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KO-HOMOLOGIES OF A FEW CELLS COMPLEXES
By ZEN-ICHI YOSIMURA

0. Introduction.

Let KO and KU be the real and the complex K-spectrum respectively.
For any CW-spectra X and Y we say that X is quasi KOy-equivalent to Y if
there exists a map h: Y—-KOAX such that the composite map (#uAL)(LAhK):
KONY —-KOAX is an equivalence where p: KONKO—KO denotes the multi-
plication of KO (see [4] or [3]). Such a map h is called to be a quasi KO-
equivalence. If X is quasi KOx-equivalent to Y, then KO,X is isomorphic to
KO.Y as a KOx-module and in addition KU,X is isomorphic to KUY as an
abelian group with involution where the conjugation ¢;' behaves as an involu-
tion. Assume that CW-spectra X and Z have the same quasi KO4-types as
CW-spectra Y and W respectively. For any maps f: Z—X and g: WY we
say that f is quasi KOy-equivalent to g if there exist KOy-equivalences h:Y —
KOAX and k: W—KOAZ such that the equality hg=(1UAfe: W-KONX
holds. In this case their cofibers C(f) and C(g) have the same quasi KOx-type.

A CW-spectrum X is said to be stably quasi KOx-equivalent to a CW-
spectrum Y if X is quasi KO4-equivalent to the i-fold suspended spectrum 3'Y
for some 7. In this note we shall be interested in the stable quasi KOx-types
of complexes with a few cells. Each complex with 2-cells is stably quasi KO-
equivalent to one of the following spectra 2°V X' (0=/<7), SZ/t(t=1), P=C(y)
and Q=C(n* where SZ/t denotes the Moore spectrum of type Z/t and 7:
St is the stable Hopf map of order 2. Our purpose of this paper is to
determine the stable quasi KOx-types of any complexes with 3- or 4-cells
(Theorems 5.3 and 5.4). In [4] and [5] we introduced some 3-cells spectra X,
and X/, constructed as the cofibers of certain maps f: 3*—>SZ/2™ and f’:
S©SZ/2™—33° and some 4-cells spectra XY ,, XY, and Y’X, obtained as the
cofibers of their mixed maps. In §1 and §4 we study the quasi KOx-types of
their cofibers C(g) for any maps g: S;—AX realizing elements of KO,X when
X=SZ/2™, P, Q, X, or X;,. In §2 we introduce some 4-cells spectra X, .
constructed as the cofibers of certain maps f: 3*SZ/2"—~SZ/2™, and then study
the quasi KOx-types of their cofibers C(g) for any maps g: 3*'SZ,—AX realiz-
ing elements of [X'SZ/2", KOAX] when X=SZ/2™, Por Q. In §3 we in-
troduce some new small spectra XV, ., VX, » and X’X,,» needed in §4. In
§5 we prove Theorems 5.3 and 5.4 by using results obtaind in §§ 1-4.
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1. The cofibers of maps f: >*—>SZ/2™ and f': 3*SZ/2™—3".

1.1. Let SZ/2" be the Moore spectrum of type Z/27 (r=1), and 7,: 3°—
SZ/2" and j,: SZ/2"—-33' denote the bottom cell inclusion and the top cell
projection. For the stable Hopf map 7: X'—3X° of order 2 there exists its
extension 7;: 2'SZ/2-3° and its coextension 7,: 2*—>SZ/2 with 7,/,=% and
71ii=m. Using the obvious maps p,,,: SZ/2"->SZ/2 and p, ,: SZ/2—-SZ/2"
we then set 7,=#10,.: 2'SZ/2" - X" and #.=p.,.5:: 2* = SZ/27, which
satisfy #,i,=% and j,#,=%, too. Hereafter we shall often drop as 7, j, 7 and
7 the subscript “r” in the symbols 7., j,, 7, and 7,. Choose mars ¢: 2'SZ/2
—SZ/2ASZ/4 and ¢: SZ/2NSZ/4—SZ/2 such that (AAe=1=¢(1 A7) and
AN+ Af)=1, and then consider the composite maps 7, ,=(FAl)p: 2*SZ/2
—SZ/4 and ., =¢(HAL): 3*SZ/4—SZ/2. 1t is immediate that 9, 2=7, /9.
=7, Ns,4=7% and j9,,=% when the maps ¢ and ¢ are replaced by the maps
o+(AAip) and ¢+AAns) if necessary. Set Nnm= P2 mN1ofn1: 2SZ/2" —
SZ/2™ when m=2, and 07, n=01, nN210n,2° 2°5Z/2"~>SZ/2™ when n=2. Since
it is easily shown that 7, »=%7 = When m=2 and n=2, we employ the nota-
tion %, n instead of 7% » even if m=1. Evidently these maps 7, » satisfy
Nu.mi=7 and jnn =7, too.

Denote by Vi, Vi, Un and Uy (m=1) the small spectra constructed as the
cofibers of the maps i5: 2'SZ/2 > SZ/2™Y, 551 SSZ/2™ ' > SZ/2, N1mar:
NSZ/2—-SZ/2™* and Ymsr,1t D2SZ/2™'—SZ/2 respectively. In [4] or [6]
these small spectra are written to be Vaym, Vim, Usm and Ujn. We shall
denote by iy:SZ/2™ 'V, iy SZ/2—V iy SZ/2™' U, and iy: SZ/2—U},
the canonical inclusions, and by jy: V,—X2SZ/2, j,: Vi—22SZ/2™ 7 jy:Un
—3¥SZ/2 and jy: Un—333SZ/2™** the canonical projections. Consider the two
cofiber sequences

7 i ] 7 d ]
(1.1) SZ/2 - 33— C(5) » 2*SZ/2 and X*—>SZ/2 - C(H)— 2P

in which the cofibers C(75) and C(#) have the same quasi KO4-types as 3}* and
1! respectively (see [3], [4], [6] or (1.9) below). Then we get the following
two cofiber sequences

T A
12) —CH) —Vau—>2" and X2 — Vi, — C@H) — °.

Since 7.,:=(FAl¢p and 75..:=¢(GAl) there exist maps 7,,: CHIASZ/4 —
S2SZ/2 and 7. 2'SZ/2—-C(f)ASZ/4 satisfying 7,.(1AD)=7 and (L1A7)71,.
=1, whose cofibers are 3)'U, and Uj respectively. Hence we can choose maps

1.3) 2: C(7)—> 2° and 1: 2*—> C(3)

satisfying 12=4 and Zf'=4“so that their cofibers are U, and U; respectively.
It is obvious that 11=4=ji. So we get the following two cofiber sequences
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2m2 w Ju ™2 i i
14) CH) — 22— Una—>2'C(H) and 3 — C(§) — Upsy — 2*.
Let P and Q denote the elementary spectra constructed as the cofibers of
the stable Hopf map #: 3}'—3° and its square 7?: 3?*—-3)° respectively. Given
such an elementary spectrum X as >}, SZ/2™, P, Q or V.., each CW-spectrum
having the same quasi KOx-type as X will be represented by AX. For simpli-

city we shall write S, (0=:<7) and SZ, (m=1) instead of AS}* and ASZ/2™.

LEMMA 1.1. For any map f: Si—S, (0<i<7) its cofiber C(f) s quast KO-
equivalent to lhe wedge sum 3°N/3'*' or the following small spectrum Y, :
i) Yo=SZ/2™\SZ/q; ii) Y ,=P; iil) Y,=Q; iv) Y, =31V .1 VSZ/q where m=0
and q=1 is odd.

Proof. Use the following maps gy, »=2™: 2'>2°, gi1=7: 2'-2°, g.=n*:
3230 and gi . =2™: 3* - 3*C(5), whose cofibers are SZ/2™, P, @ and
2V m+1 respectively. Then our result is immediate.

In virtue of Lemma 1.1 we observe that

(1.5) the small spectra 32V5, U, and 32U, (m=1) have the same quasi
KO4-type as V,, (cf. [6, (1.3) and (1.4)] or [7, (1.9) ii)]).

1.2. Denote by M,, Nn, Pn, Q. and R,(m=1) the 3-cells spectra con-
structed as the cofibers of the maps iy: 2'—>SZ/2™, in?: 3*—>SZ/2™, §5: 2P—
SZ/2™, 3m: 2*—>SZ/2™ and 75*: X*—SZ/2™ respectively. Dually we denote
by My, Np, Ph, Qn and R, (m=1) the 3-cells spectra constructed as the cofibers
of the maps 7j: SZ/2™ -3, 9%j: B'SZ/2™ -3, 7 ' SZ/2™ - 3°, 97
D:SZ/2™ -3 and 7% 2!SZ/2™—3° respectively. When X=M, N, P, Q or
R we shall denote by iy: SZ/2™—X, or i%x: 2°—X,, the canonical inclusion,
and by jy: Xn—2¢ or ji: Xp—21¢'"'SZ/2™ the canonical projection where
d=dimX, and d’'=dimX.. In [4, 4.1] these 3-cells spectra X, and X, are
written to be X,» and Xjm, and their KU- and KO- homologies have been
calculated (see [4, Propositions 4.1 and 4.27).

LEMMA 1.2. (1) For any map f: S;i—SZ.(0Zi<T) its cofiber C(f) is quast
KO y-equivalent to the wedge sum 3**'\/SZ/2™ or the following small spectrum
Y.: 1) Y, =30WSZ/280<k<m); ) Y, =M, ; iil) Y,=N, or Pp; iv) YV:=0Q,;
V) Y.=R, or 'Vt (0 <m—1).

(2) For any map f: ' SZ—Se(0Z:<7) its cofiber C(f) s quasi KO-
equivalent to the wedge sum 2°NV X2'SZ/2™ or the following small spectrum Y ,:
i) Y,=3VSZ/28(0<k<m); ii) Y,=M3; iii) Y2=Ngn or Pn; iv) Yi=0Qxn; V)
Y.=Ry or V2V 0£k<m—1).

Proof. Consider the following maps g, ,=2%: 3°—>SZ/2™ g,=in: 2'—
SZ/2™, gy=1m?: XPSZ/2™, gi=7: P-SZ/2", gi=5+in*: ZP—SZ/2™, g.=
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7 2*>SZ/2™ and g,,,=2%: C(7)—>SZ/2™. The cofibers C(g,, ) and C(g,, )
are the wedge sums 3}'VVSZ/2* and X'\ U,., respectively whenever 0<k<m
—1, and C(g, n_,) has the same quasi KOy-type as the 3-cells spectrum R,
since the map g, »-: is quasi KOy-equivalent to the map #%*: 2*—>SZ/2™. On
the other hand, the cofiber C(g%) coincides with the 3-cells spectrum P, since
J4+in’=14in7)5 and (1+in5)*=1. Our result of (1) is now easy, and (2) is
dually shown to (1).

For any m=1 we consider the maps 6p= Nimad s 2—SZ/2™*! and 6v=
Thmar1: 2°SZ/2™+ 15310 satisfying ]6»*6:4 6vi. Then Lemma 1.2 asserts that

(1.6) the cofibers C(6V) and C(69) have the same quasi KOs-types as 'V 1V .
and X*V3*V,. respectively.

In fact, these cofibers are obtained as those of the composite maps iy : 33U
—-32C(7) and iy : 27'C(F) = 3, both of which are KO,-trivial because
KO,V ,=0. Therefore our assertion (1.6) is certainly valid.

1.3. Recall that KO;P=Z or 0 according as 7 is even or odd. Using the
bottom cell inclusion 7p: 3°—P and the top cell projection jp: P—3? we get
the following two cofiber sequences

2™p ppu ku hy pu.p _2"jp
a.7n 0 —s>P—s> M, — > and 2‘——>M' 5 p 5 3e,

Hence we can immediately show

LEMMA 1.3. (1) For any map f: S;—AP=Zi<1) dts cofiber C(f) is quast
KO y-equivalent to the wedge sum 3'*'\/ P or the following small spectrum Y ,:
Yo=M,VSZ/q where m=0 and ¢=1 is odd.

(2) For any map f: 3'AP—S,(0=:L1) dts cofiber C(f) is quasi KOy-equi-
valent to the wedge sum 3°N/33**'P or the following small spectrum Y,: Y,=
D *MpNSZ/q where m=0 and g=1 is odd.

Choose maps &p: 22— P and {p: P — 3)° satisfying jpép=2={pip, Whose
cofibers are C()=P; and C(5)=P, respectively. Then we get the following
two cofiber sequences

2"ép _pp.pr jip 2n%p ipt pp,p
1.8 S-S P 5 Pp =53 and P —> 3 —> Py, —> SUP.

Lemma 1.3 combined with (1.8) asserts that

(1.9) the 3-cells spectra Pr.,; and Pn.;(m=0) have the same quasi KOu-types
as 31M,, and 3~'M, respectively, where M=% and M¢=3" (cf. [4, Corol-
lary 5.47).

Since {pép=7%*: 2*—>3X", we obtain maps po: C(7)—Q and gg: Q—C(H)
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Satisfying ].QpQ=jj_, ﬁQz=2iQ, ﬁQZ.Q={Z- and jﬁQ‘—’Z]Q where iQ: Zo'—)Q and jQ:
Q—2>3® denote the bottom cell inclusion and the top cell projection. Evidently
there exists the following cofiber sequence

i} ] 1)
(1.10) con 2202 ey s e,
where 4 is the composition of the maps pp,» and pp,p- in (1.8). We moreover
obtain maps p: 3*C(5)—P and ip: 3*P—C(7) satisfying jpdp=2, 1pi=2&p,
ipip=1 and j2p=2{p because jp«: [2°C(7), P1-[C(7), =] and i}: [P, C(7)]
—[X3?, C(7)] are isomorphisms. Since the elementary spectra P and @ are
related by the following cofiber sequences

Ap
5P Q1L L e,

we here set
§Q=2P.Q§Pl 2P—0, CQZCPPQ,P: Q— 3°,
(1.11) Pp=pq.rPq: C(7) — P, ﬁP—_-ﬁQlP.Q: 2P — C(7),

1Q=1P, le: 2C(7) — Q, Ag= PQ p: 2*Q — C(7).

Recall that KO,Q=Z, Z/2, 0, Z according as ¢=0, 1, 2, 3 mod4. As is
easily seen, there exist the following cofiber sequences

2™ . k h'y 2m
2“-——-2—3Q‘0—Q——irN ——N>21 S N'p-uQ——]—SZa
(Je» ) (n,1p) igVap, J
w1z s L gUe e o pTVIP s TP S supieVine G e o,
2" Pa.@ 77 0 e
i R L L S L AP S i 2o

Hence we can immediately show

LEMMA 14. (1) For any map f: S;—AQ (0=:i<3) its cofiber C(f) is quasi
KO y-equivalent to the wedge sum X'\ Q or the following small spectrum Y ,:
i) Yo=NnVSZ/q; ii) Y \=3PVP; iii) Ys=0Qn.1VX’SZ/q where m=0 and qg=1
is odd.

@) For any map f: 2*"'AQ—-S, (0<5i<3) its cofiber C(f) is quasi KO-
equivalent to the wedge sum X'V X'*2Q or the following small spectrum Y ,:
i) Yo=2"NnVSZ/q; ii) Y \=33"'VP; iii) Yi=Qn.VSZ/q where m=0 and
g=1 is odd.

1.4. Recall that KO;V,.,=Z/2™, 0, Z/2, Z/2, Z/2™*%, Z/2, Z/2, 0 ac-
cording as =0, 1, ---, 7.

LEMMA 1.5. (1) For any map f: Si—AV ni (0Zi<7) its cofiber C(f) is
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quasi KOy-equivalent to the wedge sum 33***\/V 41 or the following small spectrum
Yo 1) Y, =2V Ok<m); il) YVo=Pryy; iil) Vi=3Qnsr; iv) Y=
2Ry or Elv24SZ/2k (Oékém); v) Y5=Mm+l; Vi) Y=Nni1.

(2) For any map f: 33 'AV p1—So (0=5:<7) idts cofiber C(f) is quasi KO-
equivalent 1o the wedge sum °N/ WV ey or the following small spectrum Y ,:
1) Yo=Y Rpr or 2*VSZ/2F 0<k<m); il) V=20 My dil) Vo= Nis;
iv) Vi=2VZWs 0k<m); v) Ye=32'Prsr; Vi) Vi=2'Qnr

Proof. Consider the following maps g, »=2%yi: 2=V psy, Le=ivij: 2°—
Vm+1_, gs=iVﬁ77: 2=V i, g4,k=2kiV: C(ﬁ)“”Vmﬂy g5=iy(77/\1): ZIC(T])—*V,,LH,
ge=w(n*A1): 2°C(5)—V wn+1. The cofibers C(g,, ) and C(g,, ) are respectively
the wedge sums X2'VV,,, and 2'V(C(#)ASZ/2*) whenever 0<k<m, and
C(gs. m+1) coincides with the cofiber of the map 2™(A7): S°—CH)ASZ/2m*!
which is quasi KOy-equivalent to 3)*R,., according to Lemma 1.2. On the
other hand, the cofibers C(g,) and C(g;) coincide with those of the maps 2577 :
X'SZ/2-P,, and igi7: 3'SZ/2—Qn, and hence they are obtained as those of
the maps 2™ %{p: P—C(5) and 2”‘"1"CQ: Q—C(5). Further the cofibers C(gs)
and C(g,) coincide with those of the maps 2™(iAip): 2°—C(7)APand 2™(1Aig)
3*—-C(F)ANQ. Therefore Lemmas 1.3 and 1.4 show that these four cofibers
have the same quasi KO4-types as 3 *Pr.1, 2'Qm+1, My, and Ny, ., respectively.
Now our result of (1) is immediate, and (2) is dually shown to (1).

Denote by W,., and W}.,, (m=1) the 4-cells spectra constructed as the
cofibers of the maps :5+7;5: 2'SZ/2—SZ/2™ and 7+74): X'SZ/2™ - SZ/2
respectively. Note that W ,., and 2)°W,., have the same quasi KOx-type
as Wy, (see [4, Corollary 5.47 or (4.12) below). Recall that KO W ., =Z/2™,
0, Z/2, 0 according as i=0, 1, 2, 3 mod 4.

LEMMA 1.6. (1) For any map f: Si—AW ., (0<i<3) its cofiber C(f) 1s
quasi KO y-equivalent to the wedge sum 33***N/W ., or the following small spec-
trum Y,: 1) Yo=3Qsy O=Zk<m); ii) Vo=3"Pri.

(2) For any map f: 2 ' AW i1 — S, (05:Z3) its cofiber C(f) is quasi
KOy-equivalent to the wedge sum 33°N/ )W .y or the following small spectrum
Y.: i) Yo=0Q41 (O§k<m); ll) Yz=24p1ln+1~

Proof. Consider the following maps go, ,=2%wi: 2°>Wns and g,=iwi:
3 —>Wm.1. The cofiber C(g,,;) coincides with that of the map (57, i7): 2'SZ/2
-V SZ/2% whenever 0<k<m. Therefore it is the cofiber of the composite
map %jjv: 27'Viea—2", which is quasi KOx-equivalent to X°Q:., according
to Lemma 1.5. On the other hand, the cofiber C(g,) coincides with that of the
map ipi7 ¢ 2'SZ/2—P,, which is quasi KOy-equivalent to X*P,.; as shown
in the proof of Lemma 1.5.
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2. The cofibers X, , of maps f: 3'SZ/2"—~SZ/2™.

2.1. For any m, n=1 we here introduce 4-cells spectra M, ,, Nn.n, P n»
P ny Piony Qmony Qmny @inony Rmon, Rmn and R7; , constructed as the cofibers
of the following maps respectively :

inj: SZ/2" —> SZ/2™, g’y X'SZ/2" — SZ /2™,

77,47 and ip+77: 2'SZ/2" — SZ/2™,
2.1)
7nj, w7 and ipp+gys: 28 SZ/2" — SZ/2™, and

797, in*y and ip*G+7n%: 2°SZ/2" —> SZ/2™.

Of course M, ,=SZ/2N\SZ/2, N,,, = SZ/2V3*SZ/2, P\, n =V i1, Po1=V a1,
Noa=Whiy, Ph =Wy, Pha=PASZ/2™ and Qf .=QANSZ/2™. Moreover
we note that X°P/ , are quasi KOx-equivalent to P, ., (see (4.12)). In [4, 4.2]
the 4-cells spectra My, 4, Nm.ny, Pn,n, Pn.» and Pj , are written to be Sim,en,
Tsm,2n, Vim, on, Vam,on and Wam, on respectively. As is easily checked, the maps
(eAD)jn2j: 2°SZ/2% - KOASZ/2' and (cAl)intp: 2°SZ/2' - KONSZ/2% are
trivial whenever k<[, and the map (¢Al) Gp*5+79%): 2°SZ/2*>KONSZ/2*
is also trivial where ¢: 3> KO denotes the unit of KO. So we notice that

(2.2) i) when k</, R,, and R;, have the same quasi KO-types as the
wedge sums SZ/2'\/*SZ/2% and SZ/2F\/ *SZ /2! respectively, and
ii) R, . and R; , have the same quasi KO4-type.

In addition, R}, . has the same quasi KO4-type as R, ., SZ/2™\/3*SZ/2" or
Ry, » according as m<n, m=n or m>n.

For any m, n=1 we moreover introduce 4-cells spectra Hy, . (m, n)+(1, 1)),
K. . and L, , constructed as the cofibers of the following maps respectively :

Noom 't 2D0Z/2" —> SZ/2™, 77 2°SZ/2" — SZ/2™ and
(2.3)
inp: DSZ/2" — SZ/2™.

Of course, Hy,y,,=U, and H, ,.,=Uj,. Since the map 1j: Z'C(#) — 2*C(H)
is quasi KOx-equivalent to the multiplication by 4 on X% the 4-cells spectrum
K., has the same quasi KOu-type as X*SZ/4. We can easily calculate the
KU- and KO-homologies of these 4-cells spectra X=X, , (m, n=1) as follows
(cf. [4, Propositions 4.4 and 4.5]).

PROPOSITION 2.1. The KU-homologies KU,X, KU,X and the conjugation
¢t on KUXDPKU X are given as follows:
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X=Mm.n Nm.n Pm.n P;n.n
m=n+1 m<n-+l m+l1<n
KU X=Z/2™ Z/2™PZ/2" Z/2™PZ/2™ Z/2"'PZ/2™* Z/2"PZ/2™
KU X=Z/2" 0 ‘ 0 0 0
L, /L0 1 0 1 2m-» —1 —2n-m+2 -1 0
=) G- G =) o 1) Gy
X= Pn{t.n P';r/e.n
m+1l=n m<n m=n m>n
KU X= Z/2m@pZ/2"* Z/)2"'PZ/2™* Z/2"PZ/2™ Z/2™'PZ/2"!
KU X= 0 0 0 0
. 1 0 -1 0
o= 1 -1 —An-m (. An-n
X= Qm,n Q;n.n Q;'/l«.n Rm,n R;n.n Hm,n Km.n Lm.n
(m, n)=(1, 1) (m, n)#(, 1)
KU X= Z/2™ Z/2™PZ /2" zZ/2m1! Z/2™PpZ/2™ Z/2™
KU X= Z/2» 0 Z/2n! 0 zZ/2"
1 0 10 1 0 1 2™ 10
—1__
¢ (0 —-1> 0 1) (O —1) (0 1 ) 0 1)
. 1-—-2%+1 2k+2(1—‘2k) . . k+l+2 2
Here Ak-—( 1 1ok ) and this matrix operates on Z/2 DZ/2" as

left action.

PROPOSITION 2.2. The KO-homologies KO X (0<i<7) are tabled as follows:
XNi= 0 1 2 3 4 5 6 7
My Z/2™ Zj2» Z2BZ/2 Z/28Z/2  Z/2m+ Z/2~ 0 0
Nu,n Zji2m ZJj2 Zj2"'@Z/2 Z/)2DZ/2 Z/2™@Z/2 Z/2 Z/2" 0

0
0

Pnn  Z/2™ Z)2 *)n,m Z/2 Z/2m\@z/2 0 Z/2n
Ppno Z/2™ 0 Z)2"'@Z/2 Z)2 . Z/2 Z/2
Mo Z/2™ 0 z/2r 0 z/2m 0 ZzZ/2* 0
Qnn Z/2™ Z]2 *)m Z/2m Zpmpz2 Z/2 Z/2 Z/2r
Qna Z/2™ Z/2 zZ/2 zp»@z/2 Z/2mm () Z/2 ZJ2¢

[ zZi2™~  ZJ2 Z/2 zZ/2" z/n2m Z/2 Zj2 Z/2*
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Run Z/2"BZ/2"  Z/2  (Om  Z/2  Z2™DZ/2" Z/2 (%), Z/2
(m=mn)

Ry . Z/2™PZ/2" Z/2 )m Z/2 Z/2mPZ2rr 22 (%), Z/2
(mzn)

H, . zZ/2m zZ/2 Z/2 Z/2"! zZ/2m ! Z/2 Z]2 Z/2"
(m, n=2)

Koo Z272"DZ/2"  Z/2 (8Om0 Z2"'PZ/2" 0 (W Z/2
Lo Z/2™BZ/2 Z/2"PBZ/2 (¥)m  Z/2 zZ/2m Z/2" Z[2 ()

Here (%), ,=Z/2™*% and (¥)p, 2 =Z/2™"'PZ/2 if n=2, and (%), , 1s abbreviated
to be (%),.

For the 4-cells spectra R, , and Rj, ., 2<m<n) their KU-, KO- and KT-
homologies are all equal, but their induced homomorphisms by 7: KT —-KO
(see [1] or [3]) are not equal when m<n. In fact, the induced homomorphisms
T2 KTy, X — KO,,.,X are represented by the following rows T,,,, for X=
Ry, » (m=n) and Ry, ., (m=n):

T.=11): Z/2"PZ/2" —> Z/2, T:=10): Z/20Z/2 — Z/2,

(2.4)
Ty=01): Z/2™pZ/2" —> Z/2, T.=01): Z/2Z/2 —> Z/2.

2.2. We here show

LEMMA 2.3. For any map f: 2°'SZ, - SZ, (05i<7) its cofiber C(f) is
quast KO y-equivalent to the wedge sum SZ/2™\/ 3'SZ /2" or the following small
spectrum Y,: i) Y,=SZ/2¥/SZ/2™ "k (0 < k<Min{m, n}); ii) Y, =M, ,,
SZ /2N NSZ /27 ™ My ik, SZ /2™ N IS Z /28 0y Moyy_ i1, O k<m<n
and 0<!<n<m); lll) YZ':Nm,n; Pm.ny P1’nn or P#L,n; lV) Yssz,n; Q/m,ny Q#L,n
or Hy n; V) Yi=Rp, »(m=n), Ry, .(m=2n), Kp n, 2V et VViin_er or 24V
\/Wm+n—k-l (O é k<Mll’l{m—~1, n_l})) Vl) Y5 = Lm,n; 24Vk+1\/25Vn—m+k+l or
DV VE Vi 0k<m—1<n and 0<I<n—1<m).

Proof. Consider the following maps: i) g, .=2%s: 3"'SZ/2" - SZ/2™,
i) g1=ins: SZ/2" > SZ/2™, g, +=2%pn,m: SZ/2">SZ/2™, g1, +=2%pn, nt+ins:
SZ/2"—SZ/2™, iii) go=19%], 7], 1%, in+7j: D'SZ/2*—>SZ/2™, iv) gs= 7],
g, M+ 907, Nawi D°SZ/2">SZ/2™, V) go= 9%, in°y, 7 Z°SZ/2" —
SZ/2m, giw=24AN)): DTCHASZ/2" - SZ/2", gix = 2%AN)) + 77T
SCHIASZ/2"—~SZ/2™ and vi) gs=7n7: D' SZ/2">SZ/2™, g5, 1 =2 QNP m):
CHNSZ/2"—>SZ/2™ where pnm: SZ/2"—>SZ/2™ is the obvious map and 7.,
=501 AP CHNSZ/2"-X*SZ/2 for the map 7, given in 1.1. For any
kb with 0 < E<Min{m, n} the cofiber C(g, :) is the wedge sum SZ/2*\/SZ/
2m+n-k and C(g.,,) is the wedge sum SZ/2%\V3!SZ/2»™+% or SZ/2m-r+ky
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SWSZ /2% according as m<n or m=n. The cofiber C(gi ) is obtained as that
of the map (2" ™*%, i9): 2'>2'VSZ/2* when m<n, and as that of the map
2monvky/pg 3°VSZ /283" when m=n. Therefore it is the 4-cells spectrum
My nemsr OF My_nir.r according as m < n or m=n. Assume that 0 < k<
Min{m—1, n—1}. For the cofiber sequence

Ty 7771.,1
28Z/2 — Upy —> C(HINSZ/2" — 2SZ/2

we note that (1A )ary=jy: Un,_1—»3'C(7) and the cofiber of the map 2*23jy:
WU ,-.,—SZ/2™ is the wedge sum SZ/2™*"-*k-2\/[J,,,. As is easily checked,
the cofibers C(g..) and C(gi:) coincide with those of the maps (77, 0) and
G7+77, aign?s): D'SZ/2—-SZ/2™* "=k -2\/U,,, for some a=Z/2. So they are
respectively the wedge sums Vin-poi VUpryy and Woinowoy V Uy because
iy =iynjE7+77). Of course, C(g, ) may be determined more easily since
it is obtained as the cofiber of the map 2™**~*-21\/0: 3V U:+1—C(H). On
the other hand, the cofiber C(g;, ;) is obtained as that of the map (2"™+*2, 0):
DC(H) = 2*'VUs; when m<n, and as that of the map (2%7, 0): 'C(5) —
SUNVU p-nsrs: When m=n. Therefore it is the wedge sum 3'U,-nsr+1 VU4
or B4 +1 VU m-nse+1 according as m<n or m=n. Since 7j+in’)=14in/)77/,
No.mt 591 =00. a(+in)), 77+79%=771+inj) and so on, our result is now
established.

For any m, n =2 we here consider the map va.m = Y mfn1: DSZ/2" —
SZ/2™ satisfying v,, 21=69 and Jvn, m=060. Then lemma 2.3 asserts that

(2.5) the cofibers of the maps gﬁ] and 5:3]’—1-7777: B¥SZ/2"—~SZ/2™ 2<m<n),
160 and 65+77: 2°SZ/2">SZ/2m(2<n<m) and v, n: 2'SZ/2"—>SZ/2™(m,
n=2) have the same quasi KO4-types as the wedge sums 33*V .1V Vi1, 2V a0y
VWi, Vi VV i, 20V 0o VWi and 240V V23V, -, respectively.

In fact, these cofibers are obtained as those of the composite maps i} jy:
DWUno1 = 2V, vt DU = ZWahiy, tujv: D7 Vaa = 2Unoy, ijw:
S W — DWUn-y and igjy: B Un-y— ZUh-y. Since jy=jjv: " Umn-y —
2SZ/2 and ip=ij: SZ/2—U},_,, the first two maps are KO-trivial when 2<
m<n, the next two maps are KO,-trivial when 2<n<m, and the last one is
always KO.-trivial. Hence our assertion (2.5) is certainly valid.

2.3. The cofibers of the maps 2*%ipj: 337'SZ/2™—Pand 2*ijp: P—32SZ/2™
are the wedge sums X°VM, and X2°V M} respectively whenever 0< kb <m.
So we obtain

LEMMA 24. (1) For any map f: 2*'SZ,—AP (0<i<1) its cofiber C(f)
is quasi KOg-equivalent to the wedge sum 3*SZ/2™\/ P or the following small
spectrum Y ,: Y, =2V M, (0Zk<m).

(2) For any map f: D*AP—SZ,, (0<i<]1) its cofiber C(f) is quast KOx-
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equivalent to the wedge sum SZ/2™\/3**'P or the following small spectrum Y ,:
Yo =32'VI M, 0 k<m).

The cofibers of the maps 2%47: 7'SZ/2™ — Q, ignj: SZ/2™ — Q, ig7:
SUSZ/2™-Q and 2%&,;5: 32SZ/2™—Q are the wedge sums 3°V N, 3°VMp,
¥V P and *V Qr., respectively whenever 0<k<m. From this fact and its
dual we obtain.

LEMMA 2.5. (1) For any map f: 3*"'SZ,—AQ (0<:<3) its cofiber C(f)
15 quasi KOy-equivalent to the wedge sum 33'SZ/2™\/ Q or the following small
spectrum Y,: 1) Y=3CVN, 0k<m); ii) YV, =23V M, ; iii) Y,=2P*VP,;
iv) Vi=3*V Qhsy 0=k <m)..

(2) For any map f: X*"'AQ—SZ,, (0<i<3) its cofiber C(f) is quasi KO-
equivalent to the wedge sum SZ/2™\/ 3*2Q or the following small spectrum Y ,:
DY, =3I Ny 0k<im); i) Vi =327"WMg; i) Yo =3V Ps; iv) V=
2V Qi 0=k<m).

The cofibers of the maps 2%ipjy: 337V pa—P and 2%1y7p: P> 4, are
the wedge sums C(7)V M, and 33*C(%)V 2'M}; respectively whenever 0<k<m.
So we obtain

LEMMA 2.6. (1) For any map f: 2" 'AV n1i—AP(0=i<1) ifs cofiber C(f)
15 quasi KOg-equivalent to the wedge sum 2V . VP or the following small
spectrum Y ,: Y =3*VM, 0<k<m).

2) For any map f: '*AP—AV 4., (0=5:<1) its cofiber C(f) 1s quasi KO-
equivalent to the wedge sum V .,V 2**'P or the following small spectrum Y,:
Vo=2'"V2M; 0=<k<m).

LEMMA 2.7. (1) For any map f: 3" AV ,..—AQ (0=5:<3) its cofiber C(f)
is quasi KOy-equivalent to the wedge sum 'V ..V Q or the following small spec-
trum Y, 1) Yo=3*"VN, 0<k=sm); i) V=3V Mnp,y; iil) Yo=3"V Pny;
iv) Vo=V Qi1 0=k=m).

(2) For any map f: S3*H'AQ—AV 44y (0<i<3) dts cofiber C(f) is quasi KO-
equivalent to the wedge sum V ..V X***Q or the following small spectrum Y, :
i) V=2V 2EN: 0ksm); i) V=3PV My, ; iil) Vo=V Payy; iv) V=
SVQre 0Sks=m).

Proof. Consider the following maps gy, »=2%¢jv: 2"V n1—@Q, S1=ignjv:
Van—Q, g=igijv: 2V mn—2'Q and gy, =2%&gjv: 2V n.—Q. The cofiber
C(go, ) is the wedge sum C(7)V N, whenever 0<k<m, and C(g,) and C(g,)
are the wedge sums 3°VV C(yjy) and 3"V 3°M,, respectively. Here the cofiber
C(njv) has the same quasi KOs-type as 3*M7,,, in virtue of Lemma 1.5. On
the other hand, the cofiber C(gs:) coincides with that of the map 2™i555:
Q41— *C(5). When 0<k<m it is just the wedge sum 3*C(%)V Qt.,, and
when k=m it has the same quasi KO4type as 2°C(5)V Qn., because the map
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2™y BSZ /2™ —-¢C(7) is quasi KOy-equivalent to the map 57 : 2°SZ/2m+!
—31°  Our result of (1) is now immediate, and (2) is dually shown to (1).

3. Some small spectra XV, ,, VX, and X' X, 0.

3.1. For any maps f: 3*—>SZ/2™ and g: 3Y—>SZ/2™ (i<j) we denote by
XY, the cofiber of the map f\VvVg: *Vv3’—SZ/2™ when the cofibers of the
maps f and g are denoted by X, and Y, respectively. Dually we denote by
X'Y ;. the cofiber of the map (f’, g’): 3’SZ/2™—-3V*Vv X" when the cofibers
of any maps f/: 3'SZ/2™—3>° and g’: 3’SZ/2™—3° (i<j) are denoted by
X5, and Y, respectively. In [5] these 4-cells spectra XY ,, and X'Y;, are writ-
ten to be XY ,m and XY in, and their KU- and KO-homologies have been cal-
culated in [5, Propositions 1.2 and 1.3] when X=M or N, and Y=P, Q or R.
Let X, and Y}, denote the cofibers of any maps f: X3*— SZ/2™ and g’:
SVSZ/2™ 30 If the composite map g’f: 2**—3° is trivial, then the maps
f and g’ admit a coextension h: 3***'-Y/ and an extension %£: 3VX,—3)°
so that their cofibers C(h) and C(k) coincide. Its coincident cofiber is denoted
by Y’X, when a suitable pair (h, k) is chosen as in [5, (2.1) and (2.2)]. In
[5] these 4-cells spectra Y’X, are written to be Y’X,n, and their KU- and
KO-homologies have been calculated in [5, Propositions 2.3 and 2.4].

For any map f: 3*SZ/2—SZ/2™ we denote by XV .., (m, n=1) the cofiber
of the map (f, i%): 2*SZ/2—SZ/2™\V X*"'SZ/2"" when the cofiber of the map
f is denoted by X, ;. We are interested in XV, , only when X=M, N, P and
Q because the other cases are of little importance. Note that XV, =X, ,
and NV, .=SZ/2™\/V, whenever m<n. In [7, (2.2)] the small spectrum
PV, . is written to be U,_y n . Moreover we introduce new small spectra
NVE, ., PVE . and QVY, . (m, n=1 and £=0) constructed as the cofibers of the
following maps respectively :

gh=2%jy+intijy: 2V, —> SZ/2™,
3.1) gb=2%j,+7jjy: DV, —> SZ/2™ and
gé=ingv+qnijv: Vo —> SZ/2™.

Since 2""'jy=7jy: V,—Z", it is immediate that gh=0, gp=(1+in/)7jjjv, gh=
njiv, gb=77jv and giF=2'1+2"""ijy when k=Min{m, n+1} and /[<<n. Hence
it is easily shown that

SZ/2m\vV, when k=n
NV 2a={ NVna when k=Min{m, n+1}
(3.2) SZ/2*N/V msn-r When E<Min{m, n}

Py { PV a when %£=Min{m, n}

SZ/2*N/W pin-r Wwhen E<Min{m, n}.
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For any map f: 3*SZ/2"—SZ/2 there exists a map h: X***SZ/2" -V,
satisfying jyh=f if the composite map :7f: 2**'SZ/2"—~SZ/2™"" is trivial.
By choosing such a map h suitably we introduce a new small spectrum
VXn a (m n=1) constructed as the cofiber of its map A when the cofiber of
the map f is denoted by X, .. Evidently VX, ,=3?X,,.. Choose a map & :
SBSZ/2*~V,, satisfying jy&y=7%7, and then set & =&yi: 2°—V,. Such a
map & with jy€y=147 is uniquely determined, although &y is unique only up to
quasi KOu-equivalences. We are only interested in the following new spectra
VQu.n, VRy.n, VKpn,, and VL, , (m, n=1) constructed as the cofibers of the
maps &yj: USZ/2"—V u, Evnj: 2SZ/2"—V u, &v: 2SZ/2"—V ,, and Er(n Al):
2857 /2*—~V ,, respectively. According to Lemma 1.5 the cofibers C(&y) and
C(&v7n) have the same quasi KOu-types as the elementary spectra M, and N,
respectively. The cofibers C(&vf), C(€y) and C(Ev(nAl)) are given as those of
certain maps go: C(&y)—X2¢, gx: 2°*—C(éy) and g : 2'—C(&yy), which induce
g§(1)=2" < KO°C(¢y) = Z, gxx(1) =2""' € KO,C(&v) = Z and gr«(l)=2""'e
KO,C(yn)=Z. Applying Propositions 4.1 and 4.2 and the dual of Proposition
4.5 established below we can observe that

(3.3) the small spectra VQu, », VKnu, » and VL, , are quasi KOy-equivalent to
S¥Hy iy me1, 2 Pn1,m+r and MV, , respectively. In particular, @, ,, K, . and
L, ., are quasi KOs-equivalent to 3°H, 1,5, 2*Pr_1.and 3 MV, , respectively.

3.2. We can easily compute the KU- and KO-homologies of the new small
spectra Y=XV , ., QVS%.» and VR, , (m, n=1) for X=M, N, P and @Q, where
XVm,lsz,n QV‘?ILJ:Q';!IL,I and VRl,n=ZzR1.n-

PROPOSITION 3.1. i) The KU-homologies KUY, KU,Y and the conjugation
¢zt on KUYPKU,Y are given as follows:

Y= MVm,n Nvm,m PVm,n va,n QVgn,n VRm,n

KUuY= Z/;2™ Z/2™PZ/2" Z/2™PZ/2" Z/2™ Z/2™DZ /2"
KUY= Z/2" 0 0 Z/2" 0
(1 0 10 1 2m-t 10 1 0
7= 1) (1 b 1) 0 1) b —1)
i) The KO-homologies KO,Y (0<i<7) are tabled as follows:
YNi = 0 1 2 3 4 5 6 7

MV, Z2™ (%), Z/2BZ/2 Z/2"PZ/2 z/2m zZ/i2 0 Z/2

NV oo Z2™BZ/2" 1 Z)2 %) DZ/2 Z/2DZ/2 Z/2™*DZ/2™ Z/2 Z/2 0
(m>n)
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PVopn Z12"PZ/2" Z/2 uDZ/2 Z/2 Z/2™PZ/2" 0 Z/2 0
(n=2)

QV o, n Z/)2™ Z/12"PZ/2 (%)m ®a  Z/2™'PZ/2 Z/2" Z/2 Z/2
QVin zpn z2r Z/2 Z/2 z/2m Z/12» Z/2 Z)2

VRu . Z/2™DZ/)2 Z/2 Z/)2"DZ/2 Z/2 Z/2m+! Z/2 Z/2"* Z/2
(m=2)

in which (x),=Z/4 and (x),=Z/28Z/2 if [=2.

For the small spectra QVY,. . and 3'QZ . their KU- and KO-homologies
are equal, but their KT-homologles are not equal In fact,

B4 i) KT, QVs, ,=Z/2™PpZ/2", Z /2", Z/260Z/2, Z/2™*' according as i=
0,1,2,3 when n=2;

i) KT,Q4 .=Z/2™"PZ/2, KT.\Q4 ,=7Z/4, Z/4 or Z/2DZ/2 when m>n=
1, n>m=1 or otherwise, KT,Q% ,=Z/2"PZ/2 and KT.Q% ,=Z/2™'PZ/2""",
Z/2™PZ/2™ or Z/2™'PZ/2™*! when m>n, m=n or m<n.

3.3. Consider the maps

¢n.=2""Yix1: C(7) —> N4 and
3.5)
Pn.o=2"""iyA+hynj: C(7) —> Np

where the map hy: 23— Ny, given in (1.12) satisfies jyhy=: and 2™hy=
iyn®. Since it coincides with the cofiber of the map 15?%/: 3'SZ/2™—U,, the
cofiber C(¢,) is quasi KOy-equivalent to the small spectrum 3*VR, ., con-
structed as the cofiber of the map &y7j: 3°SZ/2™—3*V,. On the other hand,
the cofiber C(¢,,,), denoted by N’N, , (m, n=1), has the following KU- and
KO-homologies :

PROPOSITION 3.2. 1) KUWN'Nyn = 2/2°®2/2% on which gi*=(y _Y)
and KU,N’N,, »=0.

ii) KO;N’'N, n,=Z/2"* Z/2, Z/2™*', Z/2 according as i=0, 1, 2, 3 mod 4
unless (m, n)=(, 1), and KO;N'N,,=Z/4, Z/2, Z/4, Z/2, Z/2DZ /2, Z /2, Z /4,
Z/2 according as i=0,1, ---, 7.

Denote by R;, (m=1) the cofiber of the map 2™ '(AAJ): JIC(HINSZ /2™
—33°, which has the same quasi KOi-type as the elementary spectrum R.,.
Then there exists a cofiber sequence

@2m'7,2™) pr - (IADJR

(3.6) C(#) 2VC(7) —> Rn 2'C()

where jr: Rn—C(7)ASZ/2™ is the canonical projection. Using the map f,, .=
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(2427, 28-1): 3130/ C(5) we here introduce a new small spectrum R} ;. n
constructed as the cofiber of the composite map pifa »: S°—Rh. Assume that
1<k<m. Then the small spectrum R} . . coincides with the cofiber of the
map Ag, p,m = 2" 17V 20 + 245y C(7) V 27V — 2 because jrprfn. e =
28 1GAD) : S —C(FINSZ/2™. Note that hg, iz n=2°2V2"y, 2°2V0 or 2:2V2%;y
according as £>n, k=n or k<n where s=m+n—k—1. When k=n the cofiber
C(hp, 1. m) is evidently the wedge sum U,VvV,, and when k>n it coincides
with the cofiber of the map 2™, 0): C(7)—CQ@2"j»)=C(7)VSZ/2". When k<n,
it is given as the cofiber of a certain map ln, 4, »: C(5)—C(2*;y) which is quasi
KO4-equivalent to the map 2°*%;: 3*—>*R;. Consequently we observe that

(3.7) whenever 1<k <m the small spectrum R}, ; » has the same quasi KO-
type as 2*SZ/2™\/SZ/2", S*V NV, or Ry in_r,» according as k>n, k=n
or k<n.

When k>m the map f, ,=(2%+2" 2*¥-') is replaced by the simpler map
fo=@" 0). Thus the small spectrum Rj, , » is constructed as the cofiber of
the composite map pgf.: 3)°*—Rpn. Therefore it coincides with the cofiber of
the map 2™-%2, 2™): C(5)—SZ/2"V C(5) when k>Min{m, n}. Since it is the
cofiber of the map 2™ %(AAj7): S'C(F)ANSZ/2™—SZ/2", we see that

(3.8) the small spectrum Ry, ., » has the same quasi KO-type as R, , whenever
k>Min {m, n}.

We here rewrite the small spectrum Ry n.m to be R'R, .. Since it is
obtained as the cofiber of the map 2™ jy: 33" 'Un—Vn, the small spectrum
R’'Rpy, m is quasi KOy-equivalent to the small spectrum constructed as the cofiber
of the map iyjn?jy: 2V u—Va or i’ : 2°SZ/2—2*SZ/2 according as m=2
or m=1. In particular, R’R,, has the same quasi KO.-type as 3)*R{ ;. By (2.2)
and (3.8) we note that the small spectrum R’R, , has the same quasi KO-
type as SZ/2"\/ 2*SZ/2™ when n<m.

PROPOSITION 3.3. i) KU R'R, n=Z/2"@ Z/2™ on which ¢g' =1 and
KU,R'R,, »=0.

ii) KO,R'R, n=Z/2"*P Z/2™ ", Z/2, (¥)m, Z/2 according as 1=0,1,2, 3
mod 4 when m<n or m=n=2. Here W/ =Z/4 and X)n=Z/2DZ/2 if m=2.

For the small spectra R’R,, » and V,V3*V, (m=2) their KU-, KO- and
KT-homologies are all equal, but their induced homomorphisms by z: 2'KT—
KO are not equal. In fact, the induced homomorphisms 74: KT R' Ry, m—
KOy R'Ry. o (m=1) are represented by the following rows Tz

T,=0 1): Z/2™pZ/2™ — Z/2, T,=Q11): Z/2PZ/2 — Z/2,

3.9
e =1 0): Z/2™DZ/2™ — Z/2, T.=0 1): Z/2BZ/2 — Z/2.
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4. The cofibers of maps f: 3*—X, and f': 3*—X,.

4.1. Using the maps pp,x: P— My, and pq n: @—N, given in (1.7) and
(1.12) we set

Su=ppulp: 2°—> My, Ex=po.née: Z° —> Nn,
4.1 Pu=pp,upp: C(7) —> Mn, on=pqe.nPg: C(§) —> Np,
EM-:PP,MEP: 2C(F) — Mp, zN——-PQ,NzQ: 2*C(H) —> N .

These maps satisfy juéy=2=jnén, jubu="7), jnpx=7; and judy=2=]nAy.
Recall that KO.M,=Z/2™, 0, ZPZ/2, Z/2, Z/2™*, 0, Z, 0 according as =0, 1,
o 1.

PROPOSITION 4.1. For any map f: Si—AM,, (0<i<7) its cofiber C(f) is
quasi KO y-equivalent to the wedge sum 2**'\y M, or the following small spectrum
Y: )Y, =2'"VM, 0= bk <m); ii) Vo= MPp, Pp nu\V22S5Z/q or P} iV
2*SZ/q (n=20); iil) Ys=MQun; iv) Y.=MR, or Z'"VZ'M, 0=k<m); v) Y=
SWPh maV2ESZ/g (n=0) where g=1 is odd.

Proof. Consider the following maps go,»=2%iyt: 2°>Mn, g:=in7j: 2*—
M, 8o, 2=2"8y: Z°>Mpy, 85, 2=2"8y+in7: Z*—>Mn, g8:=iy7n: 2*—Mn, g4 r=
2% 5y : C(§)— Mn and go ., = 2"y : 3°C(5) — M,. The cofibers C(g ) and
C(ge ) are given as those of certain maps A, ,: 3°— C(2*pp) and hg ,: 3)°—
C(2"2p). Here the map h,, , is KOy-trivial whenever 0<k2<m, and h,, , is quasi
KOy-equivalent to the map 2™&y: 23°— 372M,. Hence they have the same
quasi KOu-types as 2'VX3*M, and 32P; .+ respectively when 0<k<m and
n=0. Moreover the cofiber C(gs») has the same quasi KOy-type as MR,
because the map g. » is quasi KOy-equivalent to the map iyfn?: 3¢ — M.
Since the remaining cofibers are easily observed, our result is shown.

Recall that KO;Nn=Z/2™, Z/2, Z/2, ZBHZ/2, Z/2™**, Z/2, 0, Z according as
=0,1, ---, 7.

PROPOSITION 4.2. For any map f: Si—AN, (0Zi<T) its cofiber C(f) 1s
quast KOy-equivalent to the wedge sum 23**'\/ Ny or the following small spectrum
Y.: 1) Yo=2'"VN: 0<k<m); ii) Y1 =3V Mp; iii) Y,=NPy; iv) Ys=NQn,
Qn. 21 V2*SZ/q or Qi niiVE'SZ/q(nZ0); v) Yi=NR, or 3'VIN, 0<k<
m); vi) V=23V My ; vil) Y,=MV 4, 2.V 2*SZ/q (n=0) where q=1 is odd.

Proof. Use the following maps g, »=2%yi: 23°— Np, g&1=iyin: ' — Ny,
&:=ini: 2*>Nm, &s=in70: 2*>Nn, £0,2=2"x: 2° — Nu, 85, 2=2"n+iniy:
3°* = Nu, 84,2=2*0y: C(§) = Np, gs=0x(nA1): 3'C(7) — Nn and g, ,=2"2y:
23C(H)—Nn. By a similar argument to the proof of Proposition 4.1 we can
easily show our result.
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4.2. Consider the following cofiber sequences

Ap Jj
5272 0,50 b T sup and 500708 R PP B, T 500

and then set
§o=4profp: 2' —> Qn,  §r=Aq.r6q: Z°—> Ra,

4.2) Po=Ap,qpp: 2°C(7) —> Qu,  Pr=2q.rlq: X*C(}) —> Ru,
29=4p,@ip: D'C(7) —> Qum, Az=2q.rlg: 2°C(7) —> Rn.

These maps satisfy jo€o=2 = jrér, Jo0¢ = 17, jrPr = Jj] and jolq =1 = jriz-
Denote by Qn and R, (m=1) the cofibers of the maps 771 2DC(H)—-SZ/2m
and 7797j: C(7)—SZ/2™, which have the same quasi KO4-types as the elemen-
tary spectra Qn and R, respectively. Choose maps he: 2 _)O-m and Ag: D'—
R, satisfying ]QhQ 1=7rhg, he7=1e7j and hmy—zmm] where 15: SZ/2™ —»Qm
and 1z: SZ/2™ — R, are the canonical inclusions, and Je: @u—C() and jg:
R.—3'C(7) are the canonical projections. We moreover choose a map &o:
C(7)—Qn satisfying 7o€o=2 and &,(1Aj)=1901 n(jA7:). Recall that KO,Q,=
zgz/iem, Z2/2, ()m, 0, ZP Z/2™1, 0, Z/2, 0 according as =0, 1, ---, 7 where
(*):,22Z/4 and (x),=Z/2BZ/2 if m=2.

PROPOSITION 4.3. For any map f: S;i—AQn (0Zi<7) its cofiber C(f) is
quasi KO y-equivalent to the wedge sum 33*'\/ Qn or the following small spectrum
Vi)Y, =32'QVSZ/2* (0= k<m), PV, n1VSZ/q (n20) or SZ/2* VW mins1-2 Vv
SZ/q 0= k<Min{m, n+1}); ii) Y, =MQ,; iii) Y,=NQ. or 3*VP,; iv) Y,=
2OVEV s 0=k <im—1), K, 01V SZ/q (n20) or Z*V 1 i VWi VSZ/g 0=
E<Min{m—1, n}); v) Y =2V Pn where ¢=1 is odd.

Proof. Consider the following maps g, » =2*%i4i : 2°>Qn, g6 .=2"hq: 2°—
Gm’ go n, p=2" EQ+2kl—Qi 2°—+Q_m, gl—'iQh] DI me gz—'lQiﬂ P Qm, g2~
igff : 2*~Qum, 8=1¢(+in*): T*—Qun, 1.2 =2"*1¢i1: C(7)—Qn, g1,.=2"8¢: C(7)
—Qm, i 0 2=2"Eq+2%14i1: C(H)—Qn and ge=pq: 3?C(5)—Qn. The cofibers
C(go,n), C(ga,n.+), C(gs,») and C(gi, . x) coincide with those of the maps 7jy:
SV a—=SZ/2™, v +2 gyt BV i —SZ/2™, 01, mn(GAT) T DIC(FINSZ 2"+
SZ/2™ and py, n(GAT)H2HANT) : DC(F)NSZ/2"+'—SZ/2™ respectively. When
0<n<k, both of the first two cofibers are the small spectrum PV, ,., since
§i7v+20* i y=14ins)ijjjy. Moreover the second cofiber is the wedge sum
SZ/25N/W msn-r+1 Whenever 0<k<n, because it is obtained as the cofiber of
the map (0, i5+77): 2'SZ/2 — SZ/2¥\/SZ/2™+"~*. Since the maps o, (A7)
and 01, n(JAT)+2"@ANF) are quasi KO*-equlvalent to the maps 77 and 77+

5= (1+17]])7777 ¥SZ/2"+'—SZ/2™, both of the last two coﬁbers have the
same quasi KO4-type as the small spectrum K, .., when 0<n<k. Moreover,
according to Lemma 2.3 the last cofiber has the same quasi KO«-type as the
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wedge sum 3¢V i VW oinor Whenever 0<k<Min{m—1, n}. Since the remain-
ing cofibers are more easily observed, our result is established.

Recall that KO,R,=Z/2™, ZDZ/2, (*)m, Z/2, Z/2™, Z, Z/2, Z/2 according
as =0, 1, ---, 7 where (*);=Z/4 and (%),=Z/20Z/2 if m=2.

PROPOSITION 4.4. For any map f: S;—AR, (0=:<7) its cofiber C(f) is
quasi KO y-equivalent to the wedge sum 3**'\/ R, or the following small spectrum
Vit i) Yo=2'"VZVSZ/2 0 k<m); i) Vi=MRy, QVa nnVI'SZ/q or
QV . 21 VIISZ/q (n20); iil) Yy=NR, or T°VPy; iv) Y=V 0nr; V) Y=
SVEVE Vs 0=k<m—1); vi) Vi=Ln, 2:1VZ'SZ/q (n20); viD) V=3V
P, ; viil) Y, =2V Qn where q=1 is odd.

Proof. Use the following maps 8o, x=2%pi: 3°— Rn, &1=irin: ' — Ra,
gl,n=‘2nhR: - Rm; g;_n=2"h3+l-gi7] 13— Ry, gz=izei7}21 2 - Rn, gé=zﬂﬁ :
2*—Rn, gi=ip(f+19?): X*—Rn, ge=irfin: 2*'— Rm, g4, »=2%x2: C(7) > Ra,
85, 2n=2"r: 3° = Ru, g = pr: 2°C(j) — Rn and g:=pr(nAl): 3°C(7) — Rn.
Then we can easily show our result by a similar argument to the proof of
Proposition 4.1.

4.3. Note that the elementary spectrum M, is quasi KOj-equivalent to
SYPrsi. We can choose a map &p: 3°—Pny, (m=1) satisfying jp§p=2 whose
cofiber is the small spectrum H,.;,. In other words, there exists a map fp:
SV Hpi 11— whose cofiber is Pn.,. Since the map fp: 3 7'H,,— X)° is pati-
cularly quasi KOu-equivalent to the map 77 : 3°SZ/2—3}* we notice that

(4.3) the elementary spectra M| and M, are quasi KO-equivalent to 3}*Q7 and
>2Q, respectively.

Recall that KO;M =2, Z/2™+, Z/2, Z/2, Z, Z/2™, 0, 0 according as 7=0, 1, ---, 7.

PROPOSITION 4.5. For any map f: Si—AM;, (0<i<7) its cofiber C(f) is
quasi KO y-equivalent to the wedge sum 33'*'\/ M, or the following small spectrum
Y.:1) Y =M, .VSZ/q(n=0); ii) Y \=PV'SZ/2* 0<k<m); iii)) Y ,=M'M,, ;
iv) Ys=M'Ny; V) Y= Hyi1, 01 VSZ/qg (n20); vi) V=PV V1w 0Zk<m)
where g=1 is odd.

Proof. Use the following maps gy, =2 : 2°—>M7}, g1, =2%h}y : '—M},,
Zo=hyn: Z*— Mn, gs=hyn': 3°— Mn, g, n=2"¢p: 2* > Z'Pn.y and g5, »=
2%hyd: D'C(H)—My. Then our result is easily shown.

We can choose a map py: C(5)—Np satisfying py:, pv=pq so that its
cofiber is the elementary spectrum V; obtained as that of the map 2™-'j:
37'C(5) — X%, where the map py.¢o: Nn— @ is given in (1.12). In other
words, there exists a map fy: X~'Vn—C(5) whose cofiber is Ny,. Since the
map fy: 27'Vi—C(5) is quasi KOs-equivalent to the map 7%*7: 2'SZ/2—3¢,
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we notice that

(4.4) the elementary spectra N and N, are quasi KOs-equivalent to 3}*R/ and
SR, respectively.

Recall that KON, =Z, Z/2, Z/2™**, Z/2, ZDZ/2, Z/2, Z/2™, 0 according as i=
0,1 --,7.

PROPOSITION 4.6. For any map f: S;—AN, (0<i<7) its cofiber C(f) 1s
quasi KOy-equivalent to the wedge sum 3**'\/ N, or the following small spectrum
Y.ii) Yo=N, nVSZ/q (n=0); ii) V,=P\Vv3?SZ/2™; iii) YV,=QV:SZ/2* (0<
k<m); lV) Y= N/Mm; V) Y,= N/Nm; stm Vv SZ/q’ 24VRn+1,m V SZ/q or
N'Npi1,nVSZ/qg(n=20); vi) V=PV V4 ; vil) Ye=QV IV i1 (0 k<m) where
g=1 1is odd.

Proof. Consider the following maps go,.=2"%y: 2°— Nnp, g1=iyy: 2'—
N, 8o 2=2%hy: 2*— N, gs=hyn: Z*>Nn, ge=hyn*: Z'—>Nn, 84,2 =2"py:
C)~N, gon=2"B4+hiynjj: CH)—Nh, gs=04(qAL): S'C(H)—Np and ge.
=2*hya: 3C(5)—Nn. The cofibers C(g.,,) and C(gi,,) are given as those of
certain maps hy, and hi,: 27'C(5)—>?% both of which are quasi KOu-equi-
valent to the map 2™7'j: 37'C(j)—>* Hence they have the same quasi KO,-
type as V. When n=1 the maps g., and gi,,. may be replaced by the maps
¢.=2""Yy2 and @, ,=2""'iyA+hy7n; given in (3.5). In fact, these maps ¢,
and ¢, , are respectively quasi KOx-equivalent to the maps gi,, and gi,, When
n=2, and ¢, and ¢,,, are respectively quasi KOs-equivalent to the maps gi
and g,,;. Since the remaining cofibers are easily observed, our result is shown.

4.4. Using the map pgq,q @ Q—Qrn given in (1.12) we set
§e=pq.@6q: 2° —> Qn, Pe=pq.¢'Pq: C(7) —> Qn and
Ag=pq.¢'1q: T'C(7) —> Qn.
These maps satisty jofo =24, jope =1j) and JoAG=1A. Moreover we choose
maps hy: X*—Qn and hg: 3°—Qn satisfying joho=in® and johe=7 as in [5,

(2.1) and (2.2)]. Recall that KO,Qn=Z, Z/2,0, Z/2™", Z, (*)m, Z/2, Z/2™ ac-
cording as /=0, 1, ---, 7 where (x);=Z/4 and (*),=Z/2BZ/2 if m=2.

“.5)

PROPOSITION 4.7. For any map f: S,— AQn (05:L7) dts cofiber C(f) s
quasi KO y-equivalent to the wedge sum 3**'\/ Qn or the following small spectrum
Viii) Ye=0Q7 2VSZ/qg (n20); ii) Y,=PV?SZ/2™; iii) V=3V Qi 0=5k<
m—1); iv) Y ,=3YMV, .NVSZ/q(n=0); v) Yi=PV*Vy or Q'Pn; Vi) Y=
Q'Qu; Vi) Y.=Q'R, or 3*V Q1 0k <m—1) where q=1 is odd.

Proof. Use the following maps go,,=2"ig: S0—Qnm, 81=16%: D' —Qm, Zs.x
=2%4: 3°—Qn, 84.2=2"0g: C(7) — Qn, g&s=hq: 3°— Qn, &:=70q: Z'C(H)—
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Qn, gl=ho+hy: °—Qn, ge=hen: 2°—Qnand g, ,=2*15: 3°C(5)—Qpn. Then
we can easily show our result by a similar argument to the proof of Proposi-
tion 4.1.

4.5. Consider the following cofiber sequences

ORr, P ZQ] Ap [ ) P]Q
Q- ——)R——)P———>Z‘,Q and 22P———>R———>Q——>Z3P
and then set &R-:Zp, REP: Z““"R, pR=2Q.RpQ . 2‘C(77)—>R and zRZIP'Rzp: ZAC(ﬁ)
— R where R denotes the cofiber of the map 7*: 3*—-3°. Since the elementary
spectrum Ry, is related to R by the following cofiber sequence

2m1ER Or, R’ Jik
> R Ry — 3%,

we get maps
Er=prrér: X' —> Rp, Pr=pPrrpr: 2'C(3) — R, and
zfz:-ﬂhve,le'zlz: 2'C(7) —> Rn,

whlch satisfy jrér=2i, jeBr=1j; and jpdk=i2. Moreover we choose maps
: ¥R, and Ag: 26—+R,’n satisfying jrhr=:7n and jkhr=7% as in [5, (2.1)
and (2.2)]. Using the map pr: 3°VC(7)—Ry given in (3.6) we here set

4.6)

. A=pr2, 1): 2°—> Rn,  Ek=pr(, 2): C(3) —> R} and
4.7) _

Er=pr0, 1): C(7) — Rz.
These maps satisfy jrdp=1A1, jREk=2(1 A7) and jREz=1A:Z. Recall that KO, R
=7ZPHZ/)2™ Z/2, 2/2,0, ZD Z/2™, Z/2, (*)m, Z/2 according as =0, 1, -, 7
where (¥),=2Z/4 and (*),=Z/2BZ/2 if m=2.

PROPOSITION 4.8. For any map f: Si—AR;, (0=:<7) its cofiber C(f) is
quasi KO y-equivalent to the wedge sum 3**'\/ Ry, or the following small spectrum
Y.:i)Yy=RRn, 2°VI*'Ris1 0=k<m—1), R, nVSZ/q (nzm), 2*SZ/2™V
SZ/2"NSZ/q 0=n=m—1), 2*V,VV,VSZ/g(1sn=m—1), Z'Ruin_r-1,1::1V
SZ/qg 0k<Min{m—1, n—1}) or R'R, .\SZ/q (n=m); ii) Y ,=P\V3*'SZ/2™;
iil) Y,=QVv3*SZ/2™: iv) Y, =3V R 0Zk<m—1), SV, VSZ/2"VVSZ/q
0=n=sm), 3*SZ/2"V V. VSZ/g A=n=m—1) or 2*NV min-i-1,£41VSZ/q (0=
k<Min{m, n—1}); v) Y =PV Z*Vu; Vi) Y¢=QVZ*Vn or R'Pyp; vil) Y, =R'Qn
where g=1 is odd.

_ Proof. Consider the following maps go,»=2"z: 2°—Rn, g0,»=2%2z: X'~
Rn, 8o,n, 1=2" 1R+2klk 30— Rm, gz—zkﬂ ' — Rn, gz—ZRﬂ 22— Ry, o=
2"Eg: C(77)“’Rm, -/ r=2" Er: XZ'— Rn, Zun, k—znfﬂ'*'zkfk C(?)—’Rm’ gs—lfn(ﬂ/\
1): 2'C(7)— Rn, 8=Fr(n*A1): Z°C(7) — R, gi=hz: °— R, gi=hg+hpy:



KO-HOMOLOGIES OF A FEW CELLS COMPLEXES 289

>*—R; and g7=ﬁ,m: >"—R;.. The cofiber C(g,, ,) coincides with that of the
map hy,,=@™ 7, 2™(1AD): CH)— D°V(CHIASZ/2"). When n<m it is the
wedge sum U,V (C(7)ASZ/2"), and when n>m it is obtained as the cofiber of
the map 2"'2V2™(1AAJ): CHV(ZC(H)IASZ/2™) -2 which is quasi KO-
equivalent to the map k., =2"AV79%j: C(7)VX:SZ/2™ — X°. The cofiber
C(k,, ) is given as that of a certain map [, ,: 2°SZ/2™ — U, which is quasi
KO4-equivalent to the map ¢, ,=2™"Y%yij: 3’SZ/2™—33*V,. As is easily seen,
the cofiber C(q. ) is the small spectrum 3NV, .. Since go,n »r=pr2**'+27,
2*7), its cofiber C(gy, A ») is exactly the small spectrum R} 41, n. From (3.7)
and (3.8) we recall that it has the same quasi KOx-type as 2*SZ/2™\VvSZ/2",
SV aVV, ofr S Rin—k-1, k41 according as n<k+1<m, n=k+1<m or k+1<
Min{m, n}. And R} m = is written to be R'R, , when n=m. Assume that
0<k<m—1. Since g n» r=pr(2%2, 28+1427), its cofiber C(g, . ) is given as the
cofiber of a certain map Ay, x: C(5) — C(@n ) Where @, ,=(2%2, 25+142"):
C(H)—-2°VC(7). Note that C(ps,:) is 2°V(C(H)IASZ/2™) or U,V C(3) accord-
ing as k=n or k=n—1, and it has the same quasi KO4-type as Ri., when
k<n—2. Then the map hi . . is expressed as (2™ 1, 2™(1A7): C(H)—2°V
(C(HINSZ/2™) when kzn, and as (0,2™): C(5)—U,VC(;) when k=n-—1.
Therefore the cofiber C(hy, ., 1) is the wedge sum U,V (C(F)ASZ/2") or U,V
(C(5)NSZ/2™) according as k=n or k=n—1. When ~k<n—2 the map Ay
is expressed as —i,, ;(0, 2™*" %711 C(7)—C(@n, &) Where 2, 1 2°V C(7)—C(@n. &)
is the canonical inclusion. So its cofiber coincides with that of the map I, »=
(2%, Q¥ 42™) (IND): C(F) — 2V (C(F)ASZ/2™+»~#-1) which is quasi KOs
equivalent to the map gu, . »=(2%1, 2%*%): S¥—>C(F)V 2SZ/2™+"~#-1 Since
it is obtained as the cofiber of the map i(2m*"~*-2 2%j): S1*\/3°SZ/2%+! —
¢C(7), the cofiber C(gs,n ) is the small spectrum Z*NV min-g-1,641. Thus
C(hy, n, ) has the same quasi KOu-type as 3*NVin-r-1,:+1 When 0= kb <
Min{m—2, n—2}. Since the remaining cofibers are easily observed, our result
is established.

4.6. We first consider the maps Ay : X°—M%4, hy: S*—Nj, hg: 2 —Qn
and hi: S°—R),, satisfying jyuhu=77% juhy=77, joho=in* and jhphp=iyn as
in [5, (2.1) and (2.2)]. The cofibers of the maps Ay, An, hn?, ko, hi and hiy
are denoted by M'R,, NQun, NRy, Q' Ny, R'M,, and R’N,, respectively. Ac-
cording to Propositions 4.5, 4.6, 4.7 and 4.8 we observe that

(4.8) the 4-cells spectra M'R,,, NQun, NR,, Q'N,, R"M,, and R’N,, are quasi
KO y-equivalent to the wedge sums PV XV, PVIXVa, OV Va0, PV Vo,
PV, and QV 3V, respectively (cf. [5, Corollary 4.57).

On the other hand, it follows from Proposition 4.3 that

(4.9) the cofiber of the map z‘,ﬁﬁ: SWH—Qns (m=1) is quasi KOx-equivalent to
the wedge sum J'QV 'V n.
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Consider the maps :pin: X! — Pp, ipin®: 3% — Py, hp: 33— P/, and ﬁpn:
>S¥—P;, whose cofibers are respectively denoted by MP,, NP,, P'Q. and P’'R,
where the map fp satisfies j{pﬁp=7777 as in [5, (2.2)]. Since Pp+; and Py
have the same quasi KOx-types as 3"*M, and 3*M,, Propositions 4.1 and 4.5
imply that

(4.10) i) the small spectra MP, .y, NPn+i, P’Qun+ and P'R, ., (m=1) are quasi
KOx-equivalent to 33"*M’'M,, 3*M’Ny,, 2*MQ, and >*MR, respectively,
and dually

ii) the small spectra M’'Pj.1, N'Pp+y, Q' Pnyy and R'P, ., (m=1) are quasi
KO4-equivalent to 3*M’'M,,, N'M,,, M’'Q,, and M’R;, respectively.

Moreover we notice that

(4.11) i) the small spectra P’Q, and Q’P;, have the same quasi KOu-type as
the elementary spectrum P,

ii) the small spectra P'R,, R’P,, 3)*MP, and 3J-'M’P] have the same quasi
KO4-type as the elementary spectrum Q, and

iii) the small spectra 3'NP, and N’P{ have the same quasi KO-type as
the wedge sum 3°V 3%

Choose a map pp: X°SZ/2 — Pp.y (m21) satisfying jppp = 01.m+1 Whose
cofiber is P;, and then consider the map g1 ,=2"pp+pp): C() — Pn+1 Where
pp=pp.ppp: C(7)—P—Pn., and it satisfies ppjp=ins;. According to Proposi-
tion 4.1 the cofiber C(gi .) has the same quasi KOu-type as X2P, »+1. On the
other hand, it is obtained as the cofiber of a certain map h; ,: C(Jpgt, 2)—2"°
where C(jpgi ) has the same quasi KO,-type as M. Applying the dual of
Proposition 4.1 we can verify that it has the same quasi KOu-type as Py, i m.
Consequently it follows that

4.12) 33%PZ. . (m, n=1) are quasi KO «-equivalent to P, .

By virtue of (4.3) and (4.4) we can compare Propositions 4.1, 4.2, 4.5 and
4.6 with Propositions 4.3, 4.4, 4.7 and 4.8 to observe that

(4.13) i) the small spectra MQ,, MR, and NR, are quasi KOx-equivalent to
DEMQ,, 3°NQ, and 3NR, respectively,

ii) the small spectra M’M, M’N,, N'M, and N’N, are quasi KOj-equi-
valent to 3'Q'Q,, 3)'Q’'R,, 3*R’Q, and 3*R’R, respectively,

iii) the small spectra PV 41, QVyne: and QVY ..y (n20) are quasi KO-
equivalent to 2P{ n+1, 20°Q% n+1 and X*Q7, ».. respectively,

iv) the small spectra H, n+1, Kinsy and Ly . (n=0) are quasi KO-
equivalent to 3*Q;.;, 3)*Pr.. and 3*MV, ., respectively where Qg ,=>°SZ/2
and P§ ,=>’SZ/4, and

v) the small spectra VR, , and N’N, ,(n=2) are quasi KOy-equivalent
to R,, and 3R’R, ., respectively, and VR, R'R,, and X°N’N,,, are
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quasi KOy-equivalent to 3)2Rj ;.

5. The quasi KO.-types of a few cells spectra.

5.1. For any finite CW-spectrum X we denote by #X the number of all
the cells in X. Let (X, Y) be a relative CW-spectrum such that X is obtained
from Y by attaching one (j+1)-cell, thus X=Y Ue’*!. For any map f:3*—X
there exists a map g: 3"!C(nf)—Y whose cofiber C(g) coincides with C(f)
where 7 : X—3V*! denotes the collapsing map. Assume that dim Y <;+1<
k+1. If j<<k—1, then any map f: }*—X is always SQ-trivial. If ;=k—1
or k, then C(xf)=3)*'\V 2%+ or 3*'SZ/t for some t==1. Therefore, in order
to determine the quasi KOy-types of any CW-spectra with (n41)-cells it is
sufficient to deal with the cofibers of the following maps:

i) any SQs-trivial map f: ¥ -X,
5.1) ii) any map g: >’SZ/2™-Y and
iii) any map g: 3V X*—>Y with k=) or j+1

where #X=n, #Y=n—1 and dim Y <;+1. For any graded abelian group
G={G;} the wedge sum V3'SG, of Moore spectra is simply written to be SG.

LEMMA 5.1. Let X be a CW-spectrum having the same quas: KOx-type as
Y=SAV(PASB)V(QASC) with A={A}osis1, B={Bj}es;s1 and C={Cpr}osess
free. If any map f: S¢—X is SQu-trivial, then its cofiber C(f) 1s quasi KO-
equivalent to one of the following spectra 'Y, Y 11,4 Y 642 and Y, _s
where Y 1,1 «V2X'=YVI'P, Y 6 4:V2'=YVI?Q and Y, .V Q=Y VvV X*V
P

Proof. The cofibers of the maps 7o : 3°—>17'Q and (% ig7): X'—X 72V
27'Q are the wedge sums 32\ > 7'P and X7?R\V 3 ~'P respectively where R
denotes the cofiber of the map %®: 3*—3°. In these cases they are quasi
KOy-equivalent to the spectrum Y, , _s. Now our result is easy.

If any map f=(f,, f2): Se—=S,VY is SQu-trivial, then there exists an SQ-
trivial map g: 3J7'C(f,)—Y whose cofiber C(g) coincides with C(f). Note that
C(f,) has the same quasi KO4-type as the elementary spectrum P or @ unless
f1is KOy-trivial. By the aid of Lemmas 1.2, 1.5 and 2.4-2.7 it is verified that

(5.2) the quasi KOx-type of C(f) is completely determined when Y =31*SZ/2™
or W, and f=(f1, fo): Sp—SeVY is SQx-trivial.

As is easily seen, we obtain

LEMMA 5.2. For any map g: SYV 24— (0 < k) its cofiber C(g) ts quast



292 ZEN-ICHI YOSIMURA

KO y-equivalent to the wedge sum 3°\/3V+'\/3¥*! or the following spectrum
Y;,k 1Y, =32V SZ/2™VSZ/q, Yo sre1=MnV SZ/q, Yo,sr+2=Nm\/SZ/4y Ygrene
=Y, 5rt1=2" "V P 0r YVirio, o =Y 1 5r0=2"""VQ (¢, v=0) where m=0 and ¢g=1
is odd.

For any finite CW-spectrum X we denote by ko(X) the rank of KU X®RQ
and by k,(X) the rank of Tor(KU«X, Z/p) for each prime p where KU, X=
KUJX D KU, X. Set k(X)= koX)+ Max{2k, (X)}. Then it is immediately
checked that ?

(5.3) #X=k(X) and #X=~(X) mod2.

In particular, KU X=ZPBZDZ or ZHZ/2™PZ/q when #X=3, and KU X=
ZDZPZPZ, ZHZDBZ/2™DZ/q or Z/2™PZ/2"PDZ/qPZ/r when #X=4, where
m, n=0 and both of ¢, =1 are odd.

Recall that each CW-spectrum with 2-cells is stably quasi KOx-equivalent
to one of the following spectra: 3°V 3" (0=:<7), P, Q or SZ/2™\/SZ/q where
m=0 and ¢g=1 is odd. Using Lemmas 1.2, 1.3, 1.4, 5.1 and 5.2 and (1.6) we
can immediately show

THEOREM 5.3. Let X be a CW-spectrum with 3-cells. Then it is stably
quast KOy-equivalent to the following spectrum Y :

i) The “KUX=ZPZPZ” case: Y=3V'V3V, PV or QVIY (0
IS7ED).

ii) The “KUX=Z®Z/q (q=1 o0dd)” case: Y=3'VSZ/q 0<=j=<T).

iii) The “KU X=ZPZ/2™"PZ/q (m=1, and q=1 odd)” case: Y =W\ SZ/q
and W=3’VSZ/2™ 0<j<7), 2°VVa, Z°VVa, Mn, Nu, Qn, Ru, Z7'Mn,
Z7Nn, 27°0Qn or I RA.

5.2. Let X be a CW-spectrum with 3-cells and f: S, — X an SQx-trivial
map. Since the quasi KOy-type of X is completely observed in Theorem 5.3,
we can easily determine the quasi KOu-type of the cofiber C(f) by means of
Propositions 4.1-4.8, Lemma 5.1 and (5.2). We next deal with any map g=
g:Vgs:: S,VSy—SZ,. Evidently there exists an SQu-trivial map h: S,—C(g))
whose cofiber C(h) coincides with C(g). Since the quasi KOu-type of C(g,) is
completely given in Lemma 1.2, we can easily determine the quasi KO.-type
of C(g) by means of Propositions 4.1-4.5 and (5.2), too. Dually we can deter-
mine the quasi KO4-type of C(g’) for any map g'=(g{, g1): 2’SZ,—S,VS..

Let Y be a CW-spectrum with 2-cells having the same quasi KOu-type as
the elementary spectrum P or Q. For such a CW-spectrum Y =5%¢e® *? or
S% et *? it is easily shown that

(5.4) any map g=g,Vg,: 2’V2*¥*—-Y is quasi KOy-equivalent to the map
g:V0 or OV g, if 8r+1<7<k<7+1.

Let Y be a CW-spectrum with 2-cells whose attaching map a: 33*—3° is KOx-
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trivial, and g=g,VvVg,: V¥ -Y (—1<i<j<k<j+1) be any map. Assume
that the map g is never quasi KOx-equivalent to the map g,V0or 0\ g,. When
k>i+1 the cofiber C(g) is obtained as that of a certain SQu-trivial map A:
S*—C(g,). In this case it is easy to determine the quasi KOx-type of C(g)
as is stated above. In the k=: or /41 case the cofiber C(g) is quasi KO-
equivalent to the wedge sum 3!\ 'V SZ/2™\VSZ/q (I=0, 1) or 'V M.V SZ/q
for some m=0 and some odd ¢=1 if the composite map 7g: 3’V -3+ is
trivial. If not so, there exists a map h: 3YV'SZ/t — 3)° for some =1,
whose cofiber C(h) coincides with C(g). When such a map h is SQu-trivial,
the quasi KO4-type of C(h) is easily determined by a dual argument to (5.2).
If not so, then the cofiber C(h) is the wedge sum SZ/2™\/ 3}'SZ/2"\/SZ/qV
DSZ/r (1=0,1) or M, ,\VSZ/qg\V'SZ/r for some m, n =0 and some odd
q, r=1.

In virtue of (5.1) we can now show our main result by the above observa-
tions combined with (2.5), (4.8), 4.9) and Lemmas 2.3, 2.4 and 2.5.

THEOREM 5.4. Let X be a CW-spectrum with 4-cells. Then it is stably quasi
KO y-equivalent to the following spectrum Y :

i) The “KUX=ZPZDZDZ” case: Y =3V'VI'VIFE PVEVE,
QVI'VZH PVIYP, PVQ or QVEIQ 0=i<j<k=T).

iil) The “KUX=ZDZPDZ/q (g=1 odd)” case: Y=3V\/2*\VSZ/q, 2PV
SZ/q or SVQVSZ/q 0<j<kZT).

iii) The “KUxX=ZPBZPZ/2™DBZ/q (m=1, and ¢q=1 odd)” case: Y=WV
SZ/q and W=\ ¥V SZ/2™, SYP\/SZ/2™, QN SZ/2™, SV AV Vo, 2V
SNV Vo, PV Vi, DOV iy DV Xy, VXD, XY 0, X'V 7, VX 0Sj<k<
7 and 0<1<L2) where Xo=Mpn, Np, Qun 0r Ry ; Xn=3 "M}, 337*Np, 27°Qn or
DRy XY =MQ,, MR,, NQ. or NR,; XY, =3"7M Qn, > *M’'Ry,
BNQp or UN'RL ;and Y X n=3""M'Mp, 33*M' Ny, 372N'M oy, 272N’ Ny,
27°QQum, Z7°Q'Rn, Z'R'Qn or Z7*R'Ry,.

iv) The “KUX=Z/2™DZ/qDZ/r (n=0, and q, r=1 odd)” case: Y =SZ/2™
VSZ/qg\3SZ)r (0L7<3), VuVSZ/gv2'SZ/r AZIL3) or WV SZ/qN 22SZ) 7.

v) The “KUXZ=Z/2™DZ/2"DZ/qDZ/r (m, n=1, and q, r=1 o0dd)” case:
Y =UVSZ/qVv3YSZ/r and U = SZ/2™\/3YSZ/2" 0 < 1<7), V. V22V, (5=1),
VaV2V, (Im—n|=2 and ;=0), V,VW, (m+2<n and j=0), WV V, (m=
n+2 and j=0) or X, ., J=dim X, .—1) where X, o=Mpu, 4, Nu, v, Pn o (m=n
+1), Prirn-r (m+1Zn), Ph o (m+1<n), Pu_y ae (mZn+1), Pl a0 (m+2<n),
Ph o (m=n), Ph_i nir (m>n42), Qu.n, Qnn, Qi n, Rmn(m=n), Ry, (mz=n),
Hyitniet, Knon ((m, n)#(1, 1)) or Ly, g
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