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ON MONOMIALS AND HAYMAN'S PROBLEM

BY ZHAN-LIANG ZHANG AND WEI Li

1. Introduction and main results

Let f(z) be a meromorphic function in the plane. We shall, for brevity,
write / insted of f(z). It is assumed that the reader is familiar with the nota-
tions of Nevanlinna theory (see, for example [1]). Throughout this paper we
denote by S(r, /), as usual, any function satisfying

S(r, f)=o(T(r, /))

as r->oo, possibly outside a set of r value of finite linear measure and N Ό ( r , f )
and Λ/2)(r, /) count only the simple and multiple poles of / respectively.

L. R. Sons ([5]) has considered the monomial of form

0 = /»0(/')«l ... (/C*>)n* (1)

where n0, nίf •••, nk are non-negative integers. The following result is proved.

THEOREM A. ( i ) If f is a transcendental meromorphic function in the plane
with

N0(r, j)=S(r, /)

and ψ has the form (1) where nβ^l, «*^1, w t Ξ ΐ O for iφθ, k and if

2*(2n0+ 23 (l+ι)»,)< (2* +2».-l)( 23 (1+On,) (2)
\ t=0 / \l=0 /

then δ(c, ψ}<l for
(ii) // / is a transcendental meromorphic function in the plane and φ has

the form (1) where n0^2, nk^l, n t^0 for z^O, &, and z/

(3)
t=0

then δ(c, ψ)<l for c^O, oo.

The assumption of Theorem A can be weakened. For n0^2 N. Steinmetz
([7]) proved the following theorem :
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THEOREM B. Let f be a transcendental meromorphic function in the plane
and φ has the form (1). // n0^2, nι+ ••• -fn^l, then

lim sup — γ — >0
T(r, φ)

for £^0, oo.

In this paper we use a modified version of Steinmetz's proof to consider the
case of nQ=l and prove condition (2) is not necessary. The result is the fol-
lowing :

THEOREM 1. Let f be a transcendental meromorphic function in the plane with

and let

ι ( f * ) » * . . . ( f < * γ k (5)

where n ί f nz, •••, nk are non-negative integers. If n^l then

lim sup y — >0
T(r, 0)

Obviously, Theorem 1 improves Sons's result.
Let / be a transcendental meromorphic function in the plane. W. K. Hayman

([2]) and E. Mues ([4]) proved respectively if n^3 and n—2 then /"/' assumes
all values except possibly zero infinitely often. The case n = l is still open
(W. K. Hayman [3], Problem 1.19), but our Theorem 1 enables us to obtain the
following theorem :

THEOREM 2. Let f be a transcendental meromorphic function in the plane
with N»(r, l//)=5(r, /). Then fff assumes all values except possibly zero infinitely
often.

2. Preliminary results and lemmas

For the proof of theorem we introduce some results on algebroid functions
(cf. [8]).

The solution w — w(z) of the functional equation

an(z)wn+ ••• +α0(2)=0 (6)

is called an algebroid function, where an(z), •••, a0(z) are meromorphic functions,
n is a positive integer.
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LEMMA 1 ([8]). // an(z)^Q, then equation (6) has at least one solution.

Obviously, meromorphic functions are algeoroid.
A polynomial in w and their derivatives of the form

(7)
.7 = 1

is called a differential polynomial in w, where α/z) (/=1, •••, /) are meromorphic
functions satisfying

T(r, fl,)=S(r, w), ; = 1, - ,/ . (8)

If Q[w"] has only one term, it is called a (differential) monomial in w. We
denote (d/dz)QM as <?'[>].

If (8) is replaced with m(r, aj)=S(r, w), then Q[w~\ is called a quasi-differen-
tial polynomial in w. The following lemma on quasi-differential polynomials
is essentially due to He Yu-Zhan and Xiao Xiu-Zhi ([8, 9])

LEMMA 2. Let w be a nonconstant algebroid function, Qι[u>] and Q*[w'] be
quasi-differential polynomials in w and n be a positive integer. If

and n^ΪQ2 then m(r, @ι[>])=S(r, w), where γQz is the degree of

LEMMA 3. Let w be an algebroid function, Q[w~] be a differential polynomial
in w, and n be a positive integer. If

wnQ[_w'] = d and dΦQ is Const, (9)

then w^Const.

Proof. Obviously, Q[w]^0. Suppose w ^Const, then Lemma 2 yields
m(r, 0[w])=S(r, w).

The poles of w are not any poles of Q[w~\ by (9). Combining (7) and (8),
we get

N(r, <?[>])=S(r, w).
Thus

T(r, <?[u;])=S(r, w)
and

=T(r, ί?[w])+0(l)=S(r, w).

This is impossible. Thus Lemma 3 is proved.
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3. Proof of Theorem 1

Suppose that there is some c^O, oo, such that

Since T(r, φ)=O(T(r, /)), we get

Without loss of the generality, we may assume that c=l. Set

and
-l. (10)

Then

fj(r,j)=S(r,f). (11)

Obviously, FΞ^O. By (10) we obtain

That is,

fa(z)=- jτ9 (12)

where

is a quasi-differential polynomial in /, since m(r, f //)=S(r, /) and m(r, -
=S(r, /).

If a(z)=0f then F^Const. Further /^Const by Lemma Sand (10). Hence

From (12) and Lemma 2 we obtain

m(r, α) = S(r,/). (14)

Now we note that α(z) can have poles only at the poles or zeros of / or
the zeros of F by (13). Since n^l and

f
j

it is easily seen from (13) that the multiple zeros of / are not any poles of
a(z). On the other hand, by (12) the poles of / are not any poles of a(z).
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Thus

N(r, 0)^Λ^r,y

Together with above inequalities (4), (11) and (14), we get

T(r, α)=S(r, /). (15)

Dividing equation (12) by a(z), we deduce

m(r, /)^m(r, -^)+™(r,

, α)+S(r, /),
so that

m(r, /)=S(r, /). (16)

It is easily seen from (12) that 0(?) has a zero of multiplicity at least q—l at
any pole of / with order #(2^2). Thus, we have

so that
A^r, /)=S(r, /). (17)

Thus / must have infinite simple poles.
Now we multiply (12) by /<?[/'] and (13) by / respectively and subtract.

This gives

o. as)
Let zQ be a simple pole of /, then a(z0)=£Q, °o by (12). We may write f(z) and
a(z) near ZQ in the form

Z ZQ

and

where 5ι^0 and 3Q depend on ZQ. Combining these with (18) we see that the
coefficients άl and 30 have the form

•T = . (Γ+l)2 α^(

'

where Γ=272!+ - +(k + l)nk. Thus if let

_ (Γ+l)2 q

then dι(zQ)=dι, dG(zo)=dQ and
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for any simple pole z0 of /. Furthermore dι(z) and d*(z) are meromorphic and

T(r, rfO

by (15). Here by using (16), (17) and Stemmetz's Lemma 2 (see [6, P 156]), we
know that there exist the meromorphic functions b0(z), b^z), bz(z)(^ΰ) satisfying

T(r, W=S(r, /), (ι=0, 1,2) (19)

such that

/'=ftβ(*)+ W*)/+ W*)/2 . (20)

That is, / satisfies Riccati equation

w^b^+b&ϊw+biφw* . (21)

Using (20) over and over again we deduce that

/cΛ=;!«(2)/ j+l+ , y=ι,2, ...
are polynomials in /. Thus we may write

and

=fP(z,f)-l, (22)

where P(z, /) is a polynomial in / and the coefficients {at} are meromorphic
functions satisfying

T(r, α,)=S(r, /), ι=0, 1,2, - (23)

by (19).
Now we consider the function of z, w

G(z, w) = wP(z, w)-l. (24)

This is a polynomial in w and satisfies the identity

G(z, f(z))=F

by (22). We will prove that the solution w = w(z) of the functional equation

G(z, w)=Q (25)

satisfies Riccati equation (21) and so that

'(z)l-l = G(z, w(z))~0. (26)
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We rewrite (12) in the form

it follows that H(zy /)Ξ=O, where

H(z, w}^a(z)wG(z, w}+G'z(z, w)+G'w(z,

is a polynomial in w and the coefficients \βt} are meromorphic functions
satisfying

T(r, βύ=S(r, /)

by (15), (19), (23) and (24). Hence H(z, f)=0 implies H(z, w)=Q for arbitrary
complex z and w. That is,

a(z)wG(z, w}+G'z(z, w}+G'w(z9 w^b^+b^w+b^w^O (27)

for arbitrary complex z and w.
Let w — w(z] be a solution of (25). Then there is a unique positive integer

λ such that

G(z, w)=(w-w(z)yG*(z, w), G*(z, w(z))=£Q. (28)

The equations (27) and (28) yield

(w-w(z))λ(a(z)wG*(z, w)+G*'(z,

Dividing by (w — w(z)Y~l and letting w — w(z} we get the desired result that

By (26) the functional equation (25) has not any constant solution. On the
other hand, by using Lemma 3 to (26) we know that the functional equation
(25) has only constant solution. These imply that the functional equation (25)
has not any solution. It contradicts Lemma 1. Theorem 1 is proved.
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