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ON THE FREQUENCY OF COMPLEX ZEROS OF
SOLUTIONS OF CERTAIN DIFFERENTIAL
EQUATIONS

By STEVEN B. BANK!

Abstract.

In this paper, we investigate the frequency of zeros of solutions of linear
k-1

differential equations of the form w®+ ¥ QWP+ (Q,+Ref)w=0, where
=1

k=2, and where Q-+, Q,-1, R and P are arbitrary polynomials with R=0
and P non-constant. All solutions f=£0 of such an equation are entire func-
tions of infinite order of growth, but there are examples of such equations
which can possess a solution whose zero-sequence has a finite exponent of
convergence. In this paper, we show that unless a special relation exists
between the polynomials @, ---, @,_;, and P, all solutions of such an equation
have an infinite exponent of convergence for their zero-sequences. This
result extends earlier results for the equation, w4 (Q,+ ReP)w=0.

1. Introduction. Several recent papers (e.g. [7], [8], [9], [10], [11], [15])
have dealt with the investigation of the frequency of zeros of solutions of
equations of the form,

(1.1) w®+(ReP+Q)w=0,

where £=2, and where R, P, and Q are polynomials with R%0 and P non-
constant. It was shown in [7; §5(b), p. 356] that for any polynomial P(z) of
degree r=1, there exists a polynomial Q(z) of degree 2r—2 such that the
second-order equation,

(1.2) w”+(eP4+Q)w=0,

possesses two linearly independent solutions each having no zeros. This result
led to an investigation in [8] of the more general equation (1.1) of arbitrary
order k=2, and it was shown in [8] that if the degree of Q is less than kr—F,
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then the exponent of convergence (denoted A(f)) of the zero-sequence of any
solution f==0 of (1.1) satisfies A(f)=oc. More recently, it has been shown in
[9] that when the degree of Q exceeds kr—k, then the conclusion A(f)=co for
all solutions fz=0 of (1.1) holds except possibly when a special relation exists
between P and Q (see §4(B) below).

To the author’s knowledge, no examples have been found of an equation
(1.1) of order £>2 which possesses a solution fz=0 for which A(f)<<c. However,
the situation concerning examples of solutions satisfying A(f)<co is far different
for the broader class of equations obtained by allowing middle terms with poly-
nomial coefficients in the equations (1.1), namely for the class of equations of
the form,

(L3) w®+ 'S QP +(Qut Re =0,

where Q,, -+, Q+_1, R and P are polynomials with R0 and P non-constant.
For example, it was shown in [6; p. 357] that each of the third-order equations,
(1.4) w"—w'—e**w=0,

and

(1.5) w"+4(1— 2w’ —(4z+e**)w=0

possess a fundamental set of zero-free solutions. In fact, we show in § 9 below
that zero-free solutions of (1.3) can exist for any choice of the polynomial P,
and can occur regardless of the order k.

In this paper, we investigate the frequency of zeros of solutions for the
whole class of equations (1.3) of arbitrary order #=2. We can assume that
Qr-1=0 by the usual device of making the change of dependent variable w=o¢u,

where p=exp (—S(Qk-l/ k), which has the effect of preserving the zero-sequence

of a solution, as well as making the coefficient of u¢*-" equal to zero in the
transformed equation. Thus, it suffices to treat the class of equations of the

form,
(1.6) w"”-!—jngjw‘f’—l—(QﬁRep)w:O,

where ©=2, and where Q,, -+, Q.-,, R and P arbitrary polynomials with R==0
and P non-constant. In spite of the examples (1.4), (1.5) and those constructed
in §9 which have zero-free solutions, our main result (§ 3 below) shows that
unless a special relation exists between the polynomials Q,, -, Q-,, and P in
(1.6), all solutions f=£0 of (1.6) will satisfy A(f)=oco. The precise form of this
special relation requires certain notation from [5] which is presented in §2
below for the reader’s convenience. It should be noted that for any given
equation (1.6), it is easy to check whether or not the special relation holds for
the equation. We remark that the results in [8] and [9] for the equation (1.1)
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are encompassed by our main result here (see §4(B) below). In addition, our
main result also sheds light on the situation for (1.1) when the degree of Q
equals kr—fk, which is not treated in [8] and [9]. (See §4(B) below.)

The proof of our main result follows a pattern similar to the pattern of
the proof in [9] for equation (1.1), but with additional complications. We
examine the behavior of a solution fz0 of (1.6) satisfying A(f)<co, in a sector
where ef grows rapidly and in an adjoining sector where ¢f decays. Our ana-
lysis in the first sector is very similar to that in [9] for (1.1), but in the second
sector is much more complicated for the following reason: In a sector where
ef decays, the equation (1.6) can possess a property which was first investigated
in [1] and is called the “global oscillation property” (see [5; p. 276]). This
means that for any ray, arg z=@ lying in the sector, and for any ¢>0, there
is a solution f=0 of (1.6) which has infinitely many zeros in the sector |arg
z—6@|<e. (A simple example (see §7 below) of an equation (1.6) with this
property is

(1.7) w® +z22w” +zw’ +(1+eP)w=0 for k=4,

where P is any nonconstant polynomial. A third-order example can be obtained
by taking ~=3 in (1.7) and applying the usual change of variable mentioned
earlier to annihilate the second-order term.) When an equation (1.6) has the
global oscillation property, a linear combination of a fundamental set in the
sector need not have one term in it which asymptotically dominates the remaining
terms, and the argument in [9; pp. 307-308] for (1.1) is no longer valid for
(1.6). A new approach is thus required in this case, and this new approach is
based on results which are proved in §7 below.

The author would like to acknowledge very valuable conversations concern-
ing these results with his colleague, J. K. Langley.

2. Preliminaries for Main Result. Given an equation (1.6) where Q,, -,
Qr-2, R, and P are polynomials, we will call the equation,
=
@.1) W+ S Q2w =0,
=

the associated equation to (1.6). (The associated equation has polynomial coeffi-
cients.) We first rewrite (2.1) in tems of the operator # which is defined by
fw=zw’. (It is easy to prove by induction that for each m=1, 2, ---,

(2.2) wm=z( 3 bymb'w),

where 67 is the j'* iterate of the operator #, and where the b;, are integers
with b,n=1. In fact, as polynomials in x,

2.3) 2 binx'=x(x—1) - (x—(n—1)).)
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When written in terms of @, let (2.1) have the form,
k

(2.4) ZE)Bj(z)(ifw:O, where 'w=w.
=

(Of course, the Bj(z) are rational functions.) By dividing the equation (2.4)
through by the highest power of z which occurs in all Laurent expansions of
the B,(z) around z=oo, we may assume that for each j, we have B,=0(1) as
z—oo, and there exists an integer p=0 such that B,=o(1) as z—x for j>p,
while B, has a finite nonzero limit at c. Asin [5; §3], the integer » is called
the critical degree of (2.1). When (2.1) is written in the form (2.4), we then
form the algebraic polynomial,

2.5) Hz, v):jé 2 B(2w?

Then, clearly, H(z, v) is a polynomial in v of degree k—p, having rational
functions for coefficients, and satisfying H(z, 0)=0. By a Newton polygon
method (see [14; p. 105]), we determine the first terms cz? of the k—p possible
expansions (in descending powers of z) around z=oc of the algebraic function
defined by the equation H(z, v)=0. The set of these first terms, {c,2f1, .-, ¢;2P¢}
is called the exponential set for (2.1) as in [5; §3], and it is easy to see that
8,>—1 for each j. (Of course, if k=5 then the exponential set will be empty.)

Finally, if g(z) is an analytic function on the slit plane |argz| <=, which
has a representation of the form,

(2.6) g(2)=cz"*¢(1+0(1)) as z—> oo,

where ¢ is a nonzero complex number and d is a positive real number, then as
in [5; p. 2707, the indicial function for g is defined to be the function,

2.7 IF(g, 8)=cos(df@+arg c) for —n<0Z~x.

3. Main Result. We now state our main result. The proof will be given
in §8.

THEOREM. Given an equation (1.6) where k=2, and where Qo, - Qr-s, R
and P are any polynomials with R=*0 and P non-constant. Let I denote the
exponential set for the associated equation to (1.6). Assume that for some real
number 6, in (—xn, n] for which IF(P’, 8,)=0, the following two conditions
hold  (a) For any element N in I' for which N/P'—oco as z—oo in |arg z|<m,
we have IF(N, 6,)#0; (b) For any element N in I' for which N/P’ tends to a
finite non-zero limit, say cy, as z—oo in |arg z| <m, we have cy+—(k—1)/2k and

(3.1 IF((cx+((k—1)/2R)P’, 60)#0.

Then, the zero-sequence of any solution f=£0 of (1.6) has an infinite exponent of
convergence.
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4. Remarks and Examples.

(A) In view of example (1.4), it might be of interest to apply our result
to the equation,

(4.1) w”—w'+ RePw=0,

where R and P are arbitrary polynomials with R==0 and P non-constant. The
associated equation is w”—w’=0. Using (2.2) and (2.3), we write the associated
equation in the form (2.4), and we obtain,

4.2) 2720w —327%0%w—(z'—2z"*)§w=0.

Thus the critical degree of the associated equation is p=1, and the algebraic
polynomial (2.5) is

4.3) H(z, v)=z20*"—3v—(1—2z7%)z.

The Newton polygon shows that the exponential set of the associated equation
is I'={N,, N,} where N,=1 and N,=--1. If the degree of Pis at least 2, then
N,;/P’'—0 for =1, 2 as z—oo, so that the conditions (a) and (b) in the theorem
are satisfied vacuously for any 6, for which IF(P’, 8,)=0. Thus A(f)=co for
all solutions of (4.1) if P has degree at least 2.

We now assume P(z) is of degree 1, say P(z)=rz+s. If r is real, the
hypothesis (b) in the theorem is violated for the following reasons: First, the
only possible values of 6, are +7/2. Second, the two possible values of ¢y are
+1/r. If r=+3, we have cy=—(k—1)/2k for one of the two elements of [
If » is real but not -+3, then (3.1) is violated at both §,=+=r/2. Thus, if » is
real, our theorem is not applicable which is in accord with the example (1.4).

If » is not real, then the theorem is applicable and we can conclude A(f)=o0
for all solutions fz=0 of (4.1). This can be seen as follows: Let 6, be any
value for which IF(P’, §,)=0. It is easy to check that if (3.1) is violated for
either N;=1 or N,=—1, then r would have to be real since any two zeros of
the cosine must differ by a multiple of x.

(B) We remark here that for the special equation (1.1), where k=2 and
where R, P, and Q are polynomials, with R0 and P of degree r=1, our main
result encompasses the results in [8] and [9]. To see this, we note first that
the equation associated to (1.1) is w®+Qw=0. If Q=0, the critical degree is
k, so the exponential set is empty. If Q=0, say Q(z)=a,z"(140(1)), then it is
easy to see that the elements of [” are the functions cz"/* where c*+a,=0.
Thus, if n<kr—=k, then either /7 is empty or each element N in [  satisfies
N/P’'—0 as z—oo so the hypotheses (a) and (b) of our main result are satisfied
vacuously. Thus we can conclude A(f)=o for all solutions if n<kr—k. If
n>kr—k, then N/P'—co as z—oo for all elements N in I'. Hence, the hypo-
thesis (b) is satisfied vacuously, and the condition given in [9] to conclude
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A(f)=o for all solutions, is precisely the condition that hypothesis (a) be satisfied
for all Nin I". Of course, when n=Fkr—k (which is the case that is not treated
in [8] and [9]), we have N/P’ tending to a finite non-zero limit for all N in
I, and hence for those equations (1.1) satisfying hypothesis (b), we can conclude
that A(f)=oo for all solutions f=z£0.

5. Concepts from the Strodt theory [177].

(a) [17; §94]: The neighborhood system F(a, b). Let —x<a<b<n. For
each nonnegative real-valued function g on (0, (b—a)/2), let V(g) be the union
(over all (0, (b—a)/2)) of all sectors, a+d<arg(z—h(9))<b—d, where h(d)=
g(@)er @2, The set of all V(g) (for all choices of g) is denoted F(a, b), and
is a filter base which converges to «. Each V(g) is a simply-connected region
(see [17; §93]), and we require the following simple fact (see [5; p. 2697]):

LEMMA 5.1. Let V be an element of F(a,b), and let ¢>0 be arbitrary.
Then there is a constant Ro(e)>0 such that V contains the set, a+e<arg z<b—
g, |z|Z Ro(e).

As in [2], we will say that a statement holds except in finitely many direc-
tions in F(a, b), if there exist finitely many points 7, <#7,<:-- <r, in (a, b) such
that the statement holds in each of F(a, ), F(ry, 7s), ---, F(r,, b) separately,

(b) [17; §13]: The relation of asymptotic equivalence. If f(z)is an analytic
function on some element of F(a, b), then f(z) is called admissible in F(a, b).
If ¢ is a complex number, then the statement f—c¢ in F(a, b) means (as is cus-
tomary) that for any ¢>0, there exists an element V of F(a, b) such that
| f(z)—c|<e for all z&V. The statement f<«1 in F(a, b), means that in addi-
tion to f—0, all the functions 6%f—0 in F(a, b), where 6, denotes the operator
0,f=zLogz) --- (Log,-.2)f'(2), and where (for £=0), 6% is the kth iterate of 4,.
The statements f, & f., and f,~f, in F(a, b) mean respectively f,/f,<1 and
fi—f2& f.. (This strong relation of asymptotic equivalence is designed to
ensure that if M is a non-constant logarithmic monomial of rank <p (i.e. a
function of the form,

(6.1 M(z)=Kz*(Log z)* --- (Log,2)°?.

for real a,, and complex K=0), then f~M implies f'~M’ in F(a, b) (see 17;
§287). As usual, z* and Logz will denote the principal branches of these func-
tions on largz|<=m). If f~M in F(a, b) where M is given by (5.1), then we
will denote a, by d.(f), a, by d(f) etc..

The following two facts are proved in [12, p. 309] and [17; § 28] res-
pectively :

LEMMA 5.2. Let f(z) be admissible in F(a, b). Then:
(A) If f—0n F(a,b), then zf'(z)—0 in F(a, b).
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(B) If f«1lin F(a,b), then 6,f<1 in F(a, b), for each j=1, 2, ---.

We will write f,=f, in F(a, b) to mean that f,~cf, for some nonzero
constant ¢. An admissible function f(z) in F(a, b) is called trivial in F(a, b)
if f«z % in F(a, b) for every a>0. If f~cz'*% in F(a, b), where ¢+#0 and
d>0, then the indicial function of f is the function /F(f, ¢) defined by,

5.2) IF(f, p)=Cos(dp+argc) for a<e<b.

(It is obvious that IF(f, ¢) has at most finitely many zeros on (a, b)). If g is
any admissible function in F(a, b), we will denote by Sg, any primitive of g

in an element of F(a, b). We will require the following two facts (see [5; p.
2707):

LEMMA 5.3. Let f~cz'** in F(a, b), where c+0 ana d>0. If (ay, b,) s
any subinterval of (a, b) on which 1F(f, $)<O0 (respectively, 1F(f, $)>0), then

for all real a, expgf<<z“ (respectively, expgf>>z“) in Fla,, b).

LEMMA 5.4. Let a=a+bi be a complex number. Then for any >0, we
have z% ¢« z" and z°Lz**¢ in F(—=x, n).

We will also require the following facts. The first is obvious and the second
follows from [17; Lemma 307 :

LEMMA 5.5. (a) If b isa real number, then on |argz|<m, we have |2%|<
e\ and |2 | =e" 101",

(b) If f is a trivial function in F(a, b), Then f' is also a trivial function
in F(a, b).

(¢) [17; §49]. A logarithmic domain of rank zero (briefly, an LD,) over
F(a, b) is a complex vector space L of adwmussible functions in F(a, b), which
contains the constants, and such that any finite linear combination of elements of
L, with coefficients which are logarithmic monomials of rank <p for some p=0,
is either trivial in F(a, b) or 1s ~ to a logarithmic monomial of rank <p in
F(a, b). (Examples of such sets L (where we can take (a, b) to be any open
subinterval of (—x, &) are the set of all polynomials, the set of all rational
functions, and the set of all rational combinations of logarithmic monomials of
rank <0. More extensive examples can be found in [17; §§ 128, 53]).

If f belongs to an LD, over F(a, b), then in F(a, b), clearly either f is
trivial or f~cz® for some complex ¢#0 and real a (so that d,(f)=a). If f is
trivial, we set 8,(f)=—c0.

(d) [3; §3]. If G(v) is a polynomial in v, whose coefficients belong to an
LD, over F(a, b), then a logarithmic monomial M is called a critical monomial
of G if there exists an admissible function A~M in F(a, b) such that G(h) is
not ~G(M) in F(a, b). The set of critical monomials of G can be produced by
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using the algorithm in [3; §26] which is based on a Newton polygon construc-
tion. This algorithm shows that the critical monomials are of rank <0. (In
the special case where the coefficients of G(v) are rational functions, the critical
monomials are precisely the functions cz® which form the first term of one of
the expansions around z=oo of the algebraic function defined by G(v)=0. (This
fact follows from [3; §5(c)].))

6. A result from [2].

Let £ be a positive integer, and let {R(z), ---, R(z)} be contained in an
LD, over F(a, b) for some (a, b) with —r<a<b<r, and assume that R.(z) is
non-trivial (see §5(b)) in F(a, b). Using (2.2), rewrite the equation,

®6.1) Re(@w® Ry (2w D+ - + Ry(2)w=0.

in the form,

6.2) ﬁo B(2)0'w=0, where 0°w=w, and Ow=zuw’.
p2

By dividing equation (6.2) through by the highest power d,(B,) of z which
occurs in the expansions of all the functions Bj;(z) for all j=O0, ---, £, we may
assume that for each j, we have either B;<1 or B,=1 in F(a, b), and there
exists an integer p=0 such that B;«1 for j>p, while B, is ~ to a nonzero
constant (denoted B,(c)). The integer p is called the critical degree of the
equation (6.1). The equation,

6.3) F¥(a)= 2 By(o0)a’=0,

is called the critical equation of (6.1). Clearly F*(a) is a polynomial in a, of
degree p, having constant coefficients. Let the distinct roots of F*(a) be a,,
-, a,, With a, having multiplicity m,. (Thus, Xm,=p.) Let M, ---, M, be
the p distinct functions of the form z*«(Logz) for 0<¢<r, and integers ;
satisfying 0<7<m,—1. We call the set {M,, ---, M,}, the logarithmic set for
(6.1). (If p=0, the logarithmic set is empty.) The following result was proved
in [2; §7]:

LEMMA 6.1. Let k be a positive integer, and let {Ry(z), -+, Ry(2)} be con-
tained in an LD, over F(a,b), and assume R.(z) is not trivial in F(a, b). Let
P be the critical degree of equation (6.1) and let {M,, ---, My} be the logarithmic
set for (6.1). Then, except in finitely many directions in F(a, b), the equation
(6.1) possesses admissible solutions ¢y(z), -, ¢,(2) such that o,~M, for =1, -+, p.

Under the hypothesis and notation of Lemma 6.1, any set {¢,, -+, ¢} of
admissible solutions of (6.1) satisfying ¢;~M, for j=1, ---, p in some F(a,, b,)
is called a complete logarithmic set of solutions of (6.1) in F(a,, b;). (See [2;
§ 11].) The following fact was shown in [2; §10]:
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LEMMA 6.2. Under the hypothesis of Lemma 6.1, any complete logarithmic
set of solutions {¢i, -+, ¢} of (6.1) which is admissible in F(ai, b)) has the
following property If c,, -, ¢, are any complex constants for which 25-.c;¢;
s a trivial function in F(ay, b,), then all ¢,=0.

We return now to the equation (6.1) which we assume has been written in
the form (6.2), and has critical degree p. We form the algebraic polynomial
H() in v of degree k—p defined by,

(6.4) He)= 3 2/ B(@w™"

The set of critical monomials of H(v) (see §5(d)) is called the exponential set
for (6.1). (In view of the remark in §5(d), this definition agrees with the de-
finition of exponential set for (2.1) given in §2.) If k=p, the exponential set
for (6.1) will be empty. The algorithm in [3; §26] shows that each element
of the exponential set for (6.1) is of the form cz® where f>—1.

7. Main lemma on asymptotic integration. We begin with the concept of
a “logarithmic differential field” which is defined in [16; p. 244].

DEFINITION 7.1. Let @, denote the set of all functions of the form cz® for
complex ¢+0 and real a. A logarithmic differential field of rank zero (briefly,
an LDF,) over F(a, b), is a set I, of functions, each defined and admissible in
F(a, b), with the following properties: (i) I, is a differential field (where, as
usual, we identify two elements of [, if they agree on an element of F(a, b));
(ii) Iy contains @,; (iii) For every element f in I, except zero, there exists M
in @, such that f~M over F(a, b). (The simplest example of such a field over
F(—=r, n) is the set of rational combinations of the elements of @,. This field
contains the rational functions.) We remark that it follows immediately from
[18; §2.76 and §7: 2.73] that every LDF, over F(a, b)is an LD, over F(a, b),
and so the concepts and results in §6 are valid for LDF,. It also follows from
[17; §53(c)] that if Iy is an LDF, over F(a, b), then the set of functions of
the form f+4T, where f belongs to [, and T is trivial in F(a, b), also forms
an LD, over F(a, b). The following theorem is proved in [5; Theorem 3.3]:

LEMMA 7.1. Let k be a positive integer, and let Ay(z), A(z), -, Aw(z) be
functions which belong to an LDF, over F(a, b), and assume A.(z)70. Let p be
the critical degree of the equation,

7.1 Ay @Dw®+ A, (2w V4 - + Az)w=0,

and let {N,, ---, Ns} denote the exponential set for (7.1). Using (2.2), let (7.1)
have the form Q(w)=0, where Q(w)=X_,B;(2)0’w, when written in terms of
the operator 6. Then, there exist a nonnegative integer d, with s<d<k—p,
and a set {V, -, Vqa} of d distinct functions such that all of the following hold.
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(@) For each j, the function V, belongs to a logarithmic differential field
of rank zero over F(a, b), and there exists n{l, ---, s} such that V;j~N, over
F(a, b).

(b) If j#m, then there exists a strictly positive real number c=c(j, m) such
that V;—V n=z7'* over F(a, b).

(c) For each j={1, -+, d}, the equation 2;(u)=0, where

7 0=0((ow ) (1),

has coefficients belonging to a logarithmic differential field of rank zero over
F(a, b), and has a strictly positive critical degree t,.
d) ti+ - +ta=k—p.

Remark. 'The functions V,, ---, V, can be explicitly calculated from the
equation (7.1) (see [5; p. 276]).

We are now ready to state and prove a result on the asymptotic integration
of (1.6) in sectors where e decays. We will prove the result for a more general
class of equations.

LEMMA 7.2. Let k be a positive integer, and let A((z), -, Ar(2) be functions
which belong to an LDF, over F(a, b). Assume A.(z2)Z£0 and consider the equa-
twon (7.1). Let p, Ny, -+, N;, Qw), Vy, -, Vg, &), -+, Qa(u), t,, -+, tg be
exactly as in the statement of Lemma 7.1. Let G(2), -+, G(z) be any admissible
functions in F(a, b) which are trivial in F(a, b) (see §5(b)), ana consider the
equation,

(7.3) é (A,(2)+ G, (2)w9=0.

Using (2.2), let (7.3) have the form A(w)=0 where A(w) ko H,(2)07w, when
written in terms of the operator 6. For each j&{1,---,d}, let Aj(u) denote
the operator,

(7.4) A ()= A((eXpS ))/(expSV,).

Then, all of the following conclusions hold

(a) Each of the equations, A(w)=0, A,(u)=0, ---, A(u)=0 has coefficients
belonging to an LD, over F(a, b).

(b) The critical degree of A(w)=0 s p, and for j=1, ---, d, the critical
degree of Aj(u)=0 is t,.

(¢) Except in finitely many directions n F(a, b), the following two con-
clusions (i) and (ii) hold :

(i) The equation A(w)=0 possesses a complete logarithmic set of solutions
{o1, -, ¢p}, ana for each j= {1, .-, d}, the equation A u)=0 possesses a com-
plete logarithmic set of solutions {; 1, =+, ¢;.;};

(ii) If we set A;={¢:, -, ¢p}, and
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(7.5) a={(exe(v. )+ (exo[V.)gu.o,}

for j= {1, -+, d}, then the set AJUA,\J - \UA; 1s a fundamental set of solutions
of equation (7.3).

(d) If (ay, by) 1s any open subinterval of (a, b) such that the elements of
Ao, Ay, -+, Ag are all aamissible wn F(a,, b,) and such that none of the indicial
functzons IF(V,, @) (for j{l, ---, d}) and IF(V,=V a, ¢) (for all ; and m with
J#m) have any zeros on (al,b), then the following 1s true. If f=£0 s any
solution of (7.3) which is admissible in F(a,, b,), then there exist a trival func-
twon G(z) in F(a,, b,) ana constants ¢, which are not all zero, such that on some
element of F(a,, b,) either

(7.6) f=cp+ - Feppp+G
or for some ns{l, -, d},
@.7) 7=(exp(V)( & engn ntG).

Proof. Set O(w)=2F_,Gw. Using (2.2), let the equation @(w)=0 have
the form ¥(w)=0, where ¥(w)=%_, E;6’w, when written in terms of the
operator #. It then follows easily that

(7.8) Aw)=2w)+¥(w) and H,=B,+E, for all ;.

Since all the functions G, are trivial in F(a, b), clearly the same is true for the
functions E,. (We note that the coefficients of A(w)=0 belong to an LD, over
F(a, b) since A(w)=0 is the equation (7.3) whose coefficients A,+G, are con-
tained in an LD, by the remark in Definition 7.1).

For each j, define ¥;(u) by the formula,

7.9) V()= T((expg ))/(expgv,),

and so clearly from (7.8) we have,
(7.10) Aj(u)=2;(u)+T ;(u) for j=1,-,d.

Since the coefficients of 2,(u) belong to an LDF, while the coefficients of & ,(u)
are all trivial in F(a, b) (since all E, are trivial), it now follows as above that
the coefficients of each equation 4,(x)=0 belong to an LD, over F(a, b). This
proves conclusion (a) completely.

Since the critical degree of 2(w)=0 is p, and since the functions E, are
trivial, it now follows from (7.8) and the definition of critical degree that
A(w)=0 also has critical degree p. Similarly, since the critical degree of
Q2:(u)=0 is t,, the same is true for A,(u)=0 by (7.10) since the coefficients of
¥i(u) are all trivial in F(a, b). This proves conclusion (b).

Part (i) of conclusion (¢) now follows from Lemma 6.1 and conclusions (a)
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and (b). The fact that the elements of A, ---, A are all solutions of equations
(7.3) follows from the definition of 4;(x) in (7.4).

Now let F(a,, b,) be any neighborhood system with (a,, b;)S(a, b), on which
the elements of A,, ---, Ay are all admissible, and such that none of the indicial
functions IF(V,, ¢) (for all j) and IF(V;—Vn, ¢) (for j#m) have any zeros on
(ay, by). (See Parts (a) and (b) of Lemma 7.1). By applying Lemma 5.3 with
f=V,, and then with f=V;—V, for j+m, it follows that the set of functions,

(7.11) r={1, expSVl, . expSVd}

has the following property which we will refer to as Property (*): The ratio
of two distinct elements of Y is either trivial in F(a,, b,) or its reciprocal is
trivial in F(a,, b,). It then follows from Lemma 5.4 that if gA, and h€A,,
where m and n are distinct elements of {0, 1, ---, d}, then either g/h or h/g
is trivial in F(a,, b;). Thus the sets A,, -, Ag are mutually disjoint, and hence
their union has precisely & elements since ¢;+ - +tq=k—p by Lemma 7.1. To
prove that these % solutions are linearly independent on any element of F(a,, b,)
on which they are admissible, we assume the contrary. Thus, on some element
T of F(a,, b,), there is a linear combination of the union A,\U---\UA4, with some
nonzero coefficient, which vanishes identically. Letting I denote the subset of
{0, 1, -+, d} consisting of all ; for which some element of A, appears in the
combination with a nonzero coefficient, we can write the dependence relation as
>ljer 0,=0, where each ¢, is a linear combination of elements of A,, and where
some coefficient in the combination ¢, is nonzero. In view of Property (x) for

Y, there exists an element n</ such that expSVn asymptotically dominates all

other exng] for j=l in F(a,, b;) (where we define V, to be the zero function

if 7=0). Writing the dependence relation as,

(7.12) g.=—2{0;: jel—{n}},

and dividing through by expSVn, the right-hand side of (7.12) becomes a trivial

function in F(a,, b,) by Property (x), while the left-hand side becomes a linear
combinations (with a nonzero coefficient) of a complete logarithmic set of solu-
tions of A,(u)=0 (or A(w)=0 if n=0). This is a direct contradiction of Lemma
6.2, and thus we have shown that A,U---\UA; is a fundamental set for (7.3).
This proves conclusion (c).

To prove conclusion (d), we let f=0 be a solution of (7.3) which is admis-
sible in F(a,, b;). Thus by conclusion (c), there is an element T of F(ay, b))
on which f can be written as a linear combination of the elements of A,U -
\UAg4, and clearly not all coefficients in the combination can be zero. As in the
proof of conclusion (c), if we let I denote the subset of {0, 1, -+, d} consisting
of all ; for which some element of A, appears in the combination with a
nonzero coefficient, then we can write the relation as f=2)e; 0,, where ¢, is
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a linear combination of the elements of A,, and where some coefficient in o, is
nonzero. Using Property (x) for Y in (7.11), we have as before that there is

an element n</ such that expSVn asymptotically dominates all other exng]

for jel in F(a,, b,) (where V, is defined to be the zero function if ;=0).
Writing the relation for f as

(7.13) f=0.+310,: j&l—{n}},

we see that if n=0, then (7.13) is of the form (7.6) where G is trivial in

F(a,, b)), while if n+0, we obtain (7.7) when we factor the term expSVn from

the right-hand side of (7.13). This proves conclusion (d).

Remark. In §1, it was stated that an equation (1.6) could have the “global
oscillation property” in a sector where ¢ decays. To see this, we note that
in a sector a<<argz<b where ¢ decays, the function ef is trivial in F(a, b)
by Lemma 5.3 so that (1.6) is an equation of the form (7.3) and hence we can
apply Lemma 7.2 to it. Writing (1.6) in terms of the # operator so it has the
form A(w)=0, and letting V., ---, V4 and A,(u), ---, A4(u) be as in Lemma 7.2,
we can assert that the equation (1.6) will have the global oscillation property
if either of the following holds: (i) The critical equation of A(w)=0 possesses
at least two distinct roots having the same real part; (ii) For some y&{1, -, d},
the critical equation of A;(u)=0 possesses at least two distinct roots having the
same real part. To see this, assume that (i) holds so that by conclusion (c)
of Lemma 7.2, we have that except in finitely many directions in F(a, b), the
equation (1.6) possesses solutions f,~z* and f,~z®, where a and 8 are distinct
but have the same real part. For any Fla,, b;,) where f, and f, exist, we can
use [5; Lemma 7.1] to construct for any #<(a,, b;) and any ¢>0, an appropriate
linear combination of f, and f, which has infinitely may zeros on |argz—@ | <e.

If (ii) holds, the solutions f, and f, are of the form fm:(expSV,>gm for m=

1, 2 where g,~z% and g,~z®. We again use [5; Lemma 7.1] to construct an
appropriate linear combination of g, and g, as before, say c¢,g,+c¢,g., and thus
¢i1fi+c¢of, will have infinitely many zeros on |argz—@|<e.

For the example (1.7), when it is written in terms of # using (2.2), it has
the form (6.2) where B,=1+¢", B,<1, B,~1, and B,«1 for ;>2. Thus in any
F(a, b) where ef is trivial, the critical equation (6.3) of (1.7) is a*+1=0, and
so (1.7) satisfies condition (i) above and thus possesses the global oscillation
property in F(a, b).

We will also require the following result in the proof of our main result:

LEMMA 7.3. Let n be a positive integer. Let ¢, G, Gy, -+, G, and a be
admissible functions in an F(a, b) such that G, G,, -+, G, and a each —0 over
F(a, b) while for some nonzero constant K, we have ¢,—K over F(a,b). Let
B, B, -+, Bn be any nonzero complex numbers, ana let 2, -+, 2, be n distincl
nonzero real numbers. Set
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(7.14) H=,(B1+G)+ 3 B2 414G, + o).

Then the following hold:
(a) If n=1, then over F(a, b) we have,

(7.15) zH'(2)/z** —> K, where K,=KB,id,#0.
(b) If n>1, then over F(a, b), zH'(2)/z**1 1s of the form,

(7.16) Gi(Buir(1+G )+ ]2 Bsid, 2 0(14G,)+0,),
where o,—0 over F(a, b).

Proof. We differentiate (7.14) and compute zH’(z). Since G, G,, ¢,—K,
and ¢ all -0 over F(a, b), we know by Lemma 5.2 that the same is true for
zG’, zG;, zo', z¢}, and hence also for z¢{/¢;. Since z**s is bounded by Lemma
5.5, it now follows from the formula for zH’ that,

(7.17) zH'=¢,(§‘,1 Bsidz (14G )+ a,),

where ¢,—0 over F(a, b). Dividing the relation (7.17) by z**' and using the
fact that z**' is bounded from below by a nonzero constant by Lemma 5.5, we
easily obtain (7.15) if n=1 and (7.16) if n>1.

Remark. Since relation (7.16) is of the same general form as (7.14) but has
one fewer term in the summation, it is clear that Lemma 7.3 can be used re-
peatedly to reduce the summation to one term so that Part (a) of Lemma 7.3
is eventually applicable. Thus, if H is given by (7.14) with n>>1, then repeated
operations of differentiation and multiplication by a complex power of z will
eventually yield a function which tends to a finite nonzero limit in F(a, b).

8. Proof of the Main Result. We assume we are given an equation (1.6)
satisfying the hypothesis of the theorem. We also assume initially that 8,
(—n, n) and we will handle the case 6,=nr at the end of the proof. Since
IF(P’, 6,)=0, we can assume without loss of generality that for some &,>0,
we have

8.1 IF(P’, 0)>0 on (0y—e¢;, 00) and IF(P’, §)<0 on (@, 0o+e1)

since our argument will be symmetric if we interchange the two intervals in
8.1).

To prove the theorem, we assume contrary to the conclusion that (1.6)
possesses a solution [0 satisfying A(f)<co. Using the theory of canonical
products [19; p. 251], we may write f=Ge", where G and h are entire func-
tions with G of finite order of growth. Since f solves (1.6), we obtain,
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8.2) (WD () +ReP+Q,=0,

where @,_,(h’) is a differential polynomial of total degree at most 2—1 in h’,
h”, ---, whose coefficients are polynomials in G'/G, G"/G, ---, G® /G, and @,
-+, Qr-s, having constant coefficients, and whose terms of total degree £—1 are

8.3) k(R")*=H(G"/G)+(k(k—1)/2)(h")*~*h" .

The relation (8.2) is essentially the same relation that was obtained in [9;
Formula (5.1), p. 304]. By following exactly the steps in the proof in [9;
Formulas (5.1)-(5.21)], we determine an admissible function W(z) in F(0,—e,,
00+¢,) for some ¢,>0, which has all of the following properties: (i) W(z) is
analytic and of finite order of growth for large |z| in a sectorial region
larg z—@,| <e; for some ¢,>>0; (ii) there is a nonzero constant J such that,

8.4) W(ret?) —> J#0 as r —> oo for Go—e;<0<0,.
(iii) The function W(z) has the form,
(8.5) W:Sbele(k—l)P/Zk ,

where D, is an analytic branch on F(—x, 7) of the algebraic function R¢*-D/2¢,
and where ¢ is an admissible function on F(—=, =) which for some nonzero
constant K, satisfies,

8.6) ¢ —> K;#0 over F(0,, Oi+e¢s).
We observe that it follows from Lemma 5.2(B) that,
8.7 Either D;/D,«z! or Dj/D,=z"' over F(—mr, x).

In addition, we observe that from property (i) above for W(z) and the Phragmen-
Lindelof principles [19; §$5.61, 5.64], it follows easily from (8.4) that W—/] as
z—oo in any closed sector #,<argz<8#, where 6,>0,—¢;, and 6,<6, Thus
from [17; §97], we can assert that

(8.8) W(z)—> J#0 over F(0,—e¢s, ).

We now consider W(z) on F(8,, 8,+¢;). By (8.1) and Lemma 5.3, clearly
Re? is trivial in F(8,, 0,+¢;) so that (1.6) is of the form (7.3), and hence we
can apply Lemma 7.2 to (1.6) taking (a, b) equal to (8., 0o+¢;). Clearly the
hypothesis of Part (d) of Lemma 7.2 is satisfied when we take (a,, b)) to be
(8o, 8o+¢,) for a sufficiently small ¢,>>0, and so the solution f is either of the
form (7.6) or (7.7) on some element of F(8,, f,+¢.).

We assume first that f has the form (7.6). Then it follows from the
definition of the ¢, that for some >0, we have f«<z* in F(#,, 6,+¢,). Since
R(z) is a polynomial, clearly D,«z% for some a>0, and so since e*-DF/2k jg
trivial in F(8,, 0o+c¢,), it follows from (8.5) and (8.6) that,
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(8.9) W(z)—> 0 over F(8,, 0o+c,).

In view of Lemma 5.1 (and the fact that W(z) is of finite order on F(f,—e,,
0o+¢,)), it is now clear that (8.8) and (8.9) contradict the Phragmen-Lindelof
principle [19; §5.64].

We now assume that f has the form (7.7). In view of (8.5) and (8.6), there
is an element of F(f,, 6,+¢s) on which W(z) has the form,

(8.10) W=¢,E expSU,
where
8.11) U=V o+((k—1)/2k)P'+D}/D;,

(and so U is admissible in F(—=, ), and where
tn
(8.12) E= E_lcmsan,m‘l"cy

and finally where for some nonzero constant K,
(8.13) ¢ —> K #0 over F(fo, O,+¢,).

By Lemma 7.2, there is an element N, of the exponential set for (7.1) such
that V,~N, over F(—=r, x). But (7.1) is just the associated equation to (1.6),
so by the notation in the main result, we have that N, belongsto I". We now
distinguish three subcases:

Subcase A. Ny« P’ over F(—=, ). In this case, we have from (8.7) and
(8.11) that over F(—=x, n), U~((k—1)/2k)P’. Thus from Lemma 5.3, we have

that expSU is trivial in F (8, 0+¢4), so from (8.10) we obtain (8.9) which gives

the same contradiction as before.

Subcase B. N;» P’ over F(—=x, n). Thus by (8.11) we have U~N, over
F(—r, =), and hence by the hypothesis of the theorem, we have

(8.14) IF(U, 6,)#0.

If IF(U, 6,)<0, then IF(U, 8)<0 on some interval (f,—e;, 6,+¢;), and hence
by Lemma 5.3, we have expSU is trivial in (fo—e¢;, @o+¢5). In view of (8.10)

this again yields (8.9) which gives the same contradiction as before. If IF(U,
6,)>0, then /F(U, 6)>0 on some interval (8,—e¢;, 8,+¢;), so by Lemma 5.3,

(8.15) exp(ng) is trivial on F(fo—¢s, Ootes).

Now set,
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(8.16) W0=Wexp(—gU) on  F(@y—es, Ootcs).

Clearly W, is of finite order of growth on its domain. In view of (8.8) and
(8.15), it follows that for all real a«, we have z°W,—0 over F(f,—¢s, 8,), and
so by [4; Lemma 7], we have

8.17) W, is trivial in F(0o—e¢3, 0,).

Now, on F(8,, 0.+¢,), we have Wo=¢, E by (8.10), where E is given by (8.12)
and ¢, satisfies (8.13). In the expression for E, we know that in F(8,, 6,+¢,),
the function G is trivial, while for each m=1, -+, t,, we have

(8.18) ¢on n=2""Logz)’n(14+L,), where L,<1,

and where a, is a complex number while §8, is a nonnegative integer, and
where the pairs (a@n, 8») are all distinct. Let / be the set of all m such that
¢n#0 in (8.12). Write a,=0,+i4, where ¢, and A, are real. Let ¢ be the
maximum of all ¢, for mel, and let I, be the subset of I consisting of those
m for which ¢,=0. Let 8 denote the maximum of all 8, for mel/,, and let
I, be the subset of I, consisting of those m for which 8,=p8. It is then easy
to see (using Lemmas 5.4 and 5.5) that,

(8.19) E=zLog2)’( 3} cpz*n(1+ L )+uy),
mely

where u,—0 over F(0,, 0o+e,). Let I,={m,, -, m,}, and let S=z"*"*mn(Log z)?,
where m=m,. If s=1, then from (8.10), (8.13), (8.19), and Lemma 5.5, we have,

(8.20) Wo/S —> Kicm,#0 over F(0,, 0oFe,).

But from (8.17) and Lemma 5.4, we have the W,/S—0 over F(f,—e¢;, 6,) and
so again we have a contradiction of the Phragmen-Lindel6f principle.
If s>1, we have from (8.19) that

8.21) Wo/S=¢(cm(l+ Lm)—l-quE( )cqz’“r‘m)(l + Lo)+us)
9 (m

where u,—0 over F(8,, #,+¢,) by Lemma 5.5, and where m=m,. Noting that
the numbers A,—4n for g=l,—{m} are all distinct and nonzero (since the pairs
(ag, By) in (8.18) are distinct), we see that (8.21) has the form (7.14) and so
Lemma 7.3 is applicable. If s=2, then by Lemma 7.3(a), the function,

(8.22) Wi=z2(W,/S)z*4m-40  where r=m,,

has the property that W, tends to a finite nonzero limit over F(f,, O,+ec,).
However, in view of (8.17) and Lemma 5.4, clearly W,—0 over F(8,—¢,, 0,).
This again violates the Phragmen-Lindel6f principle. (We note that W, is of
finite order of growth over F(#,—e,, 0.+¢,), since W, and all of its derivatives
have this property by the representation for W, developed in [9; Formula



182 STEVEN B. BANK

(5.16)].) If s>2, then Lemma 7.3(b) applied to (8.21) shows that W, is given
by an expression of the general form (7.16) which has one fewer term in the
summation than (8.21) has. Of course, (7.16) is again of the general form (7.14),
and so Lemma 7.3 can now be applied to W,. Clearly, the process can be
repeated and eventually reduces the summation to one term which results in a
function which violates the Phragmen-Lindel6f principle as above. Thus Subcase

B is impossible.

Subcase C. If neither of the previous subcases hold, we must have N,=P’
over F(—rx, ) (see [17; §411), say N,~b,P’ where b, is a nonzero constant.
By the hypothesis of the theorem, b,#+—(k—1)/2k, so by (8.11) and (8.7), we

have
(8.23) U~(b,+(k—1)/2k)P’ over F(—m, ).

By the hypothesis (3.1) of the theorem, IF(U, 6,)#0. This is exactly the same
condition (8.14) as we had in Subcase B, and the proof that both possibilities,
IF(U, 6,)<0 and IF(U, 6,)>0, lead to contradictions, is exactly as in Subcase
B. Thus the proof of the theorem is complete in the case f,=(—r, 7).

In the case where §,==, we perform the change of variable {=—=z in (1.6)
which results in an equation which is satisfied by all functions f(—{) for which
f(z) satisfies (1.6). A routine calculation (using [3; §26]) of the exponential
set of the transformed equation shows that this equation satisfies the hypotheses
of the theorem for the value #,=0. Thus A(g)= for all solutions g==0 of the
transformed equation, and it follows that the same conclusion holds for the

original equation (1.6).

9. Examples. In this section, we construct examples of equations (1.6)
having zero-free solutions.

Example 1. Let P(z) be any nonconstant polynomial, and let K, K,, and
K, be the cube roots of —1. Then, the three functions,

9.1) f,=exp((——P/3)+S:Kje”/3> for j=1,2,3,

all solve the equation
9.2) w"+Q w4+ (e —(P'P”/9)+(P"/3)w=0,

where Q,=(@2P”/3)—((P’)?/9).

This example is easily verified by routine calculation, and shows that zero-
free solutions of (1.6) can occur for any choice of the polynomial P(z). (The
examples (1.4) and (1.5) arise by taking P(z)=3z+nr:i and P(z)=3z*+nr: respec-
tively in Example 1.) The exponential set for the equation associated to (9.2)
consists of two elements N, where N;~+P’/3 over F(—r, ) and hence hypo-
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thesis (b) in our theorem is violated for (9.2) since £=3.

Example 2. This example shows that zero-free solutions of (1.6) can occur
for any order k. We prove:

PROPOSITION. Let k be a positive integer greater than one, and let c=—
(k—1)/2. Then, the zero-free function, exp(cz-e?), solves an equation (1.6) where
Qo, -+, Qi are constants, R=—1 and P(z)=kz.

Proof. Let h(z)=cz+e* and f=e". Then, it is easy to verify (e.g. see
[13; Lemma 3.5]) that for each n=1, 2, ---, there are constants 3, , such that

9.3) P/ f=e"+ S s

Our choice of ¢ shows that 8, ,-,=0, so that

o4 T

Thus, if =2, we are done. Assuming k>2, we have from (9.3) for n=+,k—2,
©.5) eromi faen/f—STg, , o,

We then substitute this into (9.4). In the resulting relation, we then substitute
the expression for e®*-®? given by (9.3) for n=/k—3. We continue this process
for e~z ... ¢? and the resulting expression is the desired equation for f.
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