R. AIYAMA AND Q.M. CHENG KODAI MATH. J. 15 (1992), 375-386

COMPLETE SPACE-LIKE HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A LORENTZ SPACE FORM OF DIMENSION 4

BY REIKO AIYAMA AND QING-MING CHENG*

Abstract

On complete space-like hypersurfaces with constant mean curvature in a Lorentz space form of dimension 4, we study the case that the scalar curvature is constant and that the Ricci curvature is bounded from above.

1. Introduction.

Let \mathbf{R}_1^{n+1} be an (n+1)-dimensional Minkowski space and $\mathbf{S}_1^{n+1}(c)$ (resp. $\mathbf{H}_1^{n+1}(c)$) be an (n+1)-dimensional de Sitter space (resp. anti-de Sitter space) of constant curvature c. Considered collectively, a Lorentz manifold of these kinds is called a Lorentz space form of constant curvature c, which is denoted by $M_1^{n+1}(c)$.

Since Calabi [4] and S. Y. Cheng and Yau [7] proved the Bernstein type theorem in \mathbb{R}_1^{n+1} , complete space-like hypersurfaces with constant mean curvature in a Lorentz space form $M_1^{n+1}(c)$ have been studying by many mathematicians. On the other hand, space-like hypersurfaces with constant mean curvature in spacetimes get interested in relativity theory.

It is well known that totally umbilical hypersurfaces $M^n(c')(c' < c)$ and hypersurfaces in the form of $H^k(c_1) \times M^{n-k}(c_2) [k=1, \dots, n-1, c_1 < 0, c(c_1+c_2)=c_1c_2]$ are standard models of complete space-like hypersurfaces with constant mean curvature in $M_1^{n+1}(c)$. Here $M^n(c)$ means an *n*-dimensional space form with constant curvature *c*, that is, a Riemannian sphere $S^n(c)$, a hyperbolic space $H^n(c)$ or a Euclidean space R^n .

Let M be a complete space-like hypersurface with constant mean curvature h/n in $M_1^{n+1}(c)$. In a de Sitter space $S_1^{n+1}(c)$, M is nothing but totally umbilical if n=2 and $h^2 \leq 4c$ or if n>2 and $h^2 < 4(n-1)c$ (cf. Akutagawa [3], Ramanathan [12] or Cheng [5]).

In the other case, there are many examples in $M_1^{n+1}(c)$ which are not standard models (cf. Treibergs [13], Ishihara and Hara [8], Akutagawa [3] and others). But we have known some characterizations of standard models with respect to

^{*} The Research Supported by National Natural Science Foundation of China. Received November 7, 1991; revised March 23, 1992.

the squared norm S of the second fundamental form α on M. We define numbers S_0 , S_- and S_+ by $S_0 = h^2/n$ and $S_{\pm} = -nc + \{nh^2 \pm (n-2)\sqrt{h^4 - 4(n-1)ch^2}\}/2(n-1)$, respectively. Then $S_0 \leq S_- \leq S_+$. In [9], Ki, Kim and Nakagawa proved that

$$S_0 \leq S \leq S_+$$

where $S \equiv S_+ \neq S_0$ only when M is a hyperbolic cylinder $H^1(c_1) \times M^{n-1}(c_2)$. Also we remark that $S \equiv S_0$ only when M is a totally umbilical hypersurface $M^n(c')$ in $M_1^{n+1}(c)$. Furthermore, in a de Sitter space $S_1^{n+1}(c)$, the second author and Nakagawa [6] proved that if $h^2 \leq n^2 c$ and $\sup S < S_-$ then M is nothing but a totally umbilical hypersurface.

In the case of n=2, the hyperbolic cylinder $H^1(c_1) \times M^1(c_2)$ is the only complete space-like surface in $M^3_1(c)$ with constant mean curvature h/2 on which S satisfies inf $S > S_0$ (cf. Aiyama [2]).

However, in the case of n=3, we have an example on which S is constant and satisfies $S_0 < S < S_+$, that is, $H^2(c_1) \times M^1(c_2)$ in $M_1^4(c)$ ($c \ge 0$) satisfies $S \equiv S_-$. So the first purpose of this paper is to study the 3-dimensional complete spacelike hypersurfaces with constant mean curvature and constant S in Lorentz space forms.

THEOREM 3.1. Let M be a complete space-like hypersurface with non-zero constant mean curvature and constant scalar curvature in $M_{1}^{*}(c)$. If $S > S_{-}$ then M is nothing but a hyperbolic cylinder.

In particular, we can completely classify complete space-like hypersurfaces with constant mean curvature and constant scalar curvature in $S_1^4(c)$ if $h^2 \leq 9c$ (Theorem 3.2).

The paper is organized as follows. In Section 2 we give the basic concepts and prove some local formulae. In Section 3 we study the 3-dimensional complete space-like hypersurfaces with constant mean curvature and constant scalar curvature, and prove Theorem 3.1 and Theorem 3.2. At last, in Section 4 we consider the case that the Ricci curvature is bounded from above by $3(c-h^2/n^2)$.

Authors would like to thank Professor Hisao Nakagawa for his advice and encouragement.

2. Local formulae.

Throughout this paper, we assume manifolds to be connected and geometric objects to be smooth.

Let (M, g) be a space-like hypersurface in an (n+1)-dimensional Lorentz space form $M_1^{n+1}(c)$. We choose a local field of orthonormal frames e_1, \dots, e_n on M adapted to the Riemannian metric g induced from the indefinite Riemannian metric on the ambient space, and $\omega_1, \dots, \omega_n$ denote the dual coframes on M. The connection forms ω_{ij} are characterized by the structure equations

(2.1)
$$\begin{cases} d\boldsymbol{\omega}_i + \sum \boldsymbol{\omega}_{ij} \wedge \boldsymbol{\omega}_j = 0, \quad \boldsymbol{\omega}_{ij} + \boldsymbol{\omega}_{ji} = 0, \\ d\boldsymbol{\omega}_{ij} + \sum \boldsymbol{\omega}_{ik} \wedge \boldsymbol{\omega}_{kj} = \boldsymbol{\Omega}_{ij}, \\ \boldsymbol{\Omega}_{ij} = -1/2 \sum R_{ijkl} \boldsymbol{\omega}_k \wedge \boldsymbol{\omega}_l, \end{cases}$$

where Ω_{ij} (resp. R_{ijkl}) denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor) of M. The second fundamental form α and the mean curvature H of M are denoted by

$$\alpha = -\sum h_{ij} \boldsymbol{\omega}_{ij} \boldsymbol{\omega}_{j} \boldsymbol{e}_{0}$$
, and $nH = \sum h_{ij} = h$,

respectively. Since α is symmetric tensor,

$$h_{ij} = h_{ji}$$

If we think about hypersurfaces with constant mean curvature H, we may assume that H is non-negative.

The Gauss equation, the Codazzi equation and the Ricci formulae for the second fundamental form and its covariant derivatives are given by

(2.2)
$$R_{ijkl} = c(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}) - (h_{il}h_{jk} - h_{ik}h_{jl}),$$

(2.3)
$$h_{ijk} - h_{ikj} = 0$$
,

(2.4)
$$h_{ijkl} - h_{ijlk} = -\sum h_{mj} R_{mikl} - \sum h_{im} R_{mjkl},$$

(2.5)
$$h_{ijklm} - h_{ijkml} = -\sum h_{ijk} R_{iilm} - \sum h_{ilk} R_{ijlm} - \sum h_{ijl} R_{iklm},$$

where h_{ijk} , h_{ijkl} and h_{ijklm} denote the components of the covariant derivatives $\nabla \alpha$, $\nabla \nabla \alpha$ and $\nabla^3 \alpha$ of α , respectively.

The components of the Ricci curvature Ric and the scalar curvature r are given by

(2.6)
$$R_{ij} = (n-1)c\delta_{ij} - hh_{ij} + \sum_{k} h_{ik}h_{kj},$$

(2.7)
$$r = n(n-1)c - h^2 + \sum_{i,j} h_{ij}^2.$$

Now we compute some local formulae under the assumption that the mean curvature of M is constant. For arbitrary fixed point p in M we choose a local frame field e_1, \dots, e_n such that

$$h_{ij} = \lambda_i \delta_{ij}$$

We define functions S and f_k as follows:

$$S = |\alpha|^2 = \sum \lambda_i^2, \qquad f_k = \sum \lambda_j^k.$$

The Laplacians of these functions and $|\nabla \alpha|^2$ are calculated by using suitably the equations (2.1)-(2.5).

Then we have the following equations:

(2.8)
$$\frac{1}{2}\Delta S = |\nabla \alpha|^2 + S(S+nc) - hf_3 - ch^2,$$

(2.9)
$$\frac{1}{2}\Delta |\nabla \alpha|^{2} = |\nabla \nabla \alpha|^{2} + \{S + (2n+3)c\} |\nabla \alpha|^{2} + \frac{3}{2} |\nabla S|^{2}$$

(2.10)
$$\frac{1}{3}\Delta f_{3} = -hf_{4} + (S+nc)f_{3} - chS + 2\sum \lambda_{i}h_{ijk}^{2},$$

(2.11)
$$\frac{1}{4}\Delta f_4 = -hf_5 + (S+nc)f_4 - chf_3 + 2\sum\lambda_i^2 h_{ijk}^2 + \sum\lambda_i\lambda_j h_{ijk}^2.$$

Next we only consider the case that n=3. In this case, the functions f_4 and f_5 are described by f_3 as follows:

 $-3h\sum\lambda_ih_{ijk}^2+3[\sum\lambda_i^2h_{ijk}^2-2\sum\lambda_i\lambda_jh_{ijk}^2],$

(2.12)
$$f_4 = \frac{1}{6}h^4 + \frac{4}{3}hf_3 + \frac{1}{2}S^2 - h^2S,$$

(2.13)
$$f_{5} = \frac{5}{6}(S+h^{2})f_{3} + \frac{1}{6}h^{5} - \frac{5}{6}h^{3}S.$$

Now we define functions μ_i (*i*=1, 2, 3) as $\mu_i = \lambda_i - H$. So we have

(2.15)
$$(\mu_1)^2 + (\mu_2)^2 + (\mu_3)^2 = S - \frac{h^2}{3},$$

(2.16)
$$B_3 \equiv (\mu_1)^3 + (\mu_2)^3 + (\mu_3)^3 = f_3 - hS + \frac{2}{9}h^3.$$

Next, assuming that S is constant, we get the following useful equations.

PROPOSITION 2.1. Let M be a 3-dimensional space-like hypersurface in a Lorentz space form $M_1(c)$ with constant mean curvature H=h/3. If S is constant, then we have

(2.17)
$$|\nabla \alpha|^2 = hB_3 - S^2 + (h^2 - 3c)S + ch^2 - \frac{2}{9}h^4,$$

(2.18)
$$|\nabla \nabla \alpha|^2 = -\frac{h}{2} \Delta B_3 + \frac{5}{3} \sum (\mu_i + \mu_j + \mu_k)^2 h_{ijk}^2$$

$$+11h {\textstyle\sum} \mu_i h_{\imath j k}{}^2 + 3(S-S_{\scriptscriptstyle 0})(S-S_{\scriptscriptstyle -})(S-S_{\scriptscriptstyle +})\,.$$

Here,

$$S_0 = \frac{h^2}{3}$$
 and

$$S_{\pm} = -3c + \frac{3}{4}h^2 \pm \frac{1}{4}\sqrt{h^4 - 8ch^2} = \frac{h^2}{3} + \frac{3}{8}\left(\frac{h}{3} \pm \sqrt{h^2 - 8c}\right)^2.$$

Proof. It follows from $\Delta S=0$ that the equation (2.8) implies

(2.19)
$$|\nabla \alpha|^2 = hf_3 - S(S+3c) + ch^2.$$

From this equation (2.19) combined with (2.16), we get the equation (2.17). Also it follows from $\nabla S=0$ that the equation (2.9) implies

(2.20)
$$|\nabla \nabla \alpha|^{2} = \frac{1}{2} \Delta |\nabla \alpha|^{2} - (S+9c) |\nabla \alpha|^{2} + 3hA - 3(B-2C),$$

where $A = \sum \lambda_i h_{ijk}^2$, $B = \sum \lambda_i^2 h_{ijk}^2$ and $C = \sum \lambda_i \lambda_j h_{ijk}^2$.

First we remark that replacing λ_i in the functions A, B and C with μ_i implies

(2.21)
$$A = \sum \mu_i h_{ijk}^2 + \frac{h}{3} |\nabla \alpha|^2,$$

(2.22)
$$B+2C = \frac{1}{3} \sum (\mu_i + \mu_j + \mu_k)^2 h_{ijk}^2 + 2h \sum \mu_i h_{ijk}^2 + \frac{h^2}{3} |\nabla \alpha|^2.$$

On the other hand, from the relations (2.10) and (2.12), we can describe the function A with f_3 :

$$6A = \Delta f_{\mathfrak{s}} - 3\left(S - \frac{4}{3}h^2 + 3c\right)f_{\mathfrak{s}} + \frac{3}{2}hS^2 + 3h(c - h^2)S + \frac{1}{2}h^5.$$

From this equation combined with (2.19), we get

(2.23)
$$2hA = \frac{1}{3}\Delta |\nabla \alpha|^2 - \frac{1}{3}(3S - 4h^2 + 9c)|\nabla \alpha|^2 - (S - S_0)(S - S_-)(S - S_+).$$

Also it follows from the equation (2.11) combined with (2.12), (2.13) and (2.19) that we have

$$2B + C = \frac{1}{4}\Delta f_4 + hf_5 - (S+3c)f_4 + chf_3$$

= $\frac{1}{3}h\Delta f_3 - \frac{1}{6}(3S-5h^2+18c)hf_3$
 $-\frac{1}{6}[3(S+3c)(S^2-2h^2S+h^4/3) + h^4(5S-h^2)]$

(2.24)
$$= \frac{1}{3} \Delta |\nabla \alpha|^2 - \frac{1}{6} (3S - 5h^2 + 18c) |\nabla \alpha|^2 - (S - S_0)(S - S_-)(S - S_+).$$

Then, from the equations (2.22) and (2.24), we get

$$(2.25) \quad 3(B-2C) = \frac{4}{3} \Delta |\nabla \alpha|^2 - \left(2S - \frac{5}{3}h^2 + 12c\right) |\nabla \alpha|^2 \\ -10h \sum \mu_i h_{ijk}^2 - \frac{5}{3} \sum (\mu_i + \mu_j + \mu_k)^2 h_{ijk}^2 - 4(S-S_0)(S-S_-)(S-S_+).$$

At last, computing $|\nabla \nabla \alpha|^2$ from (2.20) combined with (2.21), (2.23) and (2.25), we have proved the equation (2.18).

The following generalized maximum principle due to Omori [11] and Yau [14] will play a major part in this paper.

THEOREM 2.1 (cf. Omori [11] and Yau [14]). Let M be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below. Let F be a C^2 -function bounded from below on M, then for any $\varepsilon > 0$ there exists a point p in M such that

$$F(p) < \inf F + \varepsilon$$
, $|\nabla F|(p) < \varepsilon$, $\Delta F(p) > -\varepsilon$.

3. Proof of Theorems.

In this section, we consider that M is a 3-dimensional complete space-like hypersurface with constant mean curvature and constant scalar curvature in a Lorentz space form $M_1^4(c)$ and we prove the theorems stated in the introduction.

For that purpose, we need the proposition below.

PROPOSITION 3.1. Let M be a complete space-like hypersurface with constant mean curvature H=h/3 and constant scalar curvature. Also we define S and B_3 as in Section 2. Then S is constant, and the function B_3 satisfies

(3.1)
$$|B_3| \leq \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}.$$

When M is not totally umbilical, $B_3 \equiv \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$ if and only if M is congruent to a hyperbolic cylinder $H^1(c_1) \times M^2(c_2)$, and also, $B_3 \equiv -\frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$ if and only if M is congruent to $H^2(c_1) \times M^1(c_2)$.

Here we remark that if M has an umbilical point then M is totally umbilicalin in this case.

Proof. According to (2.7), we know that the scalar curvature r is constant if and only if S is constant.

The inequality (3.1) follows from (2.14) and (2.15) by solving the problem

for the conditional extremum (cf. Okumura [10]), and the equality holds if and only if $(\mu_1 - \mu_2)(\mu_1 - \mu_3)(\mu_2 - \mu_3) = 0$. Then the equality $|B_3| = \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$ means that

$$\mu_1 = \mu_2 = \pm \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3} \right)^{1/2}$$
 and $\mu_3 = \mp \frac{2}{\sqrt{6}} \left(S - \frac{h^2}{3} \right)^{1/2}$

except the order. So $|B_{\mathfrak{s}}| \equiv \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{\mathfrak{s}/2} \neq 0$ if and only if *M* has two distinct constant principal curvatures. Therefore this proposition proved by the use of a theorem due to Abe, Koike and Yamaguchi [1].

Here we describe our main theorem and its proof. This theorem characterizes the hyperbolic cylinder $H^1(c_1) \times M^2(c_2)$ in $M_1^4(c)$ when the constant mean curvature h/3 of complete space-like hypersurfaces in $M_1^4(c)$ satisfies $h^2 \ge 8c$. As explained in the introduction, it is known that complete space-like hypersurfaces with constant mean curvature h/3 in $M_1^4(c)$ are totally umbilical if $h^2 < 8c$ (cf. Akutagawa [3]). Throughout this section, we assume that $h^2 \ge 8c$. Then we can define real numbers S_- and S_+ by

$$S_{\pm} = \frac{h^2}{3} + \frac{3}{8} \left(\frac{h}{3} \pm \sqrt{h^2 - 8c}\right)^2.$$

THEOREM 3.1. The hyperbolic cylinder is the only complete space-like hypersurface with constant mean curvature h/3 and constant scalar curvature in $M_1^{(c)}$, whose squared norm S of the second fundamental form is greater than $S_{-} = \frac{h^2}{3} + \frac{3}{h} \left(\frac{h}{3} - \sqrt{h^2 - 8c}\right)^2$.

Proof. Since *M* is not totally umbilical under the assumption $S > S_{-} (\ge S_0)$, by virtue of Proposition 3.1, it is sufficient to show that $B_3 \equiv \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$. So we shall prove some contradictions when we assume that $\inf B_3 < \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$.

The function B_3 on M is smooth and bounded. Also the formula (2.6) implies that the Ricci curvature of M is bounded from below by $2c-h^2/4$. These means that Theorem 2.1 can be applied to the function B_3 . Let ε be any positive number that is small enough to be less than $\frac{1}{\sqrt{6}}\left(S-\frac{h^2}{3}\right)^{3/2}-\inf B_3(>0)$. There exists a point p in M, at which B_3 satisfies the following:

(3.2)
$$B_{s}(p) < \inf B_{s} + \varepsilon < \frac{1}{\sqrt{6}} \left(S - \frac{h^{2}}{3} \right)^{3/2}$$

$$(3.3) \qquad |\nabla B_3|(p) < \varepsilon, \qquad \Delta B_3(p) > -\varepsilon.$$

Our proof is divided into the following two cases:

(I) The case of that
$$\inf B_3 = -\frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3} \right)^{3/2}$$
,

(II) The case of that
$$\inf B_3 > -\frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$$
.

In the case of (I), it follows from (2.17) and (3.2) that

$$|\nabla \alpha|^2(p) < K + h\varepsilon$$
,

where

$$K = -\left(S - \frac{h^2}{3}\right) \left[\sqrt{S - \frac{h^2}{3}} + \frac{3}{2\sqrt{6}} \left(\frac{h}{3} - \sqrt{h^2 - 8c}\right)\right] \\ \times \left[\sqrt{S - \frac{h^2}{3}} + \frac{3}{2\sqrt{6}} \left(\frac{h}{3} + \sqrt{h^2 - 8c}\right)\right].$$

Since $S>S_{-}$, we have K<0. Accordingly, for an enough small positive number ε , there exists a point p in M such that $|\nabla \alpha|^2(p)<0$. This is a contradiction.

Next, we consider the case of (II). In this case, we make use of the equation (2.18) in Proposition 2.1.

Since h and S are constant, at any point q in M, we have

$$(3.4) h_{11k} + h_{22k} + h_{33k} = 0,$$

$$(3.5) \qquad \qquad \mu_1 h_{11k} + \mu_2 h_{22k} + \mu_3 h_{33k} = 0,$$

where k=1, 2, 3. Also we define the numbers $\delta_k(q)$ (k=1, 2, 3) by

(3.6)
$$[(\mu_1)^2 h_{11k} + (\mu_2)^2 h_{22k} + (\mu_3)^2 h_{33k}](q) = \delta_k(q).$$

From (3.2) and the assumption of (II), we have $|B_3|(p) \leq \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3}\right)^{3/2}$.

Then the proof of Proposition 3.1 asserts that $\mu_1(p)$, $\mu_2(p)$ and $\mu_3(p)$ are distinct number with each other. So, when the equations (3.4), (3.5) and (3.6) at p are considered as a system of equations with 3 unknowns $h_{11k}(p)$, $h_{22k}(p)$ and $h_{33k}(p)$, they can be solved uniquely:

$$h_{iik}(p) = a^{i}(p)\delta_{k}(p)$$
 (*i*, k=1, 2, 3).

Since (2.15) means that the coefficients of the system of equations are bounded, there is a positive number a such that $|a^{i}(p)| < a(i=1, 2, 3)$ for any point p in M satisfying (3.2) and (3.3). Furthermore, $|\nabla B_{3}|(p) < \varepsilon$ in (3.3) implies that $|\delta_{k}(p)| < \varepsilon$, and also,

(3.7)
$$h_{iik}(p) < a\varepsilon$$
 (i, k=1, 2, 3).

Accordingly, from this (3.7) and (2.14), we have positive constant numbers K_1

and K_2 such that

(3.8)

$$\left[\sum(\mu_i+\mu_j+\mu_k)^2h_{ijk}^2\right](p) < K_2\varepsilon^2$$

Then it follows from (2.18) combined with (3.3) and (3.8) that

 $\lceil \sum \mu_i h_{ik}^2 \rceil(p) < K_1 \varepsilon^2$,

$$|\nabla \nabla \alpha|^{2}(p) < 3(S-S_{0})(S-S_{-})(S-S_{+}) + \frac{h}{2}\varepsilon + \left(11hK_{1} + \frac{5}{3}K_{2}\right)\varepsilon^{2}$$

Since it is known that $S_0 \leq S \leq S_+$ by Ki, Kim and Nakagawa [9] and $S > S_$ from the assumption, $(S-S_0)(S-S_-)(S-S_+)$ is a negative constant number. Accordingly, for an enough small positive number ε , there exists a point p in M such that $|\nabla \nabla \alpha|^2(p) < 0$. This is a contradiction, too.

Hence, we get that $B_3 \equiv \frac{1}{\sqrt{6}} \left(S - \frac{h^2}{3} \right)^{3/2}$, and complete the proof of Theorem 3.1.

In a general case, we do not know whether or not there are examples which the squared norm S of the second fundamental form is in the region $S_0 < S \leq S_-$. However, when c > 0 and $h^2 \leq 9c$, we have a nonexistence theorem due to the second author and Nakagawa [6]: Let M be a complete space-like hypersurface with constant mean curvature H=h/3 in $S_1^i(c)$. If $h^2 \leq 9c$ and $\sup S < S_-$, then M is totally umbilical. Furthermore, when S is constant, we can prove nonexistence in the case of which $S \leq S_{-}$.

PROPOSITION 3.2. There are no complete space-like hypersurfaces with constant mean curvature H=h/3 and constant scalar curvature in $S_1^{+}(c)$, on which the squared norm S of second fundamental form satisfies that

- (1) $S_0 < S \leq S_-$ it $8c < h^2 \leq 9c$,
- (2) $S_0 < S < S_- (=S_+)$ if $h^2 = 8c$.

Proof. Let M be a complete space-like hypersurface in $S_{1}^{4}(c)$ satisfying the assumption of Proposition 3.2.

It follows from (2.17) combined with (3.1) that we get

(3.9)
$$|\nabla \alpha|^{2} \leq -S^{2} + (h^{2} - 3c)S + ch^{2} - \frac{2}{9}h^{4} + \frac{h}{\sqrt{6}} \left(S - \frac{h^{2}}{3}\right)^{3/2}$$
$$= -\left(S - \frac{h^{2}}{3}\right) \left[\sqrt{S - \frac{h^{2}}{3}} - \frac{3}{2\sqrt{6}} \left(\frac{h}{3} - \sqrt{h^{2} - 8c}\right)\right]$$
$$\times \left[\sqrt{S - \frac{h^{2}}{3}} - \frac{3}{2\sqrt{6}} \left(\frac{h}{3} + \sqrt{h^{2} - 8c}\right)\right].$$

Hence, we remark that if $h^2 \leq 9c$ then the condition $S \leq S_{-}$ implies

$$\sqrt{S-\frac{h^2}{3}} \leq \frac{3}{2\sqrt{6}} \left(\frac{h}{3} - \sqrt{h^2 - 8c}\right).$$

Then the fact $S_0 \leq S \leq S_+$ means that the right side of the above inequality (3.9) is non-positive. Accordingly, in the inequality (3.9), the equality has to hold. So we get

$$B_{3} \equiv \frac{1}{\sqrt{6}} \left(S - \frac{h^{2}}{3} \right)^{3/2}.$$

By virtue of Proposition 3.1, this means that M is either a totally umbilical hypersurface or a hyperbolic cylinder. However, the assumption $S_0 < S < S_+$ implies that M is not these standard models by the theorem due to Ki, Kim and Nakagawa [9].

Combined with Theorem 3.1 and Proposition 3.2, we can completely classify complete space-like hypersurfaces with constant mean curvature H=h/3 and constant scalar curvature in $S_1(c)$ if $h^2 \leq 9c$.

THEOREM 3.2. Let M be a complete space-like hypersurface with constant mean curvature H=h/3 and constant scalar curvature in $S_1^4(c)$. If $h^2 \leq 9c$, then M is congruent to \mathbb{R}^3 , $S^3(c_1)$ or a hyperbolic cylinder $H^1(c_1) \times S^2(c_2)$.

Proof. It follows from Theorem 3.1 and Proposition 3.2 that M must be a totally umbilical hypersurface or a hyperbolic cylinder. In $S_1^4(c)$, a complete totally umbilical space-like hypersurface is congruent to $H^3(c_2)$, R^3 or $S^3(c_1)$. However we can easily check that the hypersurfaces in the form of $H^3(c_2)$ do not satisfy the assumption $h^2 \leq 9c$.

4. Hypersurfaces with Ricci curvature bounded from above.

In this section we study that M is a 3-dimensional complete space-like hypersurface in a Lorentz space form $M_1^4(c)$ with constant mean curvature and with Ricci curvature bounded from above.

THEOREM 4.1. The totally umbilical hypersurface $S^3(c_1)$ in a de-Sitter space $S_1^4(c_2)$ ($c_2 > c_1 > 0$) is the only complete space-like hypersurface in a Lorentz space form $M_1^4(c)$ with constant mean curvature H whose Ricci curvature is bounded from above by some number δ less than $3(c-H^2)$.

Proof. Let M be a 3-dimensional complete space-like hypersurface with constant mean curvature H in a Lorentz space form $M_1^4(c)$. Assume that the Ricci curvature is bounded from above by some number δ less than $3(c-H^2)$.

From (2.8) we have

$$\frac{1}{2}\Delta S = |\nabla \alpha|^2 + S(S+3c) - hf_3 - ch^2$$
$$= |\nabla \alpha|^2 + \frac{1}{2} \sum (c - \lambda_i \lambda_j) (\lambda_i - \lambda_j)^2$$
$$= |\nabla \alpha|^2 + \frac{1}{2} \sum R_{ijji} (\lambda_i - \lambda_j)^2.$$

On the other hand, since M is a 3-dimensional submanifold, its Weyl conformal curvature tensor vanishes, i.e.,

$$R_{ijkl} = R_{il}\delta_{jk} - R_{ik}\delta_{jl} + R_{jk}\delta_{il} - R_{jl}\delta_{ik} - \frac{r}{2}(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}).$$

Hence we get

$$R_{ijji} = R_{ii} + R_{jj} - \frac{r}{2}$$

for any distinct indices i and j. By $R_{11}+R_{22}+R_{33}=r$, we have

$$R_{ijji} = -R_{kk} + \frac{r}{2}$$

for any distinct indices. Hence we get

$$\frac{1}{2}\Delta S = |\nabla \alpha|^2 + \frac{1}{2}\sum \left(\frac{r}{2} - R_{kk}\right)(\lambda_i - \lambda_j)^2$$
$$\geq \frac{1}{4}(r - 2\delta)\sum (\lambda_i - \lambda_j)^2$$
$$= \frac{1}{2}(3S - h^2)(6c - h^2 + S - 2\delta)$$
$$\geq \frac{1}{2}(3S - h^2)\left(6c - \frac{2}{3}h^2 - 2\delta\right).$$

Applying Theorem 2.1 to the function F=-S, we have

$$0 \ge \frac{1}{2} (3 \sup S - h^2) \Big(6c - \frac{2}{3} h^2 - 2\delta \Big).$$

Hence sup $S \leq (1/3)h^2$. Thus M is totally umbilical.

On the other hand, the Ricci curvature tensor of a totally umbilical hypersurface $M^{\mathfrak{s}}(c')$ in $M_{\mathfrak{t}}(c)$ is given by $R_{\mathfrak{s}\mathfrak{s}}=2c'\delta_{\mathfrak{s}\mathfrak{s}}=2(c-H^2)\delta_{\mathfrak{s}\mathfrak{s}}$. In order for the totally umbilical hypersurface to satisfy the assumption, $c'=c-H^2$ must be positive.

We have completed the proof of Theorem 4.1.

References

- [1] K. ABE, N. KOIKE AND S. YAMAGUCHI, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), 123-136.
- R. AIYAMA, On complete space-like surfaces with constant mean curvature in a Lorentzian 3-space form, Tsukuba J. Math. 15 (1991), 235-247.
- [3] K. AKUTAGAWA, On space-like hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1989), 3-19.
- [4] E. CALABI, Examples of Bernstein problems for some nonlinear equations, Proc. Pure Appl. Math. 15 (1970), 223-230.
- [5] Q.M. CHENG, Complete space-like submanifolds in de Sitter space with parallel mean curvature vector, Math. Z. 206 (1991), 333-339.
- [6] Q.M. CHENG AND H. NAKAGAWA, Totally umbilical hypersurfaces, Hiroshima J. Math. 20 (1990), 1-10.
- [7] S.Y. CHENG AND S.T. YAU, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. 104 (1976), 407-419.
- [8] T. ISHIHARA AND F. HARA, Surfaces of revolution in the Lorentzian 3-space, J. Math. Tokushima Univ. 22 (1988), 1-13.
- [9] U-H. KI, H.J. KIM AND H. NAKAGAWA, On space-like hypersurfaces with constant mean curvature of a Lorentz space form, Tokyo J. Math. 14 (1991), 205-216.
- [10] M. OKUMURA, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 86 (1969), 367-377.
- [11] H. OMORI, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
- [12] J. RAMANATHAN, Complete spacelike hypersurfaces of constant mean curvature in a de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-359.
- [13] A.E. TREIBERGS, Entire hypersurfaces of constant mean curvature in Minkowski 3-space, Invent. Math. 66 (1982), 39-56.
- [14] S.T. YAU, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-208.

Institute of Mathematics, University of Tsukuba, 305 Ibaraki, Japan

DEPARTMENT OF MATHEMATICS, Northeast University of Technology, Shenyang Liaoning 110006, China