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§ 1. Introduction.

It is known that the identity map IdM of a compact Riemannian manifold
(M, g) is a harmonic map. (M, g) is said to be unstable, if the Jacobi operator
/ defined by the second variation of the energy functional at IdM has negative
eigenvalues. The standard ra-dimensional sphere (Sm, g0) of constant curvature
1 is unstable for m ^ 3 . More generally, unstable, simply connected compact
(irreducible) symmetric spaces were determined (Smith [5], Nagano [3], Ohnita
[4], Urakawa [11]).

In [9] the author studied instability of spheres (Sm, g(t)) with ra=2ra+l, as
a class of homogeneous Riemannian manifolds which are not symmetric nor
Einstein (cf. also Urakawa [12]), and gave the expression of some eigenvector
of the Jacobi operator corresponding to a negative eigenvalue. The Riemannian
metrics g(t) considered in [9] or [12] is related to the Hopf fibration (S2n+1, g0)
-*(CPn, h0), where (CPn, h0) denotes the complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature 4.

As the next step, we study the Riemannian metrics related to the Hopf
fibration (S 4 r + 3 , go)-*(QPr, h0), where QPr denotes the quaternion projective
space. (S 4 r + 3 , g0) admits a Sasakian 3-structure {^α), η^, η^}. The dual vector
fields {£c», £<2), £(3>} define the 3-dimensional distribution on S 4 r + 3 whose integral
submanifolds are fibers of the Hopf fibration. We define a 1-parameter family
of Riemannian metrics g(f) on S 4 r + 3 by

(1.1) g(t) = t-lgo + Γ\tm/3-l) Σα VCa,®Vca, ,

where m = 4 r + 3 , and 0<f<oo (cf. Tanno [7]). The volume form for g(t) is
unchanged for all t. The purpose of this paper is to show the following:

THEOREM, (i) For m=4r+3=7, 11, the sphere (S 4 r + 3 , g(f)) is unstable.
(ii) For m = 4 r + 3 ^ 1 5 , and for fe(0, to(m)) or fefoOn), oo), the sphere

(S4r+\ g(t)) is unstable, where tQ(m) and tι(m) are given in §4.
(iii) For each eigenfunction f corresponding to the (non-zero) first eigenvalue

of the Laplacian acting on functions on (S 4 r + 3 , g0),
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(1.2) /ί(l)+

is an eigenvector corresponding to the negative eigenvalue μ{t) of the Jacobi
operator Jct). k{f) and μ(t) are given in §4. The multiplicity of μ(t) is m+1
for almost all t in (0, tQ(m)) or (t^m), oo).

It is an open problem if the positivity of μ(t) (for t^mXtKt^m)) is related
to some geometric property, and if (S 4 r + 3 , g(t)) is stable for to(m)<t<tι(m).

§ 2. Preliminaries.

Let (S 4 r + 3 , g0) be the unit sphere in the 4(r+l)-dimensional Euclidean space
gHr+i)f w h e r e £4cr+υ j s considered as a product space O x ••• XQ of r + 1 copies
of the space Q of quaternions with the canonical metric. Let {xσ

y yσ, zσ> wσ

σ=lf ... f r + i ) b e t h e natural coordinate system of EHr+ί\ Let {/, /, K\ be
the quaternion structure of EHr+1\ If one considers a point x—(xσ, yσ, zσ, w°)
of S 4 r + 3 as a unit vector in £ 4 < r + 1 ) and

Ix=(y; -x\ w\ -zσ),

Jx=(z\ -w% -xσ, y°),

Kx=(wσ,z\ -y\ -xσ),

as tangent vectors at x to S 4 r + 3, we get a field of orthonormal vectors {£α),
fcs), fee)} on 5 4 r + 3 . Each £ ( α ) is a Killing vector field on (5 4 r + 3 , g0), and we
have the following:

(2.1) Ken, ί(2)]=2fC3), K(2), ί(3)]=2f(D, [£<8>, ί<i)]=2f(2) .

The 3-dimensional distribution defined by {fα), | ( 2 ) , £C8)} on S 4 r + 3 is integrable
and each integral submanifold is isometric to a unit 3-sphere in E\ This gives
the Hopf fibration S 4 r + 3 ->QP r . Now let {ηw, ^ ( 2 ), ηw) be the dual of {ξa>,
f(2), f(3>} with respect to g0. Then each ^ ( β ) defines a contact structure on
S 4 r + 3, and {^(β), g"0} is a Sasakian structure. Furthermore, {η<n ), η^, rjw go}
is called the canonical Sasakian 3-structure of (S 4 Γ + 3, ^ 0 ) . For each a {a—
1, 2, 3), we define a (1, l)-tensor field 0 ( Λ > by

(2.2) ^(α)--Wcα) .

φπ>, φm> and ^ ( 3) are canonically related to /, /, and K.
We have the following relations:

(2.3) φcaϊξίaϊ — O, tlίaϊφίa^ΰ,

(2.4) φ\a,X=

(2.5) go{X, Y)=go(φCa>
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(2.7) ΦχΦ< y

(2.8) φωξφ=-φφξω=ξ<n> ίa, β, ϊ:

(2.9) φcaϊφφ—ξωijφ^—φtβϊφcaϊ+ξφηw—φm* lot, β, T' cyclic']

where X, Y denote tangent vectors or vector fields, and [α, β, γ: cyclic] means
that {a, β, γ} in (2.8) and (2.9) is a cyclic permutation of (1, 2, 3). This con-
vention is used also in the following. Also, we have the following:

(2.10) V^φφ = — τf}φφ^=ηm> [α, β, γ: cyclic]

(2.11) ^cβ>7</3)=— ̂ C i8)7cα)=7cr),

^c«)ί<i8) = ""^ci8)fcβ)=f<r)» [«, A / : cyclic]

(2.12) Lξi

where L x denotes the Lie derivation by X. Next, we define an operator L by

The restriction of L (for functions) to each integral submanifold (which is iso-
metric to the 3-sρhere) is identical with the usual Laplacian Δ acting on func-
tions on (S3, go). Thus, we have the following (cf. Tanno [7]):

PROPOSITION 2.1. For a non-negative integer k, the eigenspace Vk corre-
sponding to the k-th eigenvalue of the Laplacian A acting on functions on
(S 4 r + 3 , go) has the orthogonal decomposition

such that f<=Wkιθ satisfies

Lf=θ(θ+2)f.

§3. Riemannian metrics g(f).

We define te(0;0<*<oo} such that g(l)=g0 on S 4 r + 3 by

(3.1)

For simplicity we denote g(t) by g, and gQ by g in the following calculation.
So, in the local coordinate expression we have

(3.1) &k=t
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(3.2) giJ=tgij~t(l-t-mt*)Σ« &«> W

LEMMA 3.1. The difference Wjk of the Christoffel symbols Γjk and Γ)k with
respect to g(t) and g0 is given by

(3.3) WU = - ( t m " φ ) η

Proof. By a classical formula we have

Wjk=Γjt-Γh

Substituting (3.1) and (3.2) into the above, and using (2.2), etc., we have (3.3).

LEMMA 3.2. The Riemannian curvature tensor R=R(t> of g^=g(t) is given by

(3.4) ^hl = R

Σ« J?<α}i(ίi9(«>,-ίϊ7(β

Proof. We calculate the following:

By (2.2), (2.7), etc., and (3.3) we have

7 * W r ί / - 7 , ^ = ( l - f " ) 2« i2φ<

+ζθtΛgjky<a >ι-

As for W'jWU, we calculate it directly as

Summing up the results, proof is completed.

LEMMA 3.3. The Ricci curvature tensor (Rn) and the scalar curvature
S«, of (S 4 r + 8 , g(t)) are given by

(3.5) ^ι=R
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(3.6) S=ίS-3ί( l-r m / 3 )[2+(m-3)ί w / 3 ] .

The Ricci operator Q^Qco ts given by

(3.7) #?=f[m

Proof. By contraction R)n we have i?^. S is given by gjlRji> And, $?

LEMMA 3.4. Each £ ( α ) zs α Killing vector field with respect to g(t).

Proof. It suffices to show that £ α ) is a Killing vector field with respect to
g{t). Lξωg=^Lξt^ηw=0 is trivial. By (2.12) we have

Since ^r(ί) is given by (3.1), proof is completed.
We define two operators Φ and Ψ acting on 1-forms by the following:

/I 2 3
?Γ(u;)= Σcα.iί.ng

\α β γ

where sgn( ) denotes the signature of permutation.

PROPOSITION 3.5. The Laplacian Δ = Δ ( O for functions and I-forms are
given by

(3.8)

(3.9)

+2ta-rmμ)(i-tm/z)Ψ(w).

Proof. (3.8) was proved in [7]. To show (3.9), we calculate the following:

First we check the following relation for each a
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(3.10) Lξia,LH^w^Ίζia,lξ,a,w-21^a,W'φ,

Then we have

Summing up the above and using (3.7), we obtain (3.9).

LEMMA 3.6. For each a, ηaa^ is an eigenform of Δ(o

(3.11) AcnV^=~2tί(m-l)tm^-2a-t-m^(l+tm^ηCa^

Proof. It is known that Δ>7(α)=—2(m—l))7(α) holds. Furthermore we have

By (3.9) we obtain (3.11).

Remark. If one wants to obtain geometric expressions of eigen 1-forms of
the Laplacian ΔCί) of (S 4 r + 3, #(0), then the decomposition of Vk given by Pro-
position 2.1 and the expression (3.9) of Δc t ) are helpful (cf. Tanno [8]).

§4. The Jacobi operator

The Jacobi operator / ( ί ) acting on 1-forms on (S 4 r + 3, g(t)) is given by

(4.1) /«>=-Δ«)-2Q«)

and the local coordinate expression is Ucn^)i=—(A<io'w)i—2RIiwh (cf. Smith
[5]). The Jacobi operator J α ) for vector fields is understood by the natural
correspondence between the space of 1-forms and the space of vector fields. In
the following we use /«> for 1-forms.

Putting P(uO=Σ«M/(£αr>)7cα>, we have
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(4.2) JiOw=-tAw+t(l-t-m/*)Lw-2t(l-tm/z)Φ(w)

PROPOSITION 4.1. For each a, we have

Proof. This follows from the fact that £(α> is a Killing vector field and
Killing vector fields belong to the null eigenspace of / ( O . Also, the direct
calculation using (3.7) and (3.11) is easy. q. e. d.

Let Vx be the eigenspace corresponding to the first eigenvalue ^ = 4 r + 3 of
the Laplacian acting on functions on (S 4 r + 3 , g(t)), and let / e V Ί . Then /
satisfies ^jVιf=—fgtJ. Therefore, we have

(4.3) &«>£(«>/=-/,

(4.4) ξ(β)fφf=ξmf .

LEMMA 4.2. Let /eVΊ. Then we have the following:

(3-U)

(3-ίv)

Proof. Verification is done by a direct calculation using (2.2)^(2.12).

LEMMA 4.3. W#Λ respect to the projection P, we have
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^fycΌ and

Proof. The first identity is verified by (2.8).

PROPOSITION 4.4. For /eVΊ, wίf,ti ts an etgenform of / ( o corresponding
to μ(t) for each t (0<ί<oo), where wίftn is defined by

(4.5) u; c / i t : =/9 ^ 7 ΐ

(4.6) ^α)=[2(m-3)r / 3 ]- 1 {m+2-2r m / 3 -6r / 3

+ [(m-h2-2rm / 3-6r / 3)2+12(m-3)r / 3]1 / 2},

and μ(t) is given by

(4.7) μ(t)=tl-5+rm<3+6tm/3l

-ί[(m+2-2r m / 3 -βr / 3 ) 2 +12(rn-3)r / 3 ] 1 / 2 .

For m = 4 r + 3 = 7 , 11, /ι(0 is negative for all t (0<ί<oo). For m ^ l 5 , //(0 /s
negative, if 0<t<t0(m) or tι(m)<t9 where

(4.8) 3αo(m))-w/3=2m

(4.9) 3α 1 (m))- w / 3 =2rn-l-[(m-2)(m-14)] 1 / 2 .

Proof. We define Wc/.tj by (4.5) with undetermined k{t). By (4.2), Lemma
4.2 and Lemma 4.3, we have

+t{-6-(m+7-3t-m/3-l2tm/z)k(t)}df'φ 'φCΌ

Therefore, Ja)Wίf>ti=μ(t)wίf,ti holds, if k(f) is a solution of

(m-3)tm/zk(t)2-(m+2-2rm/3-6tm/z)k(t)-3=0f

and /ι(ί) is given by

Because we are interested in the case where μ(t) is negative, we choose kit)
as the positive solution of the above equation. So, kif) is given by (4.6), and
consequently, μ(t) is equal to (4.7). t satisfies μ(t)=O, if and only if
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Therefore, two solutions to(m) and t^m) of the above equation are given by
(4.8) and (4.9).

Remark. The values tQ(m) and t^m) for m=15, 19 are given by

fo(15)=0.6205 - , ί1(15)=0.6523 ••• ,

ίo(19)=O.6493 - , t ,(19)^0.7036

PROPOSITION 4.5. Let 42α) denote the eigenspace of / ( o corresponding to
μ(t), and let Ω[n— {wz/.n f^VΊ}. Then ΩCo=Ω{n and dim β ( O = m + l hold
except for at most countably many values of t in (0, oo).

Proof. Let {fu f2, •••, / m +i} be a basis of F i and define wίfp,ti by (4.5)

with f—f p. For each f, the set

{wifp.n; P=h 2, •••, m+1}

is linearly independent. In fact, it suffices to see that the set {wifp,ti(η<:Ό)} =
{/p) is linearly independent. So, we have dimβ<t)=m+l. For all ί, Ωa^Ω\o

is trivial. At ί = l , we see that dim β ( 1 )=m-r-l=dim Ω{Ό. Next, if t is near
1, then flco=fl(o> and d i m f l ( t ) = w + l . Since / ( o depends on ί analytically,
the case dim flCί)>m+l happens only for at most countably many values of t.

PROPOSITION 4.6. For each a, Leia) defines an isomorphism of Ω[n

Proof. Since | ( α ) is a Killing vector field with respect to g(t), two operators
L^(α) and / ( ί ) are commutative. Thus, L ί ( α ) preserves Ωa> Since β ( ί ) — β ( o
except for at most countably many values of t, L f ( α ) preserves fljo.

Remark. The expression (4.5) of wif,n is based on fα) and ^ α ) . Contrary
to this, we define w[ftt^ and w'(St^ by

(4.10) ^ /

[ / , n = / ^

(4.11) u;f/

/.ί]=/37

Then we have the following relations:

Since LξCa^wίf>n and w ^ ^ / . n belong to ί ί( O , we see that w'c/.π and u f/.t:
belong to Ω[o. This means that the expression (4.5) based on £C1) and 0 α ) is



180 SHUKICHI TANNO

enough for our purpose.

Remark. Let X be a unit tangent vector at a point x of (5 4 r + 3 , g(t))

satisfying ηCa:>(X)=0 for α = l , 2, 3, then the sectional curvature K^(X, φωX)

is given by

KW(X, φζ»X)=t(4-3T'*).

So, it takes a negative value for 4<3ί m / 3 .
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