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§1. Introduction.

It is known that the identity map Id, of a compact Riemannian manifold
(M, g) is a harmonic map. (M, g) is said to be unstable, if the Jacobi operator
J defined by the second variation of the energy functional at Idy has negative
eigenvalues. The standard m-dimensional sphere (S™, g,) of constant curvature
1 is unstable for m=3. More generally, unstable, simply connected compact
(irreducible) symmetric spaces were determined (Smith [5], Nagano [3], Ohnita
[4], Urakawa [11]).

In [9] the author studied instability of spheres (S™, g(t)) with m=2n+1, as
a class of homogeneous Riemannian manifolds which are not symmetric nor
Einstein (cf. also Urakawa [12]), and gave the expression of some eigenvector
of the Jacobi operator corresponding to a negative eigenvalue. The Riemannian
metrics g(t) considered in [9] or [12] is related to the Hopf fibration (S%**!, g,)
—(CP", h,), where (CP™, h,) denotes the complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature 4.

As the next step, we study the Riemannian metrics related to the Hopf
fibration (S*7+*%, g,)—(QPT, h,), where QP™ denotes the quaternion projective
space. (S*"*%, g,) admits a Sasakian 3-structure {9y, 9w, w}. The dual vector
fields {£qy, &y, &} define the 3-dimensional distribution on S*"+® whose integral
submanifolds are fibers of the Hopf fibration. We define a l-parameter family
of Riemannian metrics g(f) on S*"** by

(L. gW)=1t7"go+t7'(t"*—1) Za D@ ca> »

where m=4r+3, and 0<t<oo (cf. Tanno [7]). The volume form for g(t) is
unchanged for all . The purpose of this paper is to show the following :

THEOREM. (i) For m=4r+3=7, 11, the sphere (S*"**, g(t)) is unstable.

(i) For m=4r+3=15, and for t<(0, ty(m)) or t=(t(m), o), the sphere
(S*7*3, g(t)) is unstable, where to(m) and t,(m) are given in §4.

(iii) For each eigenfunction f corresponding to the (non-zero) first eigenvalue
Ay=4r+3 of the Laplacian acting on functions on (S*"*3, g,),
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(1.2) e+t R(t)VEgraa sy + A=t P RN Ew e —Ew [Ew)

is an eigenvector corresponding to the negative eigenvalue p(t) of the Jacobi
operator Jo,. k@) and p(t) are given in §4. The multiplicity of p(t) is m+1
for almost all t in (0, ty(m)) or (t,(m), o).

It is an open problem if the positivity of p(t) (for t,(m)<t<t,(m)) is related
to some geometric property, and if (S*7*3, g(t)) is stable for #,(m)<t<t,(m).

§2. Preliminaries.

Let (S*7*3, g,) be the unit sphere in the 4(»41)-dimensional Euclidean space
E*m+b where E*"+Y is considered as a product space @ X -+ XQ of r+1 copies
of the space @ of quaternions with the canonical metric. Let {x°, y7, 27, w’;
¢=1, ---, r+1) be the natural coordinate system of E*"+>  Let {I, J, K} be
the quaternion structure of E*"+», If one considers a point x=(x¢, y, z9, w?)

of S47** as a unit vector in E*"*Y and
Ix=(y°, —x° w°, —z%),
Jx=(2°, —w?, —x%, %),
Kx=(w°’, z°, —y°, —x°),

as tangent vectors at x to S*"*®, we get a field of orthonormal vectors {&,
Ew, &} on S*7*3, Each £, is a Killing vector field on (S5**% g,), and we
have the following :

2.1 e, é]1=2¢w, [Ew, Ew]1=26w, [, Ear]=26 .

The 3-dimensional distribution defined by {&», &wy, &} on S*7*? is integrable
and each integral submanifold is isometric to a unit 3-sphere in E*. This gives
the Hopf fibration S***—QP7. Now let {5w), %@, Y} be the dual of {&»,
&, &} with respect to g,. Then each %) defines a contact structure on
S+ and {9, g} is a Sasakian structure. Furthermore, {9, N, N ; &o}
is called the canonical Sasakian 3-structure of (S*"** g,). For each a (a=
1, 2, 3), we define a (1, 1)-tensor field ¢« by

(2.2) ¢<a)=—vf(a) .

bay, $r, and @y are canonically related to I, /, and K.
We have the following relations:

2.3) ¢(a)5<a)=0, 77(a)¢(a)=0;
2.4) Dt X=—X+ N X)car,
(2.5) 2o X, V)=gy(d>X, b )+ 7car(X)car(Y),
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(2.6) Ve @@=V Ncar=0, L s0@>=LeyyDar=0,
2.7 (Vx9)Y)=guX, Y)ér— 9 ¥)X,
2.8) drépr=—0p¢r=Em, e, B, 1: cyclic]

2.9 ¢<a)¢<ﬁ>—$<a)7](,s>=—¢(p)¢(a>+§(p)7](a)=¢(r>, L, B, 1: cyclic]

where X, Y denote tangent vectors or vector fields, and [a, B, 7: cyclic] means
that {a, B8, 7} in (2.8) and (2.9) is a cyclic permutation of (1, 2, 3). This con-
vention is used also in the following. Also, we have the following:

2.10 NP H=—N@pPw=20wm, L&, B, 1: cyclic]
(2.11) Ve(a)mﬁ):“Ve<p>77(a>=7l(r),
Vewb®r="Vepfw=Em, [a, B, 1 cyclic]
(2.12) Leybr=—LepyPcar=20m,
Lepner=—Lepnw=200,  [a, B, 11 cyclic]
where Ly denotes the Lie derivation by X. Next, we define an operator L by
L=30 LecyyLe,, -

The restriction of L (for functions) to each integral submanifold (which is iso-
metric to the 3-sphere) is identical with the usual Laplacian A acting on func-
tions on (S° g,). Thus, we have the following (cf. Tanno [7]):

PROPOSITION 2.1. For a non-negative integer k, the eigenspace V, corre-
sponding to the k-th eigenvalue of the Laplacian A acting on functions on
(S*+3, g,o) has the orthogonal decomposition;

V=W e +We poot - +We kootrinm

such that fEW, 4 satisfies
Lf=6(042)f.

§3. Riemannian metrics g(?).
We define {g(t); 0<t<oo} such that g(1)=g, on S*"** by
3.1 g)=t7'gy+t71(t™*—1) Za N @Ncar -

For simplicity we denote g(t) by &, and g, by g in the following calculation.
So, in the local coordinate expression we have

3.1) Zie=t"'g5+t @™ —1) T NewrNcary »
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(3'2) g”“-'—‘l‘g“ﬂ‘(l '_t_m/s) Za $(a)€£(a)j .

LEMMA 3.1.  The difference Wi, of the Christoffel symbols I't, and I'i, with
respect to g(t) and g, is given by

3.3 =" —~1) 3 (P>, T PariNear,) -
Proof. By a classical formula we have
Wh=I1—TI},
=/2)8" (V8 + Ve ri—V,rEia).
Substituting (3.1) and (3.2) into the above, and using (2.2), etc., we have (3.3).

LEMMA 3.2. The Riemannian curvature tensor R=R ., of = g(t) is grven by
3.4 Riv= }u+(1—tm’s)Ea{2¢(a)}¢(a)““¢<a>}¢(a>,,,+¢<a>,‘,¢(a>ﬂ
@ (@101~ 81N ,)—2N @ 1 car,—017 > ,)}
+(AL—=t™°) Za Dea> 04N car,— 01N cas,)
(L=t Breyerier 2@ i(Nepra N, — Ny Ne>)
+¢<a>f(77(p>,,77<n,'—77<r>,,ﬂ(ﬂ),)—¢<a)i(77<,9)l77cr>j-‘7]<r>l77<ﬂ>j)
26 15— Eo Near J M ear , Mgy, — Ny, Near,)} -
Proof. We calculate the following :
Ripi=Rini+aWH— VI Wh+ Wi, Wi — Wi, W5, .
By 2.2), (2.7), etc., and (3.3) we have
VW=V Wh=1—t"* 3, {2¢<a>§¢(a)k,“¢<a)§¢(a)j,,+¢<a)2¢<a)ﬂ
+@ (@10, =8N @ ) =20 > O8N car, ~ 8 car )} -
As for Wi,Wi;, we calculate it directly as
§Whs=1—t™*2 {3, B+ b)) s (B F PN, -

Summing up the results, proof is completed.

LEMMA 3.3. The Ricci curvature temsor (R,)) and the scalar curvature S§=
Sy of (S*7+%, g(t)) are given by

(3.5) ka= Rj+6(1—1™% g,
+(1—t"""’)[—2m+(m——3)(1—t""s)] Ea 77(01)]77(0:)1 »
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(3.6) S=tS—3t(1—t=™")[2+(m—3)t™*] .
The Ricci operator @:Qw 1S given by
3.7 Rr=t[m—1+6(1—t™*)157
—t(1—=t"")[2—(m~+3)™*] Za bca>" Neas, -

Proof. By contraction R%; we have R;. § is given by #/'R;;. And, R!

ngthjl-
LEMMA 34. Each &, s a Killing vector field with respect to g(t).

Proof. 1t suffices to show that &, is a Killing vector field with respect to
g®). Le¢,8=Leynay=0 is trivial. By (2.12) we have

L y(0@®16)=2(0@Q@N @+ 7@&@% @)
L:,,(n@@M6)=—2(0@®N @+ 0@&@%w@) -

Since g(t) is given by (3.1), proof is completed.
We define two operators @ and ¥ acting on l-forms by the following:

O(w)=2a ¢(a>”vrws'7}(a) ,

1

3
Y(w)= Eta,ﬁ.nsg"( r)(vem)w)(&p))mn ,

a

where sgn(---) denotes the signature of permutation.

PROPOSITION 3.5. The Laplacian A=Ay, for functions and 1-forms are
given by

(3.8) A f=tAf —t(l—t"™"*)Lf,
3.9 Ay w=tAw—t(1—t"™*) Lw+2t(1—t™"*)D(w)
+2t(1—t-m)(1—t™)T(w) .
Proof. (3.8) was proved in [7]. To show (3.9), we calculate the following :
Awi=g7V Vew,— Riw,
=§" Y (Vaw;—Whw,)— Riw,
="V, Vsw;—V Wlw,— WiV, w,— W% Vw,
WL W Ew, — W Vywo+ W W hw,) — Riw, .

First we check the following relation for each a;
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(3.10) LecorLecorW=Ve s Vecay W =2V oy W Pcar— W+ W(Ear)Ncas «
Then we have
FV Vo, =tV V" w,—t(1—t"™*){3w;+(Lw);
+Xa (2Ve(a)wn'¢(a>f—w(§(a>)?(a)i)},
ETN Whwa=t(L—t™*){—3wi+m Zaw(Ew) e}
WiV wr=t(1—t""){ZaVecpy W Part —(P(w))i}
—t(1—t™*) (A=) {0 V(o W * Deary + T (w))i}
Wi Naw=F" Wi Wlkw,=0,
& W Wiaw,=—3t(A—t™t ™ (wi—Za w€ @) ary) -
Summing up the above and using (3.7), we obtain (3.9).
LEMMA 3.6. For each a, M) is an eigenform of Auy;
(3.11) Ay ar=—2t[(m—1)t™"*=2(1—t"™F)(1+t™") 1N (a> .
Proof. 1t is known that Ay =—2(m—1)7, holds. Furthermore we have
Lyay=—8)cw>,
O(Na)=(m—1)>,

w‘(n(a))_—_—‘zﬂ(a) .
By (3.9) we obtain (3.11).

Remark. 1f one wants to obtain geometric expressions of eigen 1-forms of
the Laplacian A, of (S4"*%, g(#)), then the decomposition of V, given by Pro-
position 2.1 and the expression (3.9) of A, are helpful (cf. Tanno [8]).

§4. The Jacobi operator j .
The Jacobi operator [, acting on 1-forms on (S *3, g(t)) is given by

4.1 .](t)':’—A(t)_zQ(t)

and the local coordinate expression is (]mw)i=—(A(,>w)i—2ﬁ’:wh (cf. Smith
[51). The Jacobi operator /., for vector fields is understood by the natural
correspondence between the space of 1-forms and the space of vector fields. In
the following we use [¢, for 1-forms.

Putting P(w)=233; w(£)))ca»» We have



THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE 177
4.2) Jaorw=—tAw+t(1—t"™?)Lw—2t(L—t™*)D(w)
— 24—t~ ™)L —t™ T (w)—2t[m—14+6(1—t™*)]w
+2t(L—1=™ ) [2—(m~+3)™ 1P (w) .

PROPOSITION 4.1. For each a, we have ] )Nca>=0.

Proof. This follows from the fact that &, is a Killing vector field and
Killing vector fields belong to the null eigenspace of J.,. Also, the direct
calculation using (3.7) and (3.11) is easy. q.e.d.

Let V, be the eigenspace corresponding to the first eigenvalue 4,=4r+3 of
the Laplacian acting on functions on (S*"*%, g(t)), and let fV,. Then f
satisfies V,V,f=—fg,,. Therefore, we have

4.3) b f=—1,
4.4 S f=Emf .

LEMMA 4.2. Let f€V,. Then we have the following :
(1-1) A(fna)=—CBm—=2)fpw+2df-du,
(1-ii) L(fna)=—11fnw+4EwNo—Ex ),
(1-iii) O(fnw)=m—=Df 10— (E@NNe—EaNw),
(1-iv) V(fnw)=—2fn0+EwNe—EaNw),
2-1) A(df - §w)=2(m—1)fpay—(m+2)df - pu,
(2-ii) Ldf$u)=8fnwy—3dfdr—4EwNNw—EwNNw),
(2-iii) Odf-pw)=—m—Dfnow+EwNo—Eanw),
(2-iv) V(df-dw)=2/ 10— (ENMe—EwlIne),

(3-1) Al Ne—Eo/ne)=4 1w+4df - paw—3m(Ew o —Ea o),
@) LEwNHe—CEaNe)=8 10—TEwN1e—EwNw),

@Hii)  P(EwNo—EwNNw)=—2/1w+Mm=2)Ew o~ Ea)w),
G-iv)  T(EwNo—EwNnw)=2/1m—((EwNe—EoNnw).

Proof. Verification is done by a direct calculation using (2.2)~(2.12).

LEMMA 4.3. With respect to the projection P, we have
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P(df‘¢(1>)=(5<s)f)7]<z)_($<z>f)7]<s) s
P(fﬂ(x))=f7]u) and P((E(s)f)ﬂ(z)—($<2>f)77(s>):(5(3>f)ﬂ<z)—(5(2>f)77(s)'
Proof. The first identity is verified by (2.8).

PROPOSITION 4.4. For fEV,, we, . 18 an esgenform of [, corresponding
to pt) for each t (0<t<oo), where wiy, .y is defined by

4.5) wes, =+ kOdS  r+A—kONE@NH@—Ea o),
4.6) k®=[2(m—3)n™"*] " {m~+2—-2t"""*—6t™/*
LOn+2—2t ™ — 6™+ 120m—3)m¥] ),
and u(t) is given by
@.7 pO)=t[—5+t"m +6tm]
—t[(m+2—2¢t"™F—6t™ 324 12(m—3 ™ ]2

For m=4r4-3=7, 11, u(t) is negatwe for all t (0<t<co). For mz15, p(t) is
negative, if 0<t<ty(m) or t,(m)<t, where

4.8) 3to(m) ™ =2m—1+[(m—2)(m—14)]"",
(4.9) 3t (m) ™ =2m—1—[(m—2)(m—14)]""*.

Proof. We define w(,, 7 by (4.5) with undetermined k(t). By (4.2), Lemma
4.2 and Lemma 4.3, we have

Jowowes, o=t{m—3—t""1F=2m—=3)""*k®)} N>
Ft{—6—(m+7—-3t""*—12t" e} d f - P
+t{m+3—t-™°
+(m+T—2(m+3)t™ =3t kONH(Ew NN w—Ew HNe) -

Therefore, [qywiy,i1=p@)wy, 1 holds, if k() is a solution of
(m—=3™ k@) —(m+2—2t"™*—6t™/*)k(t)—3=0,
and p(t) is given by
p)=t[m—3—t"™*—2m—3)t™k(t)] .

Because we are interested in the case where p(t) is negative, we choose k(?)
as the positive solution of the above equation. So, k(t) is given by (4.6), and
consequently, wp(?) is equal to (4.7). ¢ satisfies u(t)=0, if and only if



THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE 179
32 m3 _22m— 1)t~ P 4-mP4+4m—9=0.

Therefore, two solutions f,(m) and ¢,(m) of the above equation are given by
(4.8) and (4.9).

Remark. The values t,(m) and t,(m) for m=15, 19 are given by
1,(15)=0.6205 -+, £,(15)=0.6523 - ,
£,(19)=0.6493 ---, £,(19)=0.7036 --- .

PROPOSITION 4.5. Let R, denote the eigenspace of [, corresponding to
ﬂ(t), and let .Q,(t): {w[f,”; fEVl}. Then Q(z):Q,(t) and dim Q(n-——‘m-l—l hold
except for at most countably many values of t in (0, o).

Proof. Let {fi, fs -, fms1} be a basis of V, and define Weg 1 DY 4.5)
with f=f,. For each ¢, the set

{w[fp.t]; pzlx 27 Tty m+1}

is linearly independent. In fact, it suffices to see that the set {wc,, a(pw)}=
{fo} is linearly independent. So, we have dim 2¢,=m+1. For all ¢, 2,22,
is trivial. At t=1, we see that dim £,=m-+1=dim Q¢,,. Next, if ¢ is near
1, then 2.,=8%,, and dim £,,=m+1. Since J., depends on ? analytically,
the case dim 2,>m-+1 happens only for at most countably many values of .

PROPOSITION 4.6. For each a, L.

SCad

defines an isomorphism of Q.

Proof. Since &, is a Killing vector field with respect to g(¢), two operators
L¢.,, and [, are commutative. Thus, L., preserves 2¢,. Since Q¢,=82%,
except for at most countably many values of ¢, L, preserves £2¢,.

Remark. The expression (4.5) of we,,,; is based on &, and ¢¢,. Contrary
to this, we define wi,,.;; and w{y,.; by

(4.10) wir, o= o +kOdf ¢o+1—kONEDHw—EwNHNw),
4.11) wlr, = Nw+k®)df do+AL—kO)NE@NTw—CEw/N@).
Then we have the following relations:

LeyWes e1=Wreeeyr, 615

Lepywes, c1=Weeeyy s 01— 2WE 03,

Ly Wes. 13=Wreeyy 5,03 H2We5 00 -

Since Le(a)w[f,” and Wigprfotd belong to Q’(;), we see that 'WEf_;] and Wf/f_t]
belong to £%,. This means that the expression (4.5) based on £q, and ¢, is
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enough for our purpose.

Remark. Let X be a unit tangent vector at a point x of (S*"*, g(¥))
satisfying 7¢a(X)=0 for a=1, 2, 3, then the sectional curvature K¢, (X, ¢ X)

is given by

K(t)(X, ¢(1)X)=t(4_3tm/3) .

So, it takes a negative value for 4<<3t™/°.
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