KO-HOMOLOGIES OF A FEW CELLS COMPLEXES

By ZEN-ICHI YOSIMURA

0. Introduction.

Let KO and KU be the real and the complex K-spectrum respectively. For any CW-spectra X and Y we say that X is quasi KO_* -equivalent to Y if there exists a map $h: Y \rightarrow KO \land X$ such that the composite map $(\mu \land 1)(1 \land h)$: $KO \land Y \rightarrow KO \land X$ is an equivalence where $\mu: KO \land KO \rightarrow KO$ denotes the multiplication of KO (see [4] or [3]). Such a map h is called to be a quasi KO_* equivalence. If X is quasi KO_* -equivalent to Y, then KO_*X is isomorphic to KO_*Y as a KO_* -module and in addition KU_*X is isomorphic to KU_*Y as an abelian group with involution where the conjugation ψ_c^{-1} behaves as an involution. Assume that CW-spectra X and Z have the same quasi KO_* -types as CW-spectra Y and W respectively. For any maps $f: Z \rightarrow X$ and $g: W \rightarrow Y$ we say that f is quasi KO_* -equivalent to g if there exist KO_* -equivalences $h: Y \rightarrow$ $KO \land X$ and $k: W \rightarrow KO \land Z$ such that the equality $hg=(1 \land f)k: W \rightarrow KO \land X$ holds. In this case their cofibers C(f) and C(g) have the same quasi KO_* -type.

A CW-spectrum X is said to be stably quasi KO_* -equivalent to a CWspectrum Y if X is quasi KO_{*}-equivalent to the *i*-fold suspended spectrum $\Sigma^i Y$ for some i. In this note we shall be interested in the stable quasi KO_* -types of complexes with a few cells. Each complex with 2-cells is stably quasi KO_{*} equivalent to one of the following spectra $\Sigma^{0} \vee \Sigma^{i} (0 \leq i \leq 7)$, $SZ/t (t \geq 1)$, $P = C(\eta)$ and $Q = C(\eta^2)$ where SZ/t denotes the Moore spectrum of type Z/t and η : $\Sigma^1 \rightarrow \Sigma^0$ is the stable Hopf map of order 2. Our purpose of this paper is to determine the stable quasi KO_* -types of any complexes with 3- or 4-cells (Theorems 5.3 and 5.4). In [4] and [5] we introduced some 3-cells spectra X_m and X'_m constructed as the cofibers of certain maps $f: \sum^i \to SZ/2^m$ and f': $\sum SZ/2^m \to \sum o$ and some 4-cells spectra $XY_m, X'Y'_m$ and $Y'X_m$ obtained as the cofibers of their mixed maps. In §1 and §4 we study the quasi KO*-types of their cofibers C(g) for any maps $g: S_i \rightarrow \Delta X$ realizing elements of $KO_i X$ when $X = SZ/2^{m}$, P, Q, X_{m} or X'_{m} . In §2 we introduce some 4-cells spectra $X_{m,n}$ constructed as the cofibers of certain maps $f: \sum SZ/2^n \rightarrow SZ/2^m$, and then study the quasi KO_* -types of their cofibers C(g) for any maps $g: \sum Z_n \to \Delta X$ realizing elements of $[\sum^{i} SZ/2^{n}, KO \land X]$ when $X = SZ/2^{m}$, P or Q. In §3 we introduce some new small spectra $XV_{m,n}$, $VX_{m,n}$ and $X'X_{n,m}$ needed in §4. In §5 we prove Theorems 5.3 and 5.4 by using results obtaind in §§ 1-4.

Received November 19, 1992.

1. The cofibers of maps $f: \sum^{i} \rightarrow SZ/2^{m}$ and $f': \sum^{i} SZ/2^{m} \rightarrow \sum^{0}$.

1.1. Let $SZ/2^r$ be the Moore spectrum of type $Z/2^r$ $(r \ge 1)$, and $i_r: \sum^{0} \rightarrow i_r$ $SZ/2^r$ and $j_r: SZ/2^r \to \Sigma^1$ denote the bottom cell inclusion and the top cell projection. For the stable Hopf map $\eta: \sum^{1} \rightarrow \sum^{0}$ of order 2 there exists its extension $\bar{\eta}_1: \sum SZ/2 \to \Sigma^0$ and its coextension $\bar{\eta}_1: \sum SZ/2$ with $\bar{\eta}_1 = \eta$ and $j_1 \tilde{\eta}_1 = \eta$. Using the obvious maps $\rho_{r,1}: SZ/2^r \rightarrow SZ/2$ and $\rho_{1,r}: SZ/2 \rightarrow SZ/2^r$ we then set $\bar{\eta}_r = \bar{\eta}_1 \rho_{r,1}$: $\sum SZ/2^r \to \sum n$ and $\bar{\eta}_r = \rho_{1,r} \bar{\eta}_1$: $\sum \to SZ/2^r$, which satisfy $\bar{\eta}_r i_r = \eta$ and $j_r \tilde{\eta}_r = \eta$, too. Hereafter we shall often drop as $i, j, \bar{\eta}$ and $\tilde{\eta}$ the subscript "r" in the symbols $i_r, j_r, \bar{\eta}_r$ and $\tilde{\eta}_r$. Choose maps $\varphi: \sum SZ/2$ $\rightarrow SZ/2 \wedge SZ/4$ and $\psi: SZ/2 \wedge SZ/4 \rightarrow SZ/2$ such that $(1 \wedge j) \varphi = 1 = \psi(1 \wedge i)$ and $(1 \wedge i)\phi + \varphi(1 \wedge j) = 1$, and then consider the composite maps $\eta_{1,2} = (\bar{\eta} \wedge 1)\varphi : \sum^2 SZ/2$ $\rightarrow SZ/4$ and $\eta_{2,1} = \psi(\tilde{\eta} \wedge 1)$: $\sum^2 SZ/4 \rightarrow SZ/2$. It is immediate that $\eta_{1,2} = \tilde{\eta}, j\eta_{1,2}$ $=\bar{\eta}, \eta_{2,1}i=\tilde{\eta}$ and $j\eta_{2,1}=\bar{\eta}$ when the maps φ and ψ are replaced by the maps $\varphi + (1 \wedge i\eta)$ and $\psi + (1 \wedge \eta j)$ if necessary. Set $\eta_{n, m} = \rho_{2, m} \eta_{1, 2} \rho_{n, 1}$: $\sum^2 SZ/2^n \rightarrow C$ $SZ/2^m$ when $m \ge 2$, and $\eta'_{n,m} = \rho_{1,m}\eta_{2,1}\rho_{n,2} \colon \sum SZ/2^n \to SZ/2^m$ when $n \ge 2$. Since it is easily shown that $\eta_{n,m} = \eta'_{n,m}$ when $m \ge 2$ and $n \ge 2$, we employ the notation $\eta_{n,m}$ instead of $\eta'_{n,m}$ even if m=1. Evidently these maps $\eta_{n,m}$ satisfy $\eta_{n,m}i=\tilde{\eta}$ and $j\eta_{n,m}=\bar{\eta}$, too.

Denote by V_m , V'_m , U_m and $U'_m(m \ge 1)$ the small spectra constructed as the cofibers of the maps $i\bar{\eta}: \sum^{1}SZ/2 \rightarrow SZ/2^{m-1}$, $\tilde{\eta}j: \sum^{1}SZ/2^{m-1} \rightarrow SZ/2$, $\eta_{1,m+1}: \sum^{2}SZ/2 \rightarrow SZ/2^{m+1}$ and $\eta_{m+1,1}: \sum^{2}SZ/2^{m+1} \rightarrow SZ/2$ respectively. In [4] or [6] these small spectra are written to be V_{2m} , V'_{2m} , U_{2m} and U'_{2m} . We shall denote by $i_V: SZ/2^{m-1} \rightarrow V_m$, $i'_V: SZ/2 \rightarrow V'_m$, $i_U: SZ/2^{m+1} \rightarrow U_m$ and $i'_U: SZ/2 \rightarrow U'_m$ the canonical inclusions, and by $j_V: V_m \rightarrow \sum^{2}SZ/2$, $j'_V: V'_m \rightarrow \sum^{2}SZ/2^{m-1}$, $j_U: U_m \rightarrow \sum^{3}SZ/2$ and $j'_U: U'_m \rightarrow \sum^{3}SZ/2^{m+1}$ the canonical projections. Consider the two cofiber sequences

(1.1)
$$\Sigma^1 SZ/2 \xrightarrow{\tilde{\eta}} \Sigma^0 \xrightarrow{\tilde{i}} C(\bar{\eta}) \xrightarrow{\tilde{j}} \Sigma^2 SZ/2 \text{ and } \Sigma^2 \xrightarrow{\tilde{\eta}} SZ/2 \xrightarrow{\tilde{i}} C(\bar{\eta}) \xrightarrow{\tilde{j}} \Sigma^3$$

in which the cofibers $C(\bar{\eta})$ and $C(\bar{\eta})$ have the same quasi KO_* -types as Σ^4 and Σ^{-1} respectively (see [3], [4], [6] or (1.9) below). Then we get the following two cofiber sequences

(1.2)
$$\Sigma^{0} \xrightarrow{2^{m}\tilde{i}} C(\bar{\eta}) \xrightarrow{\tilde{i}_{V}} V_{m+1} \xrightarrow{\tilde{j}_{V}} \Sigma^{1} \text{ and } \Sigma^{2} \xrightarrow{\tilde{i}_{V}'} V'_{m+1} \xrightarrow{\tilde{j}_{V}'} C(\bar{\eta}) \xrightarrow{2^{m}\tilde{j}} \Sigma^{8}.$$

Since $\eta_{1,2} = (\bar{\eta} \wedge 1)\varphi$ and $\eta_{2,1} = \psi(\tilde{\eta} \wedge 1)$ there exist maps $\bar{\eta}_{2,1} \colon C(\bar{\eta}) \wedge SZ/4 \rightarrow \sum^2 SZ/2$ and $\tilde{\eta}_{1,2} \colon \sum^1 SZ/2 \rightarrow C(\tilde{\eta}) \wedge SZ/4$ satisfying $\bar{\eta}_{2,1}(1 \wedge i) = \tilde{j}$ and $(1 \wedge j)\tilde{\eta}_{1,2} = \tilde{i}$, whose cofibers are $\sum^1 U_1$ and U'_1 respectively. Hence we can choose maps

(1.3)
$$\overline{\lambda}: C(\overline{\eta}) \longrightarrow \Sigma^0 \text{ and } \widetilde{\lambda}: \Sigma^3 \longrightarrow C(\widetilde{\eta})$$

satisfying $i\overline{\lambda}=4$ and $\tilde{\lambda}\tilde{j}=4$ so that their cofibers are U_1 and U'_1 respectively. It is obvious that $\overline{\lambda}\tilde{\imath}=4=\tilde{j}\tilde{\lambda}$. So we get the following two cofiber sequences KO-HOMOLOGIES OF A FEW CELLS COMPLEXES

(1.4)
$$C(\bar{\eta}) \xrightarrow{2^m \bar{\lambda}} \Sigma^0 \xrightarrow{\tilde{\iota}_U} U_{m+1} \xrightarrow{\tilde{j}_U} \Sigma^1 C(\bar{\eta}) \text{ and } \Sigma^3 \xrightarrow{2^m \bar{\lambda}} C(\bar{\eta}) \xrightarrow{\tilde{\iota}'_U} U'_{m+1} \xrightarrow{\tilde{j}'_U} \Sigma^4.$$

Let P and Q denote the elementary spectra constructed as the cofibers of the stable Hopf map $\eta: \sum^{1} \to \sum^{0}$ and its square $\eta^{2}: \sum^{2} \to \sum^{0}$ respectively. Given such an elementary spectrum X as $\sum^{i}, SZ/2^{m}, P, Q$ or V_{m+1} each CW-spectrum having the same quasi KO_{*} -type as X will be represented by ΔX . For simplicity we shall write S_{i} $(0 \le i \le 7)$ and SZ_{m} $(m \ge 1)$ instead of $\Delta \sum^{i}$ and $\Delta SZ/2^{m}$.

LEMMA 1.1. For any map $f: S_i \rightarrow S_0$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\Sigma^0 \vee \Sigma^{i+1}$ or the following small spectrum Y_i : i) $Y_0 = SZ/2^m \vee SZ/q$; ii) $Y_1 = P$; iii) $Y_2 = Q$; iv) $Y_4 = \Sigma^4 V_{m+1} \vee SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd.

Proof. Use the following maps $g_{0,m}=2^m: \Sigma^0 \to \Sigma^0$, $g_1=\eta: \Sigma^1 \to \Sigma^0$, $g_2=\eta^2: \Sigma^2 \to \Sigma^0$ and $g_{4,m}=2^m i: \Sigma^4 \to \Sigma^4 C(\bar{\eta})$, whose cofibers are $SZ/2^m$, P, Q and $\Sigma^4 V_{m+1}$ respectively. Then our result is immediate.

In virtue of Lemma 1.1 we observe that

(1.5) the small spectra $\sum^2 V'_m$, $\sum^4 U_m$ and $\sum^5 U'_m$ $(m \ge 1)$ have the same quasi KO_* -type as V_m (cf. [6, (1.3) and (1.4)] or [7, (1.9) ii)]).

1.2. Denote by M_m , N_m , P_m , Q_m and $R_m(m \ge 1)$ the 3-cells spectra constructed as the cofibers of the maps $i\eta: \sum^1 \to SZ/2^m$, $i\eta^2: \sum^2 \to SZ/2^m$, $\tilde{\eta}: \sum^3 \to SZ/2^m$ and $\tilde{\eta}\eta^2: \sum^4 \to SZ/2^m$ respectively. Dually we denote by M'_m , N'_m , P'_m , Q'_m and $R'_m(m \ge 1)$ the 3-cells spectra constructed as the cofibers of the maps $\eta j: SZ/2^m \to \sum^0$, $\eta^2 j: \sum^1 SZ/2^m \to \sum^0$, $\bar{\eta}: \sum^1 SZ/2^m \to \sum^0$, $\eta \bar{\eta}: \sum^2 SZ/2^m \to \sum^0$, $\eta \bar{\eta}: \sum^2 SZ/2^m \to \sum^0$ and $\eta^2 \bar{\eta}: \sum^3 SZ/2^m \to \sum^0$ respectively. When X=M, N, P, Q or R we shall denote by $i_X: SZ/2^m \to X_m$ or $i'_X: \sum^0 \to X'_m$ the canonical inclusion, and by $j_X: X_m \to \sum^d$ or $j'_X: X'_m \to \sum^{d'-1} SZ/2^m$ the canonical projection where $d=\dim X_m$ and $d'=\dim X'_m$. In [4, 4.1] these 3-cells spectra X_m and X'_m are written to be X_{2m} and X'_{2m} , and their KU- and KO- homologies have been calculated (see [4, Propositions 4.1 and 4.2]).

LEMMA 1.2. (1) For any map $f: S_i \rightarrow SZ_m (0 \le i \le 7)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \lor SZ/2^m$ or the following small spectrum $Y_i:$ i) $Y_0 = \sum^1 \lor SZ/2^k (0 \le k < m)$; ii) $Y_1 = M_m$; iii) $Y_2 = N_m$ or P_m ; iv) $Y_3 = Q_m$; v) $Y_4 = R_m$ or $\sum^1 \lor \sum^4 V_{k+1} (0 \le k < m-1)$.

(2) For any map $f: \sum^{i-1}SZ_m \to S_0 \ (0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^0 \lor \sum^i SZ/2^m$ or the following small spectrum Y_i : i) $Y_0 = \sum^0 \lor SZ/2^k \ (0 \le k < m)$; ii) $Y_1 = M'_m$; iii) $Y_2 = N'_m$ or P'_m ; iv) $Y_3 = Q'_m$; v) $Y_4 = R'_m$ or $\sum^4 \lor \sum^4 V_{k+1} \ (0 \le k < m-1)$.

Proof. Consider the following maps $g_{0,k} = 2^k i: \Sigma^0 \to SZ/2^m$, $g_1 = i\eta: \Sigma^1 \to SZ/2^m$, $g_2 = i\eta^2: \Sigma^2 \to SZ/2^m$, $g'_2 = \tilde{\eta}: \Sigma^2 \to SZ/2^m$, $g''_2 = \tilde{\eta} + i\eta^2: \Sigma^2 \to SZ/2^m$, $g_3 = i\eta^2: \Sigma^2 \to SZ/2^m$, $g''_2 = \tilde{\eta}: \Sigma^2 \to SZ/2^m$, $g''_2 = \tilde{\eta} + i\eta^2: \Sigma^2 \to SZ/2^m$, $g_3 = i\eta^2: \Sigma^2 \to SZ/2^m$, $g''_2 = \tilde{\eta}: \Sigma^2 \to SZ/2^m$, $g'''_2 = \tilde{\eta}: \Sigma^2 \to SZ/2^m$, $g'''_2 = \tilde{\eta}: \Sigma^2 \to$

 $\tilde{\eta}\eta: \sum^{3} \rightarrow SZ/2^{m}$ and $g_{4,k}=2^{k}i\bar{\lambda}: C(\bar{\eta}) \rightarrow SZ/2^{m}$. The cofibers $C(g_{0,k})$ and $C(g_{4,k})$ are the wedge sums $\sum^{1} \vee SZ/2^{k}$ and $\sum^{1} \vee U_{k+1}$ respectively whenever $0 \leq k < m$ -1, and $C(g_{4,m-1})$ has the same quasi KO_{*} -type as the 3-cells spectrum R_{m} since the map $g_{4,m-1}$ is quasi KO_{*} -equivalent to the map $\tilde{\eta}\eta^{2}: \sum^{4} \rightarrow SZ/2^{m}$. On the other hand, the cofiber $C(g_{2}^{n})$ coincides with the 3-cells spectrum P_{m} since $\tilde{\eta}+i\eta^{2}=(1+i\eta j)\tilde{\eta}$ and $(1+i\eta j)^{2}=1$. Our result of (1) is now easy, and (2) is dually shown to (1).

For any $m \ge 1$ we consider the maps $\tilde{6}\tilde{\nu} = \eta_{1, m+1}\tilde{\eta} : \sum^4 \to SZ/2^{m+1}$ and $\bar{6}\bar{\nu} = \bar{\eta}\eta_{m+1,1} : \sum^3 SZ/2^{m+1} \to \sum^9$ satisfying $\tilde{6}\tilde{\nu} = 6\nu = \bar{6}\bar{\nu}i$. Then Lemma 1.2 asserts that

(1.6) the cofibers $C(\tilde{6}\tilde{\nu})$ and $C(\bar{6}\tilde{\nu})$ have the same quasi KO_* -types as $\Sigma^1 \vee \Sigma^4 V_m$ and $\Sigma^4 \vee \Sigma^4 V_m$ respectively.

In fact, these cofibers are obtained as those of the composite maps $ij_U: \sum^{-1}U_m \to \sum^2 C(\tilde{\eta})$ and $i'_U j: \sum^{-1} C(\bar{\eta}) \to \sum^1 U'_m$, both of which are KO_* -trivial because $KO_V m = 0$. Therefore our assertion (1.6) is certainly valid.

1.3. Recall that $KO_iP \cong Z$ or 0 according as *i* is even or odd. Using the bottom cell inclusion $i_P: \sum^0 \to P$ and the top cell projection $j_P: P \to \sum^2$ we get the following two cofiber sequences

(1.7)
$$\Sigma^{0} \xrightarrow{2^{m} i_{P}} P \xrightarrow{\rho_{P,M}} M_{m} \xrightarrow{k_{M}} \Sigma^{1} \text{ and } \Sigma^{1} \xrightarrow{h'_{M}} M'_{m} \xrightarrow{\rho_{M',P}} P \xrightarrow{2^{m} j_{P}} \Sigma^{2}.$$

Hence we can immediately show

LEMMA 1.3. (1) For any map $f: S_i \rightarrow \Delta P(0 \le i \le 1)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \lor P$ or the following small spectrum $Y_i:$ $Y_0 = M_m \lor SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd.

(2) For any map $f: \sum^{i} \Delta P \to S_0(0 \le i \le 1)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^{0} \vee \sum^{i+1} P$ or the following small spectrum $Y_i: Y_0 = \sum^{-1} M'_m \vee SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd.

Choose maps $\xi_P: \sum^2 \to P$ and $\zeta_P: P \to \sum^0$ satisfying $j_P \xi_P = 2 = \zeta_P i_P$, whose cofibers are $C(\bar{\eta}) = P_1$ and $C(\bar{\eta}) = P_1$ respectively. Then we get the following two cofiber sequences

(1.8)
$$\Sigma^2 \xrightarrow{2^m} P \xrightarrow{\rho_{P,P'}} P'_{m+1} \xrightarrow{jj'_P} \Sigma^3$$
 and $P \xrightarrow{2^m} \zeta_P \xrightarrow{i_Pi} p_{m+1} \xrightarrow{\rho_{P,P}} \Sigma^1 P$.

Lemma 1.3 combined with (1.8) asserts that

(1.9) the 3-cells spectra P'_{m+1} and $P_{m+1}(m \ge 0)$ have the same quasi KO_* -types as $\sum^2 M_m$ and $\sum^{-1} M'_m$ respectively, where $M_0 = \sum^2$ and $M'_0 = \sum^0$ (cf. [4, Corollary 5.4]).

Since $\zeta_P \xi_P = \eta^2$: $\Sigma^2 \to \Sigma^0$, we obtain maps $\bar{\rho}_Q$: $C(\bar{\eta}) \to Q$ and $\bar{\rho}_Q$: $Q \to C(\bar{\eta})$

satisfying $j_Q \bar{\rho}_Q = jj$, $\bar{\rho}_Q i = 2i_Q$, $\bar{\rho}_Q i_Q = ii$ and $j\tilde{\rho}_Q = 2j_Q$ where $i_Q \colon \sum^0 \to Q$ and $j_Q \colon Q \to \sum^3$ denote the bottom cell inclusion and the top cell projection. Evidently there exists the following cofiber sequence

(1.10)
$$C(\bar{\eta}) \xrightarrow{\bar{\rho}_{Q}} Q \xrightarrow{\tilde{\rho}_{Q}} C(\tilde{\eta}) \xrightarrow{\delta} \Sigma^{1} C(\bar{\eta}),$$

where δ is the composition of the maps $\rho_{P,P}$ and $\rho_{P,P'}$ in (1.8). We moreover obtain maps $\bar{\lambda}_P: \sum^2 C(\bar{\eta}) \to P$ and $\tilde{\lambda}_P: \sum^3 P \to C(\bar{\eta})$ satisfying $j_P \bar{\lambda}_P = \bar{\lambda}$, $\bar{\lambda}_P \tilde{i} = 2\xi_P$, $\tilde{\lambda}_P i_P = \tilde{\lambda}$ and $\tilde{j} \bar{\lambda}_P = 2\zeta_P$ because $j_{P*}: [\sum^2 C(\bar{\eta}), P] \to [C(\bar{\eta}), \sum^0]$ and $i_P^*: [\sum^3 P, C(\bar{\eta})] \to [\sum^3, C(\bar{\eta})]$ are isomorphisms. Since the elementary spectra P and Q are related by the following cofiber sequences

$$\Sigma^{1}P \xrightarrow{\lambda_{P,Q}} Q \xrightarrow{\rho_{Q,P}} P \xrightarrow{\iota_{P}j_{P}} \Sigma^{2}P,$$

we here set

$$\{ \zeta_{Q} = \lambda_{P,Q} \zeta_{P} \colon \Sigma^{\circ} \longrightarrow Q, \qquad \zeta_{Q} = \zeta_{P} \rho_{Q,P} \colon Q \longrightarrow \Sigma^{\circ},$$

$$(1.11) \qquad \bar{\rho}_{P} = \rho_{Q,P} \bar{\rho}_{Q} \colon C(\bar{\eta}) \longrightarrow P, \qquad \tilde{\rho}_{P} = \tilde{\rho}_{Q} \lambda_{P,Q} \colon \Sigma^{\circ} P \longrightarrow C(\tilde{\eta}),$$

$$\bar{\lambda}_{Q} = \lambda_{P,Q} \bar{\lambda}_{P} \colon \Sigma^{\circ} C(\bar{\eta}) \longrightarrow Q, \qquad \tilde{\lambda}_{Q} = \tilde{\lambda}_{P} \rho_{Q,P} \colon \Sigma^{\circ} Q \longrightarrow C(\tilde{\eta}).$$

Recall that $KO_iQ \cong Z$, Z/2, 0, Z according as $i\equiv 0, 1, 2, 3 \mod 4$. As is easily seen, there exist the following cofiber sequences

$$\begin{split} & \sum^{0} \xrightarrow{2^{m} i_{Q}} Q \xrightarrow{\rho_{Q,N}} N_{m} \xrightarrow{k_{N}} \Sigma^{1}, \qquad \Sigma^{2} \xrightarrow{h'_{N}} N'_{m} \xrightarrow{\rho_{N',Q}} Q \xrightarrow{2^{m} j_{Q}} \Sigma^{3}, \\ (1.12) & \Sigma^{1} \xrightarrow{i_{Q} \eta} Q \xrightarrow{(j_{Q}, \rho_{Q,P})} \Sigma^{3} \lor P \xrightarrow{\gamma \lor j_{P}} \Sigma^{2}, \quad \Sigma^{1} \xrightarrow{(\eta, i_{P})} \Sigma^{0} \lor \Sigma^{1} P \xrightarrow{i_{Q} \lor \lambda_{P,Q}} Q \xrightarrow{\eta j_{Q}} \Sigma^{2}, \\ & \Sigma^{3} \xrightarrow{2^{m} \xi_{Q}} Q \xrightarrow{\rho_{Q,Q'}} Q'_{m+1} \xrightarrow{j'_{Q}} \Sigma^{4}, \qquad \Sigma^{0} \xrightarrow{\iota_{Q} i} Q_{m+1} \xrightarrow{\rho_{Q,Q}} \Sigma^{1} Q \xrightarrow{2^{m} \zeta_{Q}} \Sigma^{1}. \end{split}$$

Hence we can immediately show

LEMMA 1.4. (1) For any map $f: S_i \rightarrow \Delta Q$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\Sigma^{i+1} \lor Q$ or the following small spectrum Y_i : i) $Y_0 = N_m \lor SZ/q$; ii) $Y_1 = \Sigma^3 \lor P$; iii) $Y_3 = Q'_{m+1} \lor \Sigma^3 SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd.

(2) For any map $f: \sum^{i+1}\Delta Q \to S_0$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^0 \vee \sum^{i+2}Q$ or the following small spectrum Y_i : i) $Y_0 = \sum^{-2} N'_m \vee SZ/q$; ii) $Y_1 = \sum^{-1} \vee P$; iii) $Y_3 = Q_{m+1} \vee SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd.

1.4. Recall that $KO_iV_{m+1} \cong Z/2^m$, 0, Z/2, Z/2, $Z/2^{m+2}$, Z/2, Z/2, Z/2, 0 according as $i=0, 1, \dots, 7$.

LEMMA 1.5. (1) For any map $f: S_i \rightarrow \Delta V_{m+1}$ $(0 \le i \le 7)$ its cofiber C(f) is

quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \vee V_{m+1}$ or the following small spectrum Y_i : i) $Y_0 = \sum^{i} \vee V_{k+1}$ ($0 \le k < m$); ii) $Y_2 = \sum^{4} P_{m+1}$; iii) $Y_3 = \sum^{4} Q_{m+1}$; iv) $Y_4 = \sum^{4} R_{m+1}$ or $\sum^{1} \vee \sum^{4} SZ/2^k$ ($0 \le k \le m$); v) $Y_5 = M_{m+1}$; vi) $Y_6 = N_{m+1}$.

(2) For any map $f: \sum^{i-1}\Delta V_{m+1} \rightarrow S_0$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* equivalent to the wedge sum $\sum^0 \vee \sum^i V_{m+1}$ or the following small spectrum Y_i : i) $Y_0 = \sum^4 R'_{m+1}$ or $\sum^4 \vee SZ/2^k$ $(0 \le k \le m)$; ii) $Y_1 = \sum^4 M'_{m+1}$; iii) $Y_2 = \sum^4 N'_{m+1}$; iv) $Y_4 = \sum^0 \vee \sum^4 V_{k+1}$ $(0 \le k < m)$; v) $Y_6 = \sum^4 P'_{m+1}$; vi) $Y_7 = \sum^4 Q'_{m+1}$.

Proof. Consider the following maps $g_{0,k} = 2^k i_V i : \sum^0 \to V_{m+1}, g_2 = i_V \tilde{\eta} : \sum^2 \to V_{m+1}, g_3 = i_V \tilde{\eta} \eta : \sum^3 \to V_{m+1}, g_{4,k} = 2^k i_V : C(\bar{\eta}) \to V_{m+1}, g_5 = i_V(\eta \land 1) : \sum^1 C(\bar{\eta}) \to V_{m+1}, g_6 = i_V(\eta^2 \land 1) : \sum^2 C(\bar{\eta}) \to V_{m+1}$. The cofibers $C(g_{0,k})$ and $C(g_{4,k})$ are respectively the wedge sums $\sum^1 \lor V_{k+1}$ and $\sum^1 \lor (C(\bar{\eta}) \land SZ/2^k)$ whenever $0 \le k \le m$, and $C(g_{4,m+1})$ coincides with the cofiber of the map $2^m(\bar{i} \land i) : \sum^0 \to C(\bar{\eta}) \land SZ/2^{m+1}$ which is quasi KO_* -equivalent to $\sum^4 R_{m+1}$ according to Lemma 1.2. On the other hand, the cofibers $C(g_2)$ and $C(g_3)$ coincide with those of the maps $\iota_P i \bar{\eta} : \sum^1 SZ/2 \to P_m$ and $i_Q i \bar{\eta} : \sum^1 SZ/2 \to Q_m$, and hence they are obtained as those of the maps $2^{m-1} i \zeta_P : P \to C(\bar{\eta})$ and $2^{m-1} i \zeta_Q : Q \to C(\bar{\eta})$. Further the cofibers $C(g_5)$ and $C(g_6)$ coincide with those of the maps $2^m(\bar{i} \land i_P) : \sum^0 \to C(\bar{\eta}) \land P$ and $2^m(\bar{i} \land i_Q)$. Therefore Lemmas 1.3 and 1.4 show that these four cofibers have the same quasi KO_* -types as $\sum^4 P_{m+1}, \sum^4 Q_{m+1}, M_{m+1}$ and N_{m+1} respectively. Now our result of (1) is immediate, and (2) is dually shown to (1).

Denote by W_{m+1} and W'_{m+1} $(m \ge 1)$ the 4-cells spectra constructed as the cofibers of the maps $i\bar{\eta} + \tilde{\eta}j: \sum^{1}SZ/2 \to SZ/2^{m}$ and $i\bar{\eta} + \tilde{\eta}j: \sum^{1}SZ/2^{m} \to SZ/2$ respectively. Note that $\sum^{4}W_{m+1}$ and $\sum^{2}W'_{m+1}$ have the same quasi KO_{*} -type as W_{m+1} (see [4, Corollary 5.4] or (4.12) below). Recall that $KO_{i}W_{m+1} \cong Z/2^{m}$, 0, Z/2, 0 according as $i \equiv 0, 1, 2, 3 \mod 4$.

LEMMA 1.6. (1) For any map $f: S_i \rightarrow \Delta W_{m+1}$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \lor W_{m+1}$ or the following small spectrum $Y_i: i) Y_0 = \sum^5 Q'_{k+1}$ $(0 \le k < m); ii) Y_2 = \sum^4 P_{m+1}.$

(2) For any map $f: \sum^{i-1} \Delta W_{m+1} \to S_0$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^0 \bigvee \sum^i W_{m+1}$ or the following small spectrum $Y_i: i$ $Y_0 = Q_{k+1}$ $(0 \le k < m);$ ii) $Y_2 = \sum^4 P'_{m+1}$.

Proof. Consider the following maps $g_{0,k} = 2^k i_W i \colon \sum^0 \to W_{m+1}$ and $g_2 = i_W \tilde{\eta} \colon \sum^2 \to W_{m+1}$. The cofiber $C(g_{0,k})$ coincides with that of the map $(\eta j, i\bar{\eta}) \colon \sum^1 SZ/2 \to \sum^1 \vee SZ/2^k$ whenever $0 \le k < m$. Therefore it is the cofiber of the composite map $\eta j j_V \colon \sum^{-1} V_{k+1} \to \sum^1$, which is quasi KO_* -equivalent to $\sum^5 Q'_{k+1}$ according to Lemma 1.5. On the other hand, the cofiber $C(g_2)$ coincides with that of the map $i_P i \bar{\eta} \colon \sum^1 SZ/2 \to P_m$, which is quasi KO_* -equivalent to $\sum^4 P_{m+1}$ as shown in the proof of Lemma 1.5.

2. The cofibers $X_{m,n}$ of maps $f: \sum^{i} SZ/2^{n} \rightarrow SZ/2^{m}$.

2.1. For any $m, n \ge 1$ we here introduce 4-cells spectra $M_{m,n}, N_{m,n}, P_{m,n}, P'_{m,n}, P'_{m,n}, Q_{m,n}, Q'_{m,n}, Q'_{m,n}, R_{m,n}, R'_{m,n}$ and $R''_{m,n}$ constructed as the cofibers of the following maps respectively:

 $(2.1) \qquad i\eta j: SZ/2^{n} \longrightarrow SZ/2^{m}, \qquad i\eta^{2}j: \sum^{1}SZ/2^{n} \longrightarrow SZ/2^{m},$ $\tilde{\eta} j, i\bar{\eta} \quad \text{and} \quad i\bar{\eta} + \tilde{\eta} j: \sum^{1}SZ/2^{n} \longrightarrow SZ/2^{m},$ $\tilde{\eta} \eta j, i\eta \bar{\eta} \quad \text{and} \quad i\eta \bar{\eta} + \tilde{\eta} \eta j: \sum^{2}SZ/2^{n} \longrightarrow SZ/2^{m}, \text{ and}$ $\tilde{\eta} \eta^{2} j, i\eta^{2} \bar{\eta} \quad \text{and} \quad i\eta^{2} \bar{\eta} + \tilde{\eta} \eta^{2} j: \sum^{3}SZ/2^{n} \longrightarrow SZ/2^{m}.$

Of course $M_{1,1} = SZ/2 \wedge SZ/2$, $N_{1,1} = SZ/2 \vee \sum^2 SZ/2$, $P_{1,n} = V'_{n+1}$, $P'_{m,1} = V_{m+1}$, $P''_{1,n} = W'_{n+1}$, $P''_{m,1} = W_{m+1}$, $P''_{m,m} = P \wedge SZ/2^m$ and $Q''_{m,m} = Q \wedge SZ/2^m$. Moreover we note that $\sum^2 P''_{m,n}$ are quasi KO_* -equivalent to $P''_{n,m}$ (see (4.12)). In [4, 4.2] the 4-cells spectra $M_{m,n}$, $N_{m,n}$, $P_{m,n}$, $P'_{m,n}$ and $P''_{m,n}$ are written to be $S_{2m,2n}$, $T_{2m,2n}$, $V'_{2m,2n}$, $V_{2m,2n}$ and $W_{2m,2n}$ respectively. As is easily checked, the maps $(\wedge 1)\tilde{\eta}\eta^2 j: \sum^3 SZ/2^k \to KO \wedge SZ/2^l$ and $(\iota \wedge 1)i\eta^2 \bar{\eta}: \sum^3 SZ/2^l \to KO \wedge SZ/2^k$ are trivial whenever k < l, and the map $(\iota \wedge 1) (i\eta^2 \bar{\eta} + \tilde{\eta}\eta^2 j): \sum^3 SZ/2^k \to KO \wedge SZ/2^k$ is also trivial where $\iota: \sum^0 \to KO$ denotes the unit of KO. So we notice that

(2.2) i) when k<l, R_{l,k} and R'_{k,l} have the same quasi KO_{*}-types as the wedge sums SZ/2^l ∨ ∑⁴SZ/2^k and SZ/2^k ∨ ∑⁴SZ/2^l respectively, and ii) R_{k,k} and R'_{k,k} have the same quasi KO_{*}-type.

In addition, $R''_{m,n}$ has the same quasi KO_* -type as $R_{m,n}$, $SZ/2^m \vee \sum^4 SZ/2^n$ or $R'_{m,n}$ according as m < n, m = n or m > n.

For any $m, n \ge 1$ we moreover introduce 4-cells spectra $H_{m,n}((m, n) \ne (1, 1))$, $K_{m,n}$ and $L_{m,n}$ constructed as the cofibers of the following maps respectively:

(2.3)
$$\begin{array}{c} \eta_{n,\,m} \colon \sum^{2} SZ/2^{n} \longrightarrow SZ/2^{m}, \quad \tilde{\eta}\,\bar{\eta} \colon \sum^{3} SZ/2^{n} \longrightarrow SZ/2^{m} \text{ and} \\ \tilde{\eta}\,\eta\,\bar{\eta} \colon \sum^{4} SZ/2^{n} \longrightarrow SZ/2^{m}. \end{array}$$

Of course, $H_{m+1,1}=U_m$ and $H_{1,n+1}=U'_n$. Since the map $i\tilde{j}: \sum^{-1}C(\tilde{\eta}) \to \sum^2 C(\bar{\eta})$ is quasi KO_* -equivalent to the multiplication by 4 on \sum^6 , the 4-cells spectrum $K_{1,1}$ has the same quasi KO_* -type as $\sum^6 SZ/4$. We can easily calculate the KU- and KO-homologies of these 4-cells spectra $X=X_{m,n}$ $(m, n\geq 1)$ as follows (cf. [4, Propositions 4.4 and 4.5]).

PROPOSITION 2.1. The KU-homologies KU_0X , KU_1X and the conjugation ψ_c^{-1} on $KU_0X \oplus KU_1X$ are given as follows:

$$\begin{array}{rcl} X = & P'_{m,n} & P''_{m,n} \\ & m+1 \ge n & m < n & m=n & m > n \\ KU_0 X \cong & Z/2^{m+1} \oplus Z/2^{n-1} & Z/2^{n+1} \oplus Z/2^{m-1} & Z/2^n \oplus Z/2^m & Z/2^{m+1} \oplus Z/2^{n-1} \\ KU_1 X \cong & 0 & 0 & 0 & 0 \\ \phi_C^{-1} = & \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} & -A_{n-m} & \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} & A_{m-n} \end{array}$$

Here $A_k = \begin{pmatrix} 1-2^{k+1} & 2^{k+2}(1-2^k) \\ 1 & -1+2^{k+1} \end{pmatrix}$ and this matrix operates on $Z/2^{k+l+2} \oplus Z/2^l$ as left action.

PROPOSITION 2.2. The KO-homologies $KO_i X$ ($0 \le i \le 7$) are tabled as follows:

$X \setminus i =$	0	1	2	3	4	5	6	7
$M_{m,n}$	$Z/2^m$	$Z/2^{n+1}$	$^{+1} Z/2 \oplus Z/2$	$Z/2 \oplus Z/2$	$Z/2^{m+1}$	$Z/2^n$	0	0
$N_{m,n}$	$Z/2^m$	Z/2	$Z/2^{n+1} \oplus Z/2$	$Z/2 \oplus Z/2$	$Z/2^{m+1} \oplus Z/2$	Z/2	$Z/2^n$	0
$P_{m,n}$	$Z/2^m$	Z/2	(*) _{n, m}	Z/2	$Z/2^{m-1} \oplus Z/2$	0	$Z/2^n$	0
$P'_{m,n}$	$Z/2^m$	0	$Z/2^{n-1} \oplus Z/2$	Z/2	(*) _{m, n}	Z/2	$Z/2^n$	0
$P_{m,n}''$	$Z/2^m$	0	$Z/2^n$	0	$Z/2^m$	0	$Z/2^n$	0
$Q_{m,n}$	$Z/2^m$	Z/2	$(*)_m$	$Z/2^{n+1}$	$Z/2^{m-1} \oplus Z/2$	Z/2	Z/2	$Z/2^n$
$Q_{m,n}'$	$Z/2^m$	Z/2	Z/2 Z	$Z/2^{n-1} \oplus Z/2$	$Z/2^{m+1}$	$(*)_n$	Z/2	$Z/2^n$
$Q_{m,n}^{\prime\prime}$	$Z/2^m$	Z/2	Z/2	$Z/2^n$	$Z/2^m$	Z/2	Z/2	$Z/2^n$

KO-HOMOLOGIES OF A FEW CELLS COMPLEXES

277

 $Z/2 \qquad Z/2^{m-1} \oplus Z/2^{n+1} \quad Z/2 \quad (*)_n$ $R_{m,n} Z/2^m \oplus Z/2^n$ Z/2 $(*)_{m}$ Z/2 $(m \leq n)$ $R'_{m,n} Z/2^m \oplus Z/2^n$ Z/2Z/2 $Z/2^{m+1} \oplus Z/2^{n-1} \quad Z/2 \quad (*)_n \quad Z/2$ $(*)_{m}$ $(m \ge n)$ $Z/2 Z/2^{n-1}$ Z/2 Z/2 $Z/2^{n}$ $H_{m,n}$ $Z/2^m$ Z/2 $Z/2^{m-1}$ $(m, n \geq 2)$ $K_{m,n} Z/2^m \oplus Z/2^n$ Z/20 $Z/2^{m-1} \oplus Z/2^{n-1}$ $(*)_{m}$ 0 $(*)_{n}$ Z/2 $L_{m,n} Z/2^m \oplus Z/2 Z/2^n \oplus Z/2 (*)_m$ Z/2 $Z/2^{m-1}$ $Z/2^{n-1}$ Z/2 $(*)_n$ Here $(*)_{m,1} \cong \mathbb{Z}/2^{m+2}$ and $(*)_{m,n} \cong \mathbb{Z}/2^{m+1} \oplus \mathbb{Z}/2$ if $n \ge 2$, and $(*)_{n,n}$ is abbreviated to be $(*)_n$.

For the 4-cells spectra $R_{m,n}$ and $R'_{n,m} (2 \le m \le n)$ their KU-, KO- and KT-homologies are all equal, but their induced homomorphisms by $\tau: \sum^{1} KT \to KO$ (see [1] or [3]) are not equal when m < n. In fact, the induced homomorphisms $\tau_*: KT_{2i}X \to KO_{2i+1}X$ are represented by the following rows T_{2i+1} for $X = R_{m,n} \ (m \le n)$ and $R'_{m,n} \ (m \ge n)$:

(2.4)
$$T_{1}=(1 \ 1): Z/2^{m} \oplus Z/2^{n} \longrightarrow Z/2, \qquad T_{3}=(1 \ 0): Z/2 \oplus Z/2 \longrightarrow Z/2,$$
$$T_{5}=(0 \ 1): Z/2^{m} \oplus Z/2^{n} \longrightarrow Z/2, \qquad T_{7}=(0 \ 1): Z/2 \oplus Z/2 \longrightarrow Z/2.$$

2.2. We here show

LEMMA 2.3. For any map $f: \sum^{i-1}SZ_n \to SZ_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $SZ/2^m \vee \sum^i SZ/2^n$ or the following small spectrum $Y_i: i$) $Y_0 = SZ/2^k \vee SZ/2^{m+n-k}$ $(0 \le k < Min \{m, n\});$ ii) $Y_1 = M_{m,n}$, $SZ/2^k \vee \sum^i SZ/2^{n-m+k}$, $M_{k,n-m+k}$, $SZ/2^{m-n+l} \vee \sum^i SZ/2^l$ or $M_{m-n+l,l}$ $(0 \le k < m \le n$ and $0 \le l < n \le m$; iii) $Y_2 = N_{m,n}$, $P_{m,n}$, $P'_{m,n}$ or $P''_{m,n}$; iv) $Y_3 = Q_{m,n}$, $Q'_{m,n}$, $Q''_{m,n}$ or $H_{m,n};$ v) $Y_4 = R_{m,n}$ $(m \le n)$, $R'_{m,n}$ $(m \ge n)$, $K_{m,n}$, $\sum^4 V_{k+1} \vee V_{m+n-k-1}$ or $\sum^4 V_{k+1}$ $\vee W_{m+n-k-1}$ $(0 \le k < Min \{m-1, n-1\});$ vi) $Y_5 = L_{m,n}$, $\sum^4 V_{k+1} \vee \sum^5 V_{n-m+k+1}$ or $\sum^4 V_{m-n+l+1} \vee \sum^5 V_{l+1}$ $(0 \le k < m-1 < n$ and $0 \le l < n-1 < m$).

Proof. Consider the following maps: i) $g_{0,k} = 2^k i j$: $\sum^{-1}SZ/2^n \rightarrow SZ/2^m$, ii) $g_1 = i\eta j$: $SZ/2^n \rightarrow SZ/2^m$, $g_{1,k} = 2^k \rho_{n,m}$: $SZ/2^n \rightarrow SZ/2^m$, $g_{1,k}' = 2^k \rho_{n,m} + i\eta j$: $SZ/2^n \rightarrow SZ/2^m$, iii) $g_2 = i\eta^2 j$, $\bar{\eta} j$, $i\bar{\eta} , i\bar{\eta} + \bar{\eta} j$: $\sum^{1}SZ/2^n \rightarrow SZ/2^m$, iv) $g_3 = \bar{\eta} \eta j$, $i\eta \bar{\eta} , i\eta \bar{\eta} + \bar{\eta} \eta j$, $\eta_{n,m}$: $\sum^2 SZ/2^n \rightarrow SZ/2^m$, v) $g_4 = \bar{\eta} \eta^2 j$, $i\eta^2 \bar{\eta} , \bar{\eta} \bar{\eta} : \sum^3 SZ/2^n \rightarrow SZ/2^n$, $SZ/2^m$, $g_{4,k} = 2^k i(\bar{\lambda} \wedge j)$: $\sum^{-1}C(\bar{\eta}) \wedge SZ/2^n \rightarrow SZ/2^m$, $g_{4,k}' = 2^k i(\bar{\lambda} \wedge j) + \bar{\eta} j \bar{\eta}_{n,1}$: $\sum^{-1}C(\bar{\eta}) \wedge SZ/2^n \rightarrow SZ/2^m$ and vi) $g_5 = \bar{\eta} \eta \bar{\eta} : \sum^4 SZ/2^n \rightarrow SZ/2^m$, $g_{5,k} = 2^k (\bar{\lambda} \wedge \rho_{n,m})$: $C(\bar{\eta}) \wedge SZ/2^n \rightarrow SZ/2^m$ where $\rho_{n,m} : SZ/2^n \rightarrow SZ/2^m$ is the obvious map and $\bar{\eta}_{n,1} = \bar{\eta}_{2,1}(1 \wedge \rho_{n,2}) : C(\bar{\eta}) \wedge SZ/2^n \rightarrow \sum^2 SZ/2$ for the map $\bar{\eta}_{2,1}$ given in 1.1. For any k with $0 \leq k < Min\{m, n\}$ the cofiber $C(g_{0,k})$ is the wedge sum $SZ/2^k \vee SZ/2^{m-n+k}$ or $SZ/2^{m-n+k} \vee$

 $\sum^{1}SZ/2^{k}$ according as $m \leq n$ or $m \geq n$. The cofiber $C(g'_{1,k})$ is obtained as that of the map $(2^{n-m+k}, i\eta): \sum^{1} \to \sum^{1} \lor SZ/2^{k}$ when $m \leq n$, and as that of the map $2^{m-n+k} \lor \eta_{j}: \sum^{0} \lor SZ/2^{k} \to \sum^{0}$ when $m \geq n$. Therefore it is the 4-cells spectrum $M_{k,n-m+k}$ or $M_{m-n+k,k}$ according as $m \leq n$ or $m \geq n$. Assume that $0 \leq k <$ $Min \{m-1, n-1\}$. For the cofiber sequence

$$\sum^{1} SZ/2 \longrightarrow U_{n-1} \xrightarrow{\pi_{U}} C(\bar{\eta}) \wedge SZ/2^{n} \xrightarrow{\bar{\eta}} \sum^{2} SZ/2$$

we note that $(1 \wedge j)\pi_U = j_U : U_{n-1} \to \sum^1 C(\bar{\eta})$ and the cofiber of the map $2^k i \bar{\lambda} j_U : \sum^{-1} U_{n-1} \to SZ/2^m$ is the wedge sum $SZ/2^{m+n-k-2} \vee U_{k+1}$. As is easily checked, the cofibers $C(g_{4,k})$ and $C(g'_{4,k})$ coincide with those of the maps $(i\bar{\eta}, 0)$ and $(i\bar{\eta} + \tilde{\eta}j, ai_U \eta^2 j) : \sum^1 SZ/2 \to SZ/2^{m+n-k-2} \vee U_{k+1}$ for some $a \in Z/2$. So they are respectively the wedge sums $V_{m+n-k-1} \vee U_{k+1}$ and $W_{m+n-k-1} \vee U_{k+1}$ because $i_U \eta^2 j = i_U \eta j (i\bar{\eta} + \tilde{\eta}j)$. Of course, $C(g_{4,k})$ may be determined more easily since it is obtained as the cofiber of the map $2^{m+n-k-2}i \vee 0 : \sum^0 \vee \sum^{-1} U_{k+1} \to C(\bar{\eta})$. On the other hand, the cofiber $C(g_{5,k})$ is obtained as that of the map $(2^k\bar{\lambda}, 0) : \sum^1 C(\bar{\eta}) \to \sum^1 \vee U_{k+1}$ when $m \ge n$. Therefore it is the wedge sum $\sum^1 U_{n-m+k+1} \vee U_{k+1}$ or $\sum^1 U_{k+1} \vee U_{m-n+k+1}$ according as $m \le n$ or $m \ge n$. Since $\tilde{\eta}j + i\eta^2 j = (1+i\eta j)\tilde{\eta}j$, $\eta_{n,m} + \tilde{\eta}\eta = \eta_{n,m}(1+i\eta j)$, $\tilde{\eta}\bar{\eta} + \tilde{\eta}\eta^2 j = \tilde{\eta}\bar{\eta}(1+i\eta j)$ and so on, our result is now established.

For any $m, n \ge 2$ we here consider the map $\nu_{n,m} = \eta_{1,m}\eta_{n,1}$: $\Sigma^4 SZ/2^n \to SZ/2^m$ satisfying $\nu_{n,m}\imath=\widetilde{6}\widetilde{\nu}$ and $j\nu_{n,m}=\widetilde{6}\widetilde{\nu}$. Then lemma 2.3 asserts that

(2.5) the cofibers of the maps $\widetilde{6}\widetilde{\nu}_{j}$ and $\widetilde{6}\widetilde{\nu}_{j} + \widetilde{\eta}_{\overline{\eta}}$: $\sum^{3}SZ/2^{n} \rightarrow SZ/2^{m}$ $(2 \leq m \leq n)$, $i\overline{6}\overline{\nu}$ and $i\overline{6}\overline{\nu} + \widetilde{\eta}_{\overline{\eta}}$: $\sum^{3}SZ/2^{n} \rightarrow SZ/2^{m}$ $(2 \leq n \leq m)$ and $\nu_{n,m}$: $\sum^{4}SZ/2^{n} \rightarrow SZ/2^{m}(m, n \geq 2)$ have the same quasi KO_{*} -types as the wedge sums $\sum^{4}V_{m-1} \lor V_{n+1}$, $\sum^{4}V_{m-1} \lor V_{m+1}$, $\sum^{4}V_{n-1} \lor W_{m+1}$ and $\sum^{4}V_{m-1} \lor \sum^{5}V_{n-1}$ respectively.

In fact, these cofibers are obtained as those of the composite maps $i'_V j_U$: $\sum^{-1}U_{m-1} \rightarrow \sum^2 V'_{n+1}, i'_W j_U$: $\sum^{-1}U_{m-1} \rightarrow \sum^2 W'_{n+1}, i'_U j_V$: $\sum^{-1}V_{m+1} \rightarrow \sum^1 U'_{n-1}, i'_U j_W$: $\sum^{-1}W_{m+1} \rightarrow \sum^1 U'_{n-1}$ and $i'_U j_U$: $\sum^{-1}U_{m-1} \rightarrow \sum^2 U'_{n-1}$. Since $j_U = jj_U$: $\sum^{-1}U_{m-1} \rightarrow \sum^2 SZ/2$ and $i'_U = i'_U i$: $SZ/2 \rightarrow U'_{n-1}$, the first two maps are KO_* -trivial when $2 \leq m \leq n$, the next two maps are KO_* -trivial when $2 \leq n \leq m$, and the last one is always KO_* -trivial. Hence our assertion (2.5) is certainly valid.

2.3. The cofibers of the maps $2^{k}i_{P}j: \sum^{-1}SZ/2^{m} \rightarrow P$ and $2^{k}ij_{P}: P \rightarrow \sum^{2}SZ/2^{m}$ are the wedge sums $\sum^{0} \lor M_{k}$ and $\sum^{3} \lor \sum^{1}M'_{k}$ respectively whenever $0 \le k < m$. So we obtain

LEMMA 2.4. (1) For any map $f: \sum^{i-1}SZ_m \to \Delta P \ (0 \le i \le 1)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^i SZ/2^m \lor P$ or the following small spectrum $Y_i: Y_0 = \sum^0 \lor M_k \ (0 \le k < m)$.

(2) For any map $f: \sum \Delta P \rightarrow SZ_m$ $(0 \le i \le 1)$ its cofiber C(f) is quasi KO_* -

equivalent to the wedge sum $SZ/2^m \vee \sum^{i+1}P$ or the following small spectrum Y_i : $Y_0 = \sum^{1} \vee \sum^{-1}M'_k \ (0 \le k < m).$

The cofibers of the maps $2^{k}i_{Q}j: \sum^{-1}SZ/2^{m} \to Q$, $i_{Q}\eta j: SZ/2^{m} \to Q$, $i_{Q}\bar{\eta}: \sum^{1}SZ/2^{m} \to Q$ and $2^{k}\xi_{Q}j: \sum^{2}SZ/2^{m} \to Q$ are the wedge sums $\sum^{0} \vee N_{k}, \sum^{3} \vee M'_{m}, \sum^{3} \vee P'_{m}$ and $\sum^{3} \vee Q'_{k+1}$ respectively whenever $0 \leq k < m$. From this fact and its dual we obtain.

LEMMA 2.5. (1) For any map $f: \sum^{i-1}SZ_m \to \Delta Q$ $(0 \le i \le 3)$ its cofiber C(f)is quasi KO_{*}-equivalent to the wedge sum $\sum^i SZ/2^m \lor Q$ or the following small spectrum $Y_i: i$ $Y_0 = \sum^0 \lor N_k$ $(0 \le k < m);$ ii) $Y_1 = \sum^3 \lor M'_m;$ iii) $Y_2 = \sum^3 \lor P'_m;$ iv) $Y_3 = \sum^3 \lor Q'_{k+1}$ $(0 \le k < m)$.

(2) For any map $f: \sum^{i+1} \Delta Q \rightarrow SZ_m$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_* equivalent to the wedge sum $SZ/2^m \vee \sum^{i+2}Q$ or the following small spectrum Y_i : i) $Y_0 = \sum^1 \vee \sum^{-2} N'_k \ (0 \le k < m)$; ii) $Y_1 = \sum^{-1} \vee M_m$; iii) $Y_2 = \sum^0 \vee P_m$; iv) $Y_3 = \sum^1 \vee Q_{k+1} \ (0 \le k < m)$.

The cofibers of the maps $2^{k}i_{P}\bar{j}_{V}: \sum^{-1}V_{m+1} \rightarrow P$ and $2^{k}\bar{i}_{U}j_{P}: P \rightarrow \sum^{2}U_{m+1}$ are the wedge sums $C(\bar{\eta}) \lor M_{k}$ and $\sum^{3}C(\bar{\eta}) \lor \sum^{1}M_{k}'$ respectively whenever $0 \le k \le m$. So we obtain

LEMMA 2.6. (1) For any map $f: \sum^{i-1} \Delta V_{m+1} \rightarrow \Delta P(0 \leq i \leq 1)$ its cofiber C(f)is quasi KO_{*}-equivalent to the wedge sum $\sum^{i} V_{m+1} \lor P$ or the following small spectrum $Y_i: Y_0 = \sum^4 \lor M_k$ $(0 \leq k \leq m)$.

(2) For any map $f: \sum^{i} \Delta P \rightarrow \Delta V_{m+1}$ $(0 \le i \le 1)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $V_{m+1} \vee \sum^{i+1} P$ or the following small spectrum $Y_i: Y_0 = \sum^{i} \vee \sum^{3} M'_k$ $(0 \le k \le m)$.

LEMMA 2.7. (1) For any map $f: \sum^{i-1} \Delta V_{m+1} \rightarrow \Delta Q$ $(0 \le i \le 3)$ its cofiber C(f)is quasi KO_{*}-equivalent to the wedge sum $\sum^{i} V_{m+1} \lor Q$ or the following small spectrum $Y_1: i$ $Y_0 = \sum^{4} \lor N_k$ $(0 \le k \le m); ii$ $Y_1 = \sum^{3} \lor \sum^{4} M'_{m+1}; iii$ $Y_2 = \sum^{7} \lor P'_{m+1};$ iv) $Y_3 = \sum^{7} \lor Q'_{k+1}$ $(0 \le k \le m).$

(2) For any map $f: \sum^{i+1}\Delta Q \rightarrow \Delta V_{m+1}$ $(0 \le i \le 3)$ its cofiber C(f) is quasi KO_* equivalent to the wedge sum $V_{m+1} \vee \sum^{i+2}Q$ or the following small spectrum Y_i : i) $Y_0 = \sum^1 \vee \sum^2 N'_k \ (0 \le k \le m)$; ii) $Y_1 = \sum^3 \vee M_{m+1}$; iii) $Y_2 = \sum^0 \vee \sum^4 P_{m+1}$; iv) $Y_3 = \sum^1 \vee \sum^4 Q_{k+1} \ (0 \le k \le m)$.

Proof. Consider the following maps $g_{0,k} = 2^k i_Q j_V \colon \sum^{-1} V_{m+1} \to Q$, $g_1 = i_Q \eta j_V \colon V_{m+1} \to Q$, $g_2 = i_Q j j_V \colon \sum^{1} V_{m+1} \to \sum^4 Q$ and $g_{3,k} = 2^k \xi_Q j_V \colon \sum^2 V_{m+1} \to Q$. The cofiber $C(g_{0,k})$ is the wedge sum $C(\bar{\eta}) \lor N_k$ whenever $0 \le k \le m$, and $C(g_1)$ and $C(g_2)$ are the wedge sums $\sum^3 \lor C(\eta j_V)$ and $\sum^{\tau} \lor \sum^2 M_m$ respectively. Here the cofiber $C(\eta j_V)$ has the same quasi KO_{*} -type as $\sum^4 M'_{m+1}$ in virtue of Lemma 1.5. On the other hand, the cofiber $C(g_{3,k})$ coincides with that of the map $2^m i j j'_Q \colon \sum^{-1} Q'_{k+1} \to \sum^3 C(\bar{\eta})$. When $0 \le k < m$ it is just the wedge sum $\sum^3 C(\bar{\eta}) \lor Q'_{k+1}$, and when k = m it has the same quasi KO_{*} -type as $\sum^3 C(\bar{\eta}) \lor Q'_{m+1}$ because the map

 $2^{m}ij: \sum^{3}SZ/2^{m+1} \rightarrow \sum^{4}C(\bar{\eta})$ is quasi KO_{*} -equivalent to the map $\eta^{2}\bar{\eta}: \sum^{3}SZ/2^{m+1} \rightarrow \sum^{0}$. Our result of (1) is now immediate, and (2) is dually shown to (1).

3. Some small spectra $XV_{m,n}$, $VX_{m,n}$ and $X'X_{n,m}$.

3.1. For any maps $f: \sum^{i} \rightarrow SZ/2^{m}$ and $g: \sum^{j} \rightarrow SZ/2^{m}$ $(i \leq j)$ we denote by XY_{m} the cofiber of the map $f \lor g: \sum^{i} \lor \sum^{j} \rightarrow SZ/2^{m}$ when the cofibers of the maps f and g are denoted by X_{m} and Y_{m} respectively. Dually we denote by $X'Y'_{m}$ the cofiber of the map $(f', g'): \sum^{j}SZ/2^{m} \rightarrow \sum^{j-i} \lor \sum^{0}$ when the cofibers of any maps $f': \sum^{i}SZ/2^{m} \rightarrow \sum^{0}$ and $g': \sum^{j}SZ/2^{m} \rightarrow \sum^{0}$ $(i \leq j)$ are denoted by X'_{m} and Y'_{m} respectively. In [5] these 4-cells spectra XY_{m} and $X'Y'_{m}$ are written to be XY_{2m} and XY'_{2m} , and their KU- and KO-homologies have been calculated in [5, Propositions 1.2 and 1.3] when X=M or N, and Y=P, Q or R. Let X_{m} and Y'_{m} denote the cofibers of any maps $f: \sum^{i} \rightarrow SZ/2^{m}$ and $g': \sum^{j}SZ/2^{m} \rightarrow \sum^{0}$. If the composite map $g'f: \sum^{i+j} \rightarrow \sum^{0}$ is trivial, then the maps f and g' admit a coextension $h: \sum^{i+j+1} \rightarrow Y'_{m}$ and an extension $k: \sum^{j}X_{m} \rightarrow \sum^{0}$ so that their cofibers C(h) and C(k) coincide. Its coincident cofiber is denoted by $Y'X_{m}$ when a suitable pair (h, k) is chosen as in [5, (2.1) and (2.2)]. In [5] these 4-cells spectra $Y'X_{m}$ are written to be $Y'X_{2m}$, and their KU- and KO-homologies have been calculated in [5, Propositions 2.3 and 2.4].

For any map $f: \sum^{i}SZ/2 \rightarrow SZ/2^{m}$ we denote by $XV_{m,n}$ $(m, n \ge 1)$ the cofiber of the map $(f, i\overline{\eta}): \sum^{i}SZ/2 \rightarrow SZ/2^{m} \vee \sum^{i-1}SZ/2^{n-1}$ when the cofiber of the map f is denoted by $X_{m,1}$. We are interested in $XV_{m,n}$ only when X=M, N, P and Q because the other cases are of little importance. Note that $XV_{m,1}=X_{m,1}$ and $NV_{m,n}=SZ/2^{m} \vee V_{n}$ whenever $m \le n$. In [7, (2.2)] the small spectrum $PV_{m,n}$ is written to be $U_{n-1,m,1}$. Moreover we introduce new small spectra $NV_{m,n}^{k}$, $PV_{m,n}^{k}$ and $QV_{m,n}^{0}$ $(m, n \ge 1$ and $k \ge 0$) constructed as the cofibers of the following maps respectively:

(3.1)
$$g_N^k = 2^k i j_V + i \eta^2 j j_V \colon \sum^{-1} V_n \longrightarrow SZ/2^m,$$
$$g_P^k = 2^k i j_V + \tilde{\eta} j j_V \colon \sum^{-1} V_n \longrightarrow SZ/2^m \text{ and }$$
$$g_Q^k = i \eta j_V + \tilde{\eta} \eta j j_V \colon V_n \longrightarrow SZ/2^m.$$

Since $2^{n-1}j_V = \bar{\eta}j_V$: $V_n \rightarrow \Sigma^1$, it is immediate that $g_N^n = 0$, $g_P^n = (1+i\eta j)\bar{\eta}jj_V$, $g_N^k = i\eta^2 jj_V$, $g_P^k = \bar{\eta}jj_V$ and $g_N^l = 2^l(1+2^{n-l})ij_V$ when $k \ge Min\{m, n+1\}$ and l < n. Hence it is easily shown that

$$NV_{m,n}^{k} = \begin{cases} SZ/2^{m} \lor V_{n} & \text{when } k=n \\ NV_{m,n} & \text{when } k \ge \min\{m, n+1\} \\ SZ/2^{k} \lor V_{m+n-k} & \text{when } k < \min\{m, n\} \end{cases}$$

$$PV_{m,n}^{k} = \begin{cases} PV_{m,n} & \text{when } k \ge \min\{m, n\} \\ SZ/2^{k} \lor W_{m+n-k} & \text{when } k < \min\{m, n\} \end{cases}$$

For any map $f: \sum SZ/2^n \to SZ/2$ there exists a map $h: \sum Z/2^n \to V_m$ satisfying $j_{v}h=f$ if the composite map $i\bar{\eta}f: \sum^{i+1}SZ/2^{n} \rightarrow SZ/2^{m-1}$ is trivial. By choosing such a map h suitably we introduce a new small spectrum $VX_{m,n}$ $(m, n \ge 1)$ constructed as the cofiber of its map h when the cofiber of the map f is denoted by $X_{1,n}$. Evidently $VX_{1,n} = \sum^2 X_{1,n}$. Choose a map $\bar{\xi}_V$: $\sum SZ/2^n \to V_m$ satisfying $j_v \bar{\xi}_v = \bar{\eta} \bar{\eta}$, and then set $\xi_v = \bar{\xi}_v i \colon \sum b \to V_m$. Such a map ξ_v with $j_v \xi_v = \tilde{\eta} \eta$ is uniquely determined, although $\bar{\xi}_v$ is unique only up to quasi KO_* -equivalences. We are only interested in the following new spectra $VQ_{m,n}, VR_{m,n}, VK_{m,n}$ and $VL_{m,n}$ $(m, n \ge 1)$ constructed as the cofibers of the maps ξ_{vj} : $\sum^{4}SZ/2^{n} \rightarrow V_{m}$, $\xi_{v}\eta j$: $\sum^{5}SZ/2^{n} \rightarrow V_{m}$, $\bar{\xi}_{v}$: $\sum^{5}SZ/2^{n} \rightarrow V_{m}$ and $\bar{\xi}_{v}(\eta \wedge 1)$: $\Sigma^{e}SZ/2^{n} \rightarrow V_{m}$ respectively. According to Lemma 1.5 the cofibers $C(\xi_{V})$ and $C(\xi_V\eta)$ have the same quasi KO_* -types as the elementary spectra M_m and N_m respectively. The cofibers $C(\xi_V j)$, $C(\bar{\xi}_V)$ and $C(\bar{\xi}_V(\eta \wedge 1))$ are given as those of certain maps $g_Q: C(\xi_V) \to \Sigma^6$, $g_K: \Sigma^6 \to C(\xi_V)$ and $g_L: \Sigma^7 \to C(\xi_V \eta)$, which induce $g_{Q}^{*}(1) = 2^{n} \in KO^{6}C(\xi_{V}) \cong Z, \ g_{K*}(1) = 2^{n-1} \in KO_{6}C(\xi_{V}) \cong Z \text{ and } g_{L*}(1) = 2^{n-1} \in C(\xi_{V})$ $KO_{\tau}C(\xi_{V}\eta) \cong Z$. Applying Propositions 4.1 and 4.2 and the dual of Proposition 4.5 established below we can observe that

(3.3) the small spectra $VQ_{m,n}$, $VK_{m,n}$ and $VL_{m,n}$ are quasi KO_* -equivalent to $\sum^{5}H_{n+1,m+1}$, $\sum^{6}P'_{n-1,m+1}$ and $MV_{m,n}$ respectively. In particular, $Q_{1,n}$, $K_{1,n}$ and $L_{1,n}$ are quasi KO_* -equivalent to $\sum^{3}H_{n+1,2}$, $\sum^{4}P'_{n-1,2}$ and $\sum^{6}MV_{1,n}$ respectively.

3.2. We can easily compute the KU- and KO-homologies of the new small spectra $Y = XV_{m,n}$, $QV_{m,n}^0$ and $VR_{m,n}$ $(m, n \ge 1)$ for X = M, N, P and Q, where $XV_{m,1} = X_{m,1}$, $QV_{m,1}^0 = Q_{m,1}^m$ and $VR_{1,n} = \sum^2 R_{1,n}$.

PROPOSITION 3.1. i) The KU-homologies KU_0Y , KU_1Y and the conjugation ψ_c^{-1} on $KU_0Y \oplus KU_1Y$ are given as follows:

$Y = MV_{m,n}$	$NV_{m,m}$	$PV_{m,n}$	$QV_{m,n} QV_{m,n}^{0}$		VR_{π}	n, n							
$KU_{0}Y \cong Z/2^{m}$	$Z/2^m \oplus Z/2^n$	$Z/2^m \oplus Z/2^n$	$Z/2^m$	Z/2	2™⊕	$Z/2^n$							
$KU_1Y \cong Z/2^n$	0	0	$Z/2^n$		0								
$\psi_{\scriptscriptstyle C}^{\scriptscriptstyle -1} = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$	$\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}$	$\begin{pmatrix} 1 & 2^{m-1} \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\binom{1}{0}$	l)	$\binom{0}{1}$							
ii) The KO-homologies KO_iY ($0 \le i \le 7$) are tabled as follows:													
$Y \setminus i = 0$	1 2	3	4	5	6	7							
$MV_{m,n}$ $Z/2^m$	$(*)_n Z/2 \oplus Z$	$Z/2 Z/2^n \oplus Z/2^n$	2 $Z/2^{m+1}$	Z/2	0	$Z/2^{n-1}$							
$NV_{m,n} Z/2^{m} \oplus Z/2$ $(m > n)$	$2^{n-1} Z/2 (*)_n \oplus$	Z/2 Z/2⊕Z/2	$Z/2^{m+1} \oplus Z/2^n$	Z/2	Z/2	2 0							

in which $(*)_1 \cong Z/4$ and $(*)_l \cong Z/2 \oplus Z/2$ if $l \ge 2$.

For the small spectra $QV_{m,n}^{0}$ and $\sum^{1}Q_{n,m}^{"}$ their KU- and KO-homologies are equal, but their KT-homologies are not equal. In fact,

(3.4) i) $KT_i QV_{m,n}^0 \cong \mathbb{Z}/2^m \oplus \mathbb{Z}/2^n$, $\mathbb{Z}/2^{n+1}$, $\mathbb{Z}/2 \oplus \mathbb{Z}/2$, $\mathbb{Z}/2^{m+1}$ according as i = 0, 1, 2, 3 when $n \ge 2$;

ii) $KT_0Q''_{m,n} \cong Z/2^m \oplus Z/2$, $KT_1Q''_{m,n} \cong Z/4$, Z/4 or $Z/2 \oplus Z/2$ when m > n = 1, n > m = 1 or otherwise, $KT_2Q''_{m,n} \cong Z/2^n \oplus Z/2$ and $KT_3Q''_{m,n} \cong Z/2^{m+1} \oplus Z/2^{n-1}$, $Z/2^m \oplus Z/2^n$ or $Z/2^{m-1} \oplus Z/2^{n+1}$ when m > n, m = n or m < n.

3.3. Consider the maps

(3.5)
$$\phi_n = 2^{n-1} i'_N \overline{\lambda} : C(\overline{\eta}) \longrightarrow N'_m \text{ and}$$
$$\phi_{n,0} = 2^{n-1} i'_N \overline{\lambda} + h'_N \eta j \overline{j} : C(\overline{\eta}) \longrightarrow N'_m$$

where the map $h'_N: \sum^2 \to N'_m$ given in (1.12) satisfies $j'_N h'_N = i$ and $2^m h'_N = i'_N \eta^2$. Since it coincides with the cofiber of the map $i_U \eta^2 j: \sum^1 SZ/2^m \to U_n$, the cofiber $C(\phi_n)$ is quasi KO_* -equivalent to the small spectrum $\sum^4 VR_{n,m}$ constructed as the cofiber of the map $\xi_V \eta j: \sum^2 SZ/2^m \to \sum^4 V_n$. On the other hand, the cofiber $C(\phi_{n,0})$, denoted by $N'N_{n,m}$ $(m, n \ge 1)$, has the following KU- and KO-homologies:

PROPOSITION 3.2. i) $KU_0 N' N_{n,m} \cong Z/2^m \oplus Z/2^m$ on which $\psi_c^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $KU_1 N' N_{n,m} = 0$.

ii) $KO_iN'N_{n,m} \cong \mathbb{Z}/2^{n+1}, \mathbb{Z}/2, \mathbb{Z}/2^{m+1}, \mathbb{Z}/2$ according as $i \equiv 0, 1, 2, 3 \mod 4$ unless (m, n)=(1, 1), and $KO_iN'N_{1,1}\cong \mathbb{Z}/4, \mathbb{Z}/2, \mathbb{Z}/4, \mathbb{Z}/2, \mathbb{Z}/2 \oplus \mathbb{Z}/2, \mathbb{Z}/2, \mathbb{Z}/4, \mathbb{Z}/2$ $\mathbb{Z}/2$ according as $i=0, 1, \dots, 7$.

Denote by \overline{R}'_m $(m \ge 1)$ the cofiber of the map $2^{m-1}(\overline{\lambda} \land j)$: $\sum^{-1}C(\overline{\eta}) \land SZ/2^m \rightarrow \Sigma^0$, which has the same quasi KO_* -type as the elementary spectrum R'_m . Then there exists a cofiber sequence

(3.6)
$$C(\bar{\eta}) \xrightarrow{(2^{m-1}\bar{\lambda}, 2^m)} \Sigma^{0} \vee C(\bar{\eta}) \xrightarrow{\bar{\rho}'_{R}} \bar{R}'_{m} \xrightarrow{(1 \wedge j)\bar{j}'_{R}} \Sigma^{1}C(\bar{\eta})$$

where $\bar{j}'_R: \bar{R}'_m \to C(\bar{\eta}) \wedge SZ/2^m$ is the canonical projection. Using the map $f_{n,k} =$

 $(2^{k}+2^{n}, 2^{k-1}\overline{i}): \sum^{0} \to \sum^{0} \lor C(\overline{\eta})$ we here introduce a new small spectrum $R'_{n,k,m}$ constructed as the cofiber of the composite map $\overline{\rho}'_{R}f_{n,k}: \sum^{0} \to \overline{R}'_{m}$. Assume that $1 \leq k < m$. Then the small spectrum $R'_{n,k,m}$ coincides with the cofiber of the map $h_{n,k,m} = 2^{m+n-k-1}\overline{\lambda} \lor (2^{n}+2^{k})\overline{j}_{V}: C(\overline{\eta}) \lor \sum^{-1}V_{k} \to \sum^{0}$ because $\overline{j}'_{R}\overline{\rho}'_{R}f_{n,k} = 2^{k-1}(\overline{i}\wedge i): \sum^{0} \to C(\overline{\eta}) \land SZ/2^{m}$. Note that $h_{n,k,m} = 2^{s}\overline{\lambda} \lor 2^{n}\overline{j}_{V}, 2^{s}\overline{\lambda} \lor 0$ or $2^{s}\overline{\lambda} \lor 2^{k}\overline{j}_{V}$ according as k > n, k = n or k < n where s = m + n - k - 1. When k = n the cofiber $C(h_{n,k,m})$ is evidently the wedge sum $U_m \lor V_n$, and when k > n it coincides with the cofiber of the map $(2^{m}, 0): C(\overline{\eta}) \to C(2^{n}\overline{j}_{V}) \lor SZ/2^{n}$. When k < n, it is given as the cofiber of a certain map $l_{n,k,m}: C(\overline{\eta}) \to C(2^{k}\overline{j}_{V})$ which is quasi KO_{*} -equivalent to the map $2^{s+1}i'_{R}: \sum^{4} \to \sum^{4}R'_{k}$. Consequently we observe that

(3.7) whenever $1 \leq k < m$ the small spectrum $R'_{n,k,m}$ has the same quasi KO_* -type as $\sum^4 SZ/2^m \lor SZ/2^n$, $\sum^4 V_m \lor V_n$ or $\sum^4 R'_{m+n-k,k}$ according as k > n, k=n or k < n.

When k > m the map $f_{n,k} = (2^k + 2^n, 2^{k-1}\overline{i})$ is replaced by the simpler map $f_n = (2^n, 0)$. Thus the small spectrum $R'_{n,k,m}$ is constructed as the cofiber of the composite map $\overline{\rho}'_R f_n \colon \Sigma^0 \to \overline{R}'_m$. Therefore it coincides with the cofiber of the map $(2^{m-1}i\overline{\lambda}, 2^m) \colon C(\overline{\eta}) \to SZ/2^n \lor C(\overline{\eta})$ when $k > Min\{m, n\}$. Since it is the cofiber of the map $2^{m-1}i(\overline{\lambda} \land j) \colon \Sigma^{-1}C(\overline{\eta}) \land SZ/2^m \to SZ/2^n$, we see that

(3.8) the small spectrum $R'_{n, k, m}$ has the same quasi KO_* -type as $R'_{n, m}$ whenever $k > Min \{m, n\}$.

We here rewrite the small spectrum $R'_{n,m,m}$ to be $R'R_{n,m}$. Since it is obtained as the cofiber of the map $2^m i_V j_U$: $\sum^{-1} U_m \to V_m$, the small spectrum $R'R_{m,m}$ is quasi KO_* -equivalent to the small spectrum constructed as the cofiber of the map $i_V \tilde{\eta} \eta^2 j_V$: $\sum^3 V_m \to V_m$ or $i\eta^2 \bar{\eta}$: $\sum^5 SZ/2 \to \sum^2 SZ/2$ according as $m \ge 2$ or m=1. In particular, $R'R_{1,1}$ has the same quasi KO_* -type as $\sum^2 R'_{1,1}$. By (2.2) and (3.8) we note that the small spectrum $R'R_{n,m}$ has the same quasi KO_* type as $SZ/2^n \vee \sum^4 SZ/2^m$ when n < m.

PROPOSITION 3.3. i) $KU_0R'R_{n,m} \cong Z/2^m \oplus Z/2^m$ on which $\psi_C^{-1} = 1$ and $KU_1R'R_{n,m} = 0$.

ii) $KO_{i}R'R_{n,m} \cong Z/2^{n+1} \oplus Z/2^{m-1}$, Z/2, $(*)_{m}$, Z/2 according as $i \equiv 0, 1, 2, 3 \mod 4$ when m < n or $m = n \ge 2$. Here $(*)_{1} \cong Z/4$ and $(*)_{m} \cong Z/2 \oplus Z/2$ if $m \ge 2$.

For the small spectra $R'R_{m,m}$ and $V_m \vee \sum^4 V_m$ $(m \ge 2)$ their KU-, KO- and KT-homologies are all equal, but their induced homomorphisms by $\tau \colon \sum^1 KT \to KO$ are not equal. In fact, the induced homomorphisms $\tau_* \colon KT_{2i}R'R_{m,m} \to KO_{2i+1}R'R_{m,m}$ $(m \ge 1)$ are represented by the following rows T_{2i+1} :

$$\begin{array}{ll} T_1=(0\ 1)\colon Z/2^m \bigoplus Z/2^m \longrightarrow Z/2, & T_3=(1\ 1)\colon Z/2 \bigoplus Z/2 \longrightarrow Z/2, \\ (3.9) & T_5=(1\ 0)\colon Z/2^m \bigoplus Z/2^m \longrightarrow Z/2, & T_7=(0\ 1)\colon Z/2 \bigoplus Z/2 \longrightarrow Z/2. \end{array}$$

4. The cofibers of maps $f: \sum^{i} \to X_{m}$ and $f': \sum^{i} \to X'_{m}$.

4.1. Using the maps $\rho_{P,M}: P \to M_m$ and $\rho_{Q,N}: Q \to N_m$ given in (1.7) and (1.12) we set

 $\begin{aligned} \xi_{M} = \rho_{P,M} \xi_{P} \colon \Sigma^{2} \longrightarrow M_{m}, \qquad \xi_{N} = \rho_{Q,N} \xi_{Q} \colon \Sigma^{3} \longrightarrow N_{m}, \\ (4.1) \qquad \bar{\rho}_{M} = \rho_{P,M} \bar{\rho}_{P} \colon C(\bar{\eta}) \longrightarrow M_{m}, \qquad \bar{\rho}_{N} = \rho_{Q,N} \bar{\rho}_{Q} \colon C(\bar{\eta}) \longrightarrow N_{m}, \\ \bar{\lambda}_{M} = \rho_{P,M} \bar{\lambda}_{P} \colon \Sigma^{2} C(\bar{\eta}) \longrightarrow M_{m}, \qquad \bar{\lambda}_{N} = \rho_{Q,N} \bar{\lambda}_{Q} \colon \Sigma^{3} C(\bar{\eta}) \longrightarrow N_{m}. \end{aligned}$

These maps satisfy $j_M \xi_M = 2 = j_N \xi_N$, $j_M \overline{\rho}_M = \eta j \overline{j}$, $j_N \overline{\rho}_N = j \overline{j}$ and $j_M \overline{\lambda}_M = \overline{\lambda} = j_N \overline{\lambda}_N$. Recall that $KO_i M_m \cong \mathbb{Z}/2^m$, 0, $\mathbb{Z} \oplus \mathbb{Z}/2$, $\mathbb{Z}/2$, $\mathbb{Z}/2^{m+1}$, 0, \mathbb{Z} , 0 according as $i=0, 1, \dots, 7$.

PROPOSITION 4.1. For any map $f: S_i \rightarrow \Delta M_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^{n+1} \lor M_m$ or the following small spectrum $Y_i: i) Y_0 = \sum^1 \lor M_k (0 \le k < m); ii) Y_2 = MP_m, P'_{m,n+1} \lor \sum^2 SZ/q$ or $P''_{m,n+1} \lor \sum^2 SZ/q$ or P

Proof. Consider the following maps $g_{0,k} = 2^k i_M i : \sum^0 \to M_m, g_2 = i_M \tilde{\eta} : \sum^2 \to M_m, g_{2,n} = 2^n \xi_M : \sum^2 \to M_m, g'_{2,n} = 2^n \xi_M + i_M \tilde{\eta} : \sum^2 \to M_m, g_3 = i_M \tilde{\eta} \eta : \sum^3 \to M_m, g_{4,k} = 2^k \bar{\rho}_M : C(\bar{\eta}) \to M_m$ and $g_{6,n} = 2^n \bar{\lambda}_M : \sum^2 C(\bar{\eta}) \to M_m$. The cofibers $C(g_{4,k})$ and $C(g_{6,n})$ are given as those of certain maps $h_{4,k} : \sum^0 \to C(2^k \bar{\rho}_P)$ and $h_{6,n} : \sum^0 \to C(2^n \bar{\lambda}_P)$. Here the map $h_{4,k}$ is KO_* -trivial whenever $0 \le k < m$, and $h_{6,n}$ is quasi KO_* -equivalent to the map $2^m \xi_M : \sum^0 \to \sum^{-2} M_n$. Hence they have the same quasi KO_* -types as $\sum^1 \vee \sum^4 M_k$ and $\sum^{-2} P'_{n,m+1}$ respectively when $0 \le k < m$ and $n \ge 0$. Moreover the cofiber $C(g_{4,m})$ has the same quasi KO_* -type as MR_m because the map $g_{4,m}$ is quasi KO_* -equivalent to the map $i_M \tilde{\eta} \eta^2 : \sum^4 \to M_m$.

Recall that $KO_i N_m \cong \mathbb{Z}/2^m$, $\mathbb{Z}/2$, $\mathbb{Z}/2$, $\mathbb{Z}\oplus\mathbb{Z}/2$, $\mathbb{Z}/2^{m+1}$, $\mathbb{Z}/2$, 0, \mathbb{Z} according as $i=0, 1, \dots, 7$.

PROPOSITION 4.2. For any map $f: S_i \rightarrow \Delta N_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^{i+1} \vee N_m$ or the following small spectrum $Y_i: i) Y_0 = \sum^1 \vee N_k$ $(0 \le k < m);$ ii) $Y_1 = \sum^3 \vee M_m;$ iii) $Y_2 = NP_m;$ iv) $Y_3 = NQ_m,$ $Q'_{m,n+1} \vee \sum^3 SZ/q$ or $Q''_{m,n+1} \vee \sum^3 SZ/q$ $(n \ge 0);$ v) $Y_4 = NR_m$ or $\sum^1 \vee \sum^4 N_k$ $(0 \le k < m);$ vi) $Y_5 = \sum^7 \vee M_m;$ vii) $Y_7 = MV_{m,n+1} \vee \sum^3 SZ/q$ $(n \ge 0)$ where $q \ge 1$ is odd.

Proof. Use the following maps $g_{0,k} = 2^k i_N i: \sum^0 \to N_m$, $g_1 = i_N i\eta: \sum^1 \to N_m$, $g_2 = i_N \tilde{\eta}: \sum^2 \to N_m$, $g_3 = i_N \tilde{\eta} \eta: \sum^3 \to N_m$, $g_{3,n} = 2^n \xi_N: \sum^3 \to N_m$, $g'_{3,n} = 2^n \xi_N + i_N \tilde{\eta} \eta: \sum^3 \to N_m$, $g_{4,k} = 2^k \bar{\rho}_N: C(\bar{\eta}) \to N_m$, $g_5 = \bar{\rho}_N(\eta \land 1): \sum^1 C(\bar{\eta}) \to N_m$ and $g_{7,n} = 2^n \bar{\lambda}_N: \sum^3 C(\bar{\eta}) \to N_m$. By a similar argument to the proof of Proposition 4.1 we can easily show our result.

4.2. Consider the following cofiber sequences

$$\Sigma^2 P \xrightarrow{\lambda_{P,Q}} Q_m \xrightarrow{\rho_{Q,P}} P_m \xrightarrow{i_P j_P} \Sigma^3 P$$
 and $\Sigma^2 Q \xrightarrow{\lambda_{Q,R}} R_m \xrightarrow{\rho_{R,P}} P_m \xrightarrow{i_Q j_P} \Sigma^3 Q$

and then set

$$\xi_{Q} = \lambda_{P,Q} \xi_{P} \colon \Sigma^{1} \longrightarrow Q_{m}, \qquad \xi_{R} = \lambda_{Q,R} \xi_{Q} \colon \Sigma^{1\circ} \longrightarrow R_{m},$$

$$(4.2) \qquad \bar{\rho}_{Q} = \lambda_{P,Q} \bar{\rho}_{P} \colon \Sigma^{2} C(\bar{\eta}) \longrightarrow Q_{m}, \qquad \bar{\rho}_{R} = \lambda_{Q,R} \bar{\rho}_{Q} \colon \Sigma^{2} C(\bar{\eta}) \longrightarrow R_{m},$$

$$\bar{\lambda}_{Q} = \lambda_{P,Q} \bar{\lambda}_{P} \colon \Sigma^{4} C(\bar{\eta}) \longrightarrow Q_{m}, \qquad \bar{\lambda}_{R} = \lambda_{Q,R} \bar{\lambda}_{Q} \colon \Sigma^{5} C(\bar{\eta}) \longrightarrow R_{m}.$$

These maps satisfy $j_Q \xi_Q = 2 = j_R \xi_R$, $j_Q \bar{\rho}_Q = \eta_J \bar{j}$, $j_R \bar{\rho}_R = j\bar{j}$ and $j_Q \bar{\lambda}_Q = \bar{\lambda} = j_R \bar{\lambda}_R$. Denote by \bar{Q}_m and \bar{R}_m $(m \ge 1)$ the cofibers of the maps $\bar{\eta} j\bar{j}: \sum^{-1}C(\bar{\eta}) \rightarrow SZ/2^m$ and $\bar{\eta} \eta j\bar{j}: C(\bar{\eta}) \rightarrow SZ/2^m$, which have the same quasi KO_* -types as the elementary spectra Q_m and R_m respectively. Choose maps $\bar{h}_Q: \sum^0 \rightarrow \bar{Q}_m$ and $\bar{h}_R: \sum^1 \rightarrow \bar{R}_m$ satisfying $\bar{j}_Q \bar{h}_Q = \bar{i} = \bar{j}_R \bar{h}_R$, $\bar{h}_Q \bar{\eta} = \bar{i}_Q \bar{\eta} j$ and $\bar{h}_R \bar{\eta} = i_R \bar{\eta} \eta j$ where $\bar{i}_Q: SZ/2^m \rightarrow \bar{Q}_m$ and $i_R: SZ/2^m \rightarrow \bar{R}_m$ are the canonical inclusions, and $\bar{j}_Q: \bar{Q}_m \rightarrow C(\bar{\eta})$ and $\bar{j}_R: \bar{R}_m \rightarrow \sum^1 C(\bar{\eta}) \rightarrow \bar{Q}_m$ satisfying $\bar{j}_Q \bar{\xi}_Q = 2$ and $\bar{\xi}_Q (1 \land j) = \bar{i}_Q \rho_{1,m} (\bar{j} \land \bar{\eta}_1)$. Recall that $KO_i Q_m \cong$ $Z \oplus Z/2^m, Z/2, (*)_m, 0, Z \oplus Z/2^{m-1}, 0, Z/2, 0$ according as $i=0, 1, \dots, 7$ where $(*)_1 \cong Z/4$ and $(*)_m \cong Z/2 \oplus Z/2$ if $m \ge 2$.

PROPOSITION 4.3. For any map $f: S_i \rightarrow \Delta Q_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum_{i=1}^{i+1} \lor Q_m$ or the following small spectrum $Y_i: i$) $Y_0 = \sum_{i=1}^{i} Q \lor SZ/2^k$ $(0 \le k < m)$, $PV_{m,n+1} \lor SZ/q$ $(n \ge 0)$ or $SZ/2^k \lor W_{m+n+1-k} \lor SZ/q$ $(0 \le k < \min\{m, n+1\})$; ii) $Y_1 = MQ_m$; iii) $Y_2 = NQ_m$ or $\sum_{i=1}^{i} \lor P_m$; iv) $Y_4 = \sum_{i=1}^{i} Q \lor \sum_{i=1}^{i} V \bowtie K_{k+1} \cup SZ/q$ $(0 \le k < m-1)$, $K_{m,n+1} \lor SZ/q$ $(n \ge 0)$ or $\sum_{i=1}^{i} V \bowtie K_{k+1} \lor SZ/q$ $(0 \le k < m-1)$; v) $Y_6 = \sum_{i=1}^{i} \lor P_m$ where $q \ge 1$ is odd.

Proof. Consider the following maps $g_{0,k}=2^{k}i_{q}i: \Sigma^{0} \rightarrow Q_{m}, g'_{0,n}=2^{n}\bar{h}_{Q}: \Sigma^{0} \rightarrow \bar{Q}_{m}, g_{1}=i_{Q}i\eta: \Sigma^{1} \rightarrow Q_{m}, g_{2}=i_{Q}i\eta^{2}: \Sigma^{2} \rightarrow Q_{m}, g'_{2}=i_{Q}\bar{\eta}, g'_{2}=i_{Q}\bar{\eta}, g''_{2}=i_{Q}\bar{\eta}+i_{q}^{2}): \Sigma^{2} \rightarrow Q_{m}, g_{4,k}=2^{k}i_{Q}i\bar{\lambda}: C(\bar{\eta}) \rightarrow Q_{m}, g'_{4,n}=2^{n}\bar{\xi}_{Q}: C(\bar{\eta}) \rightarrow \bar{Q}_{m}, g'_{4,n,k}=2^{n}\bar{\xi}_{Q}+2^{k}i_{Q}i\bar{\lambda}: C(\bar{\eta}) \rightarrow \bar{Q}_{m} and g_{6}=\bar{\rho}_{Q}: \Sigma^{2}C(\bar{\eta}) \rightarrow Q_{m}.$ The cofibers $C(g'_{0,n}), C(g'_{0,n,k}), C(g'_{4,n})$ and $C(g'_{4,n,k})$ coincide with those of the maps $\bar{\eta}jj_{V}: \Sigma^{-1}V_{n+1} \rightarrow SZ/2^{m}, \bar{\eta}jj_{V}+2^{k}i\bar{j}_{V}: \Sigma^{-1}V_{n+1} \rightarrow SZ/2^{m}, \rho_{1,m}(\bar{j}\wedge\bar{\eta}): \Sigma^{-1}C(\bar{\eta})\wedge SZ/2^{n+1}$ $SZ/2^{m}$ and $\rho_{1,m}(\bar{j}\wedge\bar{\eta})+2^{k}i(\bar{\lambda}\wedge j): \Sigma^{-1}C(\bar{\eta})\wedge SZ/2^{n+1} \rightarrow SZ/2^{m}$ respectively. When $0 \leq n < k$, both of the first two cofibers are the small spectrum $PV_{m,n+1}$ since $\bar{\eta}jj_{V}+2^{n+1}i\bar{j}_{V}=(1+i\eta j)\bar{\eta}jj_{V}$. Moreover the second cofiber is the wedge sum $SZ/2^{k} \vee W_{m+n-k+1}$ whenever $0 \leq k \leq n$, because it is obtained as the cofiber of the map $(0, i\bar{\eta}+\bar{\eta}j): \Sigma^{1}SZ/2 \rightarrow SZ/2^{k} \vee SZ/2^{m+n-k}$. Since the maps $\rho_{1,m}(\bar{j}\wedge\bar{\eta})$ and $\rho_{1,m}(\bar{j}\wedge\bar{\eta})+2^{n}i(\bar{\lambda}\wedge j)$ are quasi KO_{*} -equivalent to the maps $\bar{\eta}\bar{\eta}$ and $\bar{\eta}\bar{\eta}+i\eta^{2}\bar{\eta}=(1+i\eta j)\bar{\eta}\bar{\eta}\bar{\eta}: \Sigma^{3}SZ/2^{n+1} \rightarrow SZ/2^{m}$, both of the last two cofibers have the same quasi KO_{*} -type as the small spectrum $K_{m,n+1}$ when $0 \leq n \leq k$. Moreover, according to Lemma 2.3 the last cofiber has the same quasi KO_{*} -type as the

wedge sum $\sum^{4} V_{k+1} \vee W_{m+n-k}$ whenever $0 \leq k < \min\{m-1, n\}$. Since the remaining cofibers are more easily observed, our result is established.

Recall that $KO_{i}R_{m}\cong \mathbb{Z}/2^{m}$, $\mathbb{Z}\oplus\mathbb{Z}/2$, $(*)_{m}$, $\mathbb{Z}/2$, $\mathbb{Z}/2^{m-1}$, \mathbb{Z} , $\mathbb{Z}/2$, $\mathbb{Z}/2$ according as $i=0, 1, \dots, 7$ where $(*)_{1}\cong\mathbb{Z}/4$ and $(*)_{m}\cong\mathbb{Z}/2\oplus\mathbb{Z}/2$ if $m\geq 2$.

PROPOSITION 4.4. For any map $f: S_i \rightarrow \Delta R_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^{i+1} \lor R_m$ or the following small spectrum $Y_i:$ i) $Y_0 = \sum^1 \lor \sum^5 \lor SZ/2^k$ $(0 \le k < m)$; ii) $Y_1 = MR_m$, $QV_{m,n+1} \lor \sum^1 SZ/q$ or $QV_{m,n+1}^0 \lor \sum^1 SZ/q$ $(n \ge 0)$; iii) $Y_2 = NR_m$ or $\sum^5 \lor P_m$; iv) $Y_3 = \sum^5 \lor Q_m$; v) $Y_4 =$ $\sum^1 \lor \sum^5 \lor \sum^4 V_{k+1} (0 \le k < m-1)$; vi) $Y_5 = L_{m,n+1} \lor \sum^1 SZ/q$ $(n \ge 0)$; vii) $Y_6 = \sum^1 \lor P_m$; viii) $Y_7 = \sum^1 \lor Q_m$ where $q \ge 1$ is odd.

Proof. Use the following maps $g_{0,k} = 2^k i_R i: \Sigma^0 \to R_m$, $g_1 = i_R i\eta: \Sigma^1 \to R_m$, $g_{1,n} = 2^n \bar{h}_R: \Sigma^1 \to \bar{R}_m$, $g'_{1,n} = 2^n \bar{h}_R + i_R i\eta: \Sigma^1 \to \bar{R}_m$, $g_2 = i_R i\eta: \Sigma^2 \to R_m$, $g'_2 = i_R \bar{\eta}: \Sigma^2 \to R_m$, $g_3 = i_R \bar{\eta} \eta: \Sigma^3 \to R_m$, $g_{4,k} = 2^k i_R i \bar{\lambda}: C(\bar{\eta}) \to R_m$, $g_{5,n} = 2^n \xi_R: \Sigma^5 \to R_m$, $g_6 = \bar{\rho}_R: \Sigma^2 C(\bar{\eta}) \to R_m$ and $g_7 = \bar{\rho}_R(\eta \wedge 1): \Sigma^3 C(\bar{\eta}) \to R_m$. Then we can easily show our result by a similar argument to the proof of Proposition 4.1.

4.3. Note that the elementary spectrum M'_m is quasi KO_* -equivalent to $\sum^1 P_{m+1}$. We can choose a map $\xi_P \colon \sum^3 \to P_{m+1} \ (m \ge 1)$ satisfying $j_P \xi_P = 2$ whose cofiber is the small spectrum $H_{m+1,1}$. In other words, there exists a map $f_P \colon \sum^1 H_{m+1,1} \to \sum^3$ whose cofiber is P_{m+1} . Since the map $f_P \colon \sum^{-1} H_{2,1} \to \sum^3$ is paticularly quasi KO_* -equivalent to the map $\eta_{\overline{\eta}} \colon \sum^5 SZ/2 \to \sum^3$ we notice that

(4.3) the elementary spectra M'_1 and M_1 are quasi KO_* -equivalent to $\sum^4 Q'_1$ and $\sum^2 Q_1$ respectively.

Recall that $KO_iM'_m \cong Z, Z/2^{m+1}, Z/2, Z/2, Z, Z/2^m, 0, 0$ according as $i=0, 1, \dots, 7$.

PROPOSITION 4.5. For any map $f: S_i \rightarrow \Delta M'_m \ (0 \leq i \leq 7)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \lor M'_m$ or the following small spectrum $Y_i: i) Y_0 = M_{n,m} \lor SZ/q \ (n \geq 0); ii) Y_1 = P \lor \sum^1 SZ/2^k \ (0 \leq k \leq m); iii) Y_2 = M'M_m;$ iv) $Y_3 = M'N_m; v) Y_4 = \sum^1 H_{m+1,n+1} \lor SZ/q \ (n \geq 0); vi) Y_5 = P \lor \sum^5 V_{k+1} \ (0 \leq k < m)$ where $q \geq 1$ is odd.

Proof. Use the following maps $g_{0,n} = 2^n i'_M : \sum^0 \to M'_m, g_{1,k} = 2^k h'_M : \sum^1 \to M'_m, g_2 = h'_M \eta : \sum^2 \to M'_m, g_3 = h'_M \eta^2 : \sum^3 \to M'_m, g_{4,n} = 2^n \xi_P : \sum^4 \to \sum^1 P_{m+1} \text{ and } g_{5,k} = 2^k h'_M \overline{\lambda} : \sum^1 C(\overline{\eta}) \to M'_m.$ Then our result is easily shown.

We can choose a map $\bar{\rho}'_N: C(\bar{\eta}) \to N'_m$ satisfying $\rho_{N',Q}\bar{\rho}'_N = \bar{\rho}_Q$ so that its cofiber is the elementary spectrum V'_m obtained as that of the map $2^{m-1}\tilde{j}:$ $\sum^{-1}C(\tilde{\eta}) \to \sum^2$, where the map $\rho_{N',Q}: N'_m \to Q$ is given in (1.12). In other words, there exists a map $f'_N: \sum^{-1}V'_m \to C(\bar{\eta})$ whose cofiber is N'_m . Since the map $f'_N: \sum^{-1}V'_1 \to C(\bar{\eta})$ is quasi KO_* -equivalent to the map $\eta^2\bar{\eta}: \sum^{\gamma}SZ/2\to \Sigma^4$,

we notice that

(4.4) the elementary spectra N'_1 and N_1 are quasi KO_* -equivalent to $\sum^4 R'_1$ and $\sum^2 R_1$ respectively.

Recall that $KO_iN'_m \cong Z, Z/2, Z/2^{m+1}, Z/2, Z \oplus Z/2, Z/2, Z/2^m, 0$ according as $i = 0, 1, \dots, 7$.

PROPOSITION 4.6. For any map $f: S_i \rightarrow \Delta N'_m \ (0 \leq i \leq 7)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\sum^{i+1} \lor N'_m$ or the following small spectrum $Y_i: i) Y_0 = N_{n,m} \lor SZ/q \ (n \geq 0); ii) Y_1 = P \lor \sum^2 SZ/2^m; iii) Y_2 = Q \lor \sum^2 SZ/2^k \ (0 \leq k \leq m); iv) Y_3 = N'M_m; v) Y_4 = N'N_m, \sum^6 V_m \lor SZ/q, \sum^4 VR_{n+1,m} \lor SZ/q \ or N'N_{n+1,m} \lor SZ/q \ (n \geq 0); vi) Y_5 = P \lor \sum^6 V_m; vii) Y_6 = Q \lor \sum^6 V_{k+1} \ (0 \leq k < m) \ where q \geq 1 \ is \ odd.$

Proof. Consider the following maps $g_{0,n} = 2^n i'_N : \sum^0 \to N'_m, g_1 = i'_N \eta : \sum^1 \to N'_m, g_{2,k} = 2^k h'_N : \sum^2 \to N'_m, g_3 = h'_N \eta : \sum^3 \to N'_m, g_4 = h'_N \eta^2 : \sum^4 \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N : C(\bar{\eta}) \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N = C(\bar{\eta}) \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N : C(\bar{\eta}) \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N = C(\bar{\eta}) \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N = C(\bar{\eta}) \to N'_m, g_{4,n} = 2^n \bar{\rho}'_N = C(\bar{\eta}) \to N'_m, g_{5,n} = \bar{\rho}'_N(\eta \land 1) : \sum^1 C(\bar{\eta}) \to N'_m \text{ and } g_{6,k} = 2^k h'_N \bar{\lambda} : \sum^2 C(\bar{\eta}) \to N'_m.$ The cofibers $C(g_{4,0})$ and $C(g'_{4,0})$ are given as those of certain maps $h_{4,0}$ and $h'_{4,0} : \sum^{-1} C(\bar{\eta}) \to \sum^2$, both of which are quasi KO_* -equivalent to the map $2^{m-1} \bar{j} : \sum^{-1} C(\bar{\eta}) \to \sum^2$. Hence they have the same quasi KO_* -type as V'_m . When $n \ge 1$ the maps $g_{4,n}$ and $g'_{4,n}$ may be replaced by the maps $\phi_n = 2^{n-1} i'_N \bar{\lambda}$ and $\phi_{n,0} = 2^{n-1} i'_N \bar{\lambda} + h'_N \bar{\eta} \eta \bar{j}$ given in (3.5). In fact, these maps ϕ_n and $\phi_{n,0}$ are respectively quasi KO_* -equivalent to the maps $g_{4,n}$ and $g'_{4,n}$ when $n \ge 2$, and ϕ_1 and $\phi_{1,0}$ are respectively quasi KO_* -equivalent to the maps $g'_{4,n}$ and $g'_{4,n}$.

4.4. Using the map $\rho_{Q,Q'}: Q \rightarrow Q'_m$ given in (1.12) we set

(4.5)
$$\begin{aligned} &\xi'_{Q} = \rho_{Q,Q'}\xi_{Q} \colon \Sigma^{3} \longrightarrow Q'_{m}, \quad \bar{\rho}'_{Q} = \rho_{Q,Q'}\bar{\rho}_{Q} \colon C(\bar{\eta}) \longrightarrow Q'_{m} \quad \text{and} \\ &\bar{\lambda}'_{Q} = \rho_{Q,Q'}\bar{\lambda}_{Q} \colon \Sigma^{3}C(\bar{\eta}) \longrightarrow Q'_{m}. \end{aligned}$$

These maps satisfy $j'_Q \xi'_Q = 2i$, $j'_Q \bar{\rho}'_Q = ijj$ and $j'_Q \bar{\lambda}'_Q = i\bar{\lambda}$. Moreover we choose maps $h'_Q \colon \sum^5 \to Q'_m$ and $\tilde{h}_Q \colon \sum^5 \to Q'_m$ satisfying $j'_Q h'_Q = i\eta^2$ and $j'_Q \tilde{h}_Q = \tilde{\eta}$ as in [5, (2.1) and (2.2)]. Recall that $KO_i Q'_m \cong Z$, Z/2, 0, $Z/2^{m-1}$, Z, $(*)_m$, Z/2, $Z/2^m$ according as $i=0, 1, \dots, 7$ where $(*)_1 \cong Z/4$ and $(*)_m \cong Z/2 \oplus Z/2$ if $m \ge 2$.

PROPOSITION 4.7. For any map $f: S_i \to \Delta Q'_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_{*}-equivalent to the wedge sum $\Sigma^{i+1} \vee Q'_m$ or the following small spectrum $Y_i: i) Y_0 = Q'_{n,m} \vee SZ/q$ $(n \ge 0);$ ii) $Y_1 = P \vee \Sigma^3 SZ/2^m;$ iii) $Y_3 = \Sigma^4 \vee Q'_{k+1}$ $(0 \le k < m-1);$ iv) $Y_4 = \Sigma^4 M V_{n,m} \vee SZ/q$ $(n \ge 0);$ v) $Y_5 = P \vee \Sigma^3 V_m$ or $Q'P_m;$ vi) $Y_6 = Q'Q_m;$ vii) $Y_7 = Q'R_m$ or $\Sigma^4 \vee \Sigma^4 Q'_{k+1}$ $(0 \le k < m-1)$ where $q \ge 1$ is odd.

Proof. Use the following maps $g_{0,n} = 2^n i'_Q \colon \Sigma^0 \to Q'_m, g_1 = i'_Q \eta \colon \Sigma^1 \to Q'_m, g_{3,k} = 2^k \xi'_Q \colon \Sigma^3 \to Q'_m, g_{4,n} = 2^n \bar{\rho}'_Q \colon C(\bar{\eta}) \to Q'_m, g_5 = \tilde{h}_Q \colon \Sigma^5 \to Q'_m, g'_5 = \eta \bar{\rho}_Q \colon \Sigma^1 C(\bar{\eta}) \to Q'_m, g_5 = \eta \bar{\rho}_Q \colon \Sigma^1 C(\bar{\eta}) \to Q'_m, g_5 = \eta \bar{\rho}_Q \colon \Sigma^1 C(\bar{\eta}) \to Q'_m, g_5 \to Q'_m,$

 $Q'_m, g''_5 = \tilde{h}_Q + h'_Q : \sum^5 \to Q'_m, g_5 = \tilde{h}_Q \eta : \sum^6 \to Q'_m \text{ and } g_{\tau, k} = 2^k \bar{\lambda}'_Q : \sum^3 C(\bar{\eta}) \to Q'_m$. Then we can easily show our result by a similar argument to the proof of Proposition 4.1.

4.5. Consider the following cofiber sequences

$$\Sigma^1 Q \xrightarrow{\lambda_{Q,R}} R \xrightarrow{\rho_{R,P}} P \xrightarrow{i_Q j_P} \Sigma^2 Q$$
 and $\Sigma^2 P \xrightarrow{\lambda_{P,R}} R \xrightarrow{\rho_{R,Q}} Q \xrightarrow{i_P j_Q} \Sigma^3 P$,

and then set $\xi_R = \lambda_{P,R} \xi_P : \sum^4 \to R$, $\bar{\rho}_R = \lambda_{Q,R} \bar{\rho}_Q : \sum^1 C(\bar{\eta}) \to R$ and $\bar{\lambda}_R = \lambda_{P,R} \bar{\lambda}_P : \sum^4 C(\bar{\eta}) \to R$ where R denotes the cofiber of the map $\eta^3 : \sum^3 \to \sum^0$. Since the elementary spectrum R'_m is related to R by the following cofiber sequence

$$\Sigma^{4} \xrightarrow{2^{m-1}\xi_{R}} R \xrightarrow{\rho_{R,R'}} R'_{m} \xrightarrow{jj'_{R}} \Sigma^{5},$$

we get maps

(4.6)
$$\begin{aligned} &\xi'_{R} = \rho_{R,R'}\xi_{R} \colon \Sigma^{4} \longrightarrow R'_{m}, \qquad \bar{\rho}'_{R} = \rho_{R,R'}\bar{\rho}_{R} \colon \Sigma^{1}C(\bar{\eta}) \longrightarrow R'_{m} \quad \text{and} \\ &\bar{\lambda}'_{R} = \rho_{R,R'}\bar{\lambda}_{R} \colon \Sigma^{4}C(\bar{\eta}) \longrightarrow R'_{m}, \end{aligned}$$

which satisfy $j'_R \xi'_R = 2i$, $j'_R \bar{\rho}'_R = ij\bar{j}$ and $j'_R \bar{\lambda}'_R = i\bar{\lambda}$. Moreover we choose maps $h'_R \colon \sum^5 \to R'_m$ and $\tilde{h}_R \colon \sum^6 \to R'_m$ satisfying $j'_R h'_R = i\eta$ and $j'_R \tilde{h}_R = \tilde{\eta}$ as in [5, (2.1) and (2.2)]. Using the map $\bar{\rho}'_R \colon \sum^6 \vee C(\bar{\eta}) \to \bar{R}'_m$ given in (3.6) we here set

(4.7)
$$\begin{aligned} \lambda'_{R} &= \bar{\rho}'_{R}(2, \ \bar{i}) \colon \sum^{0} \longrightarrow \bar{R}'_{m}, \quad \bar{\xi}'_{R} &= \bar{\rho}'_{R}(\bar{\lambda}, \ 2) \colon C(\bar{\eta}) \longrightarrow \bar{R}'_{m} \quad \text{and} \\ \bar{\kappa}'_{R} &= \bar{\rho}'_{R}(0, \ 1) \colon C(\bar{\eta}) \longrightarrow \bar{R}'_{m}. \end{aligned}$$

These maps satisfy $\tilde{j}'_{\kappa}\lambda'_{\kappa} = i \wedge i$, $\tilde{j}'_{\kappa}\tilde{\xi}'_{\kappa} = 2(1 \wedge i)$ and $\tilde{j}'_{\kappa}\tilde{\kappa}'_{\kappa} = 1 \wedge i$. Recall that $KO_{\iota}R'_{m} \cong Z \oplus Z/2^{m}$, Z/2, Z/2, 0, $Z \oplus Z/2^{m-1}$, Z/2, $(*)_{m}$, Z/2 according as $i=0, 1, \dots, 7$ where $(*)_{\iota} \cong Z/4$ and $(*)_{m} \cong Z/2 \oplus Z/2$ if $m \ge 2$.

PROPOSITION 4.8. For any map $f: S_i \rightarrow \Delta R'_m$ $(0 \le i \le 7)$ its cofiber C(f) is quasi KO_* -equivalent to the wedge sum $\sum^{i+1} \lor R'_m$ or the following small spectrum Y_i : i) $Y_0 = R'R_m$, $\sum^5 \lor \sum^4 R'_{k+1}$ $(0 \le k < m-1)$, $R'_{n,m} \lor SZ/q$ $(n \ge m)$, $\sum^4 SZ/2^m \lor SZ/2^n \lor SZ/q$ $(0 \le n \le m-1)$, $\sum^4 V_m \lor V_n \lor SZ/q$ $(1 \le n \le m-1)$, $\sum^4 R'_{m+n-k-1,k+1} \lor SZ/q$ $(0 \le k < \min\{m-1, n-1\})$ or $R'R_{n,m} \lor SZ/q$ $(n \ge m)$; ii) $Y_1 = P \lor \sum^4 SZ/2^m$; iii) $Y_2 = Q \lor \sum^4 SZ/2^m$: iv) $Y_4 = \sum^5 \lor R'_{k+1}$ $(0 \le k < m-1)$, $\sum^4 V_m \lor \sum^4 SZ/2^n \lor SZ/q$ $(0 \le n \le m)$, $\sum^4 SZ/2^m \lor \sum^4 V_n \lor SZ/q$ $(1 \le n \le m-1)$ or $\sum^4 NV_{m+n-k-1,k+1} \lor SZ/q$ $(0 \le k < \min\{m, n-1\})$; v) $Y_5 = P \lor \sum^4 V_m$; vi) $Y_6 = Q \lor \sum^4 V_m$ or $R'P_m$; vii) $Y_7 = R'Q_m$ where $q \ge 1$ is odd.

Proof. Consider the following maps $g_{0,n} = 2^n i'_R \colon \Sigma^0 \to R'_m, g'_{0,k} = 2^k \lambda'_R \colon \Sigma^0 \to \overline{R}'_m, g_{1-i'_R}\eta \colon \Sigma^1 \to R'_m, g_{2-i'_R}\eta^2 \colon \Sigma^2 \to R'_m, g_{4,n} = 2^n \overline{k}'_R \colon C(\overline{\eta}) \to \overline{R}'_m, g'_{4,k} = 2^k \xi'_R \colon \Sigma^4 \to R'_m, g_{4,n,k} = 2^n \overline{k}'_R + 2^k \overline{\xi}'_R \colon C(\overline{\eta}) \to \overline{R}'_m, g_5 = \overline{k}'_R(\eta \land 1) \colon \Sigma^1 C(\overline{\eta}) \to R'_m, g_6 = \overline{k}'_R(\eta^2 \land 1) \colon \Sigma^2 C(\overline{\eta}) \to R'_m, g'_6 = \overline{h}_R \colon \Sigma^6 \to R'_m, g'_6 = \overline{h}_R + h'_R \eta :$

 $\Sigma^{\epsilon} \to R'_{m}$ and $g_{\tau} = h_{R} \eta : \Sigma^{\tau} \to R'_{m}$. The cofiber $C(g_{4,n})$ coincides with that of the map $h_{4,n} = (2^{m-1}\overline{\lambda}, 2^m(1 \wedge i)): C(\overline{\eta}) \to \Sigma^0 \vee (C(\overline{\eta}) \wedge SZ/2^n)$. When $n \leq m$ it is the wedge sum $U_m \vee (C(\bar{\eta}) \wedge SZ/2^n)$, and when n > m it is obtained as the cofiber of the map $2^{n-1}\overline{\lambda} \vee 2^{m-1}\overline{\lambda}(1 \wedge j)$: $C(\overline{\eta}) \vee (\sum^{-1}C(\overline{\eta}) \wedge SZ/2^m) \rightarrow \sum^{0}$ which is quasi KO_* equivalent to the map $k_{4,n} = 2^{n-1}\overline{\lambda} \vee \eta^2 \overline{\eta}$: $C(\overline{\eta}) \vee \sum^3 SZ/2^m \to \sum^6$. The cofiber $C(k_{4,n})$ is given as that of a certain map $l_{4,n}: \sum^{3}SZ/2^{m} \to U_{n}$ which is quasi KO_* -equivalent to the map $q_{4,n} = 2^{m-1} i_V i_J : \sum^3 SZ/2^m \to \sum^4 V_n$. As is easily seen, the cofiber $C(q_{4,n})$ is the small spectrum $\sum^4 NV_{n,m}$. Since $g_{0,n,k} = \overline{\rho}_R'(2^{k+1}+2^n,$ $2^{k}i$), its cofiber $C(g_{0,n,k})$ is exactly the small spectrum $R'_{n,k+1,m}$. From (3.7) and (3.8) we recall that it has the same quasi KO_* -type as $\sum SZ/2^m \lor SZ/2^n$, $\sum^4 V_m \lor V_n$ or $\sum^4 R'_{m+n-k-1,k+1}$ according as $n < k+1 \le m, n=k+1 < m$ or k+1 < mMin $\{m, n\}$. And $R'_{n,m,m}$ is written to be $R'R_{n,m}$ when $n \ge m$. Assume that $0 \leq k < m-1$. Since $g_{4,n,k} = \overline{\rho}'_R(2^k \overline{\lambda}, 2^{k+1}+2^n)$, its cofiber $C(g_{4,n,k})$ is given as the cofiber of a certain map $h_{4,n,k}: C(\bar{\eta}) \to C(\varphi_{n,k})$ where $\varphi_{n,k} = (2^k \bar{\lambda}, 2^{k+1} + 2^n)$: $C(\bar{\eta}) \rightarrow \sum^{0} \bigvee C(\bar{\eta})$. Note that $C(\varphi_{n,k})$ is $\sum^{0} \lor (C(\bar{\eta}) \land SZ/2^{n})$ or $U_{k+1} \lor C(\bar{\eta})$ according as $k \ge n$ or k=n-1, and it has the same quasi KO_* -type as R'_{k+1} when $k \leq n-2$. Then the map $h_{4,n,k}$ is expressed as $(2^{m-1}\overline{\lambda}, 2^m(1 \wedge i)): C(\overline{\eta}) \rightarrow \Sigma^0 \vee$ $(C(\bar{\eta}) \wedge SZ/2^n)$ when $k \ge n$, and as $(0, 2^m)$: $C(\bar{\eta}) \to U_n \vee C(\bar{\eta})$ when k=n-1. Therefore the cofiber $C(h_{4,n,k})$ is the wedge sum $U_m \vee (C(\bar{\eta}) \wedge SZ/2^n)$ or $U_n \vee$ $(C(\bar{\eta}) \wedge SZ/2^m)$ according as $k \ge n$ or k=n-1. When $k \le n-2$ the map $h_{4,n,k}$ is expressed as $-i_{n,k}(0, 2^{m+n-k-1}) \colon C(\bar{\eta}) \to C(\varphi_{n,k})$ where $i_{n,k} \colon \sum^{0} \bigvee C(\bar{\eta}) \to C(\varphi_{n,k})$ is the canonical inclusion. So its cofiber coincides with that of the map $l_{4,n,k} =$ $(2^k\overline{\lambda}, (2^{k+1}+2^m)(1\wedge i)): C(\overline{\eta}) \to \sum^0 \lor (C(\overline{\eta}) \land SZ/2^{m+n-k-1})$ which is quasi KO_* equivalent to the map $q_{4,n,k} = (2^{k}i, 2^{k+1}i): \sum^{4} \rightarrow \sum^{4} C(\bar{\eta}) \vee \sum^{4} SZ/2^{m+n-k-1}$. Since it is obtained as the cofiber of the map $i(2^{m+n-k-2}, 2^k j): \sum^4 \bigvee \sum^3 SZ/2^{k+1} \to C$ $\sum^{4} C(\bar{\eta})$, the cofiber $C(q_{4,n,k})$ is the small spectrum $\sum^{4} NV_{m+n-k-1,k+1}$. Thus $C(h_{4,n,k})$ has the same quasi KO_* -type as $\sum^4 NV_{m+n-k-1,k+1}$ when $0 \le k \le 1$ $Min\{m-2, n-2\}$. Since the remaining cofibers are easily observed, our result is established.

4.6. We first consider the maps $\tilde{h}_M : \sum^5 \to M'_m$, $\tilde{h}_N : \sum^5 \to N'_m$, $h'_Q : \sum^5 \to Q'_m$ and $h'_R : \sum^5 \to R'_m$ satisfying $j'_M \tilde{h}_M = \tilde{\eta} \eta^2$, $j'_N \tilde{h}_N = \tilde{\eta} \eta$, $j'_Q h'_Q = i\eta^2$ and $j'_R h'_R = i\eta$ as in [5, (2.1) and (2.2)]. The cofibers of the maps \tilde{h}_M , \tilde{h}_N , $\tilde{h}_N \eta$, h'_Q , h'_R and $h'_R \eta$ are denoted by $M'R_m$, $N'Q_m$, $N'R_m$, $Q'N_m$, $R'M_m$ and $R'N_m$ respectively. According to Propositions 4.5, 4.6, 4.7 and 4.8 we observe that

(4.8) the 4-cells spectra $M'R_m$, $N'Q_m$, $N'R_m$, $Q'N_m$, $R'M_m$ and $R'N_m$ are quasi KO_* -equivalent to the wedge sums $P \vee \Sigma^5 V_m$, $P \vee \Sigma^6 V_m$, $Q \vee \Sigma^6 V_m$, $P \vee \Sigma^3 V_m$, $P \vee \Sigma^4 V_m$ and $Q \vee \Sigma^4 V_m$ respectively (cf. [5, Corollary 4.5]).

On the other hand, it follows from Proposition 4.3 that

(4.9) the cofiber of the map $i_Q \tilde{\mathfrak{o}} \mathfrak{i}: \Sigma^4 \to Q_{m+1} \ (m \ge 1)$ is quasi KO_* -equivalent to the wedge sum $\Sigma^1 Q \vee \Sigma^4 V_m$.

Consider the maps $i_P i\eta : \sum^1 \to P_m$, $i_P i\eta^2 : \sum^2 \to P_m$, $\tilde{h}_P : \sum^5 \to P'_m$ and $\tilde{h}_P \eta : \sum^6 \to P'_m$ whose cofibers are respectively denoted by MP_m , NP_m , $P'Q_m$ and $P'R_m$ where the map \tilde{h}_P satisfies $j'_P \tilde{h}_P = \tilde{\eta} \eta$ as in [5, (2.2)]. Since P_{m+1} and P'_{m+1} have the same quasi KO_* -types as $\sum^{-1}M'_m$ and $\sum^2 M_m$, Propositions 4.1 and 4.5 imply that

(4.10) i) the small spectra MP_{m+1} , NP_{m+1} , $P'Q_{m+1}$ and $P'R_{m+1}$ ($m \ge 1$) are quasi KO_* -equivalent to $\sum^{-1}M'M_m$, $\sum^{-1}M'N_m$, $\sum^2 MQ_m$ and $\sum^2 MR_m$ respectively, and dually

ii) the small spectra $M'P'_{m+1}$, $N'P'_{m+1}$, $Q'P_{m+1}$ and $R'P_{m+1}$ $(m \ge 1)$ are quasi KO_* -equivalent to $\sum^1 M'M_m$, $N'M_m$, $M'Q'_m$ and $M'R'_m$ respectively.

Moreover we notice that

(4.11) i) the small spectra $P'Q_1$ and $Q'P_1$ have the same quasi KO_* -type as the elementary spectrum P_1 ,

ii) the small spectra $P'R_1$, $R'P_1$, $\sum^1 MP_1$ and $\sum^{-1} M'P'_1$ have the same quasi KO_* -type as the elementary spectrum Q, and

iii) the small spectra $\sum^{1} NP_{1}$ and $N'P'_{1}$ have the same quasi KO_{*} -type as the wedge sum $\sum^{0} \vee \sum^{4}$.

Choose a map $\rho'_P: \sum^2 SZ/2 \to P'_{m+1} \ (m \ge 1)$ satisfying $j'_P \rho'_P = \rho_{1,m+1}$ whose cofiber is P'_m , and then consider the map $g'_{4,n} = 2^n \bar{\rho}'_P + \rho'_P \bar{j}: C(\bar{\eta}) \to P'_{m+1}$ where $\bar{\rho}'_P = \rho_{P,P'} \bar{\rho}_P: C(\bar{\eta}) \to P \to P'_{m+1}$ and it satisfies $\bar{\rho}'_P j'_P = i\eta j \bar{j}$. According to Proposition 4.1 the cofiber $C(g'_{4,n})$ has the same quasi KO_* -type as $\sum^2 P''_{m,n+1}$. On the other hand, it is obtained as the cofiber of a certain map $h'_{4,n}: C(j'_Pg'_{4,n}) \to \sum^0$ where $C(j'_Pg'_{4,n})$ has the same quasi KO_* -type as M'_m . Applying the dual of Proposition 4.1 we can verify that it has the same quasi KO_* -type as $P''_{n+1,m}$. Consequently it follows that

(4.12) $\sum^{2} P_{m,n}''(m, n \ge 1)$ are quasi KO_{*} -equivalent to $P_{n,m}''$.

By virtue of (4.3) and (4.4) we can compare Propositions 4.1, 4.2, 4.5 and 4.6 with Propositions 4.3, 4.4, 4.7 and 4.8 to observe that

(4.13) i) the small spectra MQ_1 , MR_1 and NR_1 are quasi KO_* -equivalent to $\sum^2 MQ_1$, $\sum^2 NQ_1$ and $\sum^2 NR_1$ respectively,

ii) the small spectra $M'M_1$, $M'N_1$, $N'M_1$ and $N'N_1$ are quasi KO_* -equivalent to $\sum^4 Q'Q_1$, $\sum^4 Q'R_1$, $\sum^4 R'Q_1$ and $\sum^4 R'R_1$ respectively,

iii) the small spectra $PV_{1, n+1}$, $QV_{1, n+1}$ and $QV_{1, n+1}^0$ ($n \ge 0$) are quasi KO_* -equivalent to $\sum^2 P'_{1, n+1}$, $\sum^2 Q'_{1, n+1}$ and $\sum^2 Q''_{1, n+1}$ respectively,

iv) the small spectra $H_{2,n+1}$, $K_{1,n+1}$ and $L_{1,n+1}$ $(n \ge 0)$ are quasi KO_* -equivalent to $\sum^3 Q'_{n,1}$, $\sum^4 P'_{n,2}$ and $\sum^6 MV_{1,n+1}$ respectively where $Q'_{0,1} = \sum^3 SZ/2$ and $P'_{0,2} = \sum^2 SZ/4$, and

v) the small spectra $VR_{n,1}$ and $N'N_{n,1}$ $(n \ge 2)$ are quasi KO_* -equivalent to $R'_{n,1}$ and $\sum^4 R'R_{n,1}$ respectively, and $VR_{1,1}$, $R'R_{1,1}$ and $\sum^6 N'N_{1,1}$ are

quasi KO_* -equivalent to $\sum^2 R'_{1,1}$.

5. The quasi KO_* -types of a few cells spectra.

5.1. For any finite CW-spectrum X we denote by #X the number of all the cells in X. Let (X, Y) be a relative CW-spectrum such that X is obtained from Y by attaching one (j+1)-cell, thus $X=Y \cup e^{j+1}$. For any map $f: \sum^k \to X$ there exists a map $g: \sum^{-1}C(\pi f) \to Y$ whose cofiber C(g) coincides with C(f)where $\pi: X \to \sum^{j+1}$ denotes the collapsing map. Assume that dim $Y \leq j+1 \leq k+1$. If j < k-1, then any map $f: \sum^k \to X$ is always SQ_* -trivial. If j=k-1or k, then $C(\pi f)=\sum^{j+1} \vee \sum^{k+1}$ or $\sum^{j+1}SZ/t$ for some $t \geq 1$. Therefore, in order to determine the quasi KO_* -types of any CW-spectra with (n+1)-cells it is sufficient to deal with the cofibers of the following maps:

i) any SQ_* -trivial map $f: \sum^k \to X$,

(5.1) ii) any map $g: \sum^{j} SZ/2^{m} \rightarrow Y$ and

iii) any map $g: \sum^{j} \vee \sum^{k} \rightarrow Y$ with k=j or j+1

where #X=n, #Y=n-1 and dim $Y \leq j+1$. For any graded abelian group $G = \{G_i\}$ the wedge sum $\bigvee \sum^i SG_i$ of Moore spectra is simply written to be SG.

LEMMA 5.1. Let X be a CW-spectrum having the same quasi KO_{*}-type as $Y = SA \lor (P \land SB) \lor (Q \land SC)$ with $A = \{A_i\}_{0 \le i \le 7}$, $B = \{B_j\}_{0 \le j \le 1}$ and $C = \{C_k\}_{0 \le k \le 3}$ free. If any map $f: S_0 \to X$ is SQ_* -trivial, then its cofiber C(f) is quasi KO_{*}-equivalent to one of the following spectra $\Sigma^1 \lor Y$, $Y_{-7,1,*}$, $Y_{-6,*,2}$ and $Y_{2,1,-3}$ where $Y_{-7,1,*} \lor \Sigma^7 = Y \lor \Sigma^1 P$, $Y_{-6,*,2} \lor \Sigma^6 = Y \lor \Sigma^2 Q$ and $Y_{2,1,-3} \lor \Sigma^3 Q = Y \lor \Sigma^2 \lor \Sigma^1 P$.

Proof. The cofibers of the maps $\iota_Q \eta : \Sigma^0 \to \Sigma^{-1}Q$ and $(\eta^2, \iota_Q \eta) : \Sigma^0 \to \Sigma^{-2} \lor \Sigma^{-1}Q$ are the wedge sums $\Sigma^2 \lor \Sigma^{-1}P$ and $\Sigma^{-2}R \lor \Sigma^{-1}P$ respectively where R denotes the cofiber of the map $\eta^3 : \Sigma^3 \to \Sigma^0$. In these cases they are quasi KO_* -equivalent to the spectrum $Y_{2,1,-3}$. Now our result is easy.

If any map $f=(f_1, f_2): S_k \to S_0 \lor Y$ is SQ_* -trivial, then there exists an SQ_* -trivial map $g: \sum^{-1}C(f_1) \to Y$ whose cofiber C(g) coincides with C(f). Note that $C(f_1)$ has the same quasi KO_* -type as the elementary spectrum P or Q unless f_1 is KO_* -trivial. By the aid of Lemmas 1.2, 1.5 and 2.4-2.7 it is verified that (5.2) the quasi KO_* -type of C(f) is completely determined when $Y=\sum^i SZ/2^m$ or $\sum^i V_m$ and $f=(f_1, f_2): S_k \to S_0 \lor Y$ is SQ_* -trivial.

As is easily seen, we obtain

LEMMA 5.2. For any map $g: \sum^{j} \bigvee \sum^{k} \to \sum^{0} (0 \le j \le k)$ its cofiber C(g) is quasi

 $KO_{*}-equivalent to the wedge sum \sum^{0} \bigvee \sum^{j+1} \bigvee \sum^{k+1} or the following spectrum Y_{j,k}: Y_{0,i} = \sum^{i+1} \lor SZ/2^{m} \lor SZ/q, Y_{0,8r+1} = M_{m} \lor SZ/q, Y_{0,8r+2} = N_{m} \lor SZ/q, Y_{8r+1,i} = Y_{i,8r+1} = \sum^{i+1} \lor P \text{ or } Y_{8r+2,i} = Y_{i,8r+2} = \sum^{i+1} \lor Q (i, r \ge 0) \text{ where } m \ge 0 \text{ and } q \ge 1 \text{ is odd.}$

For any finite CW-spectrum X we denote by $k_0(X)$ the rank of $KU_*X \otimes Q$ and by $k_p(X)$ the rank of Tor $(KU_*X, Z/p)$ for each prime p where $KU_*X \cong$ $KU_0X \oplus KU_1X$. Set $k(X) = k_0(X) + \max_p \{2k_p(X)\}$. Then it is immediately checked that

(5.3)
$$\#X \ge k(X) \quad \text{and} \quad \#X \equiv k(X) \mod 2.$$

In particular, $KU_*X \cong Z \oplus Z \oplus Z$ or $Z \oplus Z/2^m \oplus Z/q$ when #X=3, and $KU_*X \cong Z \oplus Z \oplus Z \oplus Z$, $Z \oplus Z \oplus Z/2^m \oplus Z/q$ or $Z/2^m \oplus Z/2^n \oplus Z/q \oplus Z/r$ when #X=4, where $m, n \ge 0$ and both of $q, r \ge 1$ are odd.

Recall that each *CW*-spectrum with 2-cells is stably quasi KO_* -equivalent to one of the following spectra: $\Sigma^0 \vee \Sigma^i$ $(0 \le i \le 7)$, *P*, *Q* or $SZ/2^m \vee SZ/q$ where $m \ge 0$ and $q \ge 1$ is odd. Using Lemmas 1.2, 1.3, 1.4, 5.1 and 5.2 and (1.6) we can immediately show

THEOREM 5.3. Let X be a CW-spectrum with 3-cells. Then it is stably quasi KO_* -equivalent to the following spectrum Y:

i) The " $KU_*X \cong Z \oplus Z \oplus Z$ " case: $Y = \sum^{\circ} \vee \sum^{i} \vee \sum^{j}$, $P \vee \sum^{j}$ or $Q \vee \sum^{j} (0 \le i \le j \le 7)$.

ii) The " $KU_*X \cong Z \oplus Z/q \ (q \ge 1 \ odd)$ " case: $Y = \sum^j \lor SZ/q \ (0 \le j \le 7)$.

iii) The " $KU_*X \cong Z \oplus Z/2^m \oplus Z/q$ ($m \ge 1$, and $q \ge 1$ odd)" case: $Y = W \lor SZ/q$ and $W = \sum^j \lor SZ/2^m$ ($0 \le j \le 7$), $\sum^0 \lor V_m$, $\sum^5 \lor V_m$, M_m , N_m , Q_m , R_m , $\sum^{-1}M'_m$, $\sum^{-2}N'_m$, $\sum^{-3}Q'_m$ or $\sum^{-4}R'_m$.

5.2. Let X be a CW-spectrum with 3-cells and $f: S_k \to X$ an SQ_* -trivial map. Since the quasi KO_* -type of X is completely observed in Theorem 5.3, we can easily determine the quasi KO_* -type of the cofiber C(f) by means of Propositions 4.1-4.8, Lemma 5.1 and (5.2). We next deal with any map $g = g_1 \lor g_2: S_j \lor S_k \to SZ_m$. Evidently there exists an SQ_* -trivial map $h: S_k \to C(g_1)$ whose cofiber C(h) coincides with C(g). Since the quasi KO_* -type of $C(g_1)$ is completely given in Lemma 1.2, we can easily determine the quasi KO_* -type of C(g) by means of Propositions 4.1-4.5 and (5.2), too. Dually we can determine the quasi KO_* -type of C(g') for any map $g'=(g'_1, g'_2): \sum'SZ_m \to S_0 \lor S_i$.

Let Y be a CW-spectrum with 2-cells having the same quasi KO_* -type as the elementary spectrum P or Q. For such a CW-spectrum $Y=S^0 \cup e^{8r+2}$ or $S^0 \cup e^{8r+3}$ it is easily shown that

(5.4) any map $g=g_1 \vee g_2: \Sigma^j \vee \Sigma^k \to Y$ is quasi KO_* -equivalent to the map $g_1 \vee 0$ or $0 \vee g_2$ if $8r+1 \leq j \leq k \leq j+1$.

Let Y be a CW-spectrum with 2-cells whose attaching map $\alpha: \sum^{i} \rightarrow \sum^{0}$ is KO_{*} -

trivial, and $g=g_1 \vee g_2: \sum^j \vee \sum^k \to Y (-1 \le i \le j \le k \le j+1)$ be any map. Assume that the map g is never quasi KO_* -equivalent to the map $g_1 \vee 0$ or $0 \vee g_2$. When k > i+1 the cofiber C(g) is obtained as that of a certain SQ_* -trivial map h: $\sum^k \to C(g_1)$. In this case it is easy to determine the quasi KO_* -type of C(g)as is stated above. In the k=i or i+1 case the cofiber C(g) is quasi KO_* equivalent to the wedge sum $\sum^1 \vee \sum^l \vee SZ/2^m \vee SZ/q$ (l=0, 1) or $\sum^1 \vee M_m \vee SZ/q$ for some $m \ge 0$ and some odd $q \ge 1$ if the composite map $\pi g: \sum^j \vee \sum^k \to \sum^{i+1}$ is trivial. If not so, there exists a map $h: \sum^j \vee \sum^i SZ/t \to \sum^0$ for some $t \ge 1$, whose cofiber C(h) coincides with C(g). When such a map h is SQ_* -trivial, the quasi KO_* -type of C(h) is easily determined by a dual argument to (5.2). If not so, then the cofiber C(h) is the wedge sum $SZ/2^m \vee \sum^i SZ/2^n \vee SZ/q \vee \sum^i SZ/q \vee \sum^$

In virtue of (5.1) we can now show our main result by the above observations combined with (2.5), (4.8), (4.9) and Lemmas 2.3, 2.4 and 2.5.

THEOREM 5.4. Let X be a CW-spectrum with 4-cells. Then it is stably quasi KO_* -equivalent to the following spectrum Y:

i) The " $KU_*X \cong Z \oplus Z \oplus Z \oplus Z$ " case: $Y = \Sigma^0 \vee \Sigma^i \vee \Sigma^j \vee \Sigma^k$, $P \vee \Sigma^j \vee \Sigma^k$, $Q \vee \Sigma^j \vee \Sigma^k$, $P \vee \Sigma^j P$, $P \vee \Sigma^j Q$ or $Q \vee \Sigma^j Q$ ($0 \le i \le j \le k \le 7$).

ii) The " $KU_*X \cong Z \oplus Z \oplus Z/q$ $(q \ge 1 \text{ odd})$ " case: $Y = \sum^j \vee \sum^k \vee SZ/q$, $\sum^j P \vee SZ/q$ or $\sum^j Q \vee SZ/q$ $(0 \le j \le k \le 7)$.

iii) The " $KU_*X \cong Z \oplus Z \oplus Z/2^m \oplus Z/q$ ($m \ge 1$, and $q \ge 1$ odd)" case: $Y = W \lor SZ/q$ and $W = \sum^j \lor \sum^k \lor SZ/2^m$, $\sum^j P \lor SZ/2^m$, $\sum^j Q \lor SZ/2^m$, $\sum^0 \lor \sum^k \lor V_m$, $\sum^5 \lor \sum^k \lor V_m$, $\sum^j Q \lor V_m$, $\sum^j P \lor V_m$, $\sum^l Q \lor V_m$, $\sum^k \lor X_m$, $\sum^k \lor X'_m$, XY_m , $X'Y'_m$, $Y'X_m$ ($0 \le j \le k \le 7$ and $0 \le l \le 2$) where $X_m = M_m$, N_m , Q_m or R_m ; $X'_m = \sum^{-1}M'_m$, $\sum^{-2}N'_m$, $\sum^{-3}Q'_m$ or $\sum^{-4}R'_m$; $XY_m = MQ_m$, MR_m , NQ_m or NR_m ; $X'Y'_m = \sum^{-3}M'Q'_m$, $\sum^{-4}M'R'_m$, $\sum^{-3}N'Q'_m$ or $\sum^{-4}N'R'_m$; and $Y'X_m = \sum^{-1}M'M_m$, $\sum^{-1}M'N_m$, $\sum^{-2}N'M_m$, $\sum^{-2}N'N_m$, $\sum^{-3}Q'Q_m$, $\sum^{-3}Q'R_m$, $\sum^{-4}R'Q_m$ or $\sum^{-4}R'R_m$.

iv) The " $KU_*X \cong Z/2^m \oplus Z/q \oplus Z/r$ ($m \ge 0$, and q, $r \ge 1$ odd)" case: $Y = SZ/2^m \lor SZ/q \lor \sum^j SZ/r$ ($0 \le j \le 3$), $V_m \lor SZ/q \lor \sum^j SZ/r$ ($1 \le l \le 3$) or $W_m \lor SZ/q \lor \sum^2 SZ/r$.

v) The " $KU_*X \cong Z/2^m \oplus Z/2^n \oplus Z/q \oplus Z/r$ (m, $n \ge 1$, and $q, r \ge 1$ odd)" case: $Y = U \lor SZ/q \lor \sum^j SZ/r$ and $U = SZ/2^m \lor \sum^j SZ/2^n$ ($0 \le j \le 7$), $V_m \lor \sum^{1} V_n$ (j=1), $V_m \lor \sum^4 V_n$ ($|m-n| \ge 2$ and j=0), $V_m \lor W_n$ ($m+2 \le n$ and j=0), $W_m \lor V_n$ ($m \ge n+2$ and j=0) or $X_{m,n}$ ($j=\dim X_{m,n}-1$) where $X_{m,n}=M_{m,n}$, $N_{m,n}$, $P_{m,n}$ ($m \ge n+1$), $P_{m+1,n-1}(m+1\le n)$, $P'_{m,n}(m+1\le n)$, $P'_{m-1,n+1}(m\ge n+1)$, $P''_{m+1,n-1}(m+2< n)$, $P''_{m,n}(m=n)$, $P''_{m-1,n+1}(m>n+2)$, $Q_{m,n}$, $Q''_{m,n}$, $R_{m,n}(m\le n)$, $R'_{m,n}(m\ge n)$, $H_{m+1,n+1}$, $K_{m,n}((m, n)\ne (1, 1))$ or $L_{m,n}$.

References

[1] D.W. ANDERSON, A new cohomology theory, Thesis (1964), Univ. of California, Berkeley.

- [2] S. ARAKI AND H. TODA, Multiplicative structures in mod q cohomology theories, I and II, Osaka J. Math. 2 (1965), 71-115 and 3 (1966), 81-120.
- [3] A.K. BOUSFIELD, A classification of K-local spectra, J. Pure and Applied Algebra 66 (1990), 121-163.
- [4] Z. YOSIMURA, Quasi K-homology equivalences, l, Osaka J. Math. 27 (1990), 465-498.
- [5] Z. YOSIMURA, Quasi K-homology equivalences, II, Osaka J. Math. 27 (1990), 499-528.
- [6] Z. YOSIMURA, The K*-localizations of Wood and Anderson spectra and the real projective spaces, Osaka J. Math. 29 (1992), 361-385.
- [7] Z. YOSIMURA, The quasi KO_* -types of the stunted mod 4 lens spaces, preprint.

Department of Mathematics Osaka City University Sugimoto Sumiyoshi-ku Osaka 558, Japan