. [1], [3], [5] etc.)- On the
other hand, from the construction of the Bers embedding each point of the
Teichmuller space is the Schwarzian derivative of a univalent function outside
the unit disk. Thus, the method of univalent function theory is useful to study
Teichmuller spaces. In fact, Grunsky's inequality for univalent functions yields
a lot of properties of Teichmuller spaces (cf. [14], [15], [18]). The main pur-
pose of this paper is to investigate invariant metrics of Teichmuller spaces from
the view point of the univalent function theory.

First, we shall discuss two invariant distances, the Teichmuller-Kobayashi
distance and the Caratheodory distance in relation to Grunsky's inequality. As
for these distances, when S is a (hyperbolic) Riemann surface of finite type,
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namely, Γ is a finitely generated Fuchsian group of the first kind, Kra [6]
shows that the two distances are the same on Teichmϋller disks defined by
bounded holomorphic quadratic differentials with zeros of even order only.
Recently, KrushkaP [8], using a family of holomorphic functions on T(l)
defined by Grunsky's coefficients, has shown that they are also the same on
similar Teichmϋller disks as above when Γ is the trivial group, namely, in the
case of the universal Teichmϋller space. In this paper we shall give a condi-
tion on Γ under which such a phenomena occurs, in terms of Poincare series
(Theorem 2.1). (Note that even to elementary groups, KrushkaΓs result can not
be extended immediately, since, in general, Poincare theta operator gives no
information about the orders of zeros of quadratic differentials.) The main tool
is the recent development for Poincare series by C. McMullen [10], [11]. The
comparison of the Caratneodory distance on Teichmϋller spaces of elementary
groups to that of the universal Teichmϋller space will be discussed.

Next, we shall estimate the variation of the critical exponent of Fuchsian
groups in the Bers embeddings in terms of the norm of Grunsky inequalities
(Theorem 2.2). Our estimate implies the estimate of the Hausdorff dimension
of limit sets for finitely generated Fuchsian groups (Corollary 2.2).

In the last section, we shall give examples of holomorphic disks in Teich-
mϋller spaces where the Teichmϋller-Kobayashi distance and the Caratheodory
distance are the same while the Caratheodory distance is given without using
Grunsky's coefficients.

The authors are grateful to the referee for reading carefully the first draft
of this paper and pointing out some erroneous arguments.

2. Preliminaries and main results

In this paper, we denote by Δ the unit disk and by Σ its exterior C—Δ
where C~C\J{oo} is the Riemann sphere. For a Fuchsian group Γ acting on
Σ (and Δ), we consider the Banach space B2(Σ, Γ) of bounded holomorphic
quadratic differentials for Γ. Namely, the space B2(Σ, Γ) is the set of holo-
morphic functions φ on Σ satisfying

φ(χ(z))ϊ'(zY=φ(z) for all z&Σ and for all γ(=Γ

and

φ(z)τ=o(\z\~9) near z=&o

with norm

where λΣ(z)\dz\ is the Poincare metric on Σ.
For each φ(ΞB2(Σ, Γ) there exists a locally univalent holomorphic function

Wψ on Σ such that Wφ(z)=^+Σn=i anz~n near z=oo and the Schwarzian deriva-
tive {Wψ, z\ =(W'l/W'φ)\z)-{l/2)(WyW'φ(z)f is equal to φ{z) (ZCΞΣ). The Teich-
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mύller space T(Γ) of Γ is the set of φtΞB2(Σy Γ) such that Wφ admits a in-
compatible quasiconformal extension to C. Since W ψγW^1 is still a Mόbius
transformation for γtΞΓ, Γφ=WφΓW~1 is a Kleinian group. Hence, T(Γ) is
regarded as the set of such Kleinian groups that are quasiconformal deforma-
tions of Γ. When Γ is the trivial group, we call T({id.\) the universal Teich-
mtiller space and denote it by T(l). For any Fuchsian group Γ the Teichmuller
space T(Γ) is a subset of T(l), since B2{Δ, 1)=)£2(J, Γ).

Take the Grunsky coefficients bmn{φ) of Wψ, which are determined by the
expansion:

Z— L, m, n=i

Then it is known (cf. [4]) that Wφ is univalent in Σ if and only if the in-
equality, called the Grunsky inequality,

Σ Vmnbmn(φ)xmXn ^£ll*ll2

TO, 71 = 1

holds for all x=(xu x2, ~')^l2, where | |x | | 2 :=Σn=i \xn\2- It is easy to see that
Grunsky coefficients bmn are holomorphic functions on T{Γ).

When Wφ has a quasiconformal extension with the Beltrami differential μ,
we denote the quasiconformal mapping of C by wμ. Using the variational
method of quasiconformal mappings, we obtain the following variational formula
of Grunsky coefficients ([8]).

PROPOSITION 2.1. Let μ be a Beltrami coefficient on C which vanishes in Σ.
Then

where {bmn[tμ]}Z,n=i are Grunsky coefficients of wtμ.

Let φ<=T(Γ) such that Wψ has a /f-quasiconformal extension to C. Then,
it is known that

TO, 71 = 1 K~\~l

We set

oo

κ(φ)= sup Σ_ Λjm~nbmn{φ)XmXn .

From the above inequality, we see that

p(0, fc(φ))^ττ(0, φ)^τT(n(O, φ), (1)

where p( , •) is the Poincare distance in Δ, τΓ( , •) and τΓ(Γ)( , •) are the
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Teichmύller distances in T=T(1) and in T(Γ), respectively.
We define another Banach space Aλ(Δ, Γ) of all integrable holomorphic

quadratic differentials for Γ in Δ. The space AX(Δ, Γ) consists of holomorphic
functions φ in Δ such that

φ(γ(z))γ\z)2=φ(z) for all ZΪΞΔ and for all γ~Γ

and

llώlU//7 i = l \ \ό(z)\dxdy<-{-00 .

The Poincare theta operator ΘΓ, defined by

Σ
r<=r

is a bounded operator of AX{Δ, 1) onto Aλ(Δ, Γ). The norm \\θr\\ of θ is less
than or equal to one. C. McMullen ([10], [11]) shows that for most of Fuchsian
groups, | | (9r | |<l . Ohtake [13] characterizes Fuchsian groups Γ with | | β Γ | | = l
in terms of geometric conditions for Δ/Γ.

Here we recall extremal Beltrami coefficients. Let M(Δ, Γ) be the space
of all Beltrami coefficients on Δ for Γ, namely, Beltrami coefficients such that
μoγ.f/γ'=zμ for all γ ΞΓ. For each Beltrami coefficient μ in Δ, we extend μ
to the whole plane by setting 0 outside Δ. Let wμ be the quasiconformal auto-
morphism of the Riemann sphere with Beltrami coefficient μ which is normalized
at oo so that

near ζ=oo. The assignment μ^{wμ, •} induces a holomorphic mapping of
M(Δ, Γ) onto T(Γ). For each μ(ΞM(Δ, Γ), the point in T(Γ) determined by
μ is denoted by [μ].

Two Beltrami coefficients μ, V^ΞM(Δ, Γ) are said to be equivalent (with
respect to the equivalence relation for T(Γ)) if they determines the same point
in T(Γ). A Beltrami coefficient μ is said to be extremal if its supremum norm
Hμlloo is not greater than that of any other elements in its equivalence class.
A Beltrami coefficient μ^M(Δ, Γ) is extremal if and only if there exists a

sequence {φ^^czA^Δ, Γ) with \\φnh/r,i<l such that limn_*oo \\ rμφn

Such a sequence {φn}n=ι is called a Hamilton sequence for μ. (See, for example,
Lehto [9].) In particular, a Beltrami coefficient of the form tφ/\φ\ with t<ΈΔ
and Φ^ΞAX{Δ, Γ) is extremal. Such a Beltrami coefficient is called a Teichmύller
differential.

For an extremal Beltrami differential J « G M ( J , Γ), we define a holomorphic
mapping of Δ into T(Γ) by

fiμ(t)=ltμ/\\μ\\~],
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for t<=A. Then for each t^Δ,

p(0, 0=rΓ (Γ)(0, Fμ(t)).

We shall denote by D(μ) the image of Δ by Fμ and call a geodesic disk deter-
mined by the extremal Beltrami coefficient μ<=ΞM{Δ, Γ). For a Teichmύller
differential tφ/\φ\, we shall abbreviate D(tφ/\φ\) by D(φ) and call it a Teich-
mύller disk.

By utilizing Grunsky's coefficients, KrushkaΓ [8] has shown the following;

PROPOSITION 2.2. Let μ<~M(Δ, 1) be an extermal Beltrami coefficient. As-
sume that there exists a Hamilton sequence for μ consisting of quadratic differ-
entials in AX(Δ, 1) of even order only. Then the Caratheodory distance is equal
to the Teichmilller-Kobayashi distance on D(μ). In fact,

p(0, κ(φ))=cT(i>(0, ¥>)=Γr<i)(0, ψ)

for all φc£D(μ).

We extend the above result as follows.

THEOREM 2.1. (a) Let Γ be an elementary Fuchsian group acting on Δ.
Let μ(ΞM(Δ, Γ) be an extremal Beltrami coefficient. Assume that there exists a
Hamilton sequence for μ consisting of quadratic differentials in AX(Δ, Γ) with
zeros of even order only. Then the Caratheodory distance is equal to the Teich-
mϋller-Kobayashi distance on D(μ)

(b) Let Γ be a torsion free Fuchsian group acting on the unit disk Δ. Then
there exists φζΞT(Γ) such that

p(0, Λ(y>))=rΓ(i)(0, y>)=Γr(Γ)(0, ψ)

if and only if | |θrll = l.

Let cΓ(Γ)( , *) be the Caratheodory distance on T{Γ). Then, by the distance
decreasing property,

i )(P, q),

, q)^ττa>(p, q)

and

7r(Γ)(Λ q)^cτm(P, q),

for p, qζΞT(Γ). It is known that if Γ is an elementary Fuchsian group, then
ττtn(P, q)=τTw(p, q) for any p, q^T{Γ). We show a similar result for the
Caratheodory distance on geodesic disks D(μ).

COROLLARY 2.1. Let Γ and μ be as in Theorem 2.1 (a). Then, cT(n=τT(n
on D{μ). Furthermore,
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ιθ(0, tc(φ))=cT(n(0, φ)=τT(n(0, φ)

for all φ^D(μ).

Next, we shall state our results about critical exponents of an arbitrary
Fuchsian group Γ acting on Δ.

DEFINITION 2.1. Let G be a Kleinian group. We suppose that oo is an
ordinary point of G and not an elliptic fixed point of G. Then the critical ex-
ponent δ(G) of G is defined by

: 2 \c\'tft= + oof g(z)=(az+b)/(cz+d) (ad-bc=l)}
g(ΞG

, g(z)=(az+b)/(cz+d) (ad-bc=l)}.
g&G

We estimate δ(Γ*) in terms of κ(φ) and δ(Γ).

THEOREM 2.2. Let Γ be an arbitrary Fuchsian group acting on Δ. Suppose
that oo is not an elliptic fixed point of Γ. Then for φ =T(Γ),

Sullivan [16] shows that for a geometrically finite Kleinian group the critical
exponent is equal to the Hausdorff dimension of the limit set. Thus, we have

COROLLARY 2.2. Let Γ and φ be as the same ones as above. Furthermore,
we assume that Γ is finitely generated. Then

where H(G) is the Hausdorff dimension of the limit set of G.

Remark. Put K(φ)—ed for d=rr(i>(0, φ). Since Wφ is a /^(^)-quasiconformal
mapping in the plane, it is Kiφ)'1 Holder continuous. Therefore, it is easy to
see that

We know that K(φ)^(l+κ(φ)/l-κ(φ)) because τ>(1)(0, φ)^ρ(0, κ{φ)). Thus, our
estimate is an improvement of the above one.

3. Proofs of Theorem 2.1 and Corollary 2.1

Proof of (a). For the sake of simplicity, we shall give a proof in the case
of a Teichmuller disk D(φ) defined by a quadratic differential φ*=Aι{Δ, Γ) with
zeros of even order only. The general cases can be proved in the same way.
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If Γ=(γ} is a finite group, then it is an Abelian group and obviously
A1(Δ, Γ)czΛ1(A, 1). Thus for φ^Ax{Δ, Γ)-{0} with zeros of even order only,
the equality cΓ(1)=rr<i) holds on D(φ) from Proposition 2.2. From the distance
decreasing property, we have cTu^cT(Γ^ On the other hand, since Γ is an
Abelian group, Tr(i)=τΓ(Γ) (cf. [12] Theorem 1). Thus we have
and the desired equality. It means also the proof of Corollary 2.1.

We shall show the theorem for elementary groups of infinite order.

LEMMA 3.1. Let μ be an extremal Beltrami differential for φϊΞT(Γ), that
is, μ is a measurable function in Δ with

and

for all γ^ΞΓ and for almost all ZCΞΔ. Then, the followings are equivalent:
1. ^(0,

2. sup \\ μφ =sup \\ μθr(φ)\ = \\μ\\«,, where the supremum is taken over
I J J « %) t) ύ 11 I

all φ which are squares of holomorphic functions on Δ with | |0| |j = l.

Proof of Lemma 3.1. This is an immediate consequence of Krushkal [7]

which shows that Λ(y>)=sup II μφ =sup \\ μθr{φ) where the supremum is

taken over all functions φ as above. D

Although the similar argument in KrushkaΓ [7] yields the proof of the
following lemma, we give a sketch of the proof because we use the argument
and notations later.

LEMMA 3.2. Let Γ be a Fuchsian group acting on Δ. Suppose that φΈ
Aλ(Δ, Γ) admits a sequence {ψnJn^^A^Δ, 1) such that each ψn has zeros of even
order only, Θr{φn)—φ (w=l, 2, •••) and II^MJ.I-HI^IU/Γ.I as n->oo. Then the
statements of Theorem 2.1 (a) and Corollary 2.1. hold on D(φ).

Proof of Lemma 3.2. From the Schwarz lemma and usual normal family
argument of bounded holomorphic functions, for the proof of Theorem 2.1, it
is sufficient to show that there is a sequence {fn\n=ι of holomorphic functions
fn of T(Γ) to {z^C: \z\<rn} (n = l, 2, •••) such that limn_oorn=l and

lim(/n ίV) /(0)=l, (2)
n-*oo

where FΦ(t)=ίtφ/\ψ\'].
We may assume that \\φ\\J/Γίl—l. Since \φn}n=i^Aι(ά, 1) be a sequence for
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φ as above, we have

(3)

Since φn^Aι(Δf 1) have zeros of even order only, by the argument in KrushkaΓ
[8], we have

ψn(z)=σn{zf=- fj ^/¥lx^x\n)zk+ι-2dz2, z-^Δ (4)

where <J»=1/V5FSJ? = 1 \Zkxin)zk~idz are Abelian differentials for Γ in Δ and

x™=(xl»\ xin\ ...)GΞ/2. Note that | |* ( n )l | = ||«&»lki.
We define a holomorphic function fn,N of T(Γ) by

/». *(?>)= ̂  Vkϊxίn>xln)bh ι(φ), (5)

where 6^(9) (ψ'^T(Γ)) are Grunsky coefficients of W^ defined in Sec. 2. The
Grunsky inequality implies that

.X ( 6 )

for every φς=T(Γ).
From Proposition 2.1, we have

n.tf / O T ^ - ^

Since φ/\φ\ is a Beltrami coefficient for Γ,

where σn,N{z) =l/y/π ^k=ι\ίkxin)zk~ιdz. Since {θr(σn,iv)}^=i converges to
we conclude that

Hence, from (6) and from the diagonal argument, we can take desired holo-
morphic functions of T{Γ) satisfying (2). Considering the relation (1), we
verify that the statement of Corollary 2.1 holds. •

Next, we show:

LEMMA 3.3. Let Γ be a cyclic Fuchsian group generated by a hyperbolic
Mδbius transformation. If φ'ΞA^Δ, Γ) is a square of an Abelian differential
for Γ, then the statements of Theorem 2.1. (a) and Corollary 2.1. hold on D(φ).
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Proof of Lemma 3.3. Without loss of generality, we may consider the upper
half plane U instead of Δ9 and assume that Γ is generated by γ(z)=λz (λ>l)
and that 11011^=1. We set

Obviously, ΦQ'-A^U, Γ). It is easily seen that

where φo(z)=(l-λ){z(z-l)(z-λ)} -'dz'cΞA^U, 1). Since φtΞA^U, Γ) is regarded
as a holomorphic quadratic differential on an annulus A=U/Γ={W(ΞC : K\w
<R}, φ/φo is a square of a holomorphic function g(u>)=Σ£=-oo ckw

k in A.
On the other hand, on Ω= {l<^\z\<λ\, a fundamental domain for Γ,

ί5.'"-ί$.l£l" '<~
and \φo\=:\z-2dzz\ is "bounded" in Ω. Therefore,

\ g ( w ) \ 2 \ d w Λ d w \ = 2 π Σ \ c k \ * κ , . , X ^ ,
JJA * = -oo /?-}-l

Hence, for gι(w)=Σ*=-ι ĵfê * (l —N)

\g{w)-gι(w)\2\dw/\dw\ —>0 (as /-^oo). (7)

Denote by gt(z) (Z€ΞU) the lift of gι(w) on ί/, which is an automorphic function
for Γ. Then, φι=gι(z)2φQ belongs to A^U, 1) because gι is a bounded holo-
morphic function. Put

then θr(ψι,n)=θr(φι). According to a result by McMullen [10], [11],

lim||^I,n||IΓli=||θKίίι)ili7/Λi.
n->oo

Since g\ is an automorphic function for Γ\ we have

jA z

'2n+l

2n+l~z

1/ ^
r

rfz .
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Noting that g\{z) has zeros of even order only, we conclude that {φι,n}n=ι
is an efficient sequence for Θr(ψι) with zeros of even order. Namely, φt :=
Θr(φι)~gίφo admits a sequence {ψι,n}n=ι with zeros of even order only such
that θr(ψι.n)=φι and that lim \\ψι,nl\u,i=l\φι\\u/r,ί

We define a holomorphic mapping fι

n>N of T(Γ) for φt and ψι,n (w, N=
1, 2, •••) as (5). Then by the same argument as in the proof of Lemma 3.2, we
have

JU/Γ

and
lim \\ fln,NΪloo^Wφi,n\\u,i
iV-»OO

By (7) we see that \\φ—φι\\u,r-+O as /—>oo. Thus, we have

lim \im(fι

ntN°Fφ)'(O) =Hίί||i7//'.i = l .

Therefore, the equality of the Caratheodory and the Teichmiiller distances is
proved. Similarly, we see that the statement of Corollary 2.1 holds on D(φ).
We have established the proof of Lemma 3.3.

We proceed to prove Theorem 2.1 (a). We have already shown the theo-
rem in case Γ is a hyperbolic cyclic group and φ(ΞAι(Δ, Γ) is a square of an
Abelian differential for Γ. In case Γ is a hyperbolic cyclic group but φ is not
a square of any Abelian differential for Γ, φ is a square of an Abelian differ-
ential for Γ2=(y2> because φ has zeros of even order only. Thus, the state-
ments of Theorem 2.1 (a) and Corollary 2.1 hold for D(φ)aT(Γ2). By the
same argument in the beginning of this section, we verify that the Caratheodory
distance is the same as the Teichmiiller distance on D(φ)czT(Γ) as well as
Corollary 2.1. Similarly, we also verify that if Γ is a Z2 extension of hyper-
bolic cyclic group, then we have the desired results.

We assume that Γ—(yy is a parabolic cyclic group. We may assume that
Γ is generated by a parabolic y with the fixed point 2 = 1 .

Let p be an arbitrary point on D(φ)aT(Γ) determined by Beltrami co-
efficients tφ/\φ\ ( ί e J ) . We set

1 I - 1 - Λ

for 0<c<l,

the outside of horodisk tangent at z=l. Note that ΔC-*Δ as c->l. We denote
by Gc the Riemann mapping from Δ onto Δc with Gc(0)=0 and G£(0)>0. Then,
Γc—(Gc)~ιΓGc is a hyperbolic cyclic group on Δ and φu)=φ°Gc(G'c)

2 is in
A(J, Γe\ Thus, φio is regarded as a holomorphic quadratic differential on
AC—ΔIΓC which is contained in a punctured disk Λ1=Δ/Γ. Since Gc converges
to the identity uniformly on every compact subset of Δ as c->l (Caratheodory
convergence theorem), φ(e>(z)^>φ(z) (c->l) as a holomorphic quadratic differential
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in Λ c / l i .
Since φ^Λι(Δ, Γ) has zeros with even order only, (£(c) has also zeros of

even order only. We can take a sequence of holomorphic functions {/^)}??=i
from φ(c) like (5) in the proof of Lemma 3.2. The functions /#> (N=l, 2, •••)
are bounded holomorphic functions on T(l) as well as on T(Γ). Thus, fj})oFφ
is well defined for every c. Noting that \\φ UAΔI r c,ι^lφ\\ ΔI r ,ι — ̂ > we verify that
limc^1,tf-.oo||/jv)||oo<jl. Applying the same argument as in the proof of Lemma
3.2 and Lebesgue's dominated convergence theorem, we have

The proof of (a) is now complete.

Proof of (b). First, we note:
Suppose that | | Θ Γ | | = 1 . It is shown (Ohtake [13] Theorem 1) that | | θ r l l = l

if and only if Γ satisfies one of the following conditions:
(Oi) For any r>0, there exists a hyperbolic disk D in Δ with radius r

such that

for all γcΞΓ-{l}.

(O2) For any ε>0, there exists a hyperbolic element γ<=Γ whose multiplier
λ satisfies K k l + ε .

Suppose that Δ/Γ satisfies (OJ. For a sequence {rn}n=i of positive numbers
with l im^cor^oo, there exists a sequence {Dn}n=ι of disks in Δ/Γ such that
the radius of Dn is greater than rn for each n. Then by the same argument
as in [13] p. 59, we can take ψntΞA^Δ) (n = l, 2, •••) such that ψn has no zeros
in J, | |^ n iU,i=l,

lim||βr(ί&n)IU/Λi = l (8)

and

limit

From the above formulae the sequence {θr(ψn)\ converges to 0 uniformly on
compact subsets of Δ/Γ. There exists a Beltrami differential μ for Γ such
that the sequence {θr(φn)}n=ι is a Hamilton sequence for μ (cf. Tanigawa [17]).
Namely,

Since

we have
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where π:Δ->Δ/Γ is a universal covering mapping. This implies that {φn}n=1

is still a Hamilton sequence for π*μ. It follows that μ and π*μ are extremal
Beltrami differentials on Δ/Γ and Δ, respectively. Hence from Lemma 3.1, the
Beltrami differential μ has the desired property.

Next, we suppose that Δ/Γ satisfies (02). Then, there exists a sequence
of hyperbolic transformations {yn}n=i in Γ such that their multiplies coverge
to one. Using the same argument as in Ohtake [13] again, we can take ψn(Ξ
Aγ(Δ, 1) with no zeros in Δ (n = l, 2, •••) such that Φn=θH^Je A ( 4 Γ) satisfis
lim | j φ n | | j / Λ l = l and the weight of Φn almost concentrates in a (maximal)
n—oo

collar for Γ. By the same argument as above, we can construct a Beltrami
differential μ for Γ with the desired property.

Conversely, Suppose that there exists a point ψ^T(Γ) such that

p(0, fc(ψ))= , ψ).

Let μ be an extremal Beltrami differential for μ<=T(Γ).
Lemma 3.1 that

It follows from

Since Hθrll^l, it means that | | β Γ | | = l. •

4. Proof of Theorem 2.2

For γ<=Γ we set 7Ψ~Wψy(WΨ)~ι- From the definition of Grunsky coefficients

The left hand side is

wψ(r(z))
g

, rΨ(wψ(z))
10g w

_ rΨ(Wψ
s

wψ{z)-wψ{ζ)

=log r^ f))-Sy f( MO + l o g

Using the formula

we verify that
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\ log r
0)

Taking the limit as 2, ζ—>°°, we have

where r(2)=(β*+ίO/(cz+flO (ad—bc=l) and r ^ U ) — ( α ^ + ^ ) / ( v + < ^ ) (aφdφ—
bφcφ=l). Put xn=n-1/2(c/a)n (n = l, 2, •••) in the definition of the Grunsky
norm, then we have

2 l o g -
• ) •

Here, we note that |c/α| = lτ'(oo)|-1<l because γ{Δ)—Δ. Hence we have

0- r
and

κ(φ)/2 2\-κ(ψ)/2

Since 7* preserves the unit circle, it is easy to see that \a\ 2=(1— \c/a\2). On
the other hand, since Γ acts discontinuously on I 7 and | a/c\ — \ϊ(°°)\, for every
number r > l , l<\a/c\<r for all but finite number of elements of Γ. Thus
except for finite number of elements,

r-K(ψ) I c I -l-c(ip) <,\Cφ\ ~l^rκ<

Summing up them, we obtain the desired inequality for critical exponents. •

5. Examples

First, we give an example of a Teichmύller disk in T(l) defined by a
quadratic differential with a simple zero on which cTu)(', ')=TTU)(', •)• In
particular, for each point φ in the Teichmύller disk, ^(0, fc(φ))<craAO, φ)—
7Γ(D(0, φ) by the result of KrushkaΓ.

Example 5.1. Let D=D(2πz/3) be the Teichmύller disk in 7(1) determined
by the quadratic differential ώ(z)=2πz/3(ΞΛί(Jf 1), namely, setting μo=z/\z\,
the Teichmύller disk D is defined by D={[wμo]) w(=Δ), where [wμ*~\ denotes
the point of T(l) determined by the Beltrami coefficient wμ0. Then for any
points φί and φ2 in D, cTa)(φι, <p*)=TTa)(<Pu φ*)-

We shall show this m the following. For each Beltrami coefficient μ in Δ,
we extend μ to the whole plane by setting 0 outside Δ. Let wμ be the quasi-
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conformal automorphism of the Riemann sphere with Beltrami coefficient μ
which is normalized at oo so that

near ζ=oo. Let

(10)

be the expansion at ζ=oo. Then, as is well-known, bn(μ) is a holomorphic
function on T(l) for each n. By Schiffer's inequality (cf. Duren [4] Theorem
4.6), \b2(μ)\<2/3 for any Beltrami coefficient μ, hence the assignment /!•->
3b2(μ)/2 induces a bounded holomorphic function F(lμ"])=3b2(μ)/2 on T(l) with
\\F\\co=l, where [μ] stands for the point in 7(1) determined by μ.

Now, let f: Δ^D be the holomorphic mapping defined by f{w) =[wμ^
We shall verify that the mapping F ° / : J->J is an isomorphism of Δ. We use
the variational formula

Z— C

where z~x + iy, £>ΈΣ and μ is a Beltrami coefficient on Δ. We rewrite this

in the form

= ζ + Σ ζ ~ n — \\ μ(z)zn-ιdxdy + O{\\μ\\l). (11)

Comparing this expansion with (11),

Hence the derivative of the holomorphic function F°f at the origin is

, _ 3
= 1. (13)

Therefore, we have shown CΓ<D( , )=τz (i)( , •) on D. •

Next, we construct an example in relation to Theorem 2.1 (b). By the
argument of the proof of Lemma 3.1, for a point φ^T(Γ) if the equality
p(0, κ(φ))=τΓ(Γ)(0, ψ) is valid then φ corresponds to an extremal Beltrami co-
efficient μ on Δ with a Hamilton sequence {φ^czΛ^Δ, Γ) in the form ψn=
θr(φn) with ψnc=Ai(Δ, 1) such that all of the zeros of ψn are of even order
for each n and τΓ(Γ)(0, ^ ) = T Γ ( 1 ) ( 0 , ψ).

Now, conversely, assume that φcΞT(Γ) satisfies rΓ<Γ)(0, ^ ) = Γ Γ ( D ( 0 , ψ) and
that φ is represented by an extremal Beltrami differential μ for Γ with a
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Hamilton sequence of the form \θr(ψn)}> where φn^Aγ{Δ, 1) has no zeros of odd
order (here, | |^n | | is not necessarily assumed to tend to 1, while \\θr(ψn)h/r,i
^ 1 from the definition of Hamilton sequence.) Does it follow that p(0, κ(φ))
=7r(Γ)(0, φ)? The answer is no, since μ may have several essentially different
Hamilton sequences, some of them may have inverse images via Θr with norms
tending to 1, others may have inverse images via θp without zeros of odd
order, and these conditions need not occur at the same time. We construct a
counterexample as follows.

Example 5.2. There exists a Fuchsian group Γφl and a point ψΈΞ
such that

while ψ is represented by an extremal Beltrami differential μ with a Hamilton
sequence of the form {θr(ψn)}, where ψn has no zeros of odd order.

Let So be a compact Riemann surface and S' be a covering surface of So

whose covering group is a cyclic group of infinite order generated by a con-
formal automorphism / : S'—>S'. Divide S' by a smooth dividing curve C into
two ends e[ and e2 such that fef

2ae2. There exists a sequence of smooth non-
dividing curves \Cm\ in e[ so that e[ — Uΐ=i Cm is conformally equivalent to an
annulus. We set S—Sf — US=i Cm, eι—e[—^JZ=i Cm and e2—e'2. The Riemann
surface S has two ends e1 and e2, and it is easy to see that βι satisfies condi-
tion (Oi) in the proof of Lemma 3.3, while e2 satisfies neither (Ox) nor (O2).
We shall construct a Beltrami differential μ0 on 5 which has the desired pro-
perty.

Let Γ and Γ' be Fuchsian groups acting on Δ with J/Γ=S and Δ/Γ' — S'.
We identify Aλ{Δt Γ) and the space AX(S) of integrable holomorphic quadratic
differentials on S, and in the same way /li(J, Γ') and A^S'). We construct
two sequences in the closed unit ball of ..4i(5) whose weights converge to ideal
boundaries determined by ex and e2 respectively.

First, fiy. a quadratic differential ψ{<ί)^AX(Δ, 1) without zeros of odd order
and put ^ ( 2 ) =θr ' (^ ( 2 ) )/ ! lθr ' (^ ( 2 ) ) l ί and φ^=(f'n)*(φi2)). Then there exists a
subsequence \ψn]} of {φ^} and a sequence of disjoint compact subsets {K3}

in e2 such that l i m ^ J f 1 ^ 1 = 1 and n ? = i U Γ = * ^ = 0 I n f a c t ^ let φ^=φ^
J J K j

and Kι be an arbitrarily fixed compact set of e2. There exists a compact set

F2 in S' such that \\ \φ{2) \ > 1-1/2. Take a positive integer n2 so that fnKF2)

is contained in e2 and disjoint from Kx. Put K2—fn2(F2), and we have

[[ \φ^\=[[ | 0 ( 2 ) | > l - l / 2 . Inductively, we can take a compact set F3 in S'
JJK2 JJF2

a n d a p o s i t i v e i n t e g e r n3 s u c h t h a t Kj — fnJ(Fj) is d i s j o i n t f r o m / ί i W ••• \JK3-ι
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and \\ \φ™ I = ί ί |0 ( 2 ) | > 1 —1/2-7"1. Restrict each ^ G ^ ) to S and denote

the restriction by the same symbol.
Next, since the ideal boundary of ex is a free border, we can take a sequ-

ence of disjoint hyperbolic disks D3 with hyperbolic radius j whose centers
accumulates only to the ideal boundary. Let E be the Dirichlet fundamental
region in Δ for Γ centered at 0. Lift each D3 and K3 on E and denote the
lifts by D3 and K3 respectively and let p3 denote the center (in hyperbolic
geometry) of D3. Put ψ(1)(z)—2πz/3 for ZCΞΔ and φ^—γ^ψ^, where Ί3{z)—
{z—p3)/(l—p3z). Then by the argument of Ohtake [13], lim^oo | | θ r ^ ( 1 ) I U , i = l

and | 6 > r ^ ( 1 ) | = l

Now, set Θrφ3

1)=ψj1\ and define a Beltrami differential μ0 on 5 by

I, in D3

o,

in K,

elsewhere

Then for each λ^ΞΔ the Beltrami coefficient λμ0 is an extremal Beltrami differ-
ential on S with Hamilton sequences {φ}1*} and {φ%]}. The Beltrami differential
μ0 is lifted on Δ, which will be denoted by the same symbol.

Let ψi''=T(Γ) denote the point determined by λμ0 for λziΔ. We shall show
that these points λμ0 have the desired property. First, note that τΓ(Γ)(0, φx)—
7Γ(D(0, φx), since λμ0 has Hamilton sequence {φ^} and {0j1}}. The Beltrami
coefficient λμQ also has Hamilton sequence \φn]} > which is the image by θp of
a sequence in Aγ(Δ, 1), with no zeros of odd order. Now we show ^(0, ιc{ψ))<
ττtΓ)(0, ψ) by contradiction. If ^(0, fc(ψχ))=τT(Γ)(0, ψχ), then by the argument
of the proof of Lemma 3.1, the Beltrami coefficient λμ0 is extremal not only in
the equivalence class in T{Γ) but also in the equivalence class in T(l), and
has a Hamilton sequence {φn} aA^Δ, 1) with no zeros of odd order such that

l imlff μoφn =lim =lim Σ
p

(14)

On the other hand,

\\ μoΘr(φn)



GRUNSKY'S INEQUALITY AND ITS APPLICATIONS 377

i»)

Here, it is easy to see (cf. KrushkaΓ [7]) that

(z/\z\)φ
sup
φ o

(
ipio.zXj)

JJipio.zpio.zXj)

= sup

^ sup
| ! 0 I I 1

lp(O.zχj) \z\

where the supremum is taken over the subclass of Aλ{Δ, 1) consisting of all
elements with no zeros of odd order. (The first inequality is shown by rescal-
ing.) Hence we have

I srj L,' ̂
2V2 -

2 J 2 J3 ;=i γ<Ξl'JJγDj IJ J e 2 '

In view of (14) and the assumption that the discs {γDj} are pairwise disjoint

and limn_oo ||07i||j,i=l> it follows that

lim μoθr(φn) =limff
2 n-*oojj

(15)

However, the end e2 satisfies neither condition (Ox) nor (O2), hence by the
argument of Ohtake [13]

This contradicts the assumption
D

From (15), it follows that lim inf |

Added in Proof. We can show for elementary groups Γp—{γpy, where
γp(z)=e2πι/pz for p^2, that cT(rp)=τT(Γp) on D{zv~2/\z\ p~2) in the same way
as Example 5.1.
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