KO-HOMOLOGIES OF A FEW CELLS COMPLEXES

By Zen-ichi Yosimura

0. Introduction.

Let $K O$ and $K U$ be the real and the complex K-spectrum respectively. For any $C W$-spectra X and Y we say that X is quasi $K O_{*}$-equivalent to Y if there exists a map $h: Y \rightarrow K O \wedge X$ such that the composite $\operatorname{map}(\mu \wedge 1)(1 \wedge h)$: $K O \wedge Y \rightarrow K O \wedge X$ is an equivalence where $\mu: K O \wedge K O \rightarrow K O$ denotes the multiplication of $K O$ (see [4] or [3]). Such a map h is called to be a quasi $K O_{*-}$ equivalence. If X is quasi $K O_{*}$-equivalent to Y, then $K O_{*} X$ is isomorphic to $K O_{*} Y$ as a $K O_{*}$-module and in addition $K U_{*} X$ is isomorphic to $K U_{*} Y$ as an abelian group with involution where the conjugation ψ_{c}^{-1} behaves as an involution. Assume that $\mathrm{C} W$-spectra X and Z have the same quasi $K O_{*}$-types as $C W$-spectra Y and W respectively. For any maps $f: Z \rightarrow X$ and $g: W \rightarrow Y$ we say that f is quasi $K O_{*-e q u i v a l e n t ~ t o ~} g$ if there exist $K O_{*}$-equivalences $h: Y \rightarrow$ $K O \wedge X$ and $k: W \rightarrow K O \wedge Z$ such that the equality $h g=(1 \wedge f) k: W \rightarrow K O \wedge X$ holds. In this case their cofibers $C(f)$ and $C(g)$ have the same quasi $K O_{*}$-type.

A $C W$-spectrum X is said to be stably quasi $K O_{*}$-equivalent to a $C W$ spectrum Y if X is quasi $K O_{*}$-equivalent to the i-fold suspended spectrum $\Sigma^{i} Y$ for some i. In this note we shall be interested in the stable quasi $K O_{*}$-types of complexes with a few cells. Each complex with 2 -cells is stably quasi $K O_{*-}$ equivalent to one of the following spectra $\Sigma^{0} \vee \Sigma^{2}(0 \leqq i \leqq 7), S Z / t(t \geqq 1), P=C(\eta)$ and $Q=C\left(\eta^{2}\right)$ where $S Z / t$ denotes the Moore spectrum of type Z / t and η : $\Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map of order 2. Our purpose of this paper is to determine the stable quasi $K O_{*}$-types of any complexes with 3 - or 4 -cells (Theorems 5.3 and 5.4). In [4] and [5] we introduced some 3-cells spectra X_{m} and X_{m}^{\prime} constructed as the cofibers of certain maps $f: \Sigma^{i} \rightarrow S Z / 2^{m}$ and f^{\prime} : $\Sigma^{2} S Z / 2^{m} \rightarrow \Sigma^{0}$ and some 4 -cells spectra $X Y_{m}, X^{\prime} Y_{m}^{\prime}$ and $Y^{\prime} X_{m}$ obtained as the cofibers of their mixed maps. In $\S 1$ and $\S 4$ we study the quasi $K O_{*}$-types of their cofibers $\mathrm{C}(g)$ for any maps $g: S_{i} \rightarrow \Delta X$ realizing elements of $K O_{2} X$ when $X=S Z / 2^{m}, P, Q, X_{m}$ or X_{m}^{\prime}. In $\S 2$ we introduce some 4 -cells spectra $X_{m, n}$ constructed as the cofibers of certain maps $f: \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2^{m}$, and then study the quasi $K O_{*}$-types of their cofibers $C(g)$ for any maps $g: \Sigma^{2} S Z_{n} \rightarrow \Delta X$ realizing elements of $\left[\Sigma^{2} S Z / 2^{n}, K O \wedge X\right]$ when $X=S Z / 2^{m}, P$ or Q. In $\S 3$ we introduce some new small spectra $X V_{m, n}, V X_{m, n}$ and $X^{\prime} X_{n, m}$ needed in §4. In $\S 5$ we prove Theorems 5.3 and 5.4 by using results obtaind in $\S \S 1-4$.

Received November 19, 1992.

1. The cofibers of maps $f: \Sigma^{2} \rightarrow S Z / 2^{m}$ and $f^{\prime}: \Sigma^{2} S Z / 2^{m} \rightarrow \Sigma^{0}$.
1.1. Let $S Z / 2^{r}$ be the Moore spectrum of type $Z / 2^{r}(r \geqq 1)$, and $i_{r}: \Sigma^{0} \rightarrow$ $S Z / 2^{r}$ and $j_{r}: S Z / 2^{r} \rightarrow \Sigma^{1}$ denote the bottom cell inclusion and the top cell projection. For the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ of order 2 there exists its extension $\bar{\eta}_{1}: \Sigma^{1} S Z / 2 \rightarrow \Sigma^{0}$ and its coextension $\tilde{\eta}_{1}: \Sigma^{2} \rightarrow S Z / 2$ with $\bar{\eta}_{1} i_{1}=\eta$ and $j_{1} \tilde{\eta}_{1}=\eta$. Using the obvious maps $\rho_{r, 1}: S Z / 2^{r} \rightarrow S Z / 2$ and $\rho_{1, r}: S Z / 2 \rightarrow S Z / 2^{r}$ we then set $\bar{\eta}_{r}=\bar{\eta}_{1} \rho_{r, 1}: \Sigma^{1} S Z / 2^{r} \rightarrow \Sigma^{0}$ and $\tilde{\eta}_{r}=\rho_{1, r} \tilde{\eta}_{1}: \Sigma^{2} \rightarrow S Z / 2^{r}$, which satisfy $\bar{\eta}_{r} i_{r}=\eta$ and $j_{r} \tilde{\eta}_{r}=\eta$, too. Hereafter we shall often drop as $i, j, \bar{\eta}$ and $\tilde{\eta}$ the subscript " r " in the symbols $i_{r}, j_{r}, \bar{\eta}_{r}$ and $\tilde{\eta}_{r}$. Choose mars $\varphi: \Sigma^{1} S Z / 2$ $\rightarrow S Z / 2 \wedge S Z / 4$ and $\psi: S Z / 2 \wedge S Z / 4 \rightarrow S Z / 2$ such that $(1 \wedge j) \varphi=1=\psi(1 \wedge i)$ and $(1 \wedge i) \psi+\varphi(1 \wedge j)=1$, and then consider the composite maps $\eta_{1,2}=(\bar{\eta} \wedge 1) \varphi: \Sigma^{2} S Z / 2$ $\rightarrow S Z / 4$ and $\eta_{2,1}=\psi(\tilde{\eta} \wedge 1): \Sigma^{2} S Z / 4 \rightarrow S Z / 2$. It is immediate that $\eta_{1,2}=\tilde{\eta}, j \eta_{1,2}$ $=\bar{\eta}, \eta_{2,1} i=\tilde{\eta}$ and $j \eta_{2,1}=\bar{\eta}$ when the maps φ and ψ are replaced by the maps $\varphi+(1 \wedge i \eta)$ and $\phi+(1 \wedge \eta j)$ if necessary. Set $\eta_{n, m}=\rho_{2, m} \eta_{1,2} \rho_{n, 1}: \Sigma^{2} S Z / 2^{n} \rightarrow$ $S Z / 2^{m}$ when $m \geqq 2$, and $\eta_{n, m}^{\prime}=\rho_{1, m} \eta_{2,1} \rho_{n, 2}: \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2^{m}$ when $n \geqq 2$. Since it is easily shown that $\eta_{n, m}=\eta_{n, m}^{\prime}$ when $m \geqq 2$ and $n \geqq 2$, we employ the notation $\eta_{n, m}$ instead of $\eta_{n, m}^{\prime}$ even if $m=1$. Evidently these maps $\eta_{n, m}$ satisfy $\eta_{n, m} i=\tilde{\eta}$ and $j \eta_{n, m}=\bar{\eta}$, too.

Denote by $V_{m}, V_{m}^{\prime}, U_{m}$ and $U_{m}^{\prime}(m \geqq 1)$ the small spectra constructed as the cofibers of the maps $i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{m-1}, \tilde{\eta} j: \Sigma^{1} S Z / 2^{m-1} \rightarrow S Z / 2, \eta_{1, m+1}:$ $\Sigma^{2} S Z / 2 \rightarrow S Z / 2^{m+1}$ and $\eta_{m+1,1}: \Sigma^{2} S Z / 2^{m+1} \rightarrow S Z / 2$ respectively. In [4] or [6] these small spectra are written to be $V_{2 m}, V_{2 m}^{\prime}, U_{2 m}$ and $U_{2 m}^{\prime}$. We shall denote by $i_{V}: S Z / 2^{m-1} \rightarrow V_{m}, i_{V}^{\prime}: S Z / 2 \rightarrow V_{m}^{\prime}, i_{U}: S Z / 2^{m+1} \rightarrow U_{m}$ and $i_{U}^{\prime}: S Z / 2 \rightarrow U_{m}^{\prime}$ the canonical inclusions, and by $j_{V}: V_{m} \rightarrow \Sigma^{2} S Z / 2, j_{V}^{\prime}: V_{m}^{\prime} \rightarrow \Sigma^{2} S Z / 2^{m-1}, j_{U}: U_{m}$ $\rightarrow \Sigma^{3} S Z / 2$ and $j_{U}^{\prime}: U_{m}^{\prime} \rightarrow \Sigma^{3} S Z / 2^{m+1}$ the canonical projections. Consider the two cofiber sequences

$$
\begin{equation*}
\Sigma^{1} S Z / 2 \xrightarrow{\bar{\eta}} \Sigma^{0} \xrightarrow{\bar{i}} C(\bar{\eta}) \xrightarrow{j} \Sigma^{2} S Z / 2 \quad \text { and } \quad \Sigma^{2} \xrightarrow{\tilde{\eta}} S Z / 2 \xrightarrow{i} C(\tilde{\eta}) \xrightarrow{\tilde{j}} \Sigma^{3} \tag{1.1}
\end{equation*}
$$

in which the cofibers $C(\bar{\eta})$ and $C(\tilde{\eta})$ have the same quasi $K O_{*}$-types as Σ^{4} and Σ^{-1} respectively (see [3], [4], [6] or (1.9) below). Then we get the following two cofiber sequences

$$
\begin{equation*}
\Sigma^{0} \xrightarrow{2^{m_{i}^{-}}} C(\bar{\eta}) \xrightarrow{\bar{i}_{V}} V_{m+1} \xrightarrow{\bar{j}_{V}} \Sigma^{1} \quad \text { and } \quad \Sigma^{2} \xrightarrow{\tilde{i}_{V}^{\prime}} V_{m+1}^{\prime} \xrightarrow{\tilde{j}_{V}^{\prime}} C(\tilde{\eta}) \xrightarrow{2^{m} \tilde{j}} \Sigma^{3} . \tag{1.2}
\end{equation*}
$$

Since $\eta_{1,2}=(\bar{\eta} \wedge 1) \varphi$ and $\eta_{2,1}=\psi(\tilde{\eta} \wedge 1)$ there exist maps $\bar{\eta}_{2,1}: C(\bar{\eta}) \wedge S Z / 4 \rightarrow$ $\Sigma^{2} S Z / 2$ and $\tilde{\eta}_{1,2}: \Sigma^{1} S Z / 2 \rightarrow C(\tilde{\eta}) \wedge S Z / 4$ satisfying $\bar{\eta}_{2,1}(1 \wedge i)=j$ and $(1 \wedge j) \tilde{\eta}_{1,2}$ $=i$, whose cofibers are $\Sigma^{1} U_{1}$ and U_{1}^{\prime} respectively. Hence we can choose maps

$$
\begin{equation*}
\bar{\lambda}: C(\tilde{\eta}) \longrightarrow \Sigma^{0} \text { and } \tilde{\lambda}: \Sigma^{3} \longrightarrow C(\tilde{\eta}) \tag{1.3}
\end{equation*}
$$

satisfying $\bar{i}=4$ and $\tilde{\lambda} \tilde{j}=4$ so that their cofibers are U_{1} and U_{1}^{\prime} respectively. It is obvious that $\bar{\lambda}_{l}=4=\tilde{j} \tilde{\lambda}$. So we get the following two cofiber sequences

$$
\begin{equation*}
C(\bar{\eta}) \xrightarrow{2^{m} \bar{\lambda}} \Sigma^{0} \xrightarrow{\bar{i}_{U}} U_{m+1} \xrightarrow{\bar{j}_{U}} \Sigma^{1} C(\bar{\eta}) \quad \text { and } \quad \Sigma^{3} \xrightarrow{2^{m} \tilde{\lambda}} C(\tilde{\eta}) \xrightarrow{\tilde{i}_{U}^{\prime}} U_{m+1}^{\prime} \xrightarrow{\tilde{j}_{U}^{\prime}} \Sigma^{4} . \tag{1.4}
\end{equation*}
$$

Let P and Q denote the elementary spectra constructed as the cofibers of the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ and its square $\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$ respectively. Given such an elementary spectrum X as $\Sigma^{i}, S Z / 2^{m}, P, Q$ or V_{m+1} each $C W$-spectrum having the same quasi $K O_{*}$-type as X will be represented by ΔX. For simplicity we shall write $S_{\imath}(0 \leqq \imath \leqq 7)$ and $S Z_{m}(m \geqq 1)$ instead of $\Delta \Sigma^{\imath}$ and $\Delta S Z / 2^{m}$.

Lemma 1.1. For any map $f: S_{i} \rightarrow S_{0}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quası $K O_{*-}$ equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{2+1}$ or the following small spectrum Y_{\imath} : i) $Y_{0}=S Z / 2^{m} \vee S Z / q$; ii) $Y_{1}=P$; iii) $Y_{2}=Q$; iv) $Y_{4}=\Sigma^{4} V_{m+1} \vee S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd.

Proof. Use the following maps $g_{0, m}=2^{m}: \Sigma^{0} \rightarrow \Sigma^{0}, g_{1}=\eta: \Sigma^{1} \rightarrow \Sigma^{0}, g_{2}=\eta^{2}$: $\Sigma^{2} \rightarrow \Sigma^{0}$ and $g_{4, m}=2^{m}{ }_{i}: \Sigma^{4} \rightarrow \Sigma^{4} C(\bar{\eta})$, whose cofibers are $S Z / 2^{m}, P, Q$ and $\Sigma^{4} V_{m+1}$ respectively. Then our result is immediate.

In virtue of Lemma 1.1 we observe that
(1.5) the small spectra $\Sigma^{2} V_{m}^{\prime}, \Sigma^{4} U_{m}$ and $\Sigma^{5} U_{m}^{\prime}(m \geqq 1)$ have the same quasi $K O_{*}$-type as V_{m} (cf. [6, (1.3) and (1.4)] or [7, (1.9) ii)]).
1.2. Denote by $M_{m}, N_{m}, P_{m}, Q_{m}$ and $R_{m}(m \geqq 1)$ the 3 -cells spectra constructed as the cofibers of the maps $i \eta: \Sigma^{1} \rightarrow S Z / 2^{m}, i \eta^{2}: \Sigma^{2} \rightarrow S Z / 2^{m}, \tilde{\eta}: \Sigma^{2} \rightarrow$ $S Z / 2^{m}, \tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2^{m}$ and $\tilde{\eta} \eta^{2}: \Sigma^{4} \rightarrow S Z / 2^{m}$ respectively. Dually we denote by $M_{m}^{\prime}, N_{m}^{\prime}, P_{m}^{\prime}, Q_{m}^{\prime}$ and $R_{m}^{\prime}(m \geqq 1)$ the 3 -cells spectra constructed as the cofibers of the maps $\eta j: S Z / 2^{m} \rightarrow \Sigma^{0}, \eta^{2} j: \Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}, \bar{\eta}: \Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}, \eta \bar{\eta}:$ $\Sigma^{2} S Z / 2^{m} \rightarrow \Sigma^{0}$ and $\eta^{2} \bar{\eta}: \Sigma^{3} S Z / 2^{m} \rightarrow \Sigma^{0}$ respectively. When $X=M, N, P, Q$ or R we shall denote by $i_{X}: S Z / 2^{m} \rightarrow X_{m}$ or $i_{X}^{\prime}: \Sigma^{0} \rightarrow X_{m}^{\prime}$ the canonical inclusion, and by $j_{X}: X_{m} \rightarrow \Sigma^{d}$ or $j_{X}^{\prime}: X_{m}^{\prime} \rightarrow \Sigma^{d^{\prime-1}} S Z / 2^{m}$ the canonical projection where $d=\operatorname{dim} X_{m}$ and $d^{\prime}=\operatorname{dim} X_{m}^{\prime}$. In $[4,4.1]$ these 3-cells spectra X_{m} and X_{m}^{\prime} are written to be $X_{2 m}$ and $X_{2 m}^{\prime}$, and their $K U$ - and $K O$ - homologies have been calculated (see [4, Propositions 4.1 and 4.2]).

Lemma 1.2. (1) For any map $f: S_{i} \rightarrow S Z_{m}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{i+1} \vee S Z / 2^{m}$ or the following small spectrum $Y_{2}:$ i) $Y_{0}=\Sigma^{1} \vee S Z / 2^{k}(0 \leqq k<m)$; ii) $Y_{1}=M_{m}$; iii) $Y_{2}=N_{m}$ or P_{m}; iv) $Y_{3}=Q_{m}$; v) $Y_{4}=R_{m}$ or $\Sigma^{1} \vee \Sigma^{4} V_{k+1}(0 \leqq k<m-1)$.
(2) For any map $f: \Sigma^{\imath-1} S Z_{m} \rightarrow S_{0}(0 \leqq \imath \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*-}$ equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{2} S Z / 2^{m}$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{0} \vee S Z / 2^{k}(0 \leqq k<m)$; ii) $Y_{1}=M_{m}^{\prime}$; iii) $Y_{2}=N_{m}^{\prime}$ or P_{m}^{\prime}; iv) $Y_{3}=Q_{m}^{\prime}$; v) $Y_{4}=R_{m}^{\prime}$ or $\Sigma^{4} \vee \Sigma^{4} V_{k+1}(0 \leqq k<m-1)$.

Proof. Consider the following maps $g_{0, k}=2^{k} i: \Sigma^{0} \rightarrow S Z / 2^{m}, g_{1}=i \eta: \Sigma^{1} \rightarrow$ $S Z / 2^{m}, g_{2}=\imath \eta^{2}: \Sigma^{2} \rightarrow S Z / 2^{m}, g_{2}^{\prime}=\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2^{m}, g_{2}^{\prime \prime}=\tilde{\eta}+i \eta^{2}: \Sigma^{2} \rightarrow S Z / 2^{m}, g_{3}=$
$\tilde{\eta} \eta: \Sigma^{3} \rightarrow S Z / 2^{m}$ and $g_{4, k}=2^{k} i \bar{\lambda}: C(\bar{\eta}) \rightarrow S Z / 2^{m}$. The cofibers $C\left(g_{0, k}\right)$ and $C\left(g_{4, k}\right)$ are the wedge sums $\Sigma^{1} \vee S Z / 2^{k}$ and $\Sigma^{1} \vee U_{k+1}$ respectively whenever $0 \leqq k<m$ -1 , and $C\left(g_{4, m-1}\right)$ has the same quasi $K O_{*}$-type as the 3 -cells spectrum R_{m} since the map $g_{4, m-1}$ is quasi $K O_{*}$-equivalent to the map $\tilde{\eta} \eta^{2}: \Sigma^{4} \rightarrow S Z / 2^{m}$. On the other hand, the cofiber $C\left(g_{2}^{\prime \prime}\right)$ coincides with the 3 -cells spectrum P_{m} since $\tilde{\eta}+i \eta^{2}=(1+i \eta j) \tilde{\eta}$ and $(1+i \eta j)^{2}=1$. Our result of (1) is now easy, and (2) is dually shown to (1).

For any $m \geqq 1$ we consider the maps $\tilde{6} \tilde{\nu}=\eta_{1, m+1} \tilde{\eta}: \Sigma^{4} \rightarrow S Z / 2^{m+1}$ and $\overline{6} \bar{\nu}=$ $\bar{\eta} \eta_{m+1,1}: \Sigma^{3} S Z / 2^{m+1} \rightarrow \Sigma^{0}$ satisfying $j \tilde{\sigma} \tilde{\nu}=6 \nu=\overline{6} \bar{\nu} i$. Then Lemma 1.2 asserts that
(1.6) the cofibers $C(\tilde{6} \tilde{\tilde{\nu}})$ and $C(\overline{6} \tilde{\nu})$ have the same quasi $K O_{*}$-types as $\Sigma^{1} \vee \Sigma^{4} V_{m}$ and $\Sigma^{4} \vee \Sigma^{4} V_{m}$ respectively.

In fact, these cofibers are obtained as those of the composite maps $\tilde{i} j_{U}: \Sigma^{-1} U_{m}$ $\rightarrow \Sigma^{2} C(\tilde{\eta})$ and $i_{U}^{\prime} \bar{j}: \Sigma^{-1} C(\bar{\eta}) \rightarrow \Sigma^{1} U_{m}^{\prime}$, both of which are $K O_{*}$-trivial because $K O_{7} V_{m}=0$. Therefore our assertion (1.6) is certainly valid.
1.3. Recall that $K O_{i} P \cong Z$ or 0 according as i is even or odd. Using the bottom cell inclusion $i_{P}: \Sigma^{0} \rightarrow P$ and the top cell projection $j_{P}: P \rightarrow \Sigma^{2}$ we get the following two cofiber sequences

$$
\begin{equation*}
\Sigma^{0} \xrightarrow{2^{m} i_{P}} P \xrightarrow{\rho_{P, M}} M_{m} \xrightarrow{k_{M}} \Sigma^{1} \quad \text { and } \quad \Sigma^{1} \xrightarrow{h_{M}^{\prime}} M_{m}^{\prime} \xrightarrow{\rho_{M^{\prime}, P}} P \xrightarrow{2^{m} j_{P}} \Sigma^{2} . \tag{1.7}
\end{equation*}
$$

Hence we can immediately show
Lemma 1.3. (1) For any map $f: S_{i} \rightarrow \Delta P(0 \leqq i \leqq 1)$ its cofiber $C(f)$ is quass $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee P$ or the following small spectrum Y_{2} : $Y_{0}=M_{m} \vee S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd.
(2) For any map $f: \Sigma^{\imath} \Delta P \rightarrow S_{0}(0 \leqq \imath \leqq 1)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{2+1} P$ or the following small spectrum $Y_{i}: Y_{0}=$ $\Sigma^{-1} M_{m}^{\prime} \vee S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd.

Choose maps $\xi_{P}: \Sigma^{2} \rightarrow P$ and $\zeta_{P}: P \rightarrow \Sigma^{0}$ satisfying $j_{P} \xi_{P}=2=\zeta_{P} i_{P}$, whose cofibers are $C(\bar{\eta})=P_{1}^{\prime}$ and $C(\tilde{\eta})=P_{1}$ respectively. Then we get the following two cofiber sequences

$$
\begin{equation*}
\Sigma^{2} \xrightarrow{2^{m} \xi_{P}} P \xrightarrow{\rho_{P, P^{\prime}}} P_{m+1}^{\prime} \xrightarrow{j j_{P}^{\prime}} \Sigma^{3} \text { and } P \xrightarrow{2^{m} \zeta_{P}} \Sigma^{0} \xrightarrow{i_{P} i} P_{m+1} \xrightarrow{\rho_{P, P}} \Sigma^{1} P . \tag{1.8}
\end{equation*}
$$

Lemma 1.3 combined with (1.8) asserts that
(1.9) the 3-cells spectra P_{m+1}^{\prime} and $P_{m+1}(m \geqq 0)$ have the same quasi $K O_{*}$-types as $\Sigma^{2} M_{m}$ and $\Sigma^{-1} M_{m}^{\prime}$ respectively, where $M_{0}=\Sigma^{2}$ and $M_{0}^{\prime}=\Sigma^{0}$ (cf. [4, Corollary 5.4]).

Since $\zeta_{P} \xi_{P}=\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$, we obtain maps $\bar{\rho}_{Q}: C(\bar{\eta}) \rightarrow Q$ and $\tilde{\rho}_{Q}: Q \rightarrow C(\tilde{\eta})$
satisfying $j_{Q} \bar{\rho}_{Q}=j \bar{j}, \bar{\rho}_{Q} \bar{i}=2 i_{Q}, \tilde{\rho}_{Q} i_{Q}=\tilde{i} i$ and $j \tilde{\rho}_{Q}=2 j_{Q}$ where $i_{Q}: \Sigma^{0} \rightarrow Q$ and j_{Q} : $Q \rightarrow \Sigma^{3}$ denote the bottom cell inclusion and the top cell projection. Evidently there exists the following cofiber sequence

$$
\begin{equation*}
C(\bar{\eta}) \xrightarrow{\bar{\rho}_{Q}} Q \xrightarrow{\tilde{\rho}_{Q}} C(\tilde{\eta}) \xrightarrow{\delta} \Sigma^{1} C(\bar{\eta}), \tag{1.10}
\end{equation*}
$$

where δ is the composition of the maps $\rho_{P, P}$ and $\rho_{P, P^{\prime}}$ in (1.8). We moreover obtain maps $\bar{\lambda}_{P}: \Sigma^{2} C(\bar{\eta}) \rightarrow P$ and $\tilde{\lambda}_{P}: \Sigma^{3} P \rightarrow C(\tilde{\eta})$ satisfying $j_{P} \bar{\lambda}_{P}=\bar{\lambda}, \bar{\lambda}_{P} \bar{i}=2 \xi_{P}$, $\tilde{\lambda}_{P} i_{P}=\tilde{\lambda}$ and $\tilde{j}_{\tilde{\lambda}_{P}}=2 \zeta_{P}$ because $j_{P *}:\left[\Sigma^{2} C(\bar{\eta}), P\right] \rightarrow\left[C(\bar{\eta}), \Sigma^{0}\right]$ and $i_{P}^{*}:\left[\Sigma^{3} P, C(\tilde{\eta})\right]$ $\rightarrow\left[\Sigma^{3}, C(\tilde{\eta})\right]$ are isomorphisms. Since the elementary spectra P and Q are related by the following cofiber sequences

$$
\Sigma^{1} P \xrightarrow{\lambda_{P, Q}} Q \xrightarrow{\rho_{Q, P}} P \xrightarrow{\imath_{P} j_{P}} \Sigma^{2} P
$$

we here set

$$
\begin{align*}
& \xi_{Q}=\lambda_{P, Q} \xi_{P}: \Sigma^{3} \longrightarrow Q, \quad \zeta_{Q}=\zeta_{P} \rho_{Q, P}: Q \longrightarrow \Sigma^{0}, \\
& \bar{\rho}_{P}=\rho_{Q, P} \bar{\rho}_{Q}: C(\bar{\eta}) \longrightarrow P, \quad \tilde{\rho}_{P}=\tilde{\rho}_{Q} \lambda_{P, Q}: \Sigma^{1} P \longrightarrow C(\tilde{\eta}), \tag{1.11}\\
& \bar{\lambda}_{Q}=\lambda_{P, Q} \bar{\lambda}_{P}: \Sigma^{3} C(\bar{\eta}) \longrightarrow Q, \quad \tilde{\lambda}_{Q}=\tilde{\lambda}_{P} \rho_{Q, P}: \Sigma^{3} Q \longrightarrow C(\tilde{\eta}) .
\end{align*}
$$

Recall that $K O_{i} Q \cong Z, Z / 2,0, Z$ according as $i \equiv 0,1,2,3 \bmod 4$. As is easily seen, there exist the following cofiber sequences

$$
\begin{align*}
& \Sigma^{2^{m} i_{Q}} Q \xrightarrow{\rho_{Q, N}} N_{m} \xrightarrow{k_{N}} \Sigma^{1}, \quad \Sigma^{2} \xrightarrow{h_{N}^{\prime}} N_{m}^{\prime} \xrightarrow{\rho_{N^{\prime}, Q}} Q \xrightarrow{2^{m} j_{Q}} \Sigma^{3}, \\
& \Sigma^{1} \xrightarrow{i_{Q} \eta} Q \xrightarrow{\left(j_{Q}, \rho_{Q, P}\right)} \Sigma^{3} \vee P \xrightarrow{\eta \vee j_{P}} \Sigma^{2}, \quad \Sigma^{1} \xrightarrow{\left(\eta, i_{P}\right)} \Sigma^{0} \vee \Sigma^{1} P \xrightarrow{i_{Q} \vee \lambda_{P, Q}} Q \xrightarrow{\eta j_{Q}} \Sigma^{2}, \tag{1.12}\\
& \Sigma^{2^{3} \xi_{Q}} \xrightarrow{\rho_{\rho_{Q, Q^{\prime}}}^{\longrightarrow}} Q_{m+1}^{\prime} \xrightarrow{j j_{Q}^{\prime}} \Sigma^{4}, \quad \Sigma^{0} \xrightarrow{i_{Q} i} Q_{m+1} \xrightarrow{\rho_{Q, Q}} \Sigma^{1} Q \xrightarrow{2^{m} \zeta_{Q}} \Sigma^{1} .
\end{align*}
$$

Hence we can immediately show
Lemma 1.4. (1) For any map $f: S_{i} \rightarrow \Delta Q(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee Q$ or the following small spectrum Y_{2} : i) $Y_{0}=N_{m} \vee S Z / q$; ii) $Y_{1}=\Sigma^{3} \vee P$; iii) $Y_{3}=Q_{m+1}^{\prime} \vee \Sigma^{3} S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd.
(2) For any map $f: \Sigma^{2+1} \Delta Q \rightarrow S_{0}(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{2+2} Q$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{-2} N_{m}^{\prime} \vee S Z / q$; ii) $Y_{1}=\Sigma^{-1} \vee P$; iii) $Y_{3}=Q_{m+1} \vee S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd.
1.4. Recall that $K O_{i} V_{m+1} \cong Z / 2^{m}, 0, Z / 2, Z / 2, Z / 2^{m+2}, Z / 2, Z / 2,0$ according as $i=0,1, \cdots, 7$.

Lemma 1.5. (1) For any map $f: S_{i} \rightarrow \Delta V_{m+1}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is
quasi $K O_{*-e q u i v a l e n t ~ t o ~ t h e ~ w e d g e ~ s u m ~} \Sigma^{2+1} \vee V_{m+1}$ or the following small spectrum Y_{\imath} : i) $Y_{0}=\Sigma^{1} \vee V_{k+1}(0 \leqq k<m)$; ii) $Y_{2}=\Sigma^{4} P_{m+1}$; iii) $Y_{3}=\Sigma^{4} Q_{m+1}$; iv) $Y_{4}=$ $\Sigma^{4} R_{m+1}$ or $\Sigma^{1} \vee \Sigma^{4} S Z / 2^{k}(0 \leqq k \leqq m)$; v) $Y_{5}=M_{m+1}$; vi) $Y_{6}=N_{m+1}$.
(2) For any map $f: \Sigma^{2-1} \Delta V_{m+1} \rightarrow S_{0}(0 \leqq \imath \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{i} V_{m+1}$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{4} R_{m+1}^{\prime}$ or $\Sigma^{4} \vee S Z / 2^{k}(0 \leqq k \leqq m)$; ii) $Y_{1}=\Sigma^{4} M_{m+1}^{\prime}$; iii) $Y_{2}=\Sigma^{4} N_{m+1}^{\prime}$; iv) $Y_{4}=\Sigma^{0} \vee \Sigma^{4} V_{k+1}(0 \leqq k<m)$; v) $Y_{6}=\Sigma^{4} P_{m+1}^{\prime}$; vi) $Y_{7}=\Sigma^{4} Q_{m+1}^{\prime}$.

Proof. Consider the following maps $g_{0, k}=2^{k} i_{V} i: \Sigma^{0} \rightarrow V_{m+1}, g_{2}=i_{V} \tilde{\eta}: \Sigma^{2} \rightarrow$ $V_{m+1}, g_{3}=i_{V} \tilde{\eta} \eta: \Sigma^{3} \rightarrow V_{m+1}, g_{4, k}=2^{k} \bar{i}_{V}: C(\bar{\eta}) \rightarrow V_{m+1}, g_{5}=\bar{i}_{V}(\eta \wedge 1): \Sigma^{1} C(\bar{\eta}) \rightarrow V_{m+1}$, $g_{6}=\bar{i}_{V}\left(\eta^{2} \wedge 1\right): \Sigma^{2} C(\bar{\eta}) \rightarrow V_{m+1}$. The cofibers $C\left(g_{0, k}\right)$ and $C\left(g_{4, k}\right)$ are respectively the wedge sums $\Sigma^{1} \vee V_{k+1}$ and $\Sigma^{1} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{k}\right)$ whenever $0 \leqq k \leqq m$, and $C\left(g_{4, m+1}\right)$ coincides with the cofiber of the map $2^{m}(\bar{i} \wedge i): \Sigma^{0} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m+1}$ which is quasi $K O_{*}$-equivalent to $\Sigma^{4} R_{m+1}$ according to Lemma 1.2. On the other hand, the cofibers $C\left(g_{2}\right)$ and $C\left(g_{3}\right)$ coincide with those of the maps $\imath_{P} i \bar{\eta}$: $\Sigma^{1} S Z / 2 \rightarrow P_{m}$ and $i_{Q} i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow Q_{m}$, and hence they are obtained as those of the maps $2^{m-1} i \zeta_{P}: P \rightarrow C(\bar{\eta})$ and $2^{m-1} i \zeta_{Q}: Q \rightarrow C(\bar{\eta})$. Further the cofibers $C\left(g_{\bar{b}}\right)$ and $C\left(g_{6}\right)$ coincide with those of the maps $2^{m}\left(\bar{i} \wedge i_{P}\right): \Sigma^{0} \rightarrow C(\bar{\eta}) \wedge P$ and $2^{m}\left(\overline{\bar{i}} \wedge i_{Q}\right)$: $\Sigma^{0} \rightarrow C(\bar{\eta}) \wedge Q$. Therefore Lemmas 1.3 and 1.4 show that these four cofibers have the same quasi $K O_{*}$-types as $\Sigma^{4} P_{m+1}, \Sigma^{4} Q_{m+1}, M_{m+1}$ and N_{m+1} respectively. Now our result of (1) is immediate, and (2) is dually shown to (1).

Denote by W_{m+1} and $W_{m+1}^{\prime}(m \geqq 1)$ the 4 -cells spectra constructed as the cofibers of the maps $i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{m}$ and $\imath \bar{\eta}+\tilde{\eta} \jmath: \Sigma^{1} S Z / 2^{m} \rightarrow S Z / 2$ respectively. Note that $\Sigma^{4} W_{m+1}$ and $\Sigma^{2} W_{m+1}^{\prime}$ have the same quasi $K O_{*}$-type as W_{m+1} (see [4, Corollary 5.4] or (4.12) below). Recall that $K O_{i} W_{m+1} \cong Z / 2^{m}$, $0, Z / 2,0$ according as $i \equiv 0,1,2,3 \bmod 4$.

Lemma 1.6. (1) For any map $f: S_{i} \rightarrow \Delta W_{m+1}(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{i+1} \vee W_{m+1}$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{5} Q_{k+1}^{\prime}(0 \leqq k<m)$; ii) $Y_{2}=\Sigma^{4} P_{m+1}$.
(2) For any map $f: \Sigma^{\imath-1} \Delta W_{m+1} \rightarrow S_{0}(0 \leqq \imath \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{i} W_{m+1}$ or the following small spectrum Y_{2} : i) $Y_{0}=Q_{k+1}(0 \leqq k<m)$; ii) $Y_{2}=\Sigma^{4} P_{m+1}^{\prime}$.

Proof. Consider the following maps $g_{0, k}=2^{k} i_{W} i: \Sigma^{0} \rightarrow W_{m+1}$ and $g_{2}=i_{W} \tilde{\eta}$: $\Sigma^{2} \rightarrow W_{m+1}$. The cofiber $C\left(g_{0, k}\right)$ coincides with that of the map $(\eta j, i \bar{\eta}): \Sigma^{1} S Z / 2$ $\rightarrow \Sigma^{1} \vee S Z / 2^{k}$ whenever $0 \leqq k<m$. Therefore it is the cofiber of the composite map $\eta j j_{V}: \Sigma^{-1} V_{k+1} \rightarrow \Sigma^{1}$, which is quasi $K O_{*}$-equivalent to $\Sigma^{5} Q_{k+1}^{\prime}$ according to Lemma 1.5. On the other hand, the cofiber $C\left(g_{2}\right)$ coincides with that of the map $i_{P} i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow P_{m}$, which is quasi $K O_{*}$-equivalent to $\Sigma^{4} P_{m+1}$ as shown in the proof of Lemma 1.5.

2. The cofibers $X_{m, n}$ of maps $f: \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2^{m}$.

2.1. For any $m, n \geqq 1$ we here introduce 4 -cells $\operatorname{spectra} M_{m, n}, N_{m, n}, P_{m, n}$, $P_{m, n}^{\prime}, P_{m, n}^{\prime \prime}, Q_{m, n}, Q_{m, n}^{\prime}, Q_{m, n}^{\prime \prime}, R_{m, n}, R_{m, n}^{\prime}$ and $R_{m, n}^{\prime \prime}$ constructed as the cofibers of the following maps respectively :

$$
\begin{align*}
& i \eta j: S Z / 2^{n} \longrightarrow S Z / 2^{m}, \quad i \eta^{2} j: \Sigma^{1} S Z / 2^{n} \longrightarrow S Z / 2^{m}, \\
& \tilde{\eta} j, i \bar{\eta} \text { and } i \bar{\eta}+\tilde{\eta} \jmath: \Sigma^{1} S Z / 2^{n} \longrightarrow S Z / 2^{m}, \tag{2.1}\\
& \tilde{\eta} \eta j, i \eta \bar{\eta} \text { and } i \eta \bar{\eta}+\tilde{\eta} \eta j: \Sigma^{2} S Z / 2^{n} \longrightarrow S Z / 2^{m}, \text { and } \\
& \tilde{\eta} \eta^{2} j, i \eta^{2} \bar{\eta} \text { and } i \eta^{2} \bar{\eta}+\tilde{\eta} \eta^{2} \jmath: \Sigma^{3} S Z / 2^{n} \longrightarrow S Z / 2^{m} .
\end{align*}
$$

Of course $M_{1,1}=S Z / 2 \wedge S Z / 2, N_{1,1}=S Z / 2 \vee \Sigma^{2} S Z / 2, P_{1, n}=V_{n+1}^{\prime}, P_{m, 1}^{\prime}=V_{m+1}$, $P_{1, n}^{\prime \prime}=W_{n+1}^{\prime}, P_{m, 1}^{\prime \prime}=W_{m+1}, P_{m, m}^{\prime \prime}=P \wedge S Z / 2^{m}$ and $Q_{m, m}^{\prime \prime}=Q \wedge S Z / 2^{m}$. Moreover we note that $\Sigma^{2} P_{m, n}^{\prime \prime}$ are quasi $K O_{*}$-equivalent to $P_{n, m}^{\prime \prime}$ (see (4.12)). In [4, 4.2] the 4-cells spectra $M_{m, n}, N_{m, n}, P_{m, n}, P_{m, n}^{\prime}$ and $P_{m, n}^{\prime \prime}$ are written to be $S_{2 m, 2 n}$, $T_{2 m, 2 n}, V_{2 m, 2 n}^{\prime}, V_{2 m, 2 n}$ and $W_{2 m, 2 n}$ respectively. As is easily checked, the maps $(c \wedge 1) \tilde{\eta} \eta^{2} j: \Sigma^{3} S Z / 2^{k} \rightarrow K O \wedge S Z / 2^{l}$ and $(c \wedge 1) i \eta^{2} \bar{\eta}: \Sigma^{3} S Z / 2^{l} \rightarrow K O \wedge S Z / 2^{k}$ are trivial whenever $k<l$, and the map ($c \wedge 1$) $\left(i \eta^{2} \bar{\eta}+\tilde{\eta} \eta^{2} j\right): \Sigma^{3} S Z / 2^{k} \rightarrow K O \wedge S Z / 2^{k}$ is also trivial where $\iota: \Sigma^{0} \rightarrow K O$ denotes the unit of $K O$. So we notice that
(2.2) i) when $k<l, R_{l, k}$ and $R_{k, l}^{\prime}$ have the same quasi $K O_{*}$-types as the wedge sums $S Z / 2^{l} \vee \Sigma^{4} S Z / 2^{k}$ and $S Z / 2^{k} \vee \Sigma^{4} S Z / 2^{l}$ respectively, and
ii) $R_{k, k}$ and $R_{k, k}^{\prime}$ have the same quasi $K O_{*}$-type.

In addition, $R_{m, n}^{\prime \prime}$ has the same quasi $K O_{*}$-type as $R_{m, n}, S Z / 2^{m} \vee \Sigma^{4} S Z / 2^{n}$ or $R_{m, n}^{\prime}$ according as $m<n, m=n$ or $m>n$.

For any $m, n \geqq 1$ we moreover introduce 4 -cells spectra $H_{m, n}((m, n) \neq(1,1))$, $K_{m, n}$ and $L_{m, n}$ constructed as the cofibers of the following maps respectively:

$$
\begin{align*}
& \eta_{n, m}: \Sigma^{2} S Z / 2^{n} \longrightarrow S Z / 2^{m}, \quad \tilde{\eta} \bar{\eta}: \Sigma^{3} S Z / 2^{n} \longrightarrow S Z / 2^{m} \text { and } \\
& \tilde{\eta} \eta \bar{\eta}: \Sigma^{4} S Z / 2^{n} \longrightarrow S Z / 2^{m} . \tag{2.3}
\end{align*}
$$

Of course, $H_{m+1,1}=U_{m}$ and $H_{1, n+1}=U_{n}^{\prime}$. Since the map $\bar{j}: \Sigma^{-1} C(\tilde{\eta}) \rightarrow \Sigma^{2} C(\bar{\eta})$ is quasi $K O_{*}$-equivalent to the multiplication by 4 on Σ^{6}, the 4 -cells spectrum $K_{1,1}$ has the same quasi $K O_{*}$-type as $\Sigma^{6} S Z / 4$. We can easily calculate the $K U$ - and $K O$-homologies of these 4 -cells spectra $X=X_{m, n}(m, n \geqq 1)$ as follows (cf. [4, Propositions 4.4 and 4.5]).

Proposition 2.1. The $K U$-homologies $K U_{0} X, K U_{1} X$ and the conjugation ψ_{c}^{-1} on $K U_{0} X \oplus K U_{1} X$ are given as follows:

$X=M_{m, n}$	$N_{m, n}$	$P_{m, n}$		$P_{m, n}^{\prime}$	
		$m \geqq n+1$	$m \leqq n+1$	$m+1 \leqq n$	
$K U_{0} X \cong Z / 2^{m}$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{n+1} \oplus Z / 2^{m-1}$	${ }^{1} \quad Z / 2^{n} \oplus Z / 2$	
$K U_{1} X \cong Z / 2^{n}$	0	0	0	0	
$\phi_{C}^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{cc}1 & 2^{m-n} \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{rc}-1 & -2^{n-m+2} \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right)$	
$X=$	$P_{m, n}^{\prime}$		$P_{m, n}^{\prime \prime}$		
	$m+1 \geqq n$	$m<n$	$m=n$	$m>n$	
$K U_{0} X \cong$	${ }^{m+1} \oplus Z / 2^{n-1}$	$Z / 2^{n+1} \oplus Z / 2^{m-1}$	${ }^{1} Z / 2^{n} \oplus Z / 2^{m}$	$Z / 2^{m+1} \oplus Z / 2$	
$K U_{1} X \cong$	0	0	0	0	
$\psi_{c}^{-1}=$	$\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right)$	$-A_{n-m}$	$\left(\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right)$	A_{m-n}	
$X=$	$Q_{m, n}^{\prime} \quad Q_{m, n}^{\prime \prime}$	$R_{m, n} \quad R_{m, n}^{\prime}$	$H_{m, n}$	$K_{m, n}$	$L_{m, n}$
			$(m, n) \neq(1,1) \quad(m$	(m, n) $\neq(1,1)$	
$K U_{0} X \cong$	$Z / 2^{\text {m }}$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{m-1} \quad Z$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{\text {m }}$
$K U_{1} X \cong$	$Z / 2^{n}$	0	$Z / 2^{n-1}$	0	$Z / 2^{n}$
$\psi_{c}^{-1}=$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{cc}1 & 2^{m-1} \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Here $A_{k}=\left(\begin{array}{cc}1-2^{k+1} & 2^{k+2}\left(1-2^{k}\right) \\ 1 & -1+2^{k+1}\end{array}\right)$ and this matrix operates on $Z / 2^{k+l+2} \oplus Z / 2^{l}$ as left action.

Proposition 2.2. The $K O$-homologies $K O_{2} X(0 \leqq i \leqq 7)$ are tabled as follows:

$X \backslash i=$	0	1	2	3	4	5	6	7
$M_{m, n}$	$Z / 2^{m}$	$Z / 2^{n+1}$	$Z / 2 \oplus Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2^{m+1}$	$Z / 2^{n}$	0	0
$N_{m, n}$	$Z / 2^{m}$	$Z / 2$	$Z / 2^{n+1} \oplus Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2^{m+1} \oplus Z / 2$	$Z / 2$	$Z / 2^{n}$	0
$P_{m, n}$	$Z / 2^{m}$	$Z / 2$	$(*)_{n, m}$	$Z / 2$	$Z / 2^{m-1} \oplus Z / 2$	0	$Z / 2^{n}$	0
$P_{m, n}^{\prime}$	$Z / 2^{m}$	0	$Z / 2^{n-1} \oplus Z / 2$	$Z / 2$	$(*)_{m, n}$	$Z / 2$	$Z / 2^{n}$	0
$P_{m, n}^{\prime \prime}$	$Z / 2^{m}$	0	$Z / 2^{n}$	0	$Z / 2^{m}$	0	$Z / 2^{n}$	0
$Q_{m, n}$	$Z / 2^{m}$	$Z / 2$	$(*)_{m}$	$Z / 2^{n+1}$	$Z / 2^{m-1} \oplus Z / 2$	$Z / 2$	$Z / 2$	$Z / 2^{n}$
$Q_{m, n}^{\prime}$	$Z / 2^{m}$	$Z / 2$	$Z / 2$	$Z / 2^{n-1} \oplus Z / 2$	$Z / 2^{m+1}$	$(*)_{n}$	$Z / 2$	$Z / 2^{n}$
$Q_{m, n}^{\prime \prime}$	$Z / 2^{m}$	$Z / 2$	$Z / 2$	$Z / 2^{n}$	$Z / 2^{m}$	$Z / 2$	$Z / 2$	$Z / 2^{n}$

$R_{m, n} Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2$	$(*)_{m}$	$Z / 2$	$Z / 2^{m-1} \oplus Z / 2^{n+1}$	$Z / 2$	$(*)_{n}$	$Z / 2$
$(m \leqq n)$							

Here $(*)_{m, 1} \cong Z / 2^{m+2}$ and $(*)_{m, n} \cong Z / 2^{m+1} \oplus Z / 2$ if $n \geqq 2$, and $(*)_{0, n}$ is abbrevıated to be (*) ${ }_{n}$.

For the 4 -cells spectra $R_{m, n}$ and $R_{n, m}^{\prime}(2 \leqq m \leqq n)$ their $K U$-, $K O$ - and $K T$ homologies are all equal, but their induced homomorphisms by $\tau: \Sigma^{1} K T \rightarrow K O$ (see [1] or [3]) are not equal when $m<n$. In fact, the induced homomorphisms $\tau_{*}: K T_{2_{2}} X \rightarrow K O_{2 \imath+1} X$ are represented by the following rows $T_{2 \imath+1}$ for $X=$ $R_{m, n}(m \leqq n)$ and $R_{m, n}^{\prime}(m \geqq n)$:

$$
\begin{array}{ll}
T_{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right): Z / 2^{m} \oplus Z / 2^{n} \longrightarrow Z / 2, & T_{3}=\left(\begin{array}{ll}
1 & 0
\end{array}\right): Z / 2 \oplus Z / 2 \longrightarrow Z / 2 \tag{2.4}\\
T_{5}=\left(\begin{array}{ll}
0 & 1
\end{array}\right): Z / 2^{m} \oplus Z / 2^{n} \longrightarrow Z / 2, & T_{7}=\left(\begin{array}{ll}
0 & 1
\end{array}\right): Z / 2 \oplus Z / 2 \longrightarrow Z / 2
\end{array}
$$

2.2. We here show

Lemma 2.3. For any map $f: \Sigma^{2-1} S Z_{n} \rightarrow S Z_{m}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $S Z / 2^{m} \vee \Sigma^{2} S Z / 2^{n}$ or the following small spectrum Y_{2} : i) $Y_{0}=S Z / 2^{k} \vee S Z / 2^{m+n-k}(0 \leqq k<\operatorname{Min}\{m, n\})$; ii) $Y_{1}=M_{m, n}$, $S Z / 2^{k} \vee \Sigma^{1} S Z / 2^{n-m+k}, M_{k, n-m+k}, S Z / 2^{m-n+l} \vee \Sigma^{1} S Z / 2^{l}$ or $M_{m-n+l, l}(0 \leqq k<m \leqq n$ and $0 \leqq l<n \leqq m)$; iii) $Y_{2}=N_{m, n}, P_{m, n}, P_{m, n}^{\prime}$ or $P_{m, n}^{\prime \prime}$; iv) $Y_{3}=Q_{m, n}, Q_{m, n}^{\prime}, Q_{m, n}^{\prime \prime}$ or $H_{m, n}$; v) $Y_{4}=R_{m, n}(m \leqq n), R_{m, n}^{\prime}(m \geqq n), K_{m, n}, \Sigma^{4} V_{k+1} \vee V_{m+n-k-1}$ or $\Sigma^{4} V_{k+1}$ $\vee W_{m+n-k-1}(0 \leqq k<\operatorname{Min}\{m-1, n-1\})$; vi) $Y_{5}=L_{m, n}, \Sigma^{4} V_{k+1} \vee \Sigma^{5} V_{n-m+k+1}$ or $\Sigma^{4} V_{m-n+l+1} \vee \Sigma^{5} V_{l+1}(0 \leqq k<m-1<n$ and $0 \leqq l<n-1<m)$.

Proof. Consider the following maps: i) $g_{0, k}=2^{k} \imath \jmath: \Sigma^{-1} S Z / 2^{n} \rightarrow S Z / 2^{m}$, ii) $g_{1}=i \eta j: S Z / 2^{n} \rightarrow S Z / 2^{m}, g_{1, k}=2^{k} \rho_{n, m}: S Z / 2^{n} \rightarrow S Z / 2^{m}, g_{1, k}^{\prime}=2^{k} \rho_{n, m}+i \eta j:$ $S Z / 2^{n} \rightarrow S Z / 2^{m}$, iii) $g_{2}=\imath \eta^{2} j, \tilde{\eta} j, \imath \bar{\eta}, i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2^{n} \rightarrow S Z / 2^{m}$, iv) $g_{3}=\tilde{\eta} \eta j$, $i \eta \bar{\eta}, i \eta \bar{\eta}+\tilde{\eta} \eta j, \eta_{n, m}: \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2^{m}$, v) $g_{4}=\tilde{\eta} \eta^{2} j$, $i \eta^{2} \bar{\eta}, \tilde{\eta} \bar{\eta}: \Sigma^{3} S Z / 2^{n} \rightarrow$ $S Z / 2^{m}, \quad g_{4, k}=2^{k} i(\bar{\lambda} \wedge j): \Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{n} \rightarrow S Z / 2^{m}, g_{4, k}^{\prime}=2^{k} i(\bar{\lambda} \wedge j)+\tilde{\eta} j \bar{\eta}_{n, 1}:$ $\Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{n} \rightarrow S Z / 2^{m}$ and vi) $g_{5}=\tilde{\eta} \eta \bar{\eta}: \Sigma^{4} S Z / 2^{n} \rightarrow S Z / 2^{m}, g_{5, k}=2^{k}\left(\bar{\lambda} \wedge \rho_{n, m}\right):$ $C(\bar{\eta}) \wedge S Z / 2^{n} \rightarrow S Z / 2^{m}$ where $\rho_{n, m}: S Z / 2^{n} \rightarrow S Z / 2^{m}$ is the obvious map and $\bar{\eta}_{n, 1}$ $=\bar{\eta}_{2,1}\left(1 \wedge \rho_{n, 2}\right): C(\bar{\eta}) \wedge S Z / 2^{n} \rightarrow \Sigma^{2} S Z / 2$ for the map $\bar{\eta}_{2,1}$ given in 1.1. For any k with $0 \leqq k<\operatorname{Min}\{m, n\}$ the cofiber $C\left(g_{0, k}\right)$ is the wedge sum $S Z / 2^{k} \vee S Z /$ 2^{m+n-k}, and $C\left(g_{1, k}\right)$ is the wedge sum $S Z / 2^{k} \vee \Sigma^{1} S Z / 2^{n-m+k}$ or $S Z / 2^{m-n+k} \vee$
$\Sigma^{1} S Z / 2^{k}$ according as $m \leqq n$ or $m \geqq n$. The cofiber $C\left(g_{1, k}^{\prime}\right)$ is obtained as that of the map $\left(2^{n-m+k}, \imath \eta\right): \Sigma^{1} \rightarrow \Sigma^{1} \vee S Z / 2^{k}$ when $m \leqq n$, and as that of the map $2^{m-n+k} \vee \eta_{\jmath}: \Sigma^{0} \vee S Z / 2^{k} \rightarrow \Sigma^{0}$ when $m \geqq n$. Therefore it is the 4 -cells spectrum $M_{k, n-m+k}$ or $M_{m-n+k, k}$ according as $m \leqq n$ or $m \geqq n$. Assume that $0 \leqq k<$ $\operatorname{Min}\{m-1, n-1\}$. For the cofiber sequence

$$
\Sigma^{1} S Z / 2 \longrightarrow U_{n-1} \xrightarrow{\pi_{U}} C(\bar{\eta}) \wedge S Z / 2^{n} \xrightarrow{\bar{\eta}_{n, 1}} \Sigma^{2} S Z / 2
$$

we note that $(1 \wedge j) \pi_{U}=\bar{j}_{U}: U_{n-1} \rightarrow \Sigma^{1} C(\bar{\eta})$ and the cofiber of the map $2^{k}{ }_{\lambda} \bar{\lambda}_{j}$: $\Sigma^{-1} U_{n-1} \rightarrow S Z / 2^{m}$ is the wedge sum $S Z / 2^{m+n-k-2} \vee U_{k+1}$. As is easily checked, the cofibers $C\left(g_{4, k}\right)$ and $C\left(g_{4, k}^{\prime}\right)$ coincide with those of the maps ($\left.i \bar{\eta}, 0\right)$ and $\left(i \bar{\eta}+\tilde{\eta} j, a i_{U} \eta^{2} j\right): \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{m+n-k-2} \vee U_{k+1}$ for some $a \in Z / 2$. So they are respectively the wedge sums $V_{m+n-k-1} \vee U_{k+1}$ and $W_{m+n-k-1} \vee U_{k+1}$ because $i_{U} \eta^{2} j=i_{U} \eta j(i \bar{\eta}+\tilde{\eta} j)$. Of course, $C\left(g_{4, k}\right)$ may be determined more easily since it is obtained as the cofiber of the map $2^{m+n-k-2} \bar{i} \vee 0: \Sigma^{0} \vee \Sigma^{-1} U_{k+1} \rightarrow C(\bar{\eta})$. On the other hand, the cofiber $C\left(g_{5, k}\right)$ is obtained as that of the map $\left(2^{n-m+k} \bar{\lambda}, 0\right)$: $\Sigma^{1} C(\bar{\eta}) \rightarrow \Sigma^{1} \vee U_{k+1}$ when $m \leqq n$, and as that of the map $\left(2^{k} \bar{\lambda}, 0\right): \Sigma^{1} C(\bar{\eta}) \rightarrow$ $\Sigma^{1} \vee U_{m-n+k+1}$ when $m \geqq n$. Therefore it is the wedge sum $\Sigma^{1} U_{n-m+k+1} \vee U_{k+1}$ or $\Sigma^{1} U_{k+1} \vee U_{m-n+k+1}$ according as $m \leqq n$ or $m \geqq n$. Since $\tilde{\eta} j+i \eta^{2} \jmath=(1+i \eta j) \tilde{\eta} j$, $\eta_{n, m}+\tilde{\eta} \eta_{\jmath}=\eta_{n, m}(1+i \eta j), \tilde{\eta} \bar{\eta}+\tilde{\eta} \eta^{2} j=\tilde{\eta} \bar{\eta}\left(1+i \eta_{j}\right)$ and so on, our result is now established.

For any $m, n \geqq 2$ we here consider the map $\nu_{n, m}=\eta_{1, m} \eta_{n, 1}: \Sigma^{4} S Z / 2^{n} \rightarrow$ $S Z / 2^{m}$ satisfying $\nu_{n, m} l=\tilde{6} \tilde{\Sigma}$ and $j \nu_{n, m}=\overline{6} \bar{\nu}$. Then lemma 2.3 asserts that
(2.5) the cofibers of the maps $\tilde{6} \tilde{\nu} \tilde{\nu}^{2}$ and $\tilde{6} \tilde{\nu} j+\tilde{\eta} \tilde{\eta}: \Sigma^{3} S Z / 2^{n} \rightarrow S Z / 2^{m}(2 \leqq m \leqq n)$, $i \overline{\bar{\delta}} \bar{\nu}$ and $i \overline{6} \bar{\nu}+\tilde{\eta} \bar{\eta}: \Sigma^{3} S Z / 2^{n} \rightarrow S Z / 2^{m}(2 \leqq n \leqq m)$ and $\nu_{n, m}: \Sigma^{4} S Z / 2^{n} \rightarrow S Z / 2^{m}(m$, $n \geqq 2$) have the same quasi $K O_{*}$-types as the wedge sums $\Sigma^{4} V_{m-1} \vee V_{n+1}, \Sigma^{4} V_{m-1}$ $\vee W_{n+1}, \Sigma^{4} V_{n-1} \vee V_{m+1}, \Sigma^{4} V_{n-1} \vee W_{m+1}$ and $\Sigma^{4} V_{m-1} \vee \Sigma^{5} V_{n-1}$ respectively.

In fact, these cofibers are obtained as those of the composite maps $i_{V}^{\prime} j_{U}$: $\Sigma^{-1} U_{m-1} \rightarrow \Sigma^{2} V_{n+1}^{\prime}, i_{W}^{\prime} J_{U}: \Sigma^{-1} U_{m-1} \rightarrow \Sigma^{2} W_{n+1}^{\prime}, i_{U}^{\prime} j_{V}: \Sigma^{-1} V_{m+1} \rightarrow \Sigma^{1} U_{n-1}^{\prime}, i_{U}^{\prime} j_{W}:$ $\Sigma^{-1} W_{m+1} \rightarrow \Sigma^{1} U_{n-1}^{\prime}$ and $i_{U}^{\prime} j_{U}: \Sigma^{-1} U_{m-1} \rightarrow \Sigma^{2} U_{n-1}^{\prime}$. Since $j_{U}=j j_{U}: \Sigma^{-1} U_{m-1} \rightarrow$ $\Sigma^{2} S Z / 2$ and $i_{U}^{\prime}=\tilde{i}_{U}^{\prime} \tilde{\imath}: S Z / 2 \rightarrow U_{n-1}^{\prime}$, the first two maps are $K O_{*}$-trivial when $2 \leqq$ $m \leqq n$, the next two maps are $K O_{*}$-trivial when $2 \leqq n \leqq m$, and the last one is always $K O_{*}$-trivial. Hence our assertion (2.5) is certainly valid.
2.3. The cofibers of the maps $2^{k} i_{P} j: \Sigma^{-1} S Z / 2^{m} \rightarrow P$ and $2^{k} i_{P}: P \rightarrow \Sigma^{2} S Z / 2^{m}$ are the wedge sums $\Sigma^{0} \vee M_{k}$ and $\Sigma^{3} \vee \Sigma^{1} M_{k}^{\prime}$ respectively whenever $0 \leqq k<m$. So we obtain

LEMMA 2.4. (1) For any map $f: \Sigma^{2-1} S Z_{m} \rightarrow \Delta P(0 \leqq i \leqq 1)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2} S Z / 2^{m} \vee P$ or the following small spectrum $Y_{\imath}: Y_{0}=\Sigma^{0} \vee M_{k}(0 \leqq k<m)$.
(2) For any map $f: \Sigma^{2} \Delta P \rightarrow S Z_{m}(0 \leqq i \leqq 1)$ its cofiber $C(f)$ is quası $K O_{*^{-}}$
equivalent to the wedge sum $S Z / 2^{m} \vee \Sigma^{r+1} P$ or the following small spectrum Y_{2} : $Y_{0}=\Sigma^{1} \vee \Sigma^{-1} M_{k}^{\prime}(0 \leqq k<m)$.

The cofibers of the maps $2^{k} i_{Q} j: \Sigma^{-1} S Z / 2^{m} \rightarrow Q, i_{Q} \eta j: S Z / 2^{m} \rightarrow Q, i_{Q} \bar{\eta}$: $\Sigma^{1} S Z / 2^{m} \rightarrow Q$ and $2^{k} \xi_{Q J}: \Sigma^{2} S Z / 2^{m} \rightarrow Q$ are the wedge sums $\Sigma^{0} \vee N_{k}, \Sigma^{3} \vee M_{m}^{\prime}$, $\Sigma^{3} \vee P_{m}^{\prime}$ and $\Sigma^{3} \vee Q_{k+1}^{\prime}$ respectively whenever $0 \leqq k<m$. From this fact and its dual we obtain.

Lemma 2.5. (1) For any map $f: \Sigma^{i-1} S Z_{m} \rightarrow \Delta Q(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2} S Z / 2^{m} \vee Q$ or the following small spectrum Y_{\imath} : i) $Y_{0}=\Sigma^{0} \vee N_{k}(0 \leqq k<m)$; ii) $Y_{1}=\Sigma^{3} \vee M_{m}^{\prime}$; iii) $Y_{2}=\Sigma^{3} \vee P_{m}^{\prime}$; iv) $Y_{3}=\Sigma^{3} \vee Q_{k+1}^{\prime}(0 \leqq k<m)$.
(2) For any map $f: \Sigma^{2+1} \Delta Q \rightarrow S Z_{m}(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $S Z / 2^{m} \vee \Sigma^{i+2} Q$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{1} \vee \Sigma^{-2} N_{k}^{\prime}(0 \leqq k<m)$; ii) $Y_{1}=\Sigma^{-1} \vee M_{m}$; iii) $Y_{2}=\Sigma^{0} \vee P_{m}$; iv) $Y_{3}=$ $\Sigma^{1} \vee Q_{k+1}(0 \leqq k<m)$.

The cofibers of the maps $2^{k} i_{P} \bar{j}_{V}: \Sigma^{-1} V_{m+1} \rightarrow P$ and $2^{k} \imath_{U} j_{P}: P \rightarrow \Sigma^{2} U_{m+1}$ are the wedge sums $C(\bar{\eta}) \vee M_{k}$ and $\Sigma^{3} C(\bar{\eta}) \vee \Sigma^{1} M_{k}^{\prime}$ respectively whenever $0 \leqq k \leqq m$. So we obtain

Lemma 2.6. (1) For any map $f: \Sigma^{\Sigma^{-1}} \Delta V_{m+1} \rightarrow \Delta P(0 \leqq i \leqq 1)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{i} V_{m+1} \vee P$ or the following small spectrum $Y_{\imath}: Y_{0}=\Sigma^{4} \vee M_{k}(0 \leqq k \leqq m)$.
(2) For any map $f: \Sigma^{2} \Delta P \rightarrow \Delta V_{m+1}(0 \leqq \imath \leqq 1)$ its cofiber $C(f)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $V_{m+1} \vee \Sigma^{2+1} P$ or the following small spectrum Y_{2} : $Y_{0}=\Sigma^{1} \vee \Sigma^{3} M_{k}^{\prime}(0 \leqq k \leqq m)$.

Lemma 2.7. (1) For any map $f: \Sigma^{\imath-1} \Delta V_{m+1} \rightarrow \Delta Q(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{i} V_{m+1} \vee Q$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{4} \vee N_{k}(0 \leqq k \leqq m)$; ii) $Y_{1}=\Sigma^{3} \vee \Sigma^{4} M_{m+1}^{\prime}$; iii) $Y_{2}=\Sigma^{\top} \vee P_{m+1}^{\prime}$; iv) $Y_{3}=\Sigma^{7} \vee Q_{k+1}^{\prime}(0 \leqq k \leqq m)$.
(2) For any map $f: \Sigma^{2+1} \Delta Q \rightarrow \Delta V_{m+1}(0 \leqq i \leqq 3)$ its cofiber $C(f)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $V_{m+1} \vee \Sigma^{2+2} Q$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{1} \vee \Sigma^{2} N_{k}^{\prime}(0 \leqq k \leqq m)$; ii) $Y_{1}=\Sigma^{3} \vee M_{m+1}$; iii) $Y_{2}=\Sigma^{0} \vee \Sigma^{4} P_{m+1}$; iv) $Y_{3}=$ $\Sigma^{1} \vee \Sigma^{4} Q_{k+1}(0 \leqq k \leqq m)$.

Proof. Consider the following maps $g_{0, k}=2^{k} i_{Q} j_{V}: \Sigma^{-1} V_{m+1} \rightarrow Q, g_{1}=i_{Q} \eta j_{V}$: $V_{m+1} \rightarrow Q, g_{2}=i_{Q} j_{V}: \Sigma^{1} V_{m+1} \rightarrow \Sigma^{4} Q$ and $g_{3, k}=2^{k} \xi_{Q} j_{V}: \Sigma^{2} V_{m+1} \rightarrow Q$. The cofiber $C\left(g_{0, k}\right)$ is the wedge sum $C(\bar{\eta}) \vee N_{k}$ whenever $0 \leqq k \leqq m$, and $C\left(g_{1}\right)$ and $C\left(g_{2}\right)$ are the wedge sums $\Sigma^{3} \vee C\left(\eta_{j_{V}}\right)$ and $\Sigma^{7} \vee \Sigma^{2} M_{m}$ respectively. Here the cofiber $C\left(\eta j_{V}\right)$ has the same quasi $K O_{*}$-type as $\Sigma^{4} M_{m+1}^{\prime}$ in virtue of Lemma 1.5. On the other hand, the cofiber $C\left(g_{3, k}\right)$ coincides with that of the map $2^{m}{ }_{i j} j_{Q}^{\prime}$: $\Sigma^{-1} Q_{k+1}^{\prime} \rightarrow \Sigma^{3} C(\bar{\eta})$. When $0 \leqq k<m$ it is just the wedge sum $\Sigma^{3} C(\bar{\eta}) \vee Q_{k+1}^{\prime}$, and when $k=m$ it has the same quasi $K O_{*}$-type as $\Sigma^{3} C(\bar{\eta}) \vee Q_{m+1}^{\prime}$ because the map
 $\rightarrow \Sigma^{0}$. Our result of (1) is now immediate, and (2) is dually shown to (1).
3. Some small spectra $X V_{m, n}, V X_{m, n}$ and $X^{\prime} X_{n, m}$.
3.1. For any maps $f: \Sigma^{2} \rightarrow S Z / 2^{m}$ and $g: \Sigma^{j} \rightarrow S Z / 2^{m}(i \leqq j)$ we denote by $X Y_{m}$ the cofiber of the map $f \bigvee g: \Sigma^{\imath} \vee \Sigma^{j} \rightarrow S Z / 2^{m}$ when the cofibers of the maps f and g are denoted by X_{m} and Y_{m} respectively. Dually we denote by $X^{\prime} Y_{m}^{\prime}$ the cofiber of the $\operatorname{map}\left(f^{\prime}, g^{\prime}\right): \Sigma^{j} S Z / 2^{m} \rightarrow \Sigma^{j-i} \vee \Sigma^{0}$ when the cofibers of any maps $f^{\prime}: \Sigma^{\nu} S Z / 2^{m} \rightarrow \Sigma^{0}$ and $g^{\prime}: \Sigma^{j} S Z / 2^{m} \rightarrow \Sigma^{0}(i \leqq j)$ are denoted by X_{m}^{\prime} and Y_{m}^{\prime} respectively. In [5] these 4-cells spectra $X Y_{m}$ and $X^{\prime} Y_{m}^{\prime}$ are written to be $X Y_{2 m}$ and $X Y_{2 m}^{\prime}$, and their $K U$ - and $K O$-homologies have been calculated in [5, Propositions 1.2 and 1.3] when $X=M$ or N, and $Y=P, Q$ or R. Let X_{m} and Y_{m}^{\prime} denote the cofibers of any maps $f: \Sigma^{2} \rightarrow S Z / 2^{m}$ and g^{\prime} : $\Sigma^{j} S Z / 2^{m} \rightarrow \Sigma^{0}$. If the composite map $g^{\prime} f: \Sigma^{2+3} \rightarrow \Sigma^{0}$ is trivial, then the maps f and g^{\prime} admit a coextension $h: \Sigma^{2+j+1} \rightarrow Y_{m}^{\prime}$ and an extension $k: \Sigma^{j} X_{m} \rightarrow \Sigma^{0}$ so that their cofibers $C(h)$ and $C(k)$ coincide. Its coincident cofiber is denoted by $Y^{\prime} X_{m}$ when a suitable pair (h, k) is chosen as in $[5,(2.1)$ and (2.2)]. In [5] these 4-cells spectra $Y^{\prime} X_{m}$ are written to be $Y^{\prime} X_{2 m}$, and their $K U$ - and $K O$-homologies have been calculated in [5, Propositions 2.3 and 2.4].

For any map $f: \Sigma^{2} S Z / 2 \rightarrow S Z / 2^{m}$ we denote by $X V_{m, n}(m, n \geqq 1)$ the cofiber of the map $(f, i \bar{\eta}): \Sigma^{2} S Z / 2 \rightarrow S Z / 2^{m} \vee \Sigma^{2-1} S Z / 2^{n-1}$ when the cofiber of the map f is denoted by $X_{m, 1}$. We are interested in $X V_{m, n}$ only when $X=M, N, P$ and Q because the other cases are of little importance. Note that $X V_{m, 1}=X_{m, 1}$ and $N V_{m, n}=S Z / 2^{m} \vee V_{n}$ whenever $m \leqq n$. In [7, (2.2)] the small spectrum $P V_{m, n}$ is written to be $U_{n-1, m, 1}$. Moreover we introduce new small spectra $N V_{m, n}^{b}, P V_{m, n}^{k}$ and $Q V_{m, n}^{0}(m, n \geqq 1$ and $k \geqq 0)$ constructed as the cofibers of the following maps respectively:

$$
\begin{align*}
& g_{N}^{k}=2^{k} i \bar{j}_{V}+i \eta^{2} j j_{V}: \Sigma^{-1} V_{n} \longrightarrow S Z / 2^{m}, \\
& g_{P}^{k}=2^{k} i j_{V}+\tilde{\eta} j j_{V}: \Sigma^{-1} V_{n} \longrightarrow S Z / 2^{m} \text { and } \tag{3.1}\\
& g_{Q}^{0}=i \eta_{V}+\tilde{\eta} \eta j j_{V}: V_{n} \longrightarrow S Z / 2^{m} .
\end{align*}
$$

Since $2^{n-1} j_{V}=\bar{\eta} j_{V}: V_{n} \rightarrow \Sigma^{1}$, it is immediate that $g_{N}^{n}=0, g_{P}^{n}=(1+i \eta j) \tilde{\eta} j j_{V}, g_{N}^{k}=$ $i \eta^{2} j j_{V}, g_{P}^{k}=\tilde{\eta} j j_{V}$ and $g_{N}^{l}=2^{l}\left(1+2^{n-l}\right) i j_{V}$ when $k \geqq \operatorname{Min}\{m, n+1\}$ and $l<n$. Hence it is easily shown that

$$
\begin{align*}
& N V_{m, n}^{k}=\left\{\begin{array}{lll}
S Z / 2^{m} \vee V_{n} & \text { when } k=n \\
N V_{m, n} & \text { when } k \geqq \operatorname{Min}\{m, n+1\} \\
S Z / 2^{k} \vee V_{m+n-k} & \text { when } k<\operatorname{Min}\{m, n\}
\end{array}\right. \tag{3.2}\\
& P V_{m, n}^{k}=\left\{\begin{array}{lll}
P V_{m, n} & \text { when } & k \geqq \operatorname{Min}\{m, n\} \\
S Z / 2^{k} \vee W_{m+n-k} & \text { when } & k<\operatorname{Min}\{m, n\} .
\end{array}\right.
\end{align*}
$$

For any map $f: \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2$ there exists a map $h: \Sigma^{2+2} S Z / 2^{n} \rightarrow V_{m}$ satisfying $j_{v} h=f$ if the composite map $\imath \bar{\eta} f: \Sigma^{i+1} S Z / 2^{n} \rightarrow S Z / 2^{m-1}$ is trivial. By choosing such a map h suitably we introduce a new small spectrum $V X_{m, n}(m, n \geqq 1)$ constructed as the cofiber of its map h when the cofiber of the map f is denoted by $X_{1, n}$. Evidently $V X_{1, n}=\Sigma^{2} X_{1, n}$. Choose a map $\bar{\xi}_{V}$: $\Sigma^{5} S Z / 2^{n} \rightarrow V_{m}$ satisfying $j_{V} \bar{\xi}_{V}=\tilde{\eta} \bar{\eta}$, and then set $\xi_{V}=\bar{\xi}_{V} i: \Sigma^{5} \rightarrow V_{m}$. Such a map ξ_{V} with $j_{V} \xi_{V}=\tilde{\eta} \eta$ is uniquely determined, although $\overline{\tilde{\xi}}_{V}$ is unique only up to quasi $K O_{*}$-equivalences. We are only interested in the following new spectra $V Q_{m, n}, V R_{m, n}, V K_{m, n}$ and $V L_{m, n}(m, n \geqq 1)$ constructed as the cofibers of the maps $\xi_{V} j: \Sigma^{4} S Z / 2^{n} \rightarrow V_{m}, \xi_{V} \eta j: \Sigma^{5} S Z / 2^{n} \rightarrow V_{m}, \bar{\xi}_{V}: \Sigma^{5} S Z / 2^{n} \rightarrow V_{m}$ and $\bar{\xi}_{V}(\eta \wedge 1)$: $\Sigma^{6} S Z / 2^{n} \rightarrow V_{m}$ respectively. According to Lemma 1.5 the cofibers $C\left(\xi_{V}\right)$ and $C\left(\xi_{V} \eta\right)$ have the same quasi $K O_{*}$-types as the elementary spectra M_{m} and N_{m} respectively. The cofibers $C\left(\xi_{V} j\right), C\left(\bar{\xi}_{V}\right)$ and $C\left(\bar{\xi}_{V}(\eta \wedge 1)\right)$ are given as those of certain maps $g_{Q}: C\left(\xi_{V}\right) \rightarrow \Sigma^{6}, g_{K}: \Sigma^{6} \rightarrow C\left(\xi_{V}\right)$ and $g_{L}: \Sigma^{7} \rightarrow C\left(\xi_{V} \eta\right)$, which induce $g_{Q}^{*}(1)=2^{n} \in K O^{6} C\left(\xi_{V}\right) \cong Z, g_{K *}(1)=2^{n-1} \in K O_{6} C\left(\xi_{V}\right) \cong Z$ and $g_{L *}(1)=2^{n-1} \in$ $K O_{7} C\left(\xi_{V} \eta\right) \cong Z$. Applying Propositions 4.1 and 4.2 and the dual of Proposition 4.5 established below we can observe that
(3.3) the small spectra $V Q_{m, n}, V K_{m, n}$ and $V L_{m, n}$ are quasi $K O_{*}$-equivalent to $\Sigma^{5} H_{n+1, m+1}, \Sigma^{6} P_{n-1, m+1}^{\prime}$ and $M V_{m, n}$ respectively. In particular, $Q_{1, n}, K_{1, n}$ and $L_{1, n}$ are quasi $K O_{*}$-equivalent to $\Sigma^{3} H_{n+1,2}, \Sigma^{4} P_{n-1,2}^{\prime}$ and $\Sigma^{6} M V_{1, n}$ respectively.
3.2. We can easily compute the $K U$ - and $K O$-homologies of the new small spectra $Y=X V_{m, n}, Q V_{m, n}^{0}$ and $V R_{m, n}(m, n \geqq 1)$ for $X=M, N, P$ and Q, where $X V_{m, 1}=X_{m, 1}, Q V_{m, 1}^{0}=Q_{m, 1}^{\prime \prime}$ and $V R_{1, n}=\Sigma^{2} R_{1, n}$.

Proposition 3.1. i) The $K U$-homologies $K U_{0} Y, K U_{1} Y$ and the conjugation ψ_{c}^{-1} on $K U_{0} Y \oplus K U_{1} Y$ are given as follows:
$Y=M V_{m, n} \quad N V_{m, m} \quad P V_{m, n} \quad Q V_{m, n} Q V_{m, n}^{0} \quad V R_{m, n}$

$K U_{0} Y \cong$	$Z / 2^{m}$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{m} \oplus Z / 2^{n}$	$Z / 2^{m}$	$Z / 2^{m} \oplus Z / 2^{n}$
$K U_{1} Y \cong$	$Z / 2^{n}$	0	0	$Z / 2^{n}$	0
ψ_{C}^{-1}	$=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}1 & 2^{m-1} \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

ii) The $K O$-homologies $K O_{2} Y(0 \leqq i \leqq 7)$ are tabled as follows:

$Y \backslash i=$	0	1	2	3	4	5	6	7
$M V_{m, n}$	$Z / 2^{m}$	$(*)_{n}$	$Z / 2 \oplus Z / 2$	$Z / 2^{n} \oplus Z / 2$	$Z / 2^{m+1}$	$Z / 2$	0	$Z / 2^{n-1}$
$N V_{m, n} Z / 2^{m} \oplus Z / 2^{n-1}$	$Z / 2(*)_{n} \oplus Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2^{m+1} \oplus Z / 2^{n}$	$Z / 2$	$Z / 2$	0		
$(m>n)$								

$\begin{aligned} & P V_{m, n} Z / 2^{m} \oplus Z / 2^{n} \\ & \quad(n \geqq 2) \end{aligned}$	$2^{n-1} Z / 2 \quad(*)_{m} \oplus Z / 2$	$Z / 2$	$Z / 2^{m-1} \oplus Z / 2^{n}$	0	Z/2	0
$Q V_{m, n} \quad Z / 2^{m} \quad Z$	$Z / 2^{n-1} \oplus Z / 2(*){ }_{m}$	$(*){ }_{n}$	$Z / 2^{m-1} \oplus Z / 2$	$Z / 2^{n}$	$Z / 2$	Z/2
$Q V_{m, n}^{0} \quad Z / 2^{m}$	$Z / 2^{n} \quad Z / 2$	Z/2	$Z / 2^{m}$	$Z / 2^{n}$	Z/2	Z/2
$\begin{aligned} & V R_{m, n} Z / 2^{m} \oplus Z / 2 \\ & \quad(m \geqq 2) \end{aligned}$	U/2 $2 / 2^{n} \oplus Z / 2$	$Z / 2$	$Z / 2^{m+1}$	Z/2	$Z / 2^{n+1}$	Z/2

in which $(*)_{1} \cong Z / 4$ and $(*)_{l} \cong Z / 2 \oplus Z / 2$ if $l \geqq 2$.
For the small spectra $Q V_{m, n}^{0}$ and $\Sigma^{1} Q_{n, m}^{\prime \prime}$ their $K U$ - and $K O$-homologies are equal, but their $K T$-homologies are not equal. In fact,
(3.4) i) $K T_{i} Q V_{m, n}^{0} \cong Z / 2^{m} \oplus Z / 2^{n}, Z / 2^{n+1}, Z / 2 \oplus Z / 2, Z / 2^{m+1}$ according as $i=$ $0,1,2,3$ when $n \geqq 2$;
ii) $K T_{0} Q_{m, n}^{\prime \prime} \cong Z / 2^{m} \oplus Z / 2, K T_{1} Q_{m, n}^{\prime \prime} \cong Z / 4, Z / 4$ or $Z / 2 \oplus Z / 2$ when $m>n=$ 1 , $n>m=1$ or otherwise, $K T_{2} Q_{m, n}^{\prime \prime} \cong Z / 2^{n} \oplus Z / 2$ and $K T_{3} Q_{m, n}^{\prime \prime} \cong Z / 2^{m+1} \oplus Z / 2^{n-1}$, $Z / 2^{m} \oplus Z / 2^{n}$ or $Z / 2^{m-1} \oplus Z / 2^{n+1}$ when $m>n, m=n$ or $m<n$.
3.3. Consider the maps

$$
\begin{align*}
\phi_{n} & =2^{n-1} i_{N}^{\prime} \bar{\lambda}: C(\bar{\eta}) \longrightarrow N_{m}^{\prime} \text { and } \\
\phi_{n, 0} & =2^{n-1} i_{N}^{\prime} \bar{\lambda}+h_{N}^{\prime} \eta j \bar{j}: C(\bar{\eta}) \longrightarrow N_{m}^{\prime} \tag{3.5}
\end{align*}
$$

where the map $h_{N}^{\prime}: \Sigma^{2} \rightarrow N_{m}^{\prime}$ given in (1.12) satisfies $j_{N}^{\prime} h_{N}^{\prime}=\imath$ and $2^{m} h_{N}^{\prime}=$ $i_{N}^{\prime} \eta^{2}$. Since it coincides with the cofiber of the map $i_{U} \eta^{2} j: \Sigma^{1} S Z / 2^{m} \rightarrow U_{n}$, the cofiber $C\left(\phi_{n}\right)$ is quasi $K O_{*}$-equivalent to the small spectrum $\Sigma^{4} V R_{n, m}$ constructed as the cofiber of the map $\xi_{V} \eta j: \Sigma^{9} S Z / 2^{m} \rightarrow \Sigma^{4} V_{n}$. On the other hand, the cofiber $C\left(\phi_{n, 0}\right)$, denoted by $N^{\prime} N_{n, m}(m, n \geqq 1)$, has the following $K U$ - and KO-homologies :

Proposition 3.2. i) $K U_{0} N^{\prime} N_{n, m} \cong Z / 2^{n} \oplus Z / 2^{m}$ on which $\psi_{c}^{-1}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ and $K U_{1} N^{\prime} N_{n, m}=0$.
ii) $K O_{i} N^{\prime} N_{n, m} \cong Z / 2^{n+1}, Z / 2, Z / 2^{m+1}, Z / 2$ according as $i \equiv 0,1,2,3 \bmod 4$ unless $(m, n)=(1,1)$, and $K O_{i} N^{\prime} N_{1,1} \cong Z / 4, Z / 2, Z / 4, Z / 2, Z / 2 \oplus Z / 2, Z / 2, Z / 4$, $Z / 2$ according as $i=0,1, \cdots, 7$.

Denote by $\bar{R}_{m}^{\prime}(m \geqq 1)$ the cofiber of the map $2^{m-1}(\bar{\lambda} \wedge j): \Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{m}$ $\rightarrow \Sigma^{0}$, which has the same quasi $K O_{*}$-type as the elementary spectrum R_{m}^{\prime}. Then there exists a cofiber sequence

$$
\begin{equation*}
C(\bar{\eta}) \xrightarrow{\left(2^{m-1} \bar{\lambda}, 2^{m}\right)} \Sigma^{0} \vee C(\bar{\eta}) \xrightarrow{\bar{\rho}_{R}^{\prime}} \bar{R}_{m}^{\prime} \xrightarrow{(1 \wedge j) \bar{j}_{R}^{\prime}} \Sigma^{1} C(\bar{\eta}) \tag{3.6}
\end{equation*}
$$

where $\bar{j}_{R}^{\prime}: \bar{R}_{m}^{\prime} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m}$ is the canonical projection. Using the map $f_{n, k}=$
$\left(2^{k}+2^{n}, 2^{k-1} \bar{i}\right): \Sigma^{0} \rightarrow \Sigma^{0} \vee C(\bar{\eta})$ we here introduce a new small spectrum $R_{n, k, m}^{\prime}$ constructed as the cofiber of the composite map $\bar{\rho}_{R}^{\prime} f_{n, k}: \Sigma^{0} \rightarrow \bar{R}_{m}^{\prime}$. Assume that $1 \leqq k<m$. Then the small spectrum $R_{n, k, m}^{\prime}$ coincides with the cofiber of the map $h_{n, k, m}=2^{m+n-k-1} \bar{\lambda} \vee\left(2^{n}+2^{k}\right) \bar{j}_{V}: C(\bar{\eta}) \vee \Sigma^{-1} V_{k} \rightarrow \Sigma^{0}$ because $\bar{j}_{R}^{\prime} \bar{\rho}_{R}^{\prime} f_{n, k}=$ $2^{k-1}(\bar{i} \wedge i): \Sigma^{0} \rightarrow C(\bar{\eta}) \wedge, S Z / 2^{m}$. Note that $h_{n, k, m}=2^{s} \bar{\lambda} \vee 2^{n} j_{V}, 2^{s} \bar{\lambda} \vee 0$ or $2^{s} \bar{\lambda} \vee 2^{k} \bar{j}_{V}$ according as $k>n, k=n$ or $k<n$ where $s=m+n-k-1$. When $k=n$ the cofiber $C\left(h_{n, k, m}\right)$ is evidently the wedge sum $U_{m} \vee V_{n}$, and when $k>n$ it coincides with the cofiber of the map $\left(2^{m}, 0\right): C(\bar{\eta}) \rightarrow C\left(2^{n} j_{V}\right)=C(\bar{\eta}) \vee S Z / 2^{n}$. When $k<n$, it is given as the cofiber of a certain map $l_{n, k, m}: C(\bar{\eta}) \rightarrow C\left(2^{k} j_{V}\right)$ which is quasi $K O_{*}$-equivalent to the map $2^{s+1} i_{R}^{\prime}: \Sigma^{4} \rightarrow \Sigma^{4} R_{k}^{\prime}$. Consequently we observe that
(3.7) whenever $1 \leqq k<m$ the small spectrum $R_{n, k, m}^{\prime}$ has the same quasi $K O_{*-}$ type as $\Sigma^{4} S Z / 2^{m} \vee S Z / 2^{n}, \Sigma^{4} V_{m} \vee V_{n}$ or $\Sigma^{4} R_{m+n-k, k}^{\prime}$ according as $k>n, k=n$ or $k<n$.

When $k>m$ the map $f_{n, k}=\left(2^{k}+2^{n}, 2^{k-1} \bar{i}\right)$ is replaced by the simpler map $f_{n}=\left(2^{n}, 0\right)$. Thus the small spectrum $R_{n, k, m}^{\prime}$ is constructed as the cofiber of the composite map $\bar{\rho}_{R}^{\prime} f_{n}: \Sigma^{0} \rightarrow \bar{R}_{m}^{\prime}$. Therefore it coincides with the cofiber of the map $\left(2^{m-1} i \bar{\lambda}, 2^{m}\right): C(\bar{\eta}) \rightarrow S Z / 2^{n} \vee C(\bar{\eta})$ when $k>\operatorname{Min}\{m, n\}$. Since it is the cofiber of the map $2^{m-1} i(\bar{\lambda} \wedge j): \Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{m} \rightarrow S Z / 2^{n}$, we see that
(3.8) the small spectrum $R_{n, k, m}^{\prime}$ has the same quasi $K O_{*}$-type as $R_{n, m}^{\prime}$ whenever $k>\operatorname{Min}\{m, n\}$.

We here rewrite the small spectrum $R_{n, m, m}^{\prime}$ to be $R^{\prime} R_{n, m}$. Since it is obtained as the cofiber of the map $2^{m} i_{V} j_{U}: \Sigma^{-1} U_{m} \rightarrow V_{m}$, the small spectrum $R^{\prime} R_{m, m}$ is quasi $K O_{*}$-equivalent to the small spectrum constructed as the cofiber of the map $i_{V} \tilde{\eta} \eta^{2} j_{V}: \Sigma^{3} V_{m} \rightarrow V_{m}$ or $i \eta^{2} \bar{\eta}: \Sigma^{5} S Z / 2 \rightarrow \Sigma^{2} S Z / 2$ according as $m \geqq 2$ or $m=1$. In particular, $R^{\prime} R_{1,1}$ has the same quasi $K O_{*}$-type as $\Sigma^{2} R_{1,1}^{\prime}$. By (2.2) and (3.8) we note that the small spectrum $R^{\prime} R_{n, m}$ has the same quasi $K O_{*^{-}}$ type as $S Z / 2^{n} \vee \sum^{4} S Z / 2^{m}$ when $n<m$.

Proposition 3.3. i) $K U_{0} R^{\prime} R_{n, m} \cong Z / 2^{n} \oplus Z / 2^{m}$ on which $\psi_{c}^{-1}=1$ and $K U_{1} R^{\prime} R_{n, m}=0$.
ii) $K O_{\imath} R^{\prime} R_{n, m} \cong Z / 2^{n+1} \oplus Z / 2^{m-1}, Z / 2,(*)_{m}, Z / 2$ according as $i \equiv 0,1,2,3$ $\bmod 4$ when $m<n$ or $m=n \geqq 2$. Here $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geqq 2$.

For the small spectra $R^{\prime} R_{m, m}$ and $V_{m} \vee \Sigma^{4} V_{m}(m \geqq 2)$ their $K U$-, $K O$ - and $K T$-homologies are all equal, but their induced homomorphisms by $\tau: \Sigma^{1} K T \rightarrow$ $K O$ are not equal. In fact, the induced homomorphisms $\tau_{*}: K T_{2 i} R^{\prime} R_{m, m} \rightarrow$ $K O_{2 i+1} R^{\prime} R_{m, m}(m \geqq 1)$ are represented by the following rows $T_{2 i+1}$:

$$
\begin{array}{ll}
T_{1}=\left(\begin{array}{ll}
0 & 1
\end{array}\right): Z / 2^{m} \oplus Z / 2^{m} \longrightarrow Z / 2, & T_{3}=\left(\begin{array}{ll}
1 & 1
\end{array}\right): Z / 2 \oplus Z / 2 \longrightarrow Z / 2, \\
T_{5}=\left(\begin{array}{ll}
1 & 0
\end{array}\right): Z / 2^{m} \oplus Z / 2^{m} \longrightarrow Z / 2, & T_{7}=\left(\begin{array}{ll}
0 & 1
\end{array}\right): Z / 2 \oplus Z / 2 \longrightarrow Z / 2 \tag{3.9}
\end{array}
$$

4. The cofibers of maps $f: \Sigma^{2} \rightarrow X_{m}$ and $f^{\prime}: \Sigma^{2} \rightarrow X_{m}^{\prime}$.
4.1. Using the maps $\rho_{P, M}: P \rightarrow M_{m}$ and $\rho_{Q, N}: Q \rightarrow N_{m}$ given in (1.7) and (1.12) we set

$$
\begin{align*}
& \xi_{M}=\rho_{P, M} \xi_{P}: \Sigma^{2} \longrightarrow M_{m}, \quad \xi_{N}=\rho_{Q, N} \xi_{Q}: \Sigma^{3} \longrightarrow N_{m}, \\
& \bar{\rho}_{M}=\rho_{P, M} \bar{\rho}_{P}: C(\bar{\eta}) \longrightarrow M_{m}, \quad \bar{\rho}_{N}=\rho_{Q, N} \bar{\rho}_{Q}: C(\bar{\eta}) \longrightarrow N_{m}, \tag{4.1}\\
& \bar{\lambda}_{M}=\rho_{P, M} \bar{\lambda}_{P}: \Sigma^{2} C(\bar{\eta}) \longrightarrow M_{m}, \quad \bar{\lambda}_{N}=\rho_{Q, N} \bar{\lambda}_{Q}: \Sigma^{3} C(\bar{\eta}) \longrightarrow N_{m} .
\end{align*}
$$

These maps satisfy $j_{M} \xi_{M}=2=j_{N} \xi_{N}, j_{M} \bar{\rho}_{M}=\eta j j, j_{N} \bar{\rho}_{N}=j \bar{j}$ and $j_{M} \overline{\bar{M}}_{M}=\bar{\lambda}=j_{N} \bar{\lambda}_{N}$. Recall that $K O_{i} M_{m} \cong Z / 2^{m}, 0, Z \oplus Z / 2, Z / 2, Z / 2^{m+1}, 0, Z, 0$ according as $i=0,1$, $\cdots, 7$.

Proposition 4.1. For any map $f: S_{i} \rightarrow \Delta M_{m}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{\imath+1} \vee M_{m}$ or the following small spectrum Y_{2} : i) $Y_{0}=\Sigma^{1} \vee M_{k}(0 \leqq k<m)$; ii) $Y_{2}=M P_{m}, P_{m, n+1}^{\prime} \vee \Sigma^{2} S Z / q$ or $P_{m, n+1}^{\prime \prime} \vee$ $\Sigma^{2} S Z / q(n \geqq 0)$; iii) $Y_{3}=M Q_{m}$; iv) $Y_{4}=M R_{m}$ or $\Sigma^{1} \vee \Sigma^{4} M_{k}(0 \leqq k<m)$; v) $Y_{6}=$ $\Sigma^{6} P_{n, m+1}^{\prime} \vee \Sigma^{2} S Z / q(n \geqq 0)$ where $q \geqq 1$ is odd.

Proof. Consider the following maps $g_{0, k}=2^{k} i_{M} 2: \Sigma^{0} \rightarrow M_{m}, g_{2}=i_{M} \tilde{\eta}: \Sigma^{2} \rightarrow$ $M_{m}, g_{2, n}=2^{n} \xi_{M}: \Sigma^{2} \rightarrow M_{m}, g_{2, n}^{\prime}=2^{n} \xi_{M}+i_{M} \tilde{\eta}: \Sigma^{2} \rightarrow M_{m}, g_{3}=i_{M} \tilde{\eta} \eta: \Sigma^{3} \rightarrow M_{m}, g_{4, k}=$ $2^{k} \bar{\rho}_{M}: C(\bar{\eta}) \rightarrow M_{m}$ and $g_{\theta, n}=2^{n} \bar{\lambda}_{M}: \Sigma^{2} C(\bar{\eta}) \rightarrow M_{m}$. The cofibers $C\left(g_{4, k}\right)$ and $C\left(g_{6, n}\right)$ are given as those of certain maps $h_{4, k}: \Sigma^{0} \rightarrow C\left(2^{k} \bar{\rho}_{P}\right)$ and $h_{6, n}: \Sigma^{0} \rightarrow$ $C\left(2^{n} \bar{\lambda}_{P}\right)$. Here the map $h_{4, k}$ is $K O_{*}$-trivial whenever $0 \leqq k<m$, and $h_{6, n}$ is quasi $K O_{*}$-equivalent to the map $2^{m} \xi_{M}: \Sigma^{0} \rightarrow \Sigma^{-2} M_{n}$. Hence they have the same quasi $K O_{*}$-types as $\Sigma^{1} \vee \Sigma^{4} M_{k}$ and $\Sigma^{-2} P_{n, m+1}^{\prime}$ respectively when $0 \leqq k<m$ and $n \geqq 0$. Moreover the cofiber $C\left(g_{4, m}\right)$ has the same quasi $K O_{*}$-type as $M R_{m}$ because the map $g_{4, m}$ is quasi $K O_{*}$-equivalent to the map $i_{M} \tilde{\eta} \eta^{2}: \Sigma^{4} \rightarrow M_{m}$. Since the remaining cofibers are easily observed, our result is shown.

Recall that $K O_{i} N_{m} \cong Z / 2^{m}, Z / 2, Z / 2, Z \oplus Z / 2, Z / 2^{m+1}, Z / 2,0, Z$ according as $i=0,1, \cdots, 7$.

Proposition 4.2. For any map $f: S_{i} \rightarrow \Delta N_{m}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee N_{m}$ or the following small spectrum Y_{\imath} : i) $Y_{0}=\Sigma^{1} \vee N_{k}(0 \leqq k<m)$; ii) $Y_{1}=\Sigma^{3} \vee M_{m}$; iii) $Y_{2}=N P_{m}$; iv) $Y_{3}=N Q_{m}$, $Q_{m, n+1}^{\prime} \vee \Sigma^{3} S Z / q$ or $Q_{m, n+1}^{\prime \prime} \vee \Sigma^{3} S Z / q(n \geqq 0) ;$ v) $Y_{4}=N R_{m}$ or $\Sigma^{1} \vee \Sigma^{4} N_{k}(0 \leqq k<$ m); vi) $Y_{5}=\Sigma^{7} \vee M_{m}$; vii) $Y_{7}=M V_{m, n+1} \vee \Sigma^{3} S Z / q(n \geqq 0)$ where $q \geqq 1$ is odd.

Proof. Use the following maps $g_{0, k}=2^{k} i_{N} i: \Sigma^{0} \rightarrow N_{m}, g_{1}=i_{N} i \eta: \Sigma^{1} \rightarrow N_{m}$, $g_{2}=i_{N} \tilde{\eta}: \Sigma^{2} \rightarrow N_{m}, g_{3}=i_{N} \tilde{\eta} \eta: \Sigma^{3} \rightarrow N_{m}, g_{3, n}=2^{n} \xi_{N}: \Sigma^{3} \rightarrow N_{m}, g_{3, n}^{\prime}=2^{n} \xi_{N}+i_{N} \tilde{\eta} \eta:$ $\Sigma^{3} \rightarrow N_{m}, g_{4, k}=2^{k} \bar{\rho}_{N}: C(\bar{\eta}) \rightarrow N_{m}, g_{5}=\bar{\rho}_{N}(\eta \wedge 1): \Sigma^{1} C(\bar{\eta}) \rightarrow N_{m}$ and $g_{7, n}=2^{n} \bar{\lambda}_{N}:$ $\Sigma^{3} C(\bar{\eta}) \rightarrow N_{m}$. By a similar argument to the proof of Proposition 4.1 we can easily show our result.
4.2. Consider the following cofiber sequences

$$
\Sigma^{2} P \xrightarrow{\lambda_{P, Q}} Q_{m} \xrightarrow{\rho_{Q, P}} P_{m} \xrightarrow{i_{P} j_{P}} \Sigma^{3} P \quad \text { and } \quad \Sigma^{2} Q \xrightarrow{\lambda_{Q, R}} R_{m} \xrightarrow{\rho_{R, P}} P_{m} \xrightarrow{i_{Q} j_{P}} \Sigma^{3} Q
$$

and then set

$$
\begin{align*}
& \xi_{Q}=\lambda_{P, Q} \xi_{P}: \Sigma^{4} \longrightarrow Q_{m}, \quad \xi_{R}=\lambda_{Q, R} \xi_{Q}: \Sigma^{5} \longrightarrow R_{m}, \\
& \bar{\rho}_{Q}=\lambda_{P, Q} \bar{\rho}_{P}: \Sigma^{2} C(\bar{\eta}) \longrightarrow Q_{m}, \quad \bar{\rho}_{R}=\lambda_{Q, R} \bar{\rho}_{Q}: \Sigma^{2} C(\bar{\eta}) \longrightarrow R_{m}, \tag{4.2}\\
& \bar{\lambda}_{Q}=\lambda_{P, Q} \bar{\lambda}_{P}: \Sigma^{4} C(\bar{\eta}) \longrightarrow Q_{m}, \quad \bar{\lambda}_{R}=\lambda_{Q, R} \bar{\lambda}_{Q}: \Sigma^{5} C(\bar{\eta}) \longrightarrow R_{m} .
\end{align*}
$$

These maps satisfy $j_{Q} \xi_{Q}=2=j_{R} \xi_{R}, \jmath_{Q} \bar{\rho}_{Q}=\eta \jmath \bar{j}, j_{R} \bar{\rho}_{R}=j \jmath$ and $\jmath_{Q} \bar{\lambda}_{Q}=\bar{\lambda}=j_{R} \bar{\lambda}_{R}$. Denote by \bar{Q}_{m} and $\bar{R}_{m}(m \geqq 1)$ the cofibers of the maps $\tilde{\eta} j j: \Sigma^{-1} C(\bar{\eta}) \rightarrow S Z / 2^{m}$ and $\tilde{\eta} \eta j \bar{j}: C(\bar{\eta}) \rightarrow S Z / 2^{m}$, which have the same quasi $K O_{*}$-types as the elementary spectra Q_{m} and R_{m} respectively. Choose maps $\bar{h}_{Q}: \Sigma^{0} \rightarrow \bar{Q}_{m}$ and $\bar{h}_{R}: \Sigma^{1} \rightarrow$ \bar{R}_{m} satisfying $\bar{j}_{Q} \bar{h}_{Q}=\bar{i}=j_{R} \bar{h}_{R}, \bar{h}_{Q} \bar{\eta}=\bar{i}_{Q} \tilde{\eta} j$ and $\bar{h}_{R} \bar{\eta}=i_{R} \tilde{\eta} \eta j$ where $\bar{i}_{Q}: S Z / 2^{m} \rightarrow \bar{Q}_{m}$ and $\bar{i}_{R}: S Z / 2^{m} \rightarrow \bar{R}_{m}$ are the canonical inclusions, and $\bar{j}_{Q}: \bar{Q}_{m} \rightarrow C(\bar{\eta})$ and \bar{j}_{R} : $\bar{R}_{m} \rightarrow \Sigma^{1} C(\bar{\eta})$ are the canonical projections. We moreover choose a map $\bar{\xi}_{Q}$: $C(\bar{\eta}) \rightarrow \bar{Q}_{m}$ satisfying $\bar{j}_{Q} \bar{\xi}_{Q}=2$ and $\bar{\xi}_{Q}(1 \wedge j)=i_{Q} \rho_{1, m}\left(j \wedge \bar{\eta}_{1}\right)$. Recall that $K O_{i} Q_{m} \cong$ $Z \oplus Z / 2^{m}, Z / 2,(*)_{m}, 0, Z \oplus Z / 2^{m-1}, 0, Z / 2,0$ according as $i=0,1, \cdots, 7$ where $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geqq 2$.

Proposition 4.3. For any map $f: S_{i} \rightarrow \Delta Q_{m}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee Q_{m}$ or the following small spectrum $Y_{2}:$ i) $Y_{0}=\Sigma^{1} Q \vee S Z / 2^{k}(0 \leqq k<m), P V_{m, n+1} \vee S Z / q(n \geqq 0)$ or $S Z / 2^{k} \vee W_{m+n+1-k} \vee$ $S Z / q(0 \leqq k<\operatorname{Min}\{m, n+1\})$; ii) $Y_{1}=M Q_{m}$; iii) $Y_{2}=N Q_{m}$ or $\Sigma^{4} \vee P_{m}$; iv) $Y_{4}=$ $\Sigma^{1} Q \vee \Sigma^{4} V_{k+1}(0 \leqq k<m-1), K_{m, n+1} \vee S Z / q(n \geqq 0)$ or $\Sigma^{4} V_{k+1} \vee W_{m+n-k} \vee S Z / q(0 \leqq$ $k<\operatorname{Min}\{m-1, n\}$); v) $Y_{6}=\Sigma^{0} \vee P_{m}$ where $q \geqq 1$ is odd.

Proof. Consider the following maps $g_{0, k}=2^{k} i_{Q} i: \Sigma^{0} \rightarrow Q_{m}, g_{0, n}^{\prime}=2^{n} \bar{h}_{Q}: \Sigma^{0} \rightarrow$ $\bar{Q}_{m}, g_{0, n, k}^{\prime}=2^{n} \bar{h}_{Q}+2^{k} i_{Q} i: \Sigma^{0} \rightarrow \bar{Q}_{m}, g_{1}=i_{Q} i \eta: \Sigma^{1} \rightarrow Q_{m}, g_{2}=\imath_{Q} i \eta^{2}: \Sigma^{2} \rightarrow Q_{m}, g_{2}^{\prime}=$ $i_{Q} \tilde{\eta}: \Sigma^{2} \rightarrow Q_{m}, g_{2}^{\prime \prime}=i_{Q}\left(\tilde{\eta}+i \eta^{2}\right): \Sigma^{2} \rightarrow Q_{m}, g_{4, k}=2^{k}{ }_{Q}{ }_{Q} i \bar{\lambda}: C(\bar{\eta}) \rightarrow Q_{m}, g_{4, n}^{\prime}=2^{n} \bar{\xi}_{Q}: C(\bar{\eta})$ $\rightarrow \bar{Q}_{m}, g_{4, n, k}^{\prime}=2^{n} \bar{\xi}_{Q}+2^{k} i_{Q} i \bar{\lambda}: C(\bar{\eta}) \rightarrow \bar{Q}_{m}$ and $g_{6}=\bar{\rho}_{Q}: \Sigma^{2} C(\bar{\eta}) \rightarrow Q_{m}$. The cofibers $C\left(g_{0, n}^{\prime}\right), C\left(g_{0, n, k}^{\prime}\right), C\left(g_{4, n}^{\prime}\right)$ and $C\left(g_{4, n, k}^{\prime}\right)$ coincide with those of the maps $\tilde{\eta} j j_{V}$: $\Sigma^{-1} V_{n+1} \rightarrow S Z / 2^{m}, \tilde{\eta} j j_{V}+2^{k} i_{j}: \Sigma^{-1} V_{n+1} \rightarrow S Z / 2^{m}, \rho_{1, m}(\bar{j} \wedge \bar{\eta}): \Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{n+1}$ $S Z / 2^{m}$ and $\rho_{1, m}(\bar{j} \wedge \bar{\eta})+2^{k} i(\bar{\lambda} \wedge j): \Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{n+1} \rightarrow S Z / 2^{m}$ respectively. When $0 \leqq n<k$, both of the first two cofibers are the small spectrum $P V_{m, n+1}$ since $\tilde{\eta} j j_{v}+2^{n+1} i j_{V}=(1+i \eta j) \tilde{\eta} j j_{v}$. Moreover the second cofiber is the wedge sum $S Z / 2^{k} \backslash W_{m+n-k+1}$ whenever $0 \leqq k \leqq n$, because it is obtained as the cofiber of the map $(0, i \bar{\eta}+\tilde{\eta} j): \Sigma^{1} S Z / 2 \rightarrow S Z / 2^{k} \vee S Z / 2^{m+n-k}$. Since the maps $\rho_{1, m}(\bar{j} \wedge \bar{\eta})$ and $\rho_{1, m}(\bar{j} \wedge \bar{\eta})+2^{n} i(\bar{\lambda} \wedge j)$ are quasi $K O_{*}$-equivalent to the maps $\tilde{\eta} \bar{\eta}$ and $\tilde{\eta} \bar{\eta}+$ $i \eta^{2} \bar{\eta}=(1+\imath \eta j) \tilde{\eta} \bar{\eta}: \Sigma^{3} S Z / 2^{n+1} \rightarrow S Z / 2^{m}$, both of the last two cofibers have the same quasi $K O_{*}$-type as the small spectrum $K_{m, n+1}$ when $0 \leqq n \leqq k$. Moreover, according to Lemma 2.3 the last cofiber has the same quasi $K O_{*}$-type as the
wedge sum $\Sigma^{4} V_{k+1} \vee W_{m+n-k}$ whenever $0 \leqq k<\operatorname{Min}\{m-1, n\}$. Since the remaining cofibers are more easily observed, our result is established.

Recall that $K O_{\imath} R_{m} \cong Z / 2^{m}, Z \oplus Z / 2,(*)_{m}, Z / 2, Z / 2^{m-1}, Z, Z / 2, Z / 2$ according as $i=0,1, \cdots, 7$ where $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geqq 2$.

Proposition 4.4. For any map $f: S_{i} \rightarrow \Delta R_{m}(0 \leqq \imath \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee R_{m}$ or the following small spectrum Y_{i} : i) $Y_{0}=\Sigma^{1} \vee \Sigma^{5} \vee S Z / 2^{k}(0 \leqq k<m)$; ii) $Y_{1}=M R_{m}, Q V_{m, n+1} \vee \Sigma^{1} S Z / q$ or $Q V_{m, n+1}^{0} \vee \Sigma^{1} S Z / q(n \geqq 0)$; iii) $Y_{2}=N R_{m}$ or $\Sigma^{5} \vee P_{m}$; iv) $Y_{3}=\Sigma^{6} \vee Q_{m}$; v) $Y_{4}=$ $\Sigma^{1} \vee \Sigma^{5} \vee \Sigma^{4} V_{k+1}(0 \leqq k<m-1)$; vi) $Y_{5}=L_{m, n+1} \vee \Sigma^{1} S Z / q(n \geqq 0) ;$ vii) $Y_{6}=\Sigma^{1} \vee$ P_{m}; viii) $Y_{7}=\Sigma^{1} \vee Q_{m}$ where $q \geqq 1$ is odd.

Proof. Use the following maps $g_{0, k}=2^{k} i_{R} i: \Sigma^{0} \rightarrow R_{m}, g_{1}=i_{R} i \eta: \Sigma^{1} \rightarrow R_{m}$, $g_{1, n}=2^{n} \bar{h}_{R}: \Sigma^{1} \rightarrow \bar{R}_{m}, g_{1, n}^{\prime}=2^{n} \bar{h}_{R}+\bar{i}_{R} i \eta: \Sigma^{1} \rightarrow \bar{R}_{m}, g_{2}=i_{R} i \eta^{2}: \Sigma^{2} \rightarrow R_{m}, g_{2}^{\prime}=i_{R} \tilde{\eta}:$ $\Sigma^{2} \rightarrow R_{m}, g_{2}^{\prime \prime}=i_{R}\left(\tilde{\eta}+\imath \eta^{2}\right): \Sigma^{2} \rightarrow R_{m}, g_{3}=i_{R} \tilde{\eta} \eta: \Sigma^{3} \rightarrow R_{m}, g_{4, k}=2^{k} i_{R} i \bar{\lambda}: C(\bar{\eta}) \rightarrow R_{m}$, $g_{5, n}=2^{n} \xi_{R}: \Sigma^{5} \rightarrow R_{m}, g_{6}=\bar{\rho}_{R}: \Sigma^{2} C(\bar{\eta}) \rightarrow R_{m}$ and $g_{7}=\bar{\rho}_{R}(\eta \wedge 1): \Sigma^{3} C(\bar{\eta}) \rightarrow R_{m}$. Then we can easily show our result by a similar argument to the proof of Proposition 4.1.
4.3. Note that the elementary spectrum M_{m}^{\prime} is quasi $K O_{*}$-equivalent to $\Sigma^{1} P_{m+1}$. We can choose a map $\xi_{P}: \Sigma^{3} \rightarrow P_{m+1}(m \geqq 1)$ satisfying $j_{P} \xi_{P}=2$ whose cofiber is the small spectrum $H_{m+1,1}$. In other words, there exists a map f_{P} : $\Sigma^{1} H_{m+1,1} \rightarrow \Sigma^{3}$ whose cofiber is P_{m+1}. Since the map $f_{P}: \Sigma^{-1} H_{2,1} \rightarrow \Sigma^{3}$ is paticularly quasi $K O_{*}$-equivalent to the map $\eta \bar{\eta}: \Sigma^{5} S Z / 2 \rightarrow \Sigma^{3}$ we notice that
(4.3) the elementary spectra M_{1}^{\prime} and M_{1} are quasi $K O_{*}$-equivalent to $\Sigma^{4} Q_{1}^{\prime}$ and $\Sigma^{2} Q_{1}$ respectively.
Recall that $K O_{i} M_{m}^{\prime} \cong Z, Z / 2^{m+1}, Z / 2, Z / 2, Z, Z / 2^{m}, 0,0$ according as $i=0,1, \cdots, 7$.
Proposition 4.5. For any map $f: S_{i} \rightarrow \Delta M_{m}^{\prime}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee M_{m}^{\prime}$ or the following small spectrum $Y_{\imath}:$ i) $Y_{0}=M_{n, m} \vee S Z / q(n \geqq 0)$; ii) $Y_{1}=P \vee \Sigma^{1} S Z / 2^{k}(0 \leqq k \leqq m)$; iii) $Y_{2}=M^{\prime} M_{m}$; iv) $Y_{3}=M^{\prime} N_{m}$; v) $Y_{4}=\Sigma^{1} H_{m+1, n+1} \vee S Z / q(n \geqq 0)$; vi) $Y_{5}=P \vee \Sigma^{5} V_{k+1}(0 \leqq k<m)$ where $q \geqq 1$ is odd.

Proof. Use the following maps $g_{0, n}=2^{n} i_{M}^{\prime}: \Sigma^{0} \rightarrow M_{m}^{\prime}, g_{1, k}=2^{k} h_{M}^{\prime}: \Sigma^{1} \rightarrow M_{m}^{\prime}$, $g_{2}=h_{M}^{\prime} \eta: \Sigma^{2} \rightarrow M_{m}^{\prime}, g_{3}=h_{M}^{\prime} \eta^{2}: \Sigma^{3} \rightarrow M_{m}^{\prime}, g_{4, n}=2^{n} \xi_{P}: \Sigma^{4} \rightarrow \Sigma^{1} P_{m+1}$ and $g_{5, k}=$ $2^{k} h_{M}^{\prime} \bar{\lambda}: \Sigma^{1} C(\bar{\eta}) \rightarrow M_{m}^{\prime}$. Then our result is easily shown.

We can choose a map $\bar{\rho}_{N}^{\prime}: C(\bar{\eta}) \rightarrow N_{m}^{\prime}$ satisfying $\rho_{N^{\prime}, Q} \bar{\rho}_{N}^{\prime}=\bar{\rho}_{Q}$ so that its cofiber is the elementary spectrum V_{m}^{\prime} obtained as that of the map $2^{m-1} \hat{j}$: $\Sigma^{-1} C(\tilde{\eta}) \rightarrow \Sigma^{2}$, where the map $\rho_{N^{\prime}, Q}: N_{m}^{\prime} \rightarrow Q$ is given in (1.12). In other words, there exists a map $f_{N}^{\prime}: \Sigma^{-1} V_{m}^{\prime} \rightarrow C(\bar{\eta})$ whose cofiber is N_{m}^{\prime}. Since the map $f_{N}^{\prime}: \Sigma^{-1} V_{1}^{\prime} \rightarrow C(\bar{\eta})$ is quasi $K O_{*}$-equivalent to the map $\eta^{2} \bar{\eta}: \Sigma^{7} S Z / 2 \rightarrow \Sigma^{4}$,
we notice that
(4.4) the elementary spectra N_{1}^{\prime} and N_{1} are quasi $K O_{*}$-equivalent to $\Sigma^{4} R_{1}^{\prime}$ and $\Sigma^{2} R_{1}$ respectively.

Recall that $K O_{i} N_{m}^{\prime} \cong Z, Z / 2, Z / 2^{m+1}, Z / 2, Z \oplus Z / 2, Z / 2, Z / 2^{m}, 0$ according as $i=$ $0,1, \cdots, 7$.

Proposition 4.6. For any map $f: S_{i} \rightarrow \Delta N_{m}^{\prime}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2+1} \vee N_{m}^{\prime}$ or the following small spectrum $Y_{2}:$ i) $Y_{0}=N_{n, m} \vee S Z / q(n \geqq 0)$; ii) $Y_{1}=P \vee \Sigma^{2} S Z / 2^{m}$; iii) $Y_{2}=Q \vee \Sigma^{2} S Z / 2^{k}(0 \leqq$ $k \leqq m$); iv) $Y_{3}=N^{\prime} M_{m}$; v) $Y_{4}=N^{\prime} N_{m}, \Sigma^{6} V_{m} \vee S Z / q, \Sigma^{4} V R_{n+1, m} \vee S Z / q$ or $N^{\prime} N_{n+1, m} \vee S Z / q(n \geqq 0)$; vi) $Y_{5}=P \vee \Sigma^{6} V_{m}$; vii) $Y_{6}=Q \vee \Sigma^{6} V_{k+1}(0 \leqq k<m)$ where $q \geqq 1$ is odd.

Proof. Consider the following maps $g_{0, n}=2^{n} i_{N}^{\prime}: \Sigma^{0} \rightarrow N_{m}^{\prime}, g_{1}=i_{N}^{\prime} \eta: \Sigma^{1} \rightarrow$ $N_{m}^{\prime}, g_{2, k}=2^{k} h_{N}^{\prime}: \Sigma^{2} \rightarrow N_{m}^{\prime}, g_{3}=h_{N}^{\prime} \eta: \Sigma^{3} \rightarrow N_{m}^{\prime}, g_{4}=h_{N}^{\prime} \eta^{2}: \Sigma^{4} \rightarrow N_{m}^{\prime}, g_{4, n}=2^{n} \bar{\rho}_{N}^{\prime}:$ $C(\bar{\eta}) \rightarrow N_{m}^{\prime}, g_{4, n}^{\prime}=2^{n} \bar{\rho}_{N}^{\prime}+h_{N}^{\prime} \eta j \bar{j}: C(\bar{\eta}) \rightarrow N_{m}^{\prime}, g_{5}=\bar{\rho}_{N}^{\prime}(\eta \wedge 1): \Sigma^{1} C(\bar{\eta}) \rightarrow N_{m}^{\prime}$ and $g_{6, k}$ $=2^{k} h_{N}^{\prime} \bar{\lambda}: \Sigma^{2} C(\bar{\eta}) \rightarrow N_{m}^{\prime}$. The cofibers $C\left(g_{4,0}\right)$ and $C\left(g_{4,0}^{\prime}\right)$ are given as those of certain maps $h_{4,0}$ and $h_{4,0}^{\prime}: \Sigma^{-1} C(\tilde{\eta}) \rightarrow \Sigma^{2}$, both of which are quasi $K O_{*}$-equivalent to the map $2^{m-1} \tilde{j}: \Sigma^{-1} C(\tilde{\eta}) \rightarrow \Sigma^{2}$. Hence they have the same quasi $K O_{*-}$ type as V_{m}^{\prime}. When $n \geqq 1$ the maps $g_{4, n}$ and $g_{4, n}^{\prime}$ may be replaced by the maps $\phi_{n}=2^{n-1} i_{N}^{\prime} \bar{\lambda}$ and $\phi_{n, 0}=2^{n-1} i_{N}^{\prime} \bar{\lambda}+h_{N}^{\prime} \tilde{\eta} \eta j$ given in (3.5). In fact, these maps ϕ_{n} and $\phi_{n, 0}$ are respectively quasi $K O_{*}$-equivalent to the maps $g_{4, n}$ and $g_{4, n}^{\prime}$ when $n \geqq 2$, and ϕ_{1} and $\phi_{1,0}$ are respectively quasi $K O_{*}$-equivalent to the maps $g_{4,1}^{\prime}$ and $g_{4,1}$. Since the remaining cofibers are easily observed, our result is shown.
4.4. Using the map $\rho_{Q, Q^{\prime}}: Q \rightarrow Q_{m}^{\prime}$ given in (1.12) we set

$$
\begin{align*}
& \xi_{Q}^{\prime}=\rho_{Q, Q^{\prime}} \xi_{Q}: \Sigma^{3} \longrightarrow Q_{m}^{\prime}, \quad \bar{\rho}_{Q}^{\prime}=\rho_{Q, Q^{\prime}} \bar{\rho}_{Q}: C(\bar{\eta}) \longrightarrow Q_{m}^{\prime} \quad \text { and } \\
& \bar{\lambda}_{Q}^{\prime}=\rho_{Q, Q^{\prime}} \bar{\lambda}_{Q}: \Sigma^{3} C(\bar{\eta}) \longrightarrow Q_{m}^{\prime} . \tag{4.5}
\end{align*}
$$

These maps satisfy $j_{Q}^{\prime} \xi_{Q}^{\prime}=2 i, j_{Q}^{\prime} \bar{\rho}_{Q}^{\prime}=i j j$ and $j_{Q}^{\prime} \bar{\lambda}_{Q}^{\prime}=i \bar{\lambda}$. Moreover we choose maps $h_{Q}^{\prime}: \Sigma^{5} \rightarrow Q_{m}^{\prime}$ and $\tilde{h}_{Q}: \Sigma^{5} \rightarrow Q_{m}^{\prime}$ satisfying $j_{Q}^{\prime} h_{Q}^{\prime}=i \eta^{2}$ and $j_{Q}^{\prime} \tilde{h}_{Q}=\tilde{\eta}$ as in $[5$, (2.1) and (2.2)]. Recall that $K O_{i} Q_{m}^{\prime} \cong Z, Z / 2,0, Z / 2^{m-1}, Z,(*)_{m}, Z / 2, Z / 2^{m}$ according as $i=0,1, \cdots, 7$ where $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geqq 2$.

Proposition 4.7. For any map $f: S_{\imath} \rightarrow \Delta Q_{m}^{\prime}(0 \leqq \imath \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{\imath+1} \vee Q_{m}^{\prime}$ or the following small spectrum $Y_{2}:$ i) $Y_{0}=Q_{n, m}^{\prime} \vee S Z / q(n \geqq 0)$; ii) $Y_{1}=P \vee \Sigma^{3} S Z / 2^{m}$; iii) $Y_{3}=\Sigma^{4} \vee Q_{k+1}^{\prime}(0 \leqq k<$ $m-1)$; iv) $Y_{4}=\Sigma^{4} M V_{n, m} \vee S Z / q(n \geqq 0)$; v) $Y_{5}=P \vee \Sigma^{3} V_{m}$ or $Q^{\prime} P_{m}$; vi) $Y_{6}=$ $Q^{\prime} Q_{m}$; vii) $Y_{7}=Q^{\prime} R_{m}$ or $\Sigma^{4} \vee \Sigma^{4} Q_{k+1}^{\prime}(0 \leqq k<m-1)$ where $q \geqq 1$ is odd.

Proof. Use the following maps $g_{0, n}=2^{n} i_{Q}^{\prime}: \Sigma^{0} \rightarrow Q_{m}^{\prime}, g_{1}=i_{Q}^{\prime} \eta: \Sigma^{1} \rightarrow Q_{m}^{\prime}, g_{3, k}$ $=2^{k} \xi_{Q}^{\prime}: \Sigma^{3} \rightarrow Q_{m}^{\prime}, g_{4, n}=2^{n} \bar{\rho}_{Q}^{\prime}: C(\bar{\eta}) \rightarrow Q_{m}^{\prime}, g_{5}=\tilde{h}_{Q}: \Sigma^{5} \rightarrow Q_{m}^{\prime}, g_{5}^{\prime}=\eta \bar{\rho}_{Q}: \Sigma^{1} C(\bar{\eta}) \rightarrow$
$Q_{m}^{\prime}, g_{5}^{\prime \prime}=\tilde{h}_{Q}+h_{Q}^{\prime}: \Sigma^{5} \rightarrow Q_{m}^{\prime}, g_{6}=\tilde{h}_{Q} \eta: \Sigma^{6} \rightarrow Q_{m}^{\prime}$ and $g_{7, k}=2^{k} \bar{\lambda}_{Q}^{\prime}: \Sigma^{3} C(\bar{\eta}) \rightarrow Q_{m}^{\prime}$. Then we can easily show our result by a similar argument to the proof of Proposition 4.1.
4.5. Consider the following cofiber sequences

$$
\Sigma^{1} Q \xrightarrow{\lambda_{Q, R}} R \xrightarrow{\rho_{R, P}} P \xrightarrow{i_{Q} j_{P}} \Sigma^{2} Q \quad \text { and } \quad \Sigma^{2} P \xrightarrow{\lambda_{P, R}} R \xrightarrow{\rho_{R, Q}} Q \xrightarrow{i_{P} J_{Q}} \Sigma^{3} P,
$$

and then set $\xi_{R}=\lambda_{P, R} \xi_{P}: \Sigma^{4} \rightarrow R, \bar{\rho}_{R}=\lambda_{Q, R} \bar{\rho}_{Q}: \Sigma^{1} C(\bar{\eta}) \rightarrow R$ and $\bar{\lambda}_{R}=\lambda_{P, R} \bar{\lambda}_{P}: \Sigma^{4} C(\bar{\eta})$ $\rightarrow R$ where R denotes the cofiber of the map $\eta^{3}: \Sigma^{3} \rightarrow \Sigma^{0}$. Since the elementary spectrum R_{m}^{\prime} is related to R by the following cofiber sequence

$$
\Sigma^{4} \xrightarrow{2^{m-1} \xi_{R}} R \xrightarrow{\rho_{R, R^{\prime}}} R_{m}^{\prime} \xrightarrow{j j_{R}^{\prime}} \Sigma^{5},
$$

we get maps

$$
\begin{align*}
& \xi_{R}^{\prime}=\rho_{R, R^{\prime}} \xi_{R}: \Sigma^{4} \longrightarrow R_{m}^{\prime}, \quad \bar{\rho}_{R}^{\prime}=\rho_{R, R^{\prime}} \bar{\rho}_{R}: \Sigma^{1} C(\bar{\eta}) \longrightarrow R_{m}^{\prime} \quad \text { and } \tag{4.6}\\
& \bar{\lambda}_{R}^{\prime}=\rho_{R, R^{\prime}} \bar{\lambda}_{R}: \Sigma^{4} C(\bar{\eta}) \longrightarrow R_{m}^{\prime},
\end{align*}
$$

which satisfy $j_{R}^{\prime} \xi_{R}^{\prime}=2 i, j_{R}^{\prime} \bar{\rho}_{R}^{\prime}=i j j$ and $j_{R}^{\prime} \bar{\lambda}_{R}^{\prime}=i \bar{\lambda}$. Moreover we choose maps $h_{R}^{\prime}: \Sigma^{5} \rightarrow R_{m}^{\prime}$ and $\tilde{h}_{R}: \Sigma^{6} \rightarrow R_{m}^{\prime}$ satisfying $j_{R}^{\prime} h_{R}^{\prime}=i \eta$ and $j_{R}^{\prime} \tilde{h}_{R}=\tilde{\eta}$ as in [5, (2.1) and (2.2)]. Using the map $\bar{\rho}_{R}^{\prime}: \Sigma^{0} \vee C(\bar{\eta}) \rightarrow \bar{R}_{m}^{\prime}$ given in (3.6) we here set

$$
\begin{align*}
& \lambda_{R}^{\prime}=\bar{\rho}_{R}^{\prime}(2, \bar{i}): \Sigma^{0} \longrightarrow \bar{R}_{m}^{\prime}, \quad \bar{\xi}_{R}^{\prime}=\bar{\rho}_{R}^{\prime}(\bar{\lambda}, 2): C(\bar{\eta}) \longrightarrow \bar{R}_{m}^{\prime} \quad \text { and } \\
& \bar{\kappa}_{R}^{\prime}=\bar{\rho}_{R}^{\prime}(0,1): C(\bar{\eta}) \longrightarrow \bar{R}_{m}^{\prime} . \tag{4.7}
\end{align*}
$$

These maps satisfy $\bar{j}_{R}^{\prime} \lambda_{R}^{\prime}=\bar{i} \wedge \imath, \bar{j}_{R}^{\prime} \bar{\xi}_{R}^{\prime}=2(1 \wedge i)$ and $\bar{j}_{R}^{\prime} \bar{\kappa}_{R}^{\prime}=1 \wedge i$. Recall that $K O_{2} R_{m}^{\prime}$ $\cong Z \oplus Z / 2^{m}, Z / 2, Z / 2,0, Z \oplus Z / 2^{m-1}, Z / 2,(*)_{m}, Z / 2$ according as $i=0,1, \cdots, 7$ where $(*)_{1} \cong Z / 4$ and $(*)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geqq 2$.

Proposition 4.8. For any map $f: S_{i} \rightarrow \Delta R_{m}^{\prime}(0 \leqq i \leqq 7)$ its cofiber $C(f)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{\imath+1} \vee R_{m}^{\prime}$ or the following small spectrum $Y_{\imath}:$ i) $Y_{0}=R^{\prime} R_{m}, \quad \Sigma^{5} \vee \Sigma^{4} R_{k+1}^{\prime}(0 \leqq k<m-1), \quad R_{n, m}^{\prime} \vee S Z / q(n \geqq m), \Sigma^{4} S Z / 2^{m} \vee$ $S Z / 2^{n} \vee S Z / q(0 \leqq n \leqq m-1), \quad \Sigma^{4} V_{m} \vee V_{n} \vee S Z / q(1 \leqq n \leqq m-1), \Sigma^{4} R_{m+n-k-1, k+1}^{\prime} \vee$ $S Z / q(0 \leqq k<\operatorname{Min}\{m-1, n-1\})$ or $R^{\prime} R_{n, m} \vee S Z / q(n \geqq m)$; ii) $Y_{1}=P \vee \Sigma^{4} S Z / 2^{m}$; iii) $Y_{2}=Q \vee \Sigma^{4} S Z / 2^{m}$: iv) $Y_{4}=\Sigma^{5} \vee R_{k+1}^{\prime}(0 \leqq k<m-1), \Sigma^{4} V_{m} \vee \Sigma^{4} S Z / 2^{n} \vee S Z / q$ $(0 \leqq n \leqq m), \Sigma^{4} S Z / 2^{m} \vee \Sigma^{4} V_{n} \vee S Z / q(1 \leqq n \leqq m-1)$ or $\Sigma^{4} N V_{m+n-k-1, k+1} \vee S Z / q(0 \leqq$ $k<\operatorname{Min}\{m, n-1\})$; v) $Y_{5}=P \vee \Sigma^{4} V_{m}$; vi) $Y_{6}=Q \vee \Sigma^{4} V_{m}$ or $R^{\prime} P_{m}$; vii) $Y_{7}=R^{\prime} Q_{m}$ where $q \geqq 1$ is odd.

Proof. Consider the following maps $g_{0, n}=2^{n} i_{R}^{\prime}: \Sigma^{0} \rightarrow R_{m}^{\prime}, g_{0, k}^{\prime}=2^{k} \lambda_{R}^{\prime}: \Sigma^{0} \rightarrow$ $\bar{R}_{m}^{\prime}, g_{0, n, k}=2^{n} \bar{i}_{R}^{\prime}+2^{k} \lambda_{R}^{\prime}: \Sigma^{0} \rightarrow \bar{R}_{m}^{\prime}, g_{1}=i_{R}^{\prime} \eta: \Sigma^{1} \rightarrow R_{m}^{\prime}, g_{2}=i_{R}^{\prime} \eta^{2}: \Sigma^{2} \rightarrow R_{m}^{\prime}, g_{4, n}=$ $2^{n} \bar{\kappa}_{R}^{\prime}: C(\bar{\eta}) \rightarrow \bar{R}_{m}^{\prime}, g_{4, k}^{\prime}=2^{k} \xi_{R}^{\prime}: \sum^{4} \rightarrow R_{m}^{\prime}, g_{4, n, k}=2^{n} \bar{\kappa}_{R}^{\prime}+2^{k} \bar{\xi}_{R}^{\prime}: C(\bar{\eta}) \rightarrow \bar{R}_{m}^{\prime}, g_{\tilde{5}}=\bar{\kappa}_{R}^{\prime}(\eta \wedge$ 1): $\Sigma^{1} C(\bar{\eta}) \rightarrow R_{m}^{\prime}, g_{6}=\bar{\kappa}_{R}^{\prime}\left(\eta^{2} \wedge 1\right): \Sigma^{2} C(\bar{\eta}) \rightarrow R_{m}^{\prime}, g_{6}^{\prime}=\tilde{h}_{R}: \Sigma^{6} \rightarrow R_{m}^{\prime}, g_{6}^{\prime \prime}=\tilde{h}_{R}+h_{R}^{\prime} \eta:$
$\Sigma^{6} \rightarrow R_{m}^{\prime}$ and $g_{7}=\tilde{h}_{R} \eta: \Sigma^{7} \rightarrow R_{m}^{\prime}$. The cofiber $C\left(g_{4, n}\right)$ coincides with that of the map $h_{4, n}=\left(2^{m-1} \bar{\lambda}, 2^{m}(1 \wedge i)\right): C(\bar{\eta}) \rightarrow \Sigma^{0} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{n}\right)$. When $n \leqq m$ it is the wedge sum $U_{m} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{n}\right)$, and when $n>m$ it is obtained as the cofiber of the map $2^{n-1} \bar{\lambda} \vee 2^{m-1} \bar{\lambda}(1 \wedge j): C(\bar{\eta}) \vee\left(\Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{m}\right) \rightarrow \Sigma^{0}$ which is quasi $K O_{*^{-}}$ equivalent to the map $k_{4, n}=2^{n-1} \bar{\lambda} \vee \eta^{2} \bar{\eta}: C(\bar{\eta}) \vee \Sigma^{3} S Z / 2^{m} \rightarrow \Sigma^{0}$. The cofiber $C\left(k_{4, n}\right)$ is given as that of a certain map $l_{4, n}: \Sigma^{3} S Z / 2^{m} \rightarrow U_{n}$ which is quasi $K O_{*}$-equivalent to the map $q_{4, n}=2^{m-1} i_{V} i j: \Sigma^{3} S Z / 2^{m} \rightarrow \Sigma^{4} V_{n}$. As is easily seen, the cofiber $C\left(g_{4, n}\right)$ is the small spectrum $\sum^{4} N V_{n, m}$. Since $g_{0, n, k}=\bar{\rho}_{R}^{\prime}\left(2^{k+1}+2^{n}\right.$, $2^{k} \bar{i}$), its cofiber $C\left(g_{0, n, k}\right)$ is exactly the small spectrum $R_{n, k+1, m}^{\prime}$. From (3.7) and (3.8) we recall that it has the same quasi $K O_{*}$-type as $\Sigma^{4} S Z / 2^{m} \vee S Z / 2^{n}$, $\Sigma^{4} V_{m} \vee V_{n}$ or $\Sigma^{4} R_{m+n-k-1, k+1}^{\prime}$ according as $n<k+1 \leqq m, n=k+1<m$ or $k+1<$ $\operatorname{Min}\{m, n\}$. And $R_{n, m, m}^{\prime}$ is written to be $R^{\prime} R_{n, m}$ when $n \geqq m$. Assume that $0 \leqq k<m-1$. Since $g_{4, n, k}=\bar{\rho}_{R}^{\prime}\left(2^{k} \bar{\lambda}, 2^{k+1}+2^{n}\right)$, its cofiber $C\left(g_{4, n, k}\right)$ is given as the cofiber of a certain map $h_{4, n, k}: C(\bar{\eta}) \rightarrow C\left(\varphi_{n, k}\right)$ where $\varphi_{n, k}=\left(2^{k} \bar{\lambda}, 2^{k+1}+2^{n}\right)$: $C(\bar{\eta}) \rightarrow \Sigma^{0} \vee C(\bar{\eta})$. Note that $C\left(\varphi_{n, k}\right)$ is $\Sigma^{0} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{n}\right)$ or $U_{k+1} \vee C(\bar{\eta})$ according as $k \geqq n$ or $k=n-1$, and it has the same quasi $K O_{*}$-type as R_{k+1}^{\prime} when $k \leqq n-2$. Then the map $h_{4, n, k}$ is expressed as $\left(2^{m-1} \bar{\lambda}, 2^{m}(1 \wedge i)\right): C(\bar{\eta}) \rightarrow \Sigma^{0} \vee$ $\left(C(\bar{\eta}) \wedge S Z / 2^{n}\right)$ when $k \geqq n$, and as ($0,2^{m}$): $C(\bar{\eta}) \rightarrow U_{n} \vee C(\bar{\eta})$ when $k=n-1$. Therefore the cofiber $C\left(h_{4, n, k}\right)$ is the wedge sum $U_{m} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{n}\right)$ or $U_{n} \vee$ ($\left.C(\bar{\eta}) \wedge S Z / 2^{m}\right)$ according as $k \geqq n$ or $k=n-1$. When $k \leqq n-2$ the map $h_{4, n, k}$ is expressed as $-i_{n, k}\left(0,2^{m+n-k-1}\right): C(\bar{\eta}) \rightarrow C\left(\varphi_{n, k}\right)$ where $\tau_{n, k}: \Sigma^{0} \vee C(\bar{\eta}) \rightarrow C\left(\varphi_{n, k}\right)$ is the canonical inclusion. So its cofiber coincides with that of the map $l_{4, n, k}=$ $\left(2^{k} \bar{\lambda},\left(2^{k+1}+2^{m}\right)(1 \wedge i)\right): C(\bar{\eta}) \rightarrow \Sigma^{0} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{m+n-k-1}\right)$ which is quasi $K O_{*^{-}}$ equivalent to the map $q_{4, n, k}=\left(2^{k}, 2^{k+1} i\right): \Sigma^{4} \rightarrow \Sigma^{4} C(\bar{\eta}) \vee \Sigma^{4} S Z / 2^{m+n-k-1}$. Since it is obtained as the cofiber of the map $\bar{i}\left(2^{m+n-k-2}, 2^{k} j\right): \Sigma^{4} \vee \Sigma^{3} S Z / 2^{k+1} \rightarrow$ $\Sigma^{4} C(\bar{\eta})$, the cofiber $C\left(q_{4, n, k}\right)$ is the small spectrum $\Sigma^{4} N V_{m+n-k-1, k+1}$. Thus $C\left(h_{4, n, k}\right)$ has the same quasi $K O_{*}$-type as $\Sigma^{4} N V_{m+n-k-1, k+1}$ when $0 \leqq k \leqq$ $\operatorname{Min}\{m-2, n-2\}$. Since the remaining cofibers are easily observed, our result is established.
4.6. We first consider the maps $\tilde{h}_{M}: \Sigma^{5} \rightarrow M_{m}^{\prime}, \tilde{h}_{N}: \Sigma^{5} \rightarrow N_{m}^{\prime}, h_{Q}^{\prime}: \Sigma^{5} \rightarrow Q_{m}^{\prime}$ and $h_{R}^{\prime}: \Sigma^{5} \rightarrow R_{m}^{\prime}$ satisfying $j_{M}^{\prime} \tilde{h}_{M}=\tilde{\eta} \eta^{2}, j_{N}^{\prime} \tilde{h}_{N}=\tilde{\eta} \eta, j_{Q}^{\prime} h_{Q}^{\prime}=i \eta^{2}$ and $j_{R}^{\prime} h_{R}^{\prime}=i \eta$ as in [5, (2.1) and (2.2)]. The cofibers of the maps $\tilde{h}_{M}, \tilde{h}_{N}, \tilde{h}_{N} \eta, h_{Q}^{\prime}, h_{R}^{\prime}$ and $h_{R}^{\prime} \eta$ are denoted by $M^{\prime} R_{m}, N^{\prime} Q_{m}, N^{\prime} R_{m}, Q^{\prime} N_{m}, R^{\prime} M_{m}$ and $R^{\prime} N_{m}$ respectively. According to Propositions 4.5, 4.6, 4.7 and 4.8 we observe that
(4.8) the 4-cells spectra $M^{\prime} R_{m}, N^{\prime} Q_{m}, N^{\prime} R_{m}, Q^{\prime} N_{m}, R^{\prime} M_{m}$ and $R^{\prime} N_{m}$ are quasi $K O_{*}$-equivalent to the wedge sums $P \vee \Sigma^{6} V_{m}, P \vee \Sigma^{6} V_{m}, Q \vee \Sigma^{6} V_{m}, P \vee \Sigma^{3} V_{m}$, $P \vee \Sigma^{4} V_{m}$ and $Q \vee \Sigma^{4} V_{m}$ respectively (cf. [5, Corollary 4.5]).

On the other hand, it follows from Proposition 4.3 that
(4.9) the cofiber of the map $i_{Q} \tilde{6} \tilde{\tilde{\nu}}: \Sigma^{4} \rightarrow Q_{m+1}(m \geqq 1)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{1} Q \vee \Sigma^{4} V_{m}$.

Consider the maps $\imath_{P} i \eta: \Sigma^{1} \rightarrow P_{m}, i_{P} i \eta^{2}: \Sigma^{2} \rightarrow P_{m}, \tilde{h}_{P}: \Sigma^{6} \rightarrow P_{m}^{\prime}$ and $\tilde{h}_{P} \eta:$ $\Sigma^{6} \rightarrow P_{m}^{\prime}$ whose cofibers are respectively denoted by $M P_{m}, N P_{m}, P^{\prime} Q_{m}$ and $P^{\prime} R_{m}$ where the map \tilde{h}_{P} satisfies $j_{P}^{\prime} \tilde{h}_{P}=\tilde{\eta} \eta$ as in [5, (2.2)]. Since P_{m+1} and P_{m+1}^{\prime} have the same quasi $K O_{*}$-types as $\Sigma^{-1} M_{m}^{\prime}$ and $\Sigma^{2} M_{m}$, Propositions 4.1 and 4.5 imply that
(4.10) i) the small spectra $M P_{m+1}, N P_{m+1}, P^{\prime} Q_{m+1}$ and $P^{\prime} R_{m+1}(m \geqq 1)$ are quasi $K O_{*}$-equivalent to $\Sigma^{-1} M^{\prime} M_{m}, \Sigma^{-1} M^{\prime} N_{m}, \Sigma^{2} M Q_{m}$ and $\Sigma^{2} M R_{m}$ respectively, and dually
ii) the small spectra $M^{\prime} P_{m+1}^{\prime}, N^{\prime} P_{m+1}^{\prime}, Q^{\prime} P_{m+1}$ and $R^{\prime} P_{m+1}(m \geqq 1)$ are quasi $K O_{*}$-equivalent to $\Sigma^{1} M^{\prime} M_{m}, N^{\prime} M_{m}, M^{\prime} Q_{m}^{\prime}$ and $M^{\prime} R_{m}^{\prime}$ respectively.

Moreover we notice that
(4.11) i) the small spectra $P^{\prime} Q_{1}$ and $Q^{\prime} P_{1}$ have the same quasi $K O_{*}$-type as the elementary spectrum P,
ii) the small spectra $P^{\prime} R_{1}, R^{\prime} P_{1}, \Sigma^{1} M P_{1}$ and $\Sigma^{-1} M^{\prime} P_{1}^{\prime}$ have the same quasi $K O_{*}$-type as the elementary spectrum Q, and
iii) the small spectra $\Sigma^{1} N P_{1}$ and $N^{\prime} P_{1}^{\prime}$ have the same quasi $K O_{*}$-type as the wedge sum $\Sigma^{0} \vee \Sigma^{4}$.

Choose a map $\rho_{P}^{\prime}: \Sigma^{2} S Z / 2 \rightarrow P_{m+1}^{\prime}(m \geqq 1)$ satisfying $j_{P}^{\prime} \rho_{P}^{\prime}=\rho_{1, m+1}$ whose cofiber is P_{m}^{\prime}, and then consider the map $g_{4, n}^{\prime}=2^{n} \bar{\rho}_{P}^{\prime}+\rho_{P}^{\prime}{ }_{j}: C(\bar{\eta}) \rightarrow P_{m+1}^{\prime}$ where $\bar{\rho}_{P}^{\prime}=\rho_{P, P^{\prime}} \bar{\rho}_{P}: C(\bar{\eta}) \rightarrow P \rightarrow P_{m+1}^{\prime}$ and it satisfies $\bar{\rho}_{P}^{\prime} j_{P}^{\prime}=i \eta \jmath \bar{j}$. According to Proposition 4.1 the cofiber $C\left(g_{4, n}^{\prime}\right)$ has the same quasi $K O_{*}$-type as $\Sigma^{2} P_{m, n+1}^{\prime \prime}$. On the other hand, it is obtained as the cofiber of a certain map $h_{4, n}^{\prime}: C\left(j_{P}^{\prime} g_{4, n}^{\prime}\right) \rightarrow \Sigma^{0}$ where $C\left(j_{p}^{\prime} g_{4, n}^{\prime}\right)$ has the same quasi $K O_{*}$-type as M_{m}^{\prime}. Applying the dual of Proposition 4.1 we can verify that it has the same quasi $K O_{*}$-type as $P_{n+1, m}^{\prime \prime}$. Consequently it follows that

$$
\begin{equation*}
\Sigma^{2} P_{m, n}^{\prime \prime}(m, n \geqq 1) \text { are quasi } K O_{*} \text {-equivalent to } P_{n, m}^{\prime \prime} . \tag{4.12}
\end{equation*}
$$

By virtue of (4.3) and (4.4) we can compare Propositions 4.1, 4.2, 4.5 and 4.6 with Propositions 4.3, 4.4, 4.7 and 4.8 to observe that
(4.13) i) the small spectra $M Q_{1}, M R_{1}$ and $N R_{1}$ are quasi $K O_{*}$-equivalent to $\Sigma^{2} M Q_{1}, \Sigma^{2} N Q_{1}$ and $\Sigma^{2} N R_{1}$ respectively,
ii) the small spectra $M^{\prime} M_{1}, M^{\prime} N_{1}, N^{\prime} M_{1}$ and $N^{\prime} N_{1}$ are quasi $K O_{*}$-equivalent to $\Sigma^{4} Q^{\prime} Q_{1}, \Sigma^{4} Q^{\prime} R_{1}, \Sigma^{4} R^{\prime} Q_{1}$ and $\Sigma^{4} R^{\prime} R_{1}$ respectively,
iii) the small spectra $P V_{1, n+1}, Q V_{1, n+1}$ and $Q V_{1, n+1}^{0}(n \geqq 0)$ are quasi $K O_{*^{-}}$ equivalent to $\Sigma^{2} P_{1, n+1}^{\prime}, \Sigma^{2} Q_{1, n+1}^{\prime}$ and $\Sigma^{2} Q_{1, n+1}^{\prime \prime}$ respectively,
iv) the small spectra $H_{2, n+1}, K_{1, n+1}$ and $L_{1, n+1}(n \geqq 0)$ are quasi $K O_{*}-$ equivalent to $\Sigma^{3} Q_{n, 1}^{\prime}, \Sigma^{4} P_{n, 2}^{\prime}$ and $\Sigma^{6} M V_{1, n+1}$ respectively where $Q_{0,1}^{\prime}=\Sigma^{3} S Z / 2$ and $P_{0,2}^{\prime}=\Sigma^{2} S Z / 4$, and
v) the small spectra $V R_{n, 1}$ and $N^{\prime} N_{n, 1}(n \geqq 2)$ are quasi $K O_{*}$-equivalent to $R_{n, 1}^{\prime}$ and $\Sigma^{4} R^{\prime} R_{n, 1}$ respectively, and $V R_{1,1}, R^{\prime} R_{1,1}$ and $\Sigma^{6} N^{\prime} N_{1,1}$ are
quasi $K O_{*}$-equivalent to $\Sigma^{2} R_{1,1}^{\prime}$.

5. The quasi $K O_{*}$-types of a few cells spectra.

5.1. For any finite $C W$-spectrum X we denote by $\# X$ the number of all the cells in X. Let (X, Y) be a relative $C W$-spectrum such that X is obtained from Y by attaching one ($j+1$)-cell, thus $X=Y \cup e^{\rho+1}$. For any map $f: \Sigma^{k} \rightarrow X$ there exists a map $g: \Sigma^{-1} C(\pi f) \rightarrow Y$ whose cofiber $C(g)$ coincides with $C(f)$ where $\pi: X \rightarrow \Sigma^{\jmath+1}$ denotes the collapsing map. Assume that $\operatorname{dim} Y \leqq \jmath+1 \leqq$ $k+1$. If $j<k-1$, then any map $f: \Sigma^{k} \rightarrow X$ is always $S Q_{*}$-trivial. If $\jmath=k-1$ or k, then $C(\pi f)=\Sigma^{j+1} \vee \Sigma^{k+1}$ or $\Sigma^{j+1} S Z / t$ for some $t \geqq 1$. Therefore, in order to determine the quasi $K O_{*}$-types of any $C W$-spectra with ($n+1$)-cells it is sufficient to deal with the cofibers of the following maps:
i) any $S Q_{*}$-trivial map $f: \Sigma^{k} \rightarrow X$,
ii) any map $g: \Sigma^{j} S Z / 2^{m} \rightarrow Y$ and
iii) any map $g: \Sigma^{j} \vee \Sigma^{k} \rightarrow Y$ with $k=\jmath$ or $j+1$
where $\# X=n, \# Y=n-1$ and $\operatorname{dim} Y \leqq j+1$. For any graded abelian group $G=\left\{G_{i}\right\}$ the wedge sum $\vee \Sigma^{2} S G_{\imath}$ of Moore spectra is simply written to be $S G$.

Lemma 5.1. Let X be a $C W$-spectrum having the same quast $K O_{*}$-type as $Y=S A \vee(P \wedge S B) \vee(Q \wedge S C)$ with $A=\left\{A_{i}\right\}_{0 \leq i \leq 7,} B=\left\{B_{j}\right\}_{0 \leq \jmath \leq 1}$ and $C=\left\{C_{k}\right\}_{0 \leq k \leq 3}$ free. If any map $f: S_{0} \rightarrow X$ is $S Q_{*}$-trivial, then its cofiber $C(f)$ is quasi $K O_{*}$ equivalent to one of the following spectra $\Sigma^{1} \vee Y, Y_{-7,1, *}, Y_{-6, *, 2}$ and $Y_{2,1,-3}$ where $Y_{-7,1, *} \vee \Sigma^{7}=Y \vee \Sigma^{1} P, Y_{-6, *, 2} \vee \Sigma^{6}=Y \vee \Sigma^{2} Q$ and $Y_{2,1,-3} \vee \Sigma^{3} Q=Y \vee \Sigma^{2} \vee$ $\Sigma^{1} P$.

Proof. The cofibers of the maps $i_{Q} \eta: \Sigma^{0} \rightarrow \Sigma^{-1} Q$ and $\left(\eta^{2}, i_{Q} \eta\right): \Sigma^{0} \rightarrow \Sigma^{-2} V$ $\Sigma^{-1} Q$ are the wedge sums $\Sigma^{2} \vee \Sigma^{-1} P$ and $\Sigma^{-2} R \vee \Sigma^{-1} P$ respectively where R denotes the cofiber of the map $\eta^{3}: \Sigma^{3} \rightarrow \Sigma^{0}$. In these cases they are quasi $K O_{*}$-equivalent to the spectrum $Y_{2,1,-3}$. Now our result is easy.

If any map $f=\left(f_{1}, f_{2}\right): S_{k} \rightarrow S_{0} \vee Y$ is $S Q_{*}$-trivial, then there exists an $S Q_{*^{-}}$ trivial map $g: \Sigma^{-1} C\left(f_{1}\right) \rightarrow Y$ whose cofiber $C(g)$ coincides with $C(f)$. Note that $C\left(f_{1}\right)$ has the same quasi $K O_{*}$-type as the elementary spectrum P or Q unless f_{1} is $K O_{*}$-trivial. By the aid of Lemmas $1.2,1.5$ and 2.4-2.7 it is verified that
(5.2) the quasi $K O_{*}$-type of $C(f)$ is completely determined when $Y=\Sigma^{2} S Z / 2^{m}$ or $\Sigma^{i} V_{m}$ and $f=\left(f_{1}, f_{2}\right): S_{k} \rightarrow S_{0} \vee Y$ is $S Q_{*}$-trivial.

As is easily seen, we obtain
Lemma 5.2. For any map $g: \Sigma^{j} \vee \Sigma^{k} \rightarrow \Sigma^{0}(0 \leqq j \leqq k)$ its cofiber $C(g)$ is quası
$K O_{*}$-equivalent to the wedge sum $\Sigma^{0} \vee \Sigma^{\jmath+1} \vee \Sigma^{k+1}$ or the following spectrum $Y_{J, k}: Y_{0,2}=\Sigma^{2+1} \vee S Z / 2^{m} \vee S Z / q, Y_{0,8 r+1}=M_{m} \vee S Z / q, Y_{0,8 r+2}=N_{m} \vee S Z / q, Y_{8 r+1,2}$ $=Y_{\imath, 8 r+1}=\Sigma^{2+1} \vee P$ or $Y_{8 r+2, \imath}=Y_{\imath, 8 r+2}=\Sigma^{2+1} \vee Q(i, r \geqq 0)$ where $m \geqq 0$ and $q \geqq 1$ is odd.

For any finite $C W$-spectrum X we denote by $k_{0}(X)$ the rank of $K U_{*} X \otimes Q$ and by $k_{p}(X)$ the rank of $\operatorname{Tor}\left(K U_{*} X, Z / p\right)$ for each prime p where $K U_{*} X \cong$ $K U_{0} X \oplus K U_{1} X$. Set $k(X)=k_{0}(X)+\operatorname{Max}_{p}\left\{2 k_{p}(X)\right\}$. Then it is immediately checked that

$$
\begin{equation*}
\# X \geqq k(X) \text { and } \# X \equiv k(X) \bmod 2 . \tag{5.3}
\end{equation*}
$$

In particular, $K U_{*} X \cong Z \oplus Z \oplus Z$ or $Z \oplus Z / 2^{m} \oplus Z / q$ when $\# X=3$, and $K U_{*} X \cong$ $Z \oplus Z \oplus Z \oplus Z, Z \oplus Z \oplus Z / 2^{m} \oplus Z / q$ or $Z / 2^{m} \oplus Z / 2^{n} \oplus Z / q \oplus Z / r$ when $\# X=4$, where $m, n \geqq 0$ and both of $q, r \geqq 1$ are odd.

Recall that each $C W$-spectrum with 2 -cells is stably quasi $K O_{*}$-equivalent to one of the following spectra: $\Sigma^{0} \vee \Sigma^{\imath}(0 \leqq ı \leqq 7), P, Q$ or $S Z / 2^{m} \vee S Z / q$ where $m \geqq 0$ and $q \geqq 1$ is odd. Using Lemmas $1.2,1.3,1.4,5.1$ and 5.2 and (1.6) we can immediately show

Theorem 5.3. Let X be a $C W$-spectrum with 3-cells. Then it is stably quası $K O_{*}$-equivalent to the following spectrum Y :
i) The " $K U_{*} X \cong Z \oplus Z \oplus Z$ " case: $Y=\Sigma^{0} \vee \Sigma^{v} \vee \Sigma^{j}, P \vee \Sigma^{j}$ or $Q \vee \Sigma^{j}(0 \leqq$ $i \leqq j \leqq 7$).
ii) $\quad T h e$ " $K U_{*} X \cong Z \oplus Z / q$ ($q \geqq 1$ odd)" case : $Y=\Sigma^{\top} \vee S Z / q(0 \leqq j \leqq 7)$.
iii) The " $K U_{*} X \cong Z \oplus Z / 2^{m} \oplus Z / q$ ($m \geqq 1$, and $q \geqq 1$ odd)" case : $Y=W \vee S Z / q$ and $W=\Sigma^{j} \vee S Z / 2^{m}(0 \leqq j \leqq 7), \quad \Sigma^{0} \vee V_{m}, \Sigma^{5} \vee V_{m}, M_{m}, N_{m}, Q_{m}, R_{m}, \Sigma^{-1} M_{m}^{\prime}$, $\Sigma^{-2} N_{m}^{\prime}, \Sigma^{-3} Q_{m}^{\prime}$ or $\Sigma^{-4} R_{m}^{\prime}$.
5.2. Let X be a $C W$-spectrum with 3 -cells and $f: S_{k} \rightarrow X$ an $S Q_{*}$-trivial map. Since the quasi $K O_{*}$-type of X is completely observed in Theorem 5.3, we can easily determine the quasi $K O_{*}$-type of the cofiber $C(f)$ by means of Propositions 4.1-4.8, Lemma 5.1 and (5.2). We next deal with any map $g=$ $g_{1} \vee g_{2}: S, \vee S_{k} \rightarrow S Z_{m}$. Evidently there exists an $S Q_{*}$-trivial map $h: S_{k} \rightarrow C\left(g_{1}\right)$ whose cofiber $C(h)$ coincides with $C(g)$. Since the quasi $K O_{*}$-type of $C\left(g_{1}\right)$ is completely given in Lemma 1.2 , we can easily determine the quasi $K O_{*}$-type of $C(g)$ by means of Propositions 4.1-4.5 and (5.2), too. Dually we can determine the quasi $K O_{*}$-type of $C\left(g^{\prime}\right)$ for any map $g^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}\right): \Sigma^{j} S Z_{m} \rightarrow S_{0} \vee S_{2}$.

Let Y be a $C W$-spectrum with 2 -cells having the same quasi $K O_{*}$-type as the elementary spectrum P or Q. For such a $C W$-spectrum $Y=S^{0} \cup e^{8 r+2}$ or $S^{0} \cup e^{8 r+3}$ it is easily shown that
(5.4) any map $g=g_{1} \vee g_{2}: \Sigma^{\jmath} \vee \Sigma^{k} \rightarrow Y$ is quasi $K O_{*}$-equivalent to the map $g_{1} \vee 0$ or $0 \vee g_{2}$ if $8 r+1 \leqq j \leqq k \leqq j+1$.

Let Y be a $C W$-spectrum with 2-cells whose attaching map $\alpha: \Sigma^{2} \rightarrow \Sigma^{0}$ is $K O_{*^{-}}$
trivial, and $g=g_{1} \vee g_{2}: \Sigma^{j} \vee \Sigma^{k} \rightarrow Y(-1 \leqq i \leqq j \leqq k \leqq j+1)$ be any map. Assume that the map g is never quasi $K O_{*}$-equivalent to the map $g_{1} \vee 0$ or $0 \vee g_{2}$. When $k>i+1$ the cofiber $C(g)$ is obtained as that of a certain $S Q_{*}$-trivial map h : $\Sigma^{k} \rightarrow C\left(g_{1}\right)$. In this case it is easy to determine the quasi $K O_{*}$-type of $C(g)$ as is stated above. In the $k=\imath$ or $i+1$ case the cofiber $C(g)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $\Sigma^{1} \vee \Sigma^{l} \vee S Z / 2^{m} \vee S Z / q(l=0,1)$ or $\Sigma^{1} \vee M_{m} \vee S Z / q$ for some $m \geqq 0$ and some odd $q \geqq 1$ if the composite map $\pi g: \Sigma^{j} \vee \Sigma^{k} \rightarrow \Sigma^{2+1}$ is trivial. If not so, there exists a map $h: \Sigma^{j} \vee \Sigma^{2} S Z / t \rightarrow \Sigma^{0}$ for some $t \geqq 1$, whose cofiber $C(h)$ coincides with $C(g)$. When such a map h is $S Q_{*}$-trivial, the quasi $K O_{*}$-type of $C(h)$ is easily determined by a dual argument to (5.2). If not so, then the cofiber $C(h)$ is the wedge sum $S Z / 2^{m} \vee \Sigma^{l} S Z / 2^{n} \vee S Z / q \vee$ $\Sigma^{l} S Z / r(l=0,1)$ or $M_{m, n} \vee S Z / q \backslash \Sigma^{1} S Z / r$ for some $m, n \geqq 0$ and some odd $q, r \geqq 1$.

In virtue of (5.1) we can now show our main result by the above observations combined with (2.5), (4.8), (4.9) and Lemmas 2.3, 2.4 and 2.5.

Theorem 5.4. Let X be a $C W$-spectrum with 4 -cells. Then it is stably quasi $K O_{*}$-equivalent to the following spectrum Y :
i) The " $K U_{*} X \cong Z \oplus Z \oplus Z \oplus Z$ " case: $Y=\Sigma^{0} \vee \Sigma^{2} \vee \Sigma^{j} \vee \Sigma^{k}, P \vee \Sigma^{j} \vee \Sigma^{k}$, $Q \vee \Sigma^{\jmath} \vee \Sigma^{k}, P \vee \Sigma^{J} P, P \vee \Sigma^{\jmath} Q$ or $Q \vee \Sigma^{j} Q(0 \leqq i \leqq j \leqq k \leqq 7)$.
ii) The " $K U_{*} X \cong Z \oplus Z \oplus Z / q\left(q \geqq 1\right.$ odd)" case: $Y=\Sigma^{j} \vee \Sigma^{k} \vee S Z / q, \Sigma^{j} P \vee$ $S Z / q$ or $\Sigma^{\prime} Q \vee S Z / q(0 \leqq j \leqq k \leqq 7)$.
iii) The " $K U_{*} X \cong Z \oplus Z \oplus Z / 2^{m} \oplus Z / q(m \geqq 1$, and $q \geqq 1$ odd)" case : $Y=W \vee$ $S Z / q$ and $W=\Sigma^{j} \vee \Sigma^{k} \vee S Z / 2^{m}, \Sigma^{j} P \vee S Z / 2^{m}, \Sigma^{j} Q \vee S Z / 2^{m}, \Sigma^{0} \vee \Sigma^{k} \vee V_{m}, \Sigma^{5} \vee$ $\Sigma^{k} \vee V_{m}, \Sigma^{J} P \vee V_{m}, \Sigma^{l} Q \vee V_{m}, \Sigma^{k} \vee X_{m}, \Sigma^{k} \vee X_{m}^{\prime}, X Y_{m}, X^{\prime} Y_{m}^{\prime}, Y^{\prime} X_{m}(0 \leqq j \leqq k \leqq$ 7 and $0 \leqq l \leqq 2$) where $X_{m}=M_{m}, N_{m}, Q_{m}$ or $R_{m} ; X_{m}^{\prime}=\Sigma^{-1} M_{m}^{\prime}, \Sigma^{-2} N_{m}^{\prime}, \Sigma^{-3} Q_{m}^{\prime}$ or $\Sigma^{-4} R_{m}^{\prime} ; X Y_{m}=M Q_{m}, M R_{m}, N Q_{m}$ or $N R_{m} ; X^{\prime} Y_{m}^{\prime}=\Sigma^{-3} M^{\prime} Q_{m}^{\prime}, \Sigma^{-4} M^{\prime} R_{m}^{\prime}$, $\Sigma^{-3} N^{\prime} Q_{m}^{\prime}$ or $\Sigma^{-4} N^{\prime} R_{m}^{\prime}$; and $Y^{\prime} X_{m}=\Sigma^{-1} M^{\prime} M_{m}, \Sigma^{-1} M^{\prime} N_{m}, \Sigma^{-2} N^{\prime} M_{m}, \Sigma^{-2} N^{\prime} N_{m}$, $\Sigma^{-3} Q^{\prime} Q_{m}, \Sigma^{-3} Q^{\prime} R_{m}, \Sigma^{-4} R^{\prime} Q_{m}$ or $\Sigma^{-4} R^{\prime} R_{m}$.
iv) The " $K U_{*} X \cong Z / 2^{m} \oplus Z / q \oplus Z / r\left(m \geqq 0\right.$, and $q, r \geqq 1$ odd)" case: $Y=S Z / 2^{m}$ $\vee S Z / q \vee \Sigma^{j} S Z / r(0 \leqq j \leqq 3), V_{m} \vee S Z / q \vee \Sigma^{l} S Z / r(1 \leqq l \leqq 3)$ or $W_{m} \vee S Z / q \vee \Sigma^{2} S Z / r$.
v) The " $K U_{*} X \cong Z / 2^{m} \oplus Z / 2^{n} \oplus Z / q \oplus Z / r(m, n \geqq 1$, and $q, r \geqq 1$ odd)" case: $Y=U \vee S Z / q \vee \Sigma^{\top} S Z / r$ and $U=S Z / 2^{m} \vee \Sigma^{j} S Z / 2^{n}(0 \leqq \jmath \leqq 7), V_{m} \vee \Sigma^{1} V_{n}(j=1)$, $V_{m} \vee^{\prime} \Sigma^{4} V_{n}(|m-n| \geqq 2$ and $\jmath=0), V_{m} \vee W_{n}(m+2 \leqq n$ and $j=0), W_{m} \vee V_{n}(m \geqq$ $n+2$ and $j=0$) or $X_{m, n}\left(j=\operatorname{dim} X_{m, n}-1\right)$ where $X_{m, n}=M_{m, n}, N_{m, n}, P_{m, n}(m \geqq n$ $+1), P_{m+1, n-1}(m+1 \leqq n), P_{m, n}^{\prime}(m+1 \leqq n), P_{m-1, n+1}^{\prime}(m \geqq n+1), P_{m+1, n-1}^{\prime \prime}(m+2<n)$, $P_{m, n}^{\prime \prime}(m=n), P_{m-1, n+1}^{\prime \prime}(m>n+2), Q_{m, n}, Q_{m, n}^{\prime}, Q_{m, n}^{\prime \prime}, R_{m, n}(m \leqq n), R_{m, n}^{\prime}(m \geqq n)$, $H_{m+1, n+1}, K_{m, n}((m, n) \neq(1,1))$ or $L_{m, n}$.

References

[1] D. W. Anderson, A new cohomology theory, Thesis (1964), Univ. of California, Berkeley.
[2] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories, I and II, Osaka J. Math. 2 (1965), 71-115 and 3 (1966), 81-120.
[3] A. K. Bousfield, A classification of K-local spectra, J. Pure and Applied Algebra 66 (1990), 121-163.
[4] Z. Yosimura, Quasi K-homology equivalences, I, Osaka J. Math. 27 (1990), 465-498.
[5] Z. Yosimura, Quasi K-homology equivalences, II, Osaka J. Math. 27 (1990), 499-528.
[6] Z. Yosimura, The K_{*}-localizations of Wood and Anderson spectra and the real projective spaces, Osaka J. Math. 29 (1992), 361-385.
[7] Z. Yosimura, The quasi $K O_{*}$-types of the stunted mod 4 lens spaces, preprint.

