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COMPLETE SPACE-LIKE HYPERSURFACES

WITH CONSTANT MEAN CURVATURE

IN A LORENTZ SPACE FORM OF DIMENSION 4

BY REIKO AIYAMA AND QING-MING CHENG*

Abstract

On complete space-like hypersurfaces with constant mean curvature in a
Lorentz space form of dimension 4, we study the case that the scalar curva-
ture is constant and that the Ricci curvature is bounded from above.

1. Introduction.

Let 72?+1 be an (n-fl)-dimensional Mίnkowski space and S?+1(c)(resp. £Γ?+1(c))
be an (w + l)-dimensional de Sitter space (resp. anti-de Sitter space) of constant
curvature c. Considered collectively, a Lorentz manifold of these kinds is called
a Lorentz space form of constant curvature cy which is denoted by M?+1(c).

Since Calabi [4] and S. Y. Cheng and Yau [7] proved the Bernstein type
theorem in i2?+1, complete space-like hypersurfaces with constant mean curvature
in a Lorentz space form Mf+1(c) have been studying by many mathematicians.
On the other hand, space-like hypersurfaces with constant mean curvature in
spacetimes get interested in relativity theory.

It is well known that totally umbilical hypersurfaces Mn(cr) (cf <c) and hy-
p e r s u r f a c e s in t h e f o r m of Hk{cι)xMn~k(c2) [_k — l, •••, n — 1, C i < 0 , c(c1+ci)=CιCi']
are standard models of complete space-like hypersurfaces with constant mean
curvature in M?+1(c). Here Mn{c) means an n-dimensional space form with
constant curvature c, that is, a Riemannian sphere Sn(c), a hyperbolic space
Hn(c) or a Euclidean space Rn.

Let M be a complete space-like hypersurface with constant mean curvature
h/n in M?+1(c). In a de Sitter space S?+1(c), M is nothing but totally umbilical
if n = 2 and /ι2<^4c or if n>2and /z2<4(n — l)c (cf. Akutagawa [3], Ramanathan
[12] or Cheng [5]).

In the other case, there are many examples in M?+1(c) which are not standard
models (cf. Treibergs [13], Ishihara and Hara [8], Akutagawa [3] and others).
But we have known some characterizations of standard models with respect to
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the squared norm 5 of the second fundamental form a on M. We define num-
bers So, S- and S+ by S0=h2/n and S± = -nc+{nh2±(n-2Wh*-4(n^l)ch2}/
2(n — 1), respectively. Then SQ£S-^S+. In [9], Ki, Kim and Nakagawa proved
that

where S^S+φSQ only when M is a hyperbolic cylinder H1(cί)xMn~\c2). Also
we remark that S = S 0 only when M is a totally umbilical hypersurface Mn(cf)
in M?+1(c). Furthermore, in a de Sitter space S?+1(c), the second author and
Nakagawa [6] proved that if h2^n2c and supS<S_ then M is nothing but a
totally umbilical hypersurface.

In the case of n=2, the hyperbolic cylinder H1(cί)xM1(c2) is the only com-
plete space-like surface in M\{c) with constant mean curvature h/2 on which
S satisfies inf S>S0 (cf. Aiyama [2]).

However, in the case of n = 3 , we have an example on which S is constant
and satisfies S0<S<S+, that is, H^cJxM^d) in M\(c) (c^O) satisfies S=S-
So the first purpose of this paper is to study the 3-dimensional complete space-
like hypersurfaces with constant mean curvature and constant S in Lorentz
space forms.

THEOREM 3.1. Let M be a complete space-like hypersurface with non-zero
constant mean curvature and constant scalar curvature in M\(c). If S>S- then
M is nothing but a hyperbolic cylinder.

In particular, we can completely classify complete space-like hypersurfaces
with constant mean curvature and constant scalar curvature in S\(c) if h2^9c
(Theorem 3.2).

The paper is organized as follows. In Section 2 we give the basic concepts
and prove some local formulae. In Section 3 we study the 3-dimensional com-
plete space-like hypersurfaces with constant mean curvature and constant scalar
curvature, and prove Theorem 3.1 and Theorem 3.2. At last, in Section 4 we
consider the case that the Ricci curvature is bounded from above by 3(c— h2/n2).

Authors would like to thank Professor Hisao Nakagawa for his advice and
encouragement.

2. Local formulae.

Throughout this paper, we assume manifolds to be connected and geometric
objects to be smooth.

Let (M, g) be a space-like hypersurface in an (n+l)-dimensional Lorentz
space form M?+1(c). We choose a local field of orthonormal frames elf •••, en

on M adapted to the Riemannian metric g induced from the indefinite Rieman-
nian metric on the ambient space, and ωu •••, ωn denote the dual coframes on
M. The connection forms ωi3 are characterized by the structure equations
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(2.1)

where Ωx] (resp. Rtjki) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor) of M. The second fundamental
form a and the mean curvature H of M are denoted by

a — — Yιhιjωiωje{), and nH—^hu=h,

respectively. Since a is symmetric tensor,

If we think about hypersurfaces with constant mean curvature H, we may as-
sume that H is non-negative.

The Gauss equation, the Codazzi equation and the Ricci formulae for the
second fundamental form and its covariant derivatives are given by

(2.2) RXJki^c{δilijk"itkiJι)"{hilhjk'-hikhJι)9

(2.3) htJk-hikJ=O,

(2.4) hljki — hljik = — yΣιh'mjRmiki — yΣιhιmRmjki,

(2.5) hijklm~htjkml — ~ΣhtjkRtilm~ΈjhitkRtjlm--Ί!ίjhijtRtklm,

where hιjk, hιjkι and hιjkιm denote the components of the covariant derivatives
Vα, VVα and Ψa of a, respectively.

The components of the Ricci curvature Ric and the scalar curvature r are
given by

(2.6) Rx,=(n

(2.7) r^nίn

Now we compute some local formulae under the assumption that the mean
curvature of M is constant. For arbitrary fixed point p in M we choose a local
frame field eίf •••, en such that

We define functions S and fk as follows:

The Laplacians of these functions and | 7 α | 2 are calculated by using suitably
the equations (2.1)-(2.5).
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Then we have the following equations:

(2.8) ^AS= \la \2+S(S+nc)-hf2-ch2,

(2.9) • | |

(2.10) j

(2.11) j

Next we only consider the case that M = 3 . In this case, the functions / 4

and / 5 are described by / , as follows:

(2.12) /4=-ί/ι4+|-/ι/s+

(2.13) fs=j(S+h2)f3+jj

Now we define functions μx (ί=l, 2, 3) as μt=λt—H. So we have

(2.14) /ii+/ii+jtι.=O,

(2.15) ( ) 2 + ( ) 2 + ( ) 2 5

(2.16) j

Next, assuming that S is constant, we get the following useful equations.

PROPOSITION 2.1. Let M be a 2,-dimensional space-like hypersurface in a
Lorentz space form M\(c) with constant mean curvature H=h/2>. If S is constant,
then we have

(2.17) |

(2.18)

Here,

So=-g- and
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Proof. It follows from ΔS=0 that the equation (2.8) implies

(2.19) \la\2=hfz-S(S+3c)+ch2.

From this equation (2.19) combined with (2.16), we get the equation (2.17).
Also it follows from ΊS=0 that the equation (2.9) implies

(2.20) I Wα 12= y Δ | Vα 12-(S+9c) | Vα 12+3hA-3{B-2C),

where A=Σ>λihιjk

2, B=Σiλι

2htjk

2 and C ^ Σ W A ; / .
First we remark that replacing λt in the functions A, B and C with μτ

implies

(2.21) |

(2.22)

On the other hand, from the relations (2.10) and (2.12), we can describe the
function A with / s :

From this equation combined with (2.19), we get

(2.23) 2hA=jA\la\2-j(3S-4h2+9c)\la\2-(S-S0)(S-S-)(S--S+).

Also it follows from the equation (2.11) combined with (2.12), (2.13) and
(2.19) that we have

(2.24) = Δ | 7 α |

Then, from the equations (2.22) and (2.24), we get
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(2.25)

At last, computing |VVα|2 from (2.20) combined with (2.21), (2.23) and (2.25),
we have proved the equation (2.18). •

The following generalized maximum principle due to Omori [11] and Yau
[14] will play a major part in this paper.

THEOREM 2.1 (cf. Omori [11] and Yau [14]). Let M be an n-dimensional
complete Riemannian manifold whose Ricci curvature is bounded from below. Let
F be a C2-function bounded from below on M, then for any ε>0 there exists a
point p in M such that

\lF\(p)<ε, AF(p)>-ε.

3. Proof of Theorems.

In this section, we consider that M is a 3-dimensional complete space-like
hypersurface with constant mean curvature and constant scalar curvature in a
Lorentz space form M\{c) and we prove the theorems stated in the introduction.

For that purpose, we need the proposition below.

PROPOSITION 3.1. Let M be a complete space-like hypersurface with constant
mean curvature H—hβ and constant scalar curvature. Also we define S and Bs

as in Section 2. Then S is constant, and the function BΆ satisfies

(3.1) l β

1 / h2 y/2

When M is not totally umbilical, 5 3 Ξ — — ^ ( S — r - ) if and only if M is con-

^ 1 / /z
gruent to a hyperbolic cylinder H1(c1)XM2(c2), and also, B3 = τ=(S ^

V 6 ^ o
if and only if M is congruent to H2(cι)xMι(c2).

Here we remark that if M has an umbilical point then M is totally umbil-
icalin in this case.

Proof. According to (2.7), we know that the scalar curvature r is constant
if and only if S is constant.

The inequality (3.1) follows from (2.14) and (2.15) by solving the problem
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for the conditional extremum (cf. Okumura [10]), and the equality holds if and
1 / h2 \3 / 2

only if (μ1-μ2)(μι-μ3)(μ2-μ2)=0. Then the equality |J38 | = — = ^ S ^-J

means that

1 / o /z2\i/2

* = * = ± v τ ( s - χ ) a n d μ^
I / Z^2 \ 3/2

except the order. So | £ 8 | = — = ( S — — ) ^0 if and only if Mhas two distinct
V 6 v o /

constant principal curvatures. Therefore this proposition proved by the use of
a theorem due to Abe, Koike and Yamaguchi [1]. •

Here we describe our main theorem and its proof. This theorem charac-
terizes the hyperbolic cylinder Hι(cί)xM2(c2) in M\(c) when the constant mean
curvature h/3 of complete space-like hypersurfaces in M[(c) satisfies h2^Sc.
As explained in the introduction, it is known that complete space-like hyper-
surfaces with constant mean curvature h/3 in M\(c) are totally umbilical if
h2<Sc (cf. Akutagawa [3]). Throughout this section, we assume that h2>Sc.
Then we can define real numbers S_ and S+ by

THEOREM 3.1. The hyperbolic cylinder is the only complete space-like hy-
persurface with constant mean curvature h/3 and constant scalar curvature in
M\(c), whose squared norm S of the second fundamental form is greater than

Proof. Since M is not totally umbilical under the assumption S>S-(>S0),
1 / h2 \3 / 2

by virtue of Proposition 3.1, it is sufficient to show that B9=—τ=-JS—^-) .
V 6 ^ o /

So we shall prove some contradictions when we assume that inf J53<

The function B3 on M is smooth and bounded. Also the formula (2.6) im-
plies that the Ricci curvature of M is bounded from below by 2c—h2/4. These
means that Theorem 2.1 can be applied to the function B3. Let ε be any positive

1 / /j2 v s/2

number that is small enough to be less than —τ={S—q~) —inf 53(>0). There

exists a point p in M, at which B3 satisfies the following:

1 / h2 \3/2

(3.2)

(3.3) |7β, | (/0<e,
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Our proof is divided into the following two cases:

1 /
( I ) The case of that inf BS=--7=:(S—

V 6 v

1 / /
(Π) The case of that inf 5 8 > - - ^ = ( S - -

In the case of ( I ) , it follows from (2.17) and (3.2) that

\la\\p)<K+hε,
where

Since S>S-, we have K<0. Accordingly, for an enough small positive
number ε, there exists a point p in M such that |7α|2(/?)<0. This is a con-
tradiction.

Next, we consider the case of (Π). In this case, we make use of the equa-
tion (2.18) in Proposition 2.1.

Since h and S are constant, at any point q in M, we have

(3.4) /ϊll* + /*22* + /*33*=0,

(3.5) jMiΛn* 4-μ2/i22* +jκ8Λss* = 0 ,

where &=1, 2, 3. Also we define the numbers δk{q) (k=l, 2, 3) by

(3.6) L(μύ2h

1 / /Z2 \3/2

From (3.2) and the assumption of (Π), we have \Bt\(p)<—=(S—^-) .
Λ/ 6 \ o /

Then the proof of Proposition 3.1 asserts that μάp), μ2(p) and μz{p) are distinct
number with each other. So, when the equations (3.4), (3.5) and (3.6) at p are
considered as a system of equations with 3 unknowns hnk(p), h22k{p) and hssk(p),
they can be solved uniquely:

huk(P)=a\p)dk(p) (/, 6=1,2,3).

Since (2.15) means that the coefficients of the system of equations are bounded,
there is a positive number a such that \aι{p)\<a(i—l, 2, 3) for any point p in
M satisfying (3.2) and (3.3). Furthermore, | 7 £ 8 | ( / 0 < e in (3.3) implies that
\δk(p)\<ε, and also,

(3.7) hitk(P)<aε (i, 6 = 1 , 2 , 3 ) .

Accordingly, from this (3.7) and (2.14), we have positive constant numbers Kx
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and K2 such that

(3.8)

Then it follows from (2.18) combined with (3.3) and (3.8) that

Since it is known that S0^S^S+ by Ki, Kim and Nakagawa [9] and S>S-
from the assumption, (S—S0)(S—S-XS—S+) is a negative constant number.
Accordingly, for an enough small positive number ε, there exists a point p in
M such that |VVα|2(/>)<0. This is a contradiction, too.

1 / Λ2 \3 / 2

Hence, we get that B ^ ί S J

3.1.

1 / Λ2 \3 / 2

Hence, we get that B^—~-ί S—~-J , and complete the proof of Theorem

In a general case, we do not know whether or not there are examples which
the squared norm 5 of the second fundamental form is in the region S0<S^S-.
However, when c>Q and h2<9c, we have a nonexistence theorem due to the
second author and Nakagawa [6] : Let M be a complete space-like hypersurface
with constant mean curvature //=λ/3 in S\{c). If h2^9c and supS<S_, then
M is totally umbilical. Furthermore, when S is constant, we can prove non-
existence in the case of which S<S-.

PROPOSITION 3.2. There are no complete space-like hypersurfaces with con-
stant mean curvature H=h/3 and constant scalar curvature in Si(c), on which the
squared norm S of second fundamental form satisfies that

(1) S0<S£S- if 8c<h2£9c,

(2) S0<S<S..(=S+) if h2=:Sc.

Proof. Let M be a complete space-like hypersurface in S\(c) satisfying the
assumption of Proposition 3.2.

It follows from (2.17) combined with (3.1) that we get

(3.9) | 7 α | 2 ^ _

Hence, we remark that if h2<L9c then the condition 5^S_ implies
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Then the fact S0<S<S+ means that the right side of the above inequality (3.9)
is non-positive. Accordingly, in the inequality (3.9), the equality has to hold.
So we get

By virtue of Proposition 3.1, this means that M is either a totally umbilical
hypersurface or a hyperbolic cylinder. However, the assumption S0<S<S+
implies that M is not these standard models by the theorem due to Ki, Kim
and Nakagawa [9], •

Combined with Theorem 3.1 and Proposition 3.2, we can completely classify
complete space-like hypersurfaces with constant mean curvature H=h/3 and
constant scalar curvature in S{(c) if h2<^9c.

THEOREM 3.2. Let M be a complete space-like hypersurface with constant
mean curvature H=h/3 and constant scalar curvature in S\{c). If h2^9c, then
M is congruent to R\ S\d) or a hyperbolic cylinder H1(cί)XS2(c2)'

Proof. It follows from Theorem 3.1 and Proposition 3.2 that M must be a
totally umbilical hypersurface or a hyperbolic cylinder. In S\(c), a complete
totally umbilical space-like hypersurface is congruent to H\c2), R3 or S3(ci).
However we can easily check that the hypersurfaces in the form of H\c2) do
not satisfy the assumption h2^9c. •

4. Hypersurfaces with Ricci curvature bounded from above.

In this section we study that M is a 3-dimensional complete space-like hy-
persurface in a Lorentz space form M\(c) with constant mean curvature and
with Ricci curvature bounded from above.

THEOREM 4.1. The totally umbilical hypersurface S\cλ) in a de-Sitter space
Sί(c2) (c2>Cί>0) is the only complete space-like hypersurface in a Lorentz space
form M\(c) with constant mean curvature H whose Ricci curvature is bounded
from above by some number d less than 3(c—H2).

Proof. Let M be a 3-dimensional complete space-like hypersurface with
constant mean curvature H in a Lorentz space form M\(c). Assume that the
Ricci curvature is bounded from above by some number δ less than 3(c—H2).

From (2.8) we have
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z

On the other hand, since M is a 3-dimensional submanifold, its Weyl conformal
curvature tensor vanishes, i.e.,

T

2

Hence we get
T

2

for any distinct indices i and /. By Rn+R22+Rn=r, we have
T

for any distinct indices. Hence we get

Applying Theorem 2.1 to the function F=—S, we have

Hence supS^(l/3)/ι2. Thus M is totally umbilical.
On the other hand, the Ricci curvature tensor of a totally umbilical hy-

persurface M3(c0 in M{(c) is given by Rx3—2cfδu=2{c-Ή2)δiΓ In order for the
totally umbilical hypersurface to satisfy the assumption, cf—c—H2 must be
positive.

We have completed the proof of Theorem 4.1.
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