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ON MONOMIALS AND HAYMAN'S PROBLEM
BY ZuaN-LiANG ZHANG AND WEI L1

1. Introduction and main results

Let f(z) be a meromorphic function in the plane. We shall, for brevity,
write / insted of f(z). It is assumed that the reader is familiar with the nota-
tions of Nevanlinna theory (see, for example [1]). Throughout this paper we
denote by S(r, /), as usual, any function satisfying

S, HH=o(T(r, /)

as r—oo, possibly outside a set of r value of finite linear measure and Ny (7, f)
and N,(r, /) count only the simple and multiple poles of / respectively.
L. R. Sons ([5]) has considered the monomial of form

G=fro(fryrt - (fE)nE a
where n,, n,, ***, n, are non-negative integers. The following result is proved.

THEOREM A. (i) Iffis a transcendental meromorphicfunction in the plane
with
Nn(r,%‘):S(r, /)
and ¢ has the form (1) where n,=21, n,=1, n,20 for :1+86, k and if
2*(2n0+ 23 (1+i)nz)<(2k+2no—l)(l2;%(1+z')nl) @)

then O(c, P)<1for c+0, co.
(ii) // / is a transcendental meromorphic function in the plane and ¢ has
the form (1) where ny=2, n,=1, n,=0 for i+0, k, and if

k k
Zk(nﬁ-l§(1+i)nl)<(2"+n0—1)<l§(l+i)n,) ®)
then &(c, ¢)<lfor c#0, oo,

The assumption of Theorem A can be weakened. For n,=2 N. Steinmetz
([71) proved the following theorem :
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THEOREM B. Let f be a transcendental meromorphic function in the plane
and ¢ has the form (1). [/ n,=2, ni+ +++ +n,=1, then

for ¢+#0, oo.

In this paper we use a modified version of Steinmetz’s proof to consider the
case of n,=1 and prove condition (2) is not necessary. The result is the fol-
lowing :

THEOREM 1. Let f be a transcendental meromorphic function in the plane with

1

Nofr, 7)=Str, ) 0)

and let
d=F(f)m(f7)me oo (fRO)mk ©)

where ni, m, *°°, N are non-negatwe integers. If n,=1 then

1_ N(?’, Sb'l—")>0

imsup T, ¢)—
for ¢+0, .

Obviously, Theorem 1 improves Sons’s result.

Let / be a transcendental meromorphic function in the plane. W. K. Hayman
([2]) and E. Mues ([4]) proved respectively if n=3 and n=2 then f*f’ assumes
all values except possibly zero infinitely often. The case n=1 is still open
(W. K. Hayman [3], Problem 1.19), but our Theorem 1 enables us to obtain the
following theorem :

THEOREM 2. Let f be a transcendental meromorphic function in the plane
with Ny,(r, 1/f)=S(r, /). Then [f assumes all values except possibly zero infinitely
often.

2. Preliminary results and lemmas

For the proof of theorem we introduce some results on algebroid functions

(cf. [8D).

The solution w— w(z) of the functional equation
an(Dwt+ s +a,(2)=0 (6)

is called an algebroid function, where a,(z), -+, a,(z) are meromorphic functions,
n is a positive integer.
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LEMMA 1 ([81). // ai(2)=0, then equation (6) has at least one solution.

Obviously, meromorphic functions are algeoroid.
A polynomial in w and their derivatives of the form

(O]

Qlw]= 2 a@wh (W) -

(kD) @)

is called a differential polynomial in w, where a;(z) (=1, ---, /) are meromorphic
functions satisfying

T(r,ﬂ,)=S(r,w), 1= 1, ey, l. (8)

If Q[w] has only one term, it is called a (differential) monomial in w. We

denote (d/d2)Q[wlas Q'[w].

If (8) is replaced with m(r, a;)=S(r,w), then Q[w] is called a quasi-differen-
tial polynomial in w. The following lemma on quasi-differential polynomials
is essentially due to He Yu-Zhan and Xiao Xiu-Zhi ([8, 9])

LEMMA 2. Let w be a nonconstant algebroid function, Q,[fw] and Q.[w] be
quasi-differentiapolynomials in w and n be a positive integer. If

w"Q [w]=Q,.[w]
and nZtq, then m(r, Q.[Lw1)=S(r, w), where tq, is the degree of Q.[w].

LEMMA 3. Let w be an algebroid function, Q[w] be a differential polynomial
in w, and n be a positive integer. If

w*Q[wl=d and d+0 is Const, ©)

then w=Const.

Proof. Obviously, Q[w]=0. Suppose u =*=Const, then Lemma 2 yields
m(r, QLw1)=S(, w).
The poles of w are not any poles of @[w] by (9). Combining (7) and (8),
we get
N, QLwD=S, w).
Thus
T(r, QLw1)=S(r, w)
and

nT @, w)= T(r, )-{—0(1)

QLw]
=T(r, QLwD+01)=S(r, w).

This is impossible. Thus Lemma 3 is proved.



MONOMIALS AND HAYMAN’S PROBLEM 47

3. Proof of Theorem 1
Suppose that there is some c¢#0, oo, such that
N 1
T oo T(T, Sb)
Since T(r, $)=0(T(r,/)), we get

N(r, ;b_l_—c)=5(r, n.

=0.

Without loss of the generality, we may assume that ¢=1. Set

QL= (fP)me

and
F=¢—1=fQL[f"]-1 10)
Then
N(r, %)=S(r, . 1)
Obviously, F=0. By (10) we obtain
FQUI+FQU=FALf 1 o~
That is,
FI
fa(z):—?, a2)
where
a@=Q U+ L 0r-err1 a3)

is a quasi-differential polynomial in /, since m(r, f/f)=S(r, /) and m(», -F'/F)
=S, /).

If a(z)=0,then F=Const. Further f=Const by Lemma 3 and (10). Hence
a(z)=0.

From (12) and Lemma 2 we obtain

m(r, a)=S(, f). 14)

Now we note that a(z) can have poles only at the poles or zeros of / or
the zeros of F by (13). Since n;=1 and

(f,?;i(f//)nz (f(k))nk

Y orf—
¥ QL=

it is easily seen from (13) that the multiple zeros of / are not any poles of
a(z). On the other hand, by (12) the poles of / are not any poles of a(z).
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Thus
N, =7 1
N(r, a)< Nl,(r, 7)+N(r, F)'
Together with above inequalities (4), (11) and (14), we get

T(r, a)=S(, /). (15)
Dividing equation (12) by a(z), we deduce

mer, N=m(r, %)+m(r, %)—FO(I)

<T(r, a)+S@, ),
so that
m(r, [)=S, f). (16)

It is easily seen from (12) that a(z) has a zero of multiplicity at least g—1 at
any pole of / with order ¢(=2). Thus, we have

Nelr, NZ2N(r, —)S2T(r, )+00),

so that
No(r, /)=S(, /). (17)

Thus / must have infinite simple poles.
Now we multiply (12) by fQ[f’] and (13) by / respectively and subtract.
This gives
a@QLf1*+Q' LI +QLf1f —al2f=0. (18)

Let z, be a simple pole of /, then a(z,)#0, © by (12). We may write f(z) and
a(z) near z, in the form

d;

A 2o

flz)= +do+0(z—2z,)

and
a(@=a(z0)+a’(z)(z—20)+0((z—20)%,

where d,#0 and d, depend on z,. Combining these with (18) we see that the
coefficients d, and d, have the form
= - (I'+1)* a’(z0)

d
L, =

a(z,) e I'+2  a%z)
where I'=2n,+ - +(k+1)n,. Thus if let
2 ’
d1(2)= I+ , doy=— (F+l) 'a—@

a(z) I'+2 a%_z)

then dl(Zo):ah do(zo):au and
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— d1(z0)

Z2— 2

f @) +do(z0)+0(2—20)

for any simple pole z, of /. Furthermore d,(z) and d,(z) are meromorphic and
T(r, fO+T(r, do)=S(r, f)

by (15). Here by using (16), (17) and Steinmetz’s Lemma 2 (see [6, P 156]), we
know that there exist the meromorphic functions b,(z), b,(z), b,(2)(3£0) satisfying

T(r, b)=S(r, /), (=0,1,2) (19)
such that
F'=by(2)+bi(2)f +by(2) * . (20)

That is, / satisfies Riccati equation
w' =bo(2)+b:(2)w+by(2)w? . (@28
Using (20) over and over again we deduce that
fO=j1HE =12,
are polynomials in /. Thus we may write
QLf"1=P(z, /)
F=7Q[f']-1
=[Pz, f)—1, 22)

where P(z, /) is a polynomial in / and the coefficients {a;} are meromorphic
functions satisfying

and

T, a)=SE, ), 1=0,1,2, - 23)

by (19).
Now we consider the function of z, w

Gz, w)=wP(z, w)—1. 24)
This is a polynomial in w and satisfies the identity
Gz, f(2)=F
by (22). We will prove that the solution w=w(z) of the functional equation
G(z, w)=0 25)
satisfies Riccati equation (21) and so that

w(2)Q[w ' (2)]—E Gz, w(2)=0. (26)
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We rewrite (12) in the form
a() fF+F'=0
it follows that H(z, f)=0, where
H(z, w)=a(@wG(z, w)+Gi(z, w)+Giulz,w)(b(2)+bi(2)w+by(z)w?)

is a polynomial in w and the coefficients {B8;} are meromorphic functions
satisfying

T(r, /91)28(7', /)

by (15), (19), (23) and (24). Hence H(z, f)=0 implies H(z, w)=0 for arbitrary
complex z and w. That is,

a@wG(z, w)+Gl(z, w)+Gilz, w)(by(2)+b,(2)w~+b(2)w?H=0 7))

for arbitrary complex z and w.
Let w—w(2) be a solution of (25). Then there is a unique positive integer
A such that

Gz, w)=(w—w(2)* G*ezw), G*(z, w@)F0. 28)
The equations (27) and (28) yield
(w—w@)*(a@DwG*z, w)+G¥ (z,w)+Gi (2, w)(by(2)+bi(2)w+by(2)w?)
—Aw—w(2) (W' (2)—(bo(2) +bi(2) w+by(2)w*) G*(z, w)=0.
Dividing by (w —w(z))*~'and letting w — w(z) we get the desired result that
W' (2)=bo(2)+bi(2)w(2)+b(2)w(2) .

By (26) the functional equation (25) has not any constant solution. On the
other hand, by using Lemma 3 to (26) we know that the functional equation
(25) has only constant solution. These imply that the functional equation (25)
has not any solution. It contradicts Lemma 1. Theorem 1 is proved.
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