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BY JIONGMIN YONG

Abstract

A unified existence theory of optimal controls for general semilinear
evolutionary distributed parameter systems is established under the framework
of mild (or weak) solutions for evolution equations. The theory applies to
optimal control problems with the state equations being parabolic, hyperbolic
partial differential equations and ordinary retarded differential equations.
The approach also applies to problems governed by elliptic partial differential
equations as well as variational inequalities.

§ 1. Introduction.

In [2], an existence theory for the optimal controls of semilinear abstract
evolutionary distributed parameter systems was established under the framework
of strong solutions for evolution equations (see the references cited therein also).
It was asked whether one can establish a similar theory under the framwork
of mild (or weak) solutions for evolution equations. In [27], the author started
to investigate such a problem for time optimal control problem of semilinear
distributed parameter systems. The purpose of this paper is to continue the
investigation and establish a unified existence theory of optimal controls for
evolutionary semilinear distributed parameter systems under the framework of
mild solutions for evolution equations. Also, the same approach applies to
elliptic variational inequalities.

The essence of existence theory of optimal controls is to find conditions
(as weak as possible), under which some minimizing sequence of admissible
pairs is convergent in the set of all admissible pairs (then the existence of an
optimal pair follows from the sort of lower semi-continuity of the cost functional).
This convergence usually follows from three conditions: 1) the relative com-
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pactness of trajectories in some function spaces; 2) the existence of mea-
surable selections for some multifunctions and 3) the convexity condition
on some relevant set-valued functions. In finite dimensional case, 1) and 2)
follow from some (very weak) conditions ([5, 14]). Thus, essentially, the only
condition imposed is the convexity condition, which seems to be indispensible in
general. In the case that the control domain depending on the state, the con-
vexity condition is given in terms of the so-called Cesari property (or the pro-
perty (Q) [5, 10, 14]). In infinite dimensional case, to obtain a similar theory,
the convexity condition still has to be imposed, of course. Again, in the case
that the control domain depending on the state, such a convexity condition is
imposed in terms of the Cesari property. On the other hand, some relevant
measurable selection theorems for multifunctions valued in general (separable)
metric spaces (including infinite dimensional separable Banach spaces) are still
available ([16, 26]). Thus, the only thing left is the relative compactness of the
trajectories in some functions spaces. This issue should be treated very carefully
due to the infinite dimensionality nature of the space. It is very important to
know that in using the Cesari property, we need the strong convergence of the
trajectories. To archieve this, we have to impose sort of compactness conditions,
one way or another. It is important that these conditions should be satisfied
by the problems governed by usual concrete distributed parameter systems, say
elliptic, parabolic, hyperbolic partial differential equations and retarded ordinary
differential equations, etc. It turns out that our approarch not only covers the
systems governed by mentioned equations, but also extends to some variational
inequalities.

We should note that the problem studied in [6] basically is of elliptic partial
differential system type because the highest order spatial derivative is solved
explicitly. Also, the solution to the state equation was understood as a strong
solution. It seems to us that there may be certain overlaps of our results with
those in [12]. But, for the evolution problems, we use the semigroup and mild
solution approach which is different from those in [12] and for stationary
problem, we discuss variational inequalities which was not mentioned in [12].
Recently, in [19, 21], also the strong solution was adopted in studying the
similar problem for nonlinear evolution systems. For some other relevant results,
we refer the readers to [1, 4, 10, 11, 13, 15, 17, 18, 20, 24, 26].

§ 2. Evolution Systems with Compact Semigroups.

In this section, we establish the existence of optimal controls for semilinear
evolutionary distributed parameter systems in which the semigroup involved is
compact. This is the case for systems governed by semilinear parabolic partial
differential equations with proper boudary conditions or by ratarded ordinary
differential equations.
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§ 2.1. Statement of the Control Problem.
Let us start with the following assumptions.
(PI) X is a reflexive Banach space, U is a Polish space ([8]) with metric

d, and 7 > 0 is a constant.
(P2) Operator A: g)(A)cX-j>X generates a compact semigroup eΛt on X.
(P3) Mapping / : [0, T^xXxU-^X is Borel measurable in (ί, x, M) and

continuous in {x, u) for almost all ίe[0, T] Mapping /°: [0, 7]xZx/7-># is
Borel measurable in (t, x, u), lower semicontinuous in (x, u) and there exists a
constant K^O, such that

(2.1) f\t, x, u)^-K, V(ί, x, u)e[0, T ] x Z x ί / .

(P4) Multifunction Z7: [0, 7]xZ->2 ί / is pseuedo-continuous (see Appendix
for definitions and relevant results about multifunctions).

(P5) QczX is closed and ΩdXxX is bounded and weakly closed.
Next, we let

^[0, 7]={w: [0, 7]->ί/|w( ) is measurable}.

Any element in ^[0, T] is called a control (on [0, T]). The evolution system
we are interested in is the following

(2.2) x(t)=Ax(t)+f(t, x(ί)} u(0), ίe[0, T] .

As usual, a (mild) solution x(>) of (2.2) is defined as a solution of the following
integral equation:

(2.3) x(0=e i l£Jc(0)+(Vc£-T)/(r, x(r), u(r))dr, ίe[0, 7 ] .
Jo

Any solution JC( ) of (2.3) is referred as a trajectory of the evolution system
corresponding to initial state x(0) and control M( )

D E F I N I T I O N 2.1. A pair (x(-), u(-)) is said to be semi-admissible if (2.3) is
satisfied and

(2.4) u(t)<=Γ(t, JC(O), a .e. i e [ 0 , 7 ] .

The pair is said to be admissible if it is semi-admissible and

(2.5) (JC(O), X{T))ΪΞΩ,

(2.6) x(t)t=Q ί(=[0, 7 ] ,

(2.7) /»(., x( ), «( ) ) G ^ ( 0 , 7).

In the case (x( )» M( )) is semi-admissible (admissible, resp.), we refer %(•), M( )
and (Λ:( ), W( )) semi-admissible (admissible) trajectory, control and pair, respec-
tively. Hereafter, we let
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C([0, T] ; Z)X^[0, T] | (*(•), M( )) is semi-admissible},

0, T] ; X)i3w( )e<U[0, T], such that (*(•), w

,= {w(.))€E<U[0, r] |3 λ '( .)eC([0, 7 ] ; X), such that (*(•),

We define J α d , Taa and ^ ^ similar to Js, 2CS and <US replacing semi-admis-
sibility by admissibility. Next, we introduce the cost functional to be of the
following Lagrange form:

(2.8)

Then, our optimal control problem can be stated as follows.

PROBLEM P. Find (*(•), u(-))(Ξjad, such that

(2.9) /(*(•), «(•))= min /(*(•), u(-)).
(.x(.'"), U(.' ) )GJIad

If such a pair (£(•)> ϋ( )) exists, we call x{ ), ΰ(-) and (x('), «(•)) an optimal
trajectory, control and pair, respectively.

For simplicity, in this paper, we only consider the fixed duration problem.
Our approach also applies to the case with non-fixed duration problem (see [27]
for time optimal control problem). We should note that unlike in the finite
dimensional case, the non-fixed duration problem can not be simply transformed
to a fixed duration one (as in [5]). Also, our approach applies to problems
with Mayer or Bolza type cost functionals.

§ 2.2. Cesari Property.
Let us recall the following.

DEFINITION 2.2. ([5, 14]) Let Y be a Banach space and Z be a metric
space. Let Λ: Z-*2Y be a multifunction. We say Λ possesses the Cesari pro-
perty at z^Z, if

(2.10) n
<5>o

where ΈδD stands for the closed convex hull of the set D and ϋ2δ(z0) is the δ-
open neighborhood of the point z0. If A has the Cesari property at every point
ZGΞZ, we simply say that A has the Cesari property on Z.

PROPOSITION 2.3. Let Y be a Banach space and Z be a metric space. Let
A: Z—>2Y be upper sernicontinuous, convex and closed valued. Then, A has the
Cesari property on Z.

Proof. Let z^Z be fixed. For any ε>0, there exists a δ>0 such that

(2.11)
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Since Λ(z0) is convex, so is tns(A(z0)). Thus,

(2.12)

then, it follows that

(2.13) Π cδΛ(mfao))c: Π m.(Λ(zo))=A(zo)=Λ(zo),
δyo ε>0

which proves our proposition. D

Now, let us introduce the following set

β{t, x)={(y°, y)s=RxX\y°^f\t, x, u), y = f(t, x, u), u^Γ{t, x)},
(2.14)

V(ί, %)e=[0, T ] x l .

In the proof of the existence of optimal pairs for Problem P, the following
hypothese will play a cruicial role.

(Pβ) For almost all fe=[O, T] , the map β{t, •): X->2RxX has the Cesari
property on Q.

Following result gives a sufficient condition ensuring (P6).

PROPOSITION 2.4. Let the following hold
(P3') For almost all fe[0, T ] , the map f(t, , •) is continuous uniformly in

u^U and f°(t, , •) is lower semicontinuous uniformly in u^U, i.e., for any
given X E I and any ε>0, there exists a σ = σ(x)>0, such that whenever x''e
7lσ(x) and d(u, u')<σ, one has

( \f(f, xf, u')-f(t, x, u)\<ε,
(2.15)

I f\t, x',u')>f\t, xy u)-ε.

(P40 For almost all f e [ 0 , T ] , the map Γ{t, •): X->2 ί / *s M/>/)er semicon-

tinuous on X.
Then, for almost all fe[0, T] , <?(ί, •) /zαs the Cesari property on X if and only
if for almost all ί e [0 , T] , ίΛe seί <f?(ί, x) ŝ convex and closed.

Remark 2.5. The above proposition looks very similar to the result of [5,
pp. 72-74] for finite dimensional situation. However, here, we are in infinite
dimensional space and we have not assumed any compactness! In some sense,
our result can be regarded as an improvement of the one just mentioned. We
will see that the proof given below is different from that given in [5].

Proof of Proposition 2.4. Let fe[0, T] be given such that (P3') and (P4')
hold at this t and let X G J be fixed. By (P3;), for any ε>0, there exists a
σ=σ(x)>0, such that whenever x'(=mσ(x) and d(u, u')<σ, (2.15) holds. Next,
by (P4'), we can find 0<δ=δ(x)<σ, such that
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(2.16) Γ{t,m

Then, for any (yt y')ee(t, Jli(x)), there exist an xδeJlg(x) and a uδ^Γ(t, xs)
amσ(Γ(t, x)), such that

ί yfefV, xs, us),
(2.17)

I / = / ( * , χ\ uδ).

Then, it is clear that there exists a u^Γ(t, x) with d{uδ, u)<σ. Thus, note
the fact that δ<σ, we see from (2.15) and (2.17) that

f 3o^/U xδ, uδ)>f\t, x, w)-β,
(2.18)

This means

(2.19) (yi yδ)^mε(β(t, x)).

Hence, the set 6{t} •) is upper semicontinuous. Then our conclusion follows
from Proposition 2.3. D

In the above result, we see that (P3') and (P4') are not very restrictive.
Thus, (Pβ) essentially says that <?(ί, x) is convex and closed. Following result
gives a sufficient condition for β(t, x) being convex.

PROPOSITION 2.6. Let (f, *)e[0, T ] x Z 5e ./ί^d. Lei /(ί, x, Γ(ί, x))
convex and there exists a convex function φ{- ί, #) : X->R, such that

(2.20) / U x, u)=φ(f(t, x, iθ ; f, x), VweΓ(ί, x).

Then, β(t, x) is convex.

Proof. Let (yl yx)*=e(t, x), i=l, 2, and ^e(0, 1). We can find ulf U2

Γ(ty x), such that

f ytef\t, x, ut),
(2.21) ] ι = l , 2 .

I yt=f(t, x, Ut),

By the convexity of f(t, x, Γ(tf x)), there exists a us^Γ(t, x), such that

λy,+{l-λ)y2=λf(t, x, Ml)+Q-J)/(f, x, u.)=/(ί, x, M,).

By (2.20), we have

M ^ i / U x, MiJ+d-^/U x, ut)

=λφ(f(t, x, ux)\ t, x)+(l-λ)φ(f(t, x, u2); t, x)
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>φ(λf(t, x, Uι)+{l-λ)f(t, x, u2); t, x)

=φ(f(t, x, us); t, x)

= f\t,x,u*).

Hence, €(f, x) is convex. D

It is easy to check that if f(t, x, u) is linear in u, f°(t, x, u) is convex in
u and Γ(t, x) is convex, then e(t, x) is convex. The above result gives some
other situations which guaranteeing the convexity of 6(t, x). By some simple
observation, we can see that in order the set S(t, x) to be convex, it is neces-
sary that f(t, x, Γ(t, x)) is convex and the functions f(t, x, -), f°(t, x, •) and
the set Γ(t, x) should be compatible in some sense. Condition (2.20) is one of
such compatibility conditions.

§ 2.3. Properties of Compact Semigroups.
In this subsection, we present a few results for compact Co-semigroups.

First of all, we have

LEMMA 2.7. ([22]) Let eAι be a compact C ̂ -semigroup on Banach space X.
Then, t^eΛt is continuous in the operator norm in (0, oo).

Followig result will play an important role in sequel.

LEMMA 2.8. Let eAt be a compact C0-se?nigroup on some Banach space X.
Let p>\ and define

(2.22) S(g(.))=[eΛ<'-r>g(τ)dτ, Vg(-)<=L'(0,T; X).
Jo

Then, S: Lp(0, T *)-»C([0, T] X) is compact.

It seems to us that such a result should be known. But we could not find an
exact reference. For reader's convenience, we present a proof in the following.

Proof of Lemma 2.6. Let gk(-)^Lp(0, T; X) with

(2.23)

We need to prove that {S(gk( ))}kii is relatively compact in C([0, T] X). To
this end, we first prove that for each fe[0, T] , the set {S{gk{-)){t)}k^ is
relatively compact in X. In fact, the case /=0 is trivial. We let ίe(0, T ] .
Then, for any $>0, there exists a 5e(0, f], such that

(2.24)

Next, we let

Jt-δ
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Then, we see that the set {yk}k*i is bounded in X. Thus by the compactness
of eAδ, we can find a finite set {zz, l ̂ i^m} in X, such that

(2.25) (Λ^.iCU^fe).
1 = 1

Then, we have

(2.26) {Ste*( ))(OU*iCUft.(*).

Hence, for each fe[0, T] , {tS(g*(-))(0}**i is relatively compact in X Next,
we show that {S(gk(-))\k*i is equicontinuous on [0, T ] . In fact, for f>t>0
and 0<d£t, we have

Jt-

By some direct estimation, we can find some constant C, independent of k,
such that

with l/p + l/q=l. Thus, by Lemma 2.7, we obtain the equicontinuity of the
set {S(gk(-))\ on [0, T ] . Then by Arzela-Ascoli Theorem ([28]), we obtain
the compactness of the operator S. •

COROLLARY 2.9. Let eΛt be a compact Co-semigroup on some Banach space
X and p>l. Let gk(')^Lp(0, T; X) satisfy

w
(2.27) £*(•)—>£(•), in L p (0,T;X).

Then,

(2.28) lim sup ¥(eA^\gk{τ)-g{τ))dτ -0 .
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§ 2.4. Existence of Semi-admissible Pairs.
In this subsetion, we study the existence of semi-admissible pairs defined

as in Definition 2.1. To this end, we first introduce the following:
(P3") The map / : [0, T^xXxU-^X is Borel measurable in (t, x, u), con-

tinuous in (x, u) and for some constant L > 0

\f(t, x, u)~f(t, x, u)\^L\x-x\, Vίe[0, oo), x, i e l ,
(2.29)

1 \f(t, x, w ) | ^ Z , ( l + | * | ) , Vf€Ξ[O, oo),

(P6') For almost all f<=[0, oo), the set /(*, x, Γ{t, x)) satisfies the following :

(2.30) Π ?5/(ί, %U), Γ(mδ(t, x)))=f(t, x, Γ(t, x)).
3

(Pβ'O Let Λ(t, x)= fit, x, Γ(t, x)). For almost all ί e [ 0 , T] , the map
Λ(t, •)• ^ - ^ 2 X has the Cesari property.

It is clear that (P6') implies (Pβ'O In fact, one has

(2.31) Λ(t, mδ(x))Qf(t, mδ{x), Γ(mδ(t, x))).

Furthermore, we have the following

PROPOSITION 2.10. Let Γ: [0, T]xZ->2 c / be upper semicontinuous and closed
set valued {see Appendix), f(t, x, u) be uniformly continuous in (x, u) for any
fe[0, T ] . Then, the following are equivalent

( i ) (P6') holds.

(ii) (P67/) holds.

(iii) f(t, x, Γ(t, x)) is closed and convex.

Proof. ( i ) =φ (ϋ) =φ (iii) are immediate.
(iϋ) •=$ ( ί ) . By the uniform continuity of f(t, x, u) in {x, u), for any ε>0,

there exists a σ>0, such that

(2.32) fit, mσ{x), mσ{Γ{t, χ)))(zms(f(t, x, Γ{t, x))).

On the other hand, by the upper semicontinuity of Γ, we can find a <te(0, <j],
such that

(2.33) Γ(mδ(t, χ))amσ{Γ{t, x)).

Thus, ( i ) follows from the convexity and closedness of f(t, x, Γ(t, x)). D

Our main result of this subsection is the following:

THEOREM 2.11. Let (PI), (P2), (P3'), (P4) and (P6r) hold. Then, for any

(2.34) J s ([0, T ] ; y)=
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Moreover, SΓβ([O, T] :y)Ξ={*(.)*=3?,|*(0)=;y} « compact in C([0, T] Z).

Proof. For any &|Ξ>1, Let

We set

(2.35) M * ( 0 = * Σ t t ^ c t , . ί i + ι

Here, w rs are constructed as follows: First, we take

Z/°<ΞΓ(0, y).

By (2.29), we know that there exists a unique xk(-) satisfies

Jo

Then, we take
uι^Γ{tu xk(U)).

We can continue the above procedure to obtain **(•) on [tlt ί2], etc. By in-
duction, we end up with the following:

f k ( ) y [ f ( τ , x k ( τ ) , uk(τ))dτ, V ί e [ 0 , T ] ,
(2.36) J o

i {)Γ{tJf xk(tj))f

By GronwalΓs inequality and (2.29), we see that for some absolute constant C>0.

We[0,T],
(2.37) \

{ \f(t,xk(t), uk(t))\£C, a.e.

By Lemma 2.8, we know that {xk( )}k^i is relatively compact in C([0, T ] ;
Then we may assume

(2.38) * , ( . )_ !>*( . ) , in

for some l( )eC([0, T ] ; Z). Also, we may let

(2.39) /(-,**(•), M*( ) ) — ^ / ( ), in L-(0,T;Z),

for some /( )^^°°(0, T; X). By the compactness of the operator £, we have

(2.40) jc(θ=^ ί3' + ( ίβ i lct-r)/(r)dr, /e[0, T ] .
Jo

By (2.38), for any <5>0, there exists a &0, such that
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(2.41) xk(t)(Ξmδ(x(t)), Vfe[0, T], k^k*.

On t h e other hand, by t h e definition of uk(-), for k large, one h a s

(2.42) uk(t)<=Γ(tJf xk(tj))C.Γ(mδ(t, jc(ί))), We[f,, tJ+ι), O^j^k-1.

Next, by (2.39) and Mazur Theorem, we may let α t ; ^ 0 , Σ ι s i α ι ; = l , such that
for some p<°°,

(2.43) 0/ ) Ξ Σ « W / ( , WO, W ))-W( ), in Lp(0, T, Z).

Then, we can assume

(2.44) φ,{t) —> f(t), in X, a. e. f e= [0, T ] .

On the other hand, by (2.41) and (2.42), we see that for / large, one has

(2.45) φj(t)ς=cof(tf mδ(x(t))> Γ(mδ(t, jc(f)))), a.e. *e[0, T ] .

Thus, for any S>0, we have

(2.46) f(t)<=cof(t, mδ(x(t))> Γ(mδ{t, jc(O))), a.e. ίe[0, T ] .

By (P6r), we get

(2.47) 7(0e/(f, jf(ί), Γ(ί, *(*))), a.e. ίe[0, T ] .

Then, by Theorems A.3 and A.4 of the Appendix, we know that there exists
a «( . )e^[0, T], such that

ί u{t)(ΞΓ{t,x(t)), a e. fe[0, T],
(2.48) \

I f(t)=f(t, x(t), ύ{t)), a. e. fe [0, T] .

Combining (2.40) and (2.48), we see that

( « ),«( ))GΛ([0,T]; y).

Thus, (2.34) follows. Finally, let {xfe( )}^iC^fs([0, T] y) with

Then, by the above proof, we see that {**(•)}*>i is relatively compact in
C([0, T] X). Moreover, if for some subsequence (still denoted by itself), one
has

* * ( 0 - ^ Λ ( ), in C([0,T]; Z),

then, by (P6'), we must have x( )t=2Ct(ί0, T ] ; 3;). Thus, Sf,([0, T ] ; 3;) is
compact in C([0, T] Z). D



204 JIONGMIN YONG

We should note that in the case Γ(t, x)~Γ{t)f V X G I , Theorem 2.11 holds
under much simpler conditions and the proof becomes much simpler.

§2.5. Existence of Optimal Pairs.
In this subsetion, we present the existence of optimal pairs for Problem (P).

THEOREM 2.12. Let (P1)-(P6) hold. Let there exist a sequence of minimizing
sequence {**(•)> uk(')}^J<ad, such that for some p>l and C>0,

(2.49) | |/( . , )

Then, Problem (P) admits at least one optimal pair.

Proof. Without loss of generality, we may assume

w
(2.50) /( . , **(•), M*(.))—->/(•), in Z / ( 0 , T ; X ) ,

for some / ( ) G L P ( 0 , T; X). Then, by Corollary 2.9, we obtain

(2.51) ίVc ί- r )/(r, **(τ), uk{τ))dτ - ^ {V«->/(r)</r,
Jo Jo

uniformly in ίe[0, T ] .

Also, by the boundedness of i2, refelxivity of Zand the compactness of eΛt(t>0)9

we may assume
w

(2.52) i s
( e^jc*(O)—->^JCO, We(0, T ] .

Let

(2.53) ^(0=^^04-Γ^^'-^/WdT, fe[0, T ] .
Jo

Then, by the above, we have

(2.54) lim
ife

Then, by (2.50) and Mazur Theorem, we may let atJ^0, Σisi^o—1, such that
for some p<^>,

(2.55) 0 / 0 = Σ «*,/(•, W O , M*+/ ) ) - ^ / ( ), m L (̂0, T; Z) .

We set

(2.56) $ ( 0 =

and set (note (2.1))
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(2.57) fo(t)=\jmφ%t)^-K, a.e. /GΞ[0, T ] .

Similar to [5], we have

(2.58) <J\t), /(ί))eέ?(ί, x(t)\ a.e. te[0, T] ,

and (by Fatou's Lemma)

(2.59) (7 ° (0^1im/(**(•), w*( ))= mf /(*(•), «(•)).
JO k W > C > > Λ

Then, by Theorems A.3 and A.4 of the Appendix, we obtain «(•), a measurable
selection of Γ ( , #(•)), such that

ί Γimnt, χ(t), w)),
(2.60) a.e. ί e [ 0 , T ] .

I f(t)=f(t, (0 (0)
Thus, noting (P5), we can easily see that (*(•)> S( ) ) e ^ α i , and

(2.61) (7()
Jo (•£(.)>

This means that (£(•)> «(•)) is an optimal pair. D

We should note that (2.49) is a very weak condition. This condition holds
if (P3/7) holds.

Remark 2.13. For the case Γ(t, x)~Γ{t)y V I G Z , we can relax the Cesari
condition somehow (similar to [5]).

Remark 2.14, If the semigroup eAt is compact and analytic, then, the map
/ can be more general. For example, in the case that A is the Laplacian in
some bounded domain in Rn with suitable boundary conditions, then, the non-
linear term / is allowed to contain the first order spatial derivatives of the
state. Of course, the assumptions ensuring the above results should be changed
properly.

It is very easy to present concrete examples covered by the above theory.
We prefer not to give these details here.

§3. Second Order Evolution Systems.

In this section, we will discuss the optimal control problems with the
systems governed by following evolution equation:

(3.1) x(t)+Ax(t)=f(t, x(t)9 u{t)\ f€=[0, T ] ,

with some symmetric operator A. The motivation is the controlled wave or
beam equations. It is known that we may transfer the above into a first order
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evolution system. In fact, by setting (formally)

x\

x ί °\-A

I\
) ,

0/
Fit, x, u)

I

\fit,

0

X, u)
z—

we have (formally again)

(3.2) z(t)=Jlz(t)+F(t, z(t), u(t)).

Then, it is standard that A generates a Co-group (instead of a Co-semigroup!)
eM in the underline space. Thus, eM can not be compact! Then, the theory
established in the previous section does not apply to the situation we have here.
We note that in [2], the above type second order evolution controlled systems
was not discussed.

§ 3.1. Some Preliminary results on Second Order Evolution Systems.
Let us start with some basic assumptions.
(Wl) V and H are separable Hubert spaces with norms || || and | |, res-

pectively, and with duals V and H'ΞΞH, respectively. The embedding Vc*H
is dense and compact. The duality pairing between V and V is < , •> and the
inner product of H is ( , •)• The norm of V is denoted by || |l* U is a
Polish space ([8]) and T is a positive constant.

(W2) Λ^X(V, V) is symmetric and coercive, i.e.,

(3.3) <Λx, y>=<x, Ay>, \/x,

and for some a>Q,

(3.4) (Ax, x>^a\\x\\2, VxeF.

From (Wl), we know that Vc+H=H'c^V. The space H is usually referred
as the pivot space. Now, for ^( )eL 2(0, T ; V) and (x0, Xi)<=VxH, we con-
sider the following evolution equation

(3.5) x(t)+Ax(t)=g(t), a.e. fe=[0, T], in V,

with the initial conditions

(3.6) xφ)=xo, in H,

(3.7) x{ϋ)=xu in V.

We note that (3.6) and (3.7) stand for the following, respectively:

Before introducing the definition of a solution to (3.5)-(3.7), we first give the
following result.
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PROPOSITION 3.1. The following are equivalent-
( i ) Function X( )<ΞL 2(0, T; V)nWl'2([0, 7 ] #yW 2 > 2 ( [0 , T ] ; V) satisfies

(3.5M3.7).
(ii) Function X( )EΞL2(Q, T; V)rWl-2([0, T] 7/) sflίisyzβs (3.6) αwd

Γ<#(0, (0>=-(xi , v(0))-Γ(*(0, v(t))dt+[T<Ax(t)9(3.8) J o J o J o

Vz;( )eL2(0, T; F^^ '^LO, T]; H), v(T)=0 in //.

(iii) Function X( ) G L 2 ( 0 , T ; V)rW l t 2 ([0, T ] ; //) sαίzs/es (3.6)-(3.7)
, (X( ), V) is absolutely continuous in [0, T]

(3.9) -^-W), v)+<^Jc(O, v> = <^(0, v>, a.e. ί e [ 0 , T ] .

The proof is straightforward. Then, we may give the following.

DEFINITION 3.2. A function ^( ) E L 2 ( 0 , T; V)r\Wu2(l0, T ] ; //) is called a
solution of (3.5)-(3.7) if one of (i)-(iii) in Proposition 3.1 holds.

By usual Galerkin type method, we can prove the following result.

PROPOSITION 3.3. Let A satisfy (W2) and (xQ, X1)SΞVXH, g(-)^Ll(0, T; H).

Then, (3.5)-(3.7) admits a unique solution

*(•)€= L~(0, T ; V)Γ\Wι'°°(l0, T ] ; H)Γ\W2'K[0, T ] ; V)
(3.10)

cc([θ, T];

Moreover, it holds that

'3Λlj \x{t)\2+(Ax{t), x{t)y<\ί\xΔ2jr<Axo, Xo>Ύl2+^\g{τ)\dτ}\ ί e [ 0 , T] .

Next, we introduce another kind of solution, the so-called mild solution.
To this end, we let

/ 0 7\
(3.12) J = : VxV—>VfxV,

\-A O)
and let

()={(χ, y)cΞVxH\J(x, y
(3.13)

I J\ ()VHVxH.

Following result is standard ([22]).

PROPOSITION 3.4. The operator Λ generates a C0-group on the space VxH.
If we let (formally)
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(xo\ /0
Zo=:\ r A = =

W

*(0)=*0.

n, (3.5)

(3.14)

Since e^1 is a Co-group on ZΞΞVXH, we may study (3.14) directly without
looking at (3.5). As usual, a function Z( ) G C ( [ 0 , T ] ; Z) is called a mild solu-
tion of (3.14) if it satisfies the following integral equation:

(3.15) ^(ί)=^ tzo+Γe t j 4 c e"Γ >Λ(r)dr, fe=[0, T ] .
Jo

On the other hand, adopted from [3], we introduce the notion of weak solution
of (3.14) as follows:

DEFINITION 3.5. A function 2( )eC([0, T ] ; Z) is called a weak solution
of (3.14), if for any z*&£)(Jl*)f the map <£(•)> 2*> is absolutely continuous on
[0, T] , and

(3 16) ί Ίίt<z{ί)y **>= <*W' -****>+<A(0, 2*X a.e. ί e [ 0 , T ] ,

It is important that we have the following equivalent result which is a
consequence of the result of [3]. In the following lemma, A and Z need not
to be the same as above.

LEMMA 3.6. Suppose A generates a Co-semigroup on some Banach space Z
and h(')^L\0fT; Z). Then, Z( ) G C ( [ 0 , T ] ; Z) is a mild solution of (3.14)
{i.e., (3.15) holds) if and only if z( ) is a weak solution of (3.14) (in the sense
of Definition 3.5).

From this result, we end up with the following theorem.

THEOREM 3.7. Let (W2) hold and g(-)(ΞL\0, T; H). Then,
( i ) If x(') is a solution of (3.5)-(3.7) in the sense of Definition 3.2, then,

*s a mild solution °f ( 3 1 4 )
(i i) If (*YT\ is a mild solution of (3.14), then y(-)= x( ) and x( ) is a

solution of (3.5M3.7) in the sense of Definition 3.2.

Proof. First of all, we can easily check that
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0(JL*)=HXV,

(3.17) • Jφ\ /-

\φΓ\ Ψ I \i o ι\φi \φi

( i ) Let x( ) be a solution of (3.5)-(3.7) in the sense of Definition 3.2.
Then, by setting y{')—x{-), we have

(3.18) -^{y{t)9φ)=i-Ax(f)9φy+{g(f)9φ)t a.e. fe=[0, T], V^εF.

It is easy to see that (since ;c( )ePF1>2([0, 7 ] ; //))

(3.19) —rr(x(t), (p)—(y(t)y ψ), a.e. ί e [ 0 , T], Mφ^H.

Thus, we have

y(t)l \φll \\g(t)l \φ

Φ
Thus, (y('l) is a weak solution of (3.14). By Lemma 3.6, it is a mild solution

of (3.14).

(ii) Let ((I) be a mild solution of (3.14). Then, it is a weak solution

of (3.14) by Lemma 3.6. That means (3.18) and (3.19) hold. Then, it is ready
to show that jc( )e=Wπ 2([0, T ] ; H) and

While, (3.19) is exactly the same as (3.9) and thus our conclusion follows. •

Hereafter, we refer x( ) as a mild solution of (3.5)-(3.7) if (ί(.'\) is a mild

solution of (3.14). We have seen that the solutions defined in Definition 3.2 are
mild solutions. We will simply refer them the solutions of (3.5)-(3.7).

§3.2. Optimal Control Problem, Existence of Optimal Pairs.
In this subsection, we first state our optimal control problem. Then, we

will establish the existence of optimal pairs for our problem. First of all, we
let Assumptions (W3), (W4) and (W6) be the same as (P3), (P4) and (P6), with
X being relpaced by H and we also assume

(W5) The set QaHxV is closed and ΩdVxVxHxH is bounded and
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weakly closed.
Our controlled evolution system is given by (3.1). For any given

and w( ) e ^ [ 0 , 71], we may talk about the mild (or weak) solution of

(3.21)

More precisely, we have the following.

DEFINITION 3.8. A function X( ) G L 2 ( 0 , T; V)Γ\WU2(l0f T ] ; H) is called a

mild solution of (3.21) (corresponding to x o e 7 , x^H and w( )^cU[0, T]) if
/(•> *(•), w( ))eL2(0, T ; //) and *(•) is a mild solution of (3.5) with g( ) being

DEFINITION 3.9. A pair (*(•), w( ))e(L 2 (0, T ; F)nP^ 1 > 2 ([0, T ] ; H))x
cU[0, T] is said to be semi-admissible if x(-) is a mild solution of (3.21) cor-
responding to M( ) and

(3.22) «(ί)εΓ(ί, x(0), a.e. ί e [ 0 , T ] .

Moreover, if the following also hold:

(3.23) WO), x(T), x(0), X(T))<ΞΩ(ZVXVXHXH,

(3.24) (x(0, i(0)eQC//X K', a. e. ί e [0, 7 ] ,

(3.25) P( ,X('),U(.))<ΞL\0,T),

then, we call (x(-), M( )) an admissible pair.
We let

^ , = {U( ), M( ))eC([0, T ] ; H)XHJlO, T ] | U ( ), M( )) is semi-admissible},

and

^αd={U( ), M( ) ) G C ( [ 0 , T ] ; //)x tU[0, T] |(λ ( ), M( )) is admissible}.

Next, we introduce the cost functional.

(3.26)

Our optimal control problem can be stated as follows:

PROBLEM W. Find (#(•)> ΰ(-))<^Jlad, such that

(3.27) /(*(•),«(•))= inf
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If such a pair exists, we refer %(•)> #(•) and (x(-), «(•)) an optimal trajectory,
control and pair, respectively.

Our main result of this scetion is the following theorem.

THEOREM 3.10. Let (W1)-(W6) hold. Let there exist a minimizing sequence
{Xk(-)> Uk( ))}CJad, such that for some constant C>0,

(3.28) fΓ|/(ί, χk(t), uk(t))\2dt£C,
Jo

Then, Problem W admits at least one optimal pair.

Proof. For each k^l, from (3.4), (3.11) and the boundedness of Ω, we
have that

(3.29) +αx»(0), XkW>Ύl%+^\f<t, xk(t),
Jo

We[0, T] , A?έl,

for some constant C. Thus, we may assume that

,( ) ~ ^ > i ( ), in L°°(0, T ; if),
(3.30)

i **(•)—>*(•), in L~(0, Γ; V).

Due to the compactness of the embedding Vc*H, we know that the embedding

L2(0, T ; l O f W 1 ' 2 ^ , T ] ; Z / ) ^ L2(0, T ; H),

is compact ([23]). Thus, we may let

(3.31) **(•)—>*(•), in L2(0, T ; / / ) ,

s
(3.32) xA(f)—>jc(ί), in//, a.e. ί e [ 0 , T ] .

On the other hand, by the boundedness of Ω, we may assume

w
ί Xk(Q)—>xo, in F ,

(3.33) \ w
I Λ * ( 0 ) — > JCi, in //.

Also, from (3.28), we may let

w
(3.34) / ( . , * , ( . ) , „ , ( . ) ) _ > / ( . ) , i n L 2 ( 0 , T ; / / ) .

Then, by Definition 3.2, for any z;(.)^L2(0, 7 ; F ) π r - 2 ( [ 0 , Γ ] ; H) with
—0, we have
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\\f(t, **(β, u»(ί)), v(φdt=-(xk(0), w(
JO

(3.35)

Let &->oo, we obtain

5 / , v(t)>dt=-(xlf

(3.36)

From (3.32), we can find (;e(0, T), such that

(3.37) xk(σ)—>x{σ).

Then, for any h^H, we have

Uo, λ)=lim(**(0), A)

jc*(σ), A)-(ff(**(r), h)dτ\
Jo J

, h)-\\x(τ), h)dτJo

=(«0), A).

That is

(3.38) £(0)=jto, in if.

By Definition 3.2, we know that

x(t)+Ax(t)=f(t), a.e. ίe[0, T], in V,

(3.39) (O)=Λ:O, in H,

{ χ(0)=xu in V .

Then, by a similar method used in section 2, we can prove that for some
/•(.)e= L'(0,T),

(3.40) (/»(0, f(t))ecόe(t, x(t)), a.e. fe=[0, T ] ,

and

(3.41) (7°(0rf^inf /W •),«(•))•

Then, by Theorems A3 and A4 of Appendix, we can find some δ( )^^[0, T],
such that
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(3.42) f(t)=f(t,x(t),U(t)), a.e. ίe[0,T].

ΰ(t)eΓ(t, x(0),

That is (x( ), S( ) ) e J o ί . Hence, (x(-), «(•)) is an optimal pair. D

We see that the key point is the strong convergence of the trajectories,
which is guaranteed by the suitable compactness conditions. We also note that
one can obtain the existence of semi-admissible pairs as we presented in section
2. Since the idea is the same, we omit the details here.

§4. Elliptic Variational Inequalities.

In this section, we are going to discuss the existence of optimal controls
for elliptic variational inequalities. Let us start with some assumptions.

(El) Ω is a bounded region in Rn with a smooth boundary dΩ, U is a
metric space.

(E2) β is a maximal monotone graph in RxR, A is a second order uni-
formly elliptic differential operator of divergince form. More precisely,

(4.1) A y ( x ) = - ± * { a % j ( x )
ι.;=i OXj \ OXX

with axj{')^C\Ω) and for some ao>O,

(4.2) Σ aιj(x)ξiξJ^a0\ξ\\

(E3) / : ΩxRxU-^R is Borel measurable in (x, y, u)^ΩxRxR and con-
tinuous in (y, u)^RxU for almost all i t f l , f°: ΩxRxU->R is Borel mea-
surable in (x, y, U)(ΞΩXRXR, lower semicontinuous in (yf u)^RxU for almost
all x^Ω and there exists a constant /Q>0, such that

(4.3) f\x, y,u)^-K, (x, y, u)(Ξ:ΩxRxU.

(E4) Γ: ΩxR->2u is pseudo-continuous.
(E5) QcR is closed.
Our controlled system is the following:

ί Ay(x)+β(y(x))=>f(x, y(x), u(x)), a.e. xefl,
(4.4)

i y\dΩ=0.

Let us state the following result which will help us to understand (4.4).

PROPOSITION 4.1. Let (El), (E2) and the following (E3r) hold
(E3') / : ΩxRxU-^R is measurable in (x, y, U)£ΞΩXRXU and there exists
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a constant L>0, such that

(4.5) \f(x, 0, u)\£L, V(x,

0^[/(x, y, u)-f{x, y, u)-](y-m-L\y-

V(*, U)£ΞΩXU, y,

Then, for any M( ) € Ξ ^ = { W ( ) : Ω->U\U( ) measurable} and any l^p<°°, there
exists a unique solution y( )=y( u{'))<Ξ.W2tP(Ω)Γ\H\(Ω) to (4.4). Moreover,

(4.7) |3>( ; χ/( ) ) k 2 ' p c ^ ) ^ C p , Vw( )e<U.

The proof can be carried out by using the method of [7] (see [9] also).
Actually, from [7], we know that (E3') can be more general if U is a Banach
space.

In our problem, the control and the state constraints are given by

(4.8) u(x)<=Γ(x, y(x)), a.e. xefl,

(4.9) y(x)^Q, a.e. XΪΞΩ.

We let p>n/2. A pair (y(-), u('))^(W2'p(Ω)ΓλH1

0(Ω))Xcυ is said to be semi-
admissible if (4.4) and (4.8) are satisfied and it is said to be admissible if (4.4),
(4.8)-(4.9) hold and /°( , y(-), U( ))SΞL\Ω). We use the notation Jlt, Jtad> &„
3Cad, Vs and HJa* similar to those in §2.1. Next, for any (y( ), u( ))eJlad> we
define the cost functional to be the following:

(4.10) /(?(.), u(.))=\Qf\x, y{x), u(x))dx.

Then, our optimal control problem can be stated as follows:

PROBLEM E. Find (y( ), U(-))^Jlad, such that

(4.11) /(Λ ),«(•))= i p f / M ), u( )).

If a pair (y( )f w( ) ) G j f l ( ί exists satisfying (4.11), we call (y(-)f «(•)), 5( )
and ΰ(') an optimal pair, state and control, respectively.

The main purpose of this section is to establish the existence of an optimal
pair of Problem E. To this end, let us first introduce the following set:

β(x, y)={(z', z)^R2\z°^f°(x, y, u), z=f(x, y, u), UΪΞΓ{X, y)},
(4.12)

We further introduce the following assumption (compare (P6) and (Wβ))
(E6) For almost all xef l , the map y*-*€(x, y) has the Cesari property on Q.
Now, we are ready to state and prove the main result of this section.
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T H E O R E M 4.2. Let (E1)-(E6) hold. Let {yk( ), uk(-))}(ZJad be a minimizing
sequence of Problem E, such that for some absolute constant C,

(4.13) | / ( . , 3>*0), κ*0))

Then Problem E admits at teast one optimal pair.

Proof. From the idea of [7], we know that for p>n/2,

(4.14) \yk(')\w*>\Q^Cv> V * ^ l .

Thus, we may let

3>*(0—*J( ), weaky in W*-*(Ω),

strongly in C"(Ω),

for some « G ( 0 , 1) and some y(')^W2'p(Ω)Γ\Hl(Ω). On the other hand, we
may let

(4.16) / 0 , ?*(•),«*(•)) —>/(•), weakly in L*(β),

for some f(-)<=L°°(Ω). Then, by Mazur Theorem, we can find atJ^0, ΣIM«I.?
= 1, such that

(4.17) ^ Σ α ι ; / ( . j t + / . ) , W ))->/( ), strongly in

We set

(4.18) #J( ) = Σ α w / D ( , ̂  ( ), wt+,θ)),

and let

(4.19) /βU)=lim/°(x, >P4(X), uk(x))^-K, a.e.

By (4.15), we see that for any ε>0, there exists a j0, such that for j^jΌ,

(4.20) (ψ%x),ψi(x))ecoε(x,mt(y(x)))f a.e.

Thus,

(4.21) (f\x),Kx))έcδe(x,Jl*(5>(x))), a.e.

Then, by (E6), we see that

(4.22) (f\x), f(x))<Ξe(x, y(x)), a. e.

Hence, similar to the previous sections, we can find «(•) —^> such that
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f°(x)^f\x, six), «(*)),

(4.23) f(x)=f(x, Six), u{x)), a.e.

U(X)<ΞΓ(X, six)),

On the other hand, from the admissibility of (yk(')> uk(-)), the convergence
(4.15) and (4.16) and (4.23), we have (see [4])

J y()+β(9())f(, y(x), ΰ(x)), a.e.

By (E5), we have

(4.25) Six)^Q, a.e.

Hence, (y(-), u( ))^Λad By Fatou's Lemma, we see that

JiSi ), ϋi ))=\Qf°ix, Six), U{x))dx

(4.26)

Thus, (j>( )> «(•)) is an optimal pair. •

Remark 4.3. In the above the operator A is not necessarily of second order.
Also, we see that if β=0, the (4.4) is reduced to a semilinear elliptic partial
differential system with the leading operator being of divergence form and
coercive. Thus, our theory covers the existence of optimal controls for the
mentioned elliptic systems.

Remark 4.4. From the above, we see that the existence of an optimal pair
follows essentially from the precompactness of the minimizing sequence in
suitable spaces and the sort of convexity conditions. The multivaluedness of term
Ay-\-β(y) does not bring any difficulty. However, if this multivalued operator
also depends on the control variable, then, the situation becomes technically
difficult.

Remark 4.5. ϊt seems to us that our approach is also possible to discuss
the existence of optimal controls for evolutionary variational inequalities.

Appendix. Multivalued Mappings.

In this appendix, we recall some results about multivalued mappings. First,
we recall the following definition.

DEFINITION A.I. Let T and Z be metric spaces, Λ: T~^2Z= {nonempty
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subsets of Z).
( i ) A is said to be continuous (with respect to the Hausdorff metric pH)

at fe7\ if

(A.I) \ιmpH(Λ(t),A(t))=0,
l-*t

where

ρH(Au A2)=—max{ sup d(λu A2)+ sup d{Au λ2)}.

(ii) A is said to be lower semi-continuous at t(=T, if for any open set V,
whenever

(A.2) A(t)Γ\VΦ0,

there exists a ί > 0 , such that

(A.3) A(s)nVΦ0,

(iii) A is said to be upper semi-continuous at f e T , if for any ε>0, there
exists a d>0, such that

(A.4)

(iv) A is said to be pseudo-continuous at ί e T , if

(A.5)
ε>0

(v) If T is a domain in Rn, then, τl is said to be measurable, if for any
closed subset FczZ, the set

is (Lebesgue) measurable.
(vi) A is said to be closed and/or convex set valued on T if for all

A(t) is closed and/or convex.
If in (i)-(iv), the mentioned properties hold for all ί e T , we simply say A

is continuous, upper semi-continuous and psuedo-continuous, respectively.

PROPOSITION A.2. Let Z be a complete metric space ana A: T-> Z closed
set valued. Then,

( i ) If T is a metric space, then, the following implication chains hold

A is continuous =Φ A is lower semi continuous

£=} V open set FdZ, A'1 is open in T;

A is continuous =} A is upper semi continuous

V closed set FC.Z, A~ι is closed in T



218 JIONGMIN YONG

=) Λ is psuedo-continuous

<=$ G(A) = the graph of A is closed in TxX.

(ii) If T is a metric space and Z is a compact metric space. Then

A is continuous <===> A is lower and upper semicontinuous

A is upper continuous ζ=ϊ A is pseudo-continuous.

(iii) // T is a domain in Rn, then,

A is psuedo-continuous =) Λ is measurable.

In [5], the pseudo-continuity and the upper semicontinuity were referred
as upper semicontinuity and upper semicontinuity with respect to the inclusion
(u.s. c. L), respectively. Our notion is adopted from [28] for lower, upper semi-
continuity and a modification of that given in [2] for pseudo-continuity.

THEOREM A.3. ([16, 25]) Let T be a locally compact metric space, U be a
Polish space, X be a complete metric space, A : T->2U be measurable taking closed
subset values, f: TxU~>X be measurable in t, locally uniformly continuous in x
and f: T-^X be measurable with

(A.4) f(t)ef(t,A(t)), a.e. mT.

Then, there exists a measurable function u : T—>U, such that

(A.5) \ a.e. tt=T.

THEOREM A.4. Let T be a domain in Rn, X be a metric space, U be a
Polish space, Γ: TxX-^2u be pseudo-continuous and x: T-^Xbe measurable.
Then, Γ( , x(-)): T->2U is measurable.

The proof follows easily from the definition and the criteria of measurability
for multifunctions given in [16].
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