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PERRON-FROBENIUS THEOREM FOR

MULTI-VALUED MAPPINGS
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1. Introduction

The Perron-Frobenius theorem concerning eigenvalues of nonnegative matrices
has been extended to several directions e. g. (i) extension to nonlinear mappings
(Fujimoto [5], Fujimoto and Morishima [7], Morishima [13], Nikaido [15],
Oshime [16], [17], Samuelson and Solow [20]), (ii) extension to positive linear
operators defined on infinite dimensional spaces (Karlin [8], Niiro and Sawashima
[14], Shaefer [21]), and (iii) extension to multi-valued mappings (Aubin [1],
[2], Aubin and Ekeland [3], Aubin and Frankowska [4], Fujimoto and Herrero
[7], Makarov and Rubinov [11], Rockafellar [18], [19]).

In this paper, we shall primarily be concerned with the third category.
The multi-valued versions of the Perron-Frobenius theorem have been motivated
chiefly by von Neumann's theory of dynamic economic growth (von Neumann
[25]). Let G: iϊ?->->/?? be a multi-valued mapping with a conic graph. This
mapping is interpreted as a relation which associates with each input vector
the set of technologically possible output vectors of the whole economy. A

oo

sequence (xt)T=o^ Π-β? which satisfies the condition:

xt+1£ΞG(xt) for all f=0, 1,2, •••

is called a feasible path of this economy. When a feasible path (xt) is repre-
sented, in particular, by Xt—λιx^ for some x^R\ and λ>0, it is called a
balanced growth path with growth factor λ. A balanced growth path which
attains the maximum growth factor enjoys several desired properties from a
viewpoint of normative economic theory. It should be noted that the study of
the balanced growth path is, thanks to the conicity of the graph of G, reduced
to the study of xo(=Σn and λ^O which satisfy the condition:

(where Σn is the fundamental simplex in Rn). It is nothing other than the
multi-valued version of eigenvalue problem. Here emerges a natural incentive
for inquiring the multi-valued version of Perron-Frobenius theorem.
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Our results are closely related with those of Aubin and Ekeland [3].
Although their fundamental theorem on the existence of maximum eigenvalue
is formulated under very general conditions, its proof seems to contain some
mistakes in subtle points (Aubin and Ekeland [3], p. 147, Proposition 1). In
particular, their treatment of fractions with 0 denominator is quite dubious.
The purpose of the present paper is to provide a modified correct version of
their result with a new proof, which is totally different from theirs and is
essentially based upon the minimax reasoning.

2. Notations and Assumptions

Let Rn be the n dimensional Euclidean space and R% its nonnegative
orthant. We denote by Σn the fundamental simplex of Rn. For any ΛdRm

and p^Rm, we denote by σ(A, p) the support functional of A; i.e. σ(A, p)=
sup{<%, py: x&A], where < , •> designates the usual inner product.

A single-valued mapping / : Σn—>Rf as well as multi-valued mapping
G: Σn-j>-j>R+ are assumed to be given. The conditions imposed on these map-
pings are as follows. We denote by ft the i-th coordinate of / .

Λl. fx\Σn—>R+ is quasi-convex and lower semi-continuous for all i—
1,2, •••, n.

A2. (i) The set G{x) is non-empty, compact and convex for all XΪΞΣ71.
(ii) The function χ\—>σ(G(x), p) is quasi-concave and upper semi-

continuous for any fixed p(ΞΣm.
A3. For any p^Σm, there exists x^Σn such that σ(G(x), p)>0.
AL There exists p(ΞΣm such that </>, /(x)>>0 for all x^Σn.

Remark. These assumptions are approximately corresponding to those
considered in Aubin and Ekeland [3] (p. 147, Proposition 1). They admit ft

to take negative values, but assume that it is a convex function. And instead
of our assumptions of the quasi-concavity and the upper semi-continuity of
σ(G{-), P), they assume the convexity of the graph of G and upper semi-
continuity of G in the sense of multi-valued mappings. (For the analysis of
multi-valued mappings, see Aubin-Frankowska [4] or Maruyama [12].) It is
easy to verify that, under the condition that G is the compact-valued mapping,
their assumptions imply ours except for the nonnegativity. A merit of our
modification of the assumptions concerning G is that, by getting rid of the
assumption that the graph of G is convex, our results can be directly applied
to the cases where G is a single-valued nonlinear mapping as shown in section
4.

3. Main Theorems

THEOREM 1. Let f and G satisfy assumptions A\, A2, A3 and A4. Then
there exist <5>0, p*<^Σm and x * G l n which satisfy the following four conditions:
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( i ) δttx*)ς=G(x*)-R¥.
(ii) σ(G(x), ]>*)̂ <5</>*, /(*)> for all X(ΞΣ\
(iii) σ(G(**), p*)=δ<p*, /(**)>.
(iv) For any λ>0 which satisfies the condition: λf(x)^G(x)—R^ for some

n, we have λ^δ.

Proof. We begin by distinguishing two kinds of definitions of fractions
with 0 denominators, a/b is defined as

a ί a/b (in the usual sense) if

b [ +00 if

On the other hand, a/*b is defined as

a/b (in the usual sense) if

0 if a=b=a

V
if aΦθ,b=O.

Step 1. Define a number δ by

. . , σ(G(x), p)
δ = mf s u p - - 7 ^ 7 7 - ^ - .

p&Σm xeΣn (p, f{x))

Then δ is a well-defined positive real number. In order to see this, let 5 : Σ
(0, +00] be a function defined by

Furthermore let ^ e ί " be fixed so that it satisfies A4. Then the function
T: Σ"-^R+ defined by

is upper semi-continuous and thus has a maximum point. So 5 is proper, i. e.,
it is not identically +°°, and δ is a nonnegative real number. Finally we show
that δ is in fact positive. To see this, we define U(p) for any p^Σm by

U(p) belongs to (0, +00] by ^43. Since it is clear that

U(p)£S(p) for all p<=ΞΣm,

U is also proper. The lower semi-continuity of U follows from the fact that
the set
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= {p<=Σm:σ(G(x), p)£a<p, /(*)> for all

: σ(G(x), p)£a<p, /(*)>}

(where Π is taken over all XZΞΣ11) is closed for any a>0. Thus U is a proper
and lower semi-continuous function defined on the compact set Σm. So it has
the positive minimum, and hence δ is positive.

Step 2. Using δ defined in Step 1, we define a function φ: ΣmxΣn—>R
as follows,

φ(p, x)=*(G(x), P)~δ<P,

Then it can easily be verified that for each fixed I G I " , the function p\—>φ{p, x)
is lower semi-continuous and quasi-convex and that for each fixed p^Σm, the
function χ\—>φ(p, x) is upper semi-continuous and quasi-concave. Therefore by
Sion's minimax theorem (c. f. Sion [22] or Takahashi [23]), φ has a minimax
point (/>*, x*)ς=ΣmxΣn.

We now proceed to show that φ(p*f x*)=Q. To this end, we show that
both φ(ρ*, %*)^0 and φ(p*, x*)^0 are valid.

(a) The proof of φ(p*, x*)^0.
Case 1. </>*, / ( Λ ; ) » 0 for all xt=Σn.

Let x' be a maximum point of the function

σ(G(x), p*)

<P*,f(x)>

Then, it follows that

φ(p*9 x*)

=minmax[<y(G(jc), p)~δ<p, /(x
V XV

=max\σ(G(x), p*)-\
x L I

2. </)*, /(Λ;Λr)>=0 for some
in this case, we also obtain the relation:
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φ(p*f jc*)=minmax[σ(G(;c), p)-δ<p,
v x

=max[σ(G(jc), p*)-δ<p*, /(

" ) , p*)

(b) The proof of <*(/>*, JC*)^O. Let p'&Σm be the minimum point of U
obtained in Step 1.

Case 1. </>', / ( A ; * ) » 0 .

We can get the desired inequality by the simple calculation:

φ{p*,

=maxmin[σ(G(%), p)—δ{p, /(x)
X P

=minίσ(G(x*), p)-δ<p, /(%*)>]
PP

p x ip, f{X)
, fix*)}]

J

2. </?r, / ( * * ) > = 0 .

In this case, (/(G(x*), p')=0 by the definition of U. Hence we must have:

φ(p*t %*)=maxmin[σ(G(x), p)-δ<p,

=min[<j(G(A:*), ί ) - a < ί , /(x*)>]
p

£σ(G(x*), p')-δ(pf, f(x*)>

= 0 .

This completes the proof of the equality φ(p*, x*)=0.

Sίβj& 3. We show that the minimax point (p*, x*) of φ together with
in fact satisfies all the required conditions. φ(p*, x*)=0 means that (/>*, A;
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satisfies the conditions (ii), (iii) and the following inequality.

(1) σ(G(x*), p)-δ<p, /(**)>^0 for all

This condition, in turn, implies condition (i). To see this, suppose, on the
contrary, that δ and x* do not satisfy condition (i), that is,

δf(x*)£G(x*)-RT.

Then by the separation theorem, we must have

σ(G(x*)-Rf, q)-δ(q, /(*)><0 for some q^Rm, qΦO.

This q can be taken from Σm thanks to the term "—Rf". Thus follows the
inequality.

But this contradicts to (1).
Finally, we check the condition (iv). To this end, choose λ>0 so that

λf{xf)^G{xf)-Rf for some X'ΪΞΣ71.

Then it follows that

σ{G(xr), p)-λ<p, /(x')>^0 for all

Therefore, we must have the relation

^V^rVί^-P-ί-^f for all" <p, /(*')> ~ * <P, f(x)>

Hence we can conclude that

/i^inr sup r- .— --O,
p * <P, f(x)>

This completes the proof of the theorem.

4. Some Consequences

In this section, we discuss some important consequences of our main
theorem. Although they are essentially the same as those obtained by Aubin-
Ekeland [3], we collect them here again for the sake of readers' conveniences.

First of all, we give the conditions which are necessary to guarantee the
existence of x^Σn satisfying the following condition:

δf(x)<=G(x).

For this purpose, we need to strengthen some assumptions imposed on / and
G as follows.
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A3'. For any p^Σm and x^.Σn, there exists z^G(x) such that </>, z»Q,
AM. There exists j&Gint.JB? such that </>, /(x)>>0 for all x e i 1 " .
,45 . m=w and for any i~l, 2, ••• , n, xt=0 implies fi(x)<LQ.

PROPOSITION 1. Let f and G satisfy assumptions Al, A2, A3', AM and .45.
Then there exist δ>0, p*(Ξint.Σn and X*ΪΞΣ71 which satisfy (ii), (iii), (iv) and the
inclusion:

The next proposition should be regarded as a generalized version of the
nonnegative invertibility of the nonnegative matrices.

PROPOSITION 2. Let f and G satisfy assumptions Al, A2, A3 and /14. We
We define a number /3<0, for any μ>δ and y^'mt.R™, by

Then there exists x*<=Σn such that

βy(ΞG(x*)-μf(x*)-R?.

If we assume .41, A2, A3', Air and .45, then the term "—jβ™" can be dropped.

PROPOSITION 3. Let f and G satisfy assumptions Al, A2, A3', AM and A5.
We define β<Q, for any μ>δ and y^'intM", by

Then there exists * * e j n such that

βyeΞG(x*)-μf(x*).

Finally, we give consequences in the case G is single-valued.

COROLLARY 1. Let f and g:Σn—>Rf be single-valued mappings which
satisfy the following conditions.

(1) ft is quasi-convex and lower semi-continuous for all ι~l,2, ••• , m.
(2) gt is quasi-concave and upper semi-continuous for all i — l, 2, ••• , m.
(3) For any p(=Σm, there exists XΪΞΣ71 such that <p, g(x)»0.
(4) There exists p^Σ771 such that {p, /(x)>>0 for all x^Σn.

Then there exist d>0, p*(ΞΣm and x*(ΞΣn such that
( i ) δ f(x*)£g(x*).
(ii) </>*, g(x)>^δ<p*, /(x)> for all x<=Σn.
(iii) <p*, g(x*)>=δ<p*9 f(x*)>.
(iv) For any λ>0 which satisfies the condition λf(x)^g{x) for some x(Ξ

Σn we have
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(v) For any μ>δ and y^int.Rf, there exist β<0 and x'ξΞΣn such that

The next corollary is an extended version of the Perron-Frobenius theorem
to nonlinear mapping.

COROLLARY 2. Let g:Σn—>R+ be a single-valued mapping which satisfy
the following conditons.

(1) gt is quasi-concave and upper semi-continuous for all ι = l, 2, ••• , n.
(2) g(x)>0 for all x^Σn.

Then there exist δ>0 and p*f x*(=mt.Σn such that
( i ) β * * - £ ( * * ) .
( ϋ ) </>*, gW><δ<p*, Xs) for all
(iii) </>*, g(x*)>=δ<p*, %*>
(iv) For any λ>0 which satisfies the condition: λx^g(x) for some x

we have λ^δ.
(v) For any μ>δ and y^int.R71, there exist β<0and x 'eint.J" such that

βy=g(χ')-μχ'.

Remark We mention here a few remarks about the relationships between
corollary 2 and the other results of the nonlinear versions of the Perron-
Frobenius theorem. The typical assumptions imposed on g: Rl—>/2? are (1)
continuity, (2) homogeneity, (3) monotonicity, and (4) indecomposability. Under
these assumptions, it can be shown that there exists maximum eigenvalue and
that this eigenvalue satisfies the property (iv) in corollary 2. To put it minutely,
the existence of the eigenvalues can be proved under assumption (1), and the
existence of the maximum eigenvalue can be proved under assumptions (1) and
(2). Furthermore if we assume (3) in addition to (1) and (2), it can be shown
that the maximum eigenvalue satisfies the condition (iv) in corollary 2, and
lastly if we assume (3) and (4) in addition to (1) and (2), the maximum eigenvalue
can be shown to be positive. (See, for example, Nikaido [14].) Under our
results, assumption (1) is weakened to the upper semi-continuity of g and
assumption (4) is strengthened to the strict positivity of g. On the other
hand, assumptions (2) and (3) are incomparable with ours, because our results
restrict the domain of g to Σn from the outset.

Finally if G is a matrix, our result is reduced to the well-known Perron
theorem.

COROLLARY 3. Let g: Rn—>Rn be a positive matrix. Then the following
conditions hold.

( i ) g has a positive eigenvalue δ with the corresponding eigenvector x* with

positive components.
(ii) δ is the only eigenvalue of g for which there corresponds an eigenvector

X<Ξ.Σn.



PERRON-FROBENIUS THEOREM 163

(iii) δ is larger than or equal to the absolute value of any other eigenvalue
of g.

(iv) The matrix μl—g is invertible and (μl—g)~ι is positive if and only if
μ>δ, where I is the identity matrix.
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