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ON THE MINIMAL SUBMANIFOLDS IN CPm(c) AND S"(l)

BY XIA CHANGYU

Abstract

Let M be an n-dimensional compact totally real submanifold minimally im-
mersed in CPm(c). Let σ be the second fundamental form of M. A known
result states that if m=n and \σ 2^(n(n + l)c)/(4(2n — 1)), then M is either totally
geodesic or a finite Riemannian covering of the unique flat torus minimally
imbedded in CP2(c). In this paper, we improve the above pinching constant to
(n-fl)c/6 and prove a pinching theorem for \σ 2 without the assumption on
the codimension. We have also some pinching theorems for δ(u) :— | σ(u, u) j 2 ,
u^UM, M-*CPm(c} and the Ricci curvature of a minimal submanifold in a
sphere. In particular, a simple proof of a Gauchman's result is given.

1. Introduction.

Let M be an n-dimensional compact submanifold minimally immersed in a
complex projective space CPm(c) of holomorphic sectional curvature c and of com-
plex dimension m. Denote by σ the second fundamental form of M. Chen and
Ogiue ([!]), Naitoh and Takeuchi ([7]), and Yau ([13]) proved that if M is
totally real, m=n and |<r|2^(n(n+l)c)/(4(2tt-l)), then M is either totally
geodesic or a finite Riemannian covering of the unique flat torus minimally im-
badded in CP\c) with parallel second fundamental form. In this paper, by
using a method different from those in [1], [7] and [13], we improve the above
result and prove a pinching theorem for σ 2 without the assumption on the
codimension of M. Namely, we have

THEOREM 1. Let M be an n-dimensional compact totally real minimal sub-
manifold in CPn(c}. Let σ be the second fundamental form of M. If σ *<
(n+l)c/6, then M is either totally geodesic or a finite Riemannian covering of
the unique flat torus embedded in CP\c) with parallel second fundamental form.

THEOREM 2. Let M be an n-dimensional compact totally real minimal sub-
manifold immersed in CPm(c). If \σ\2<nc/6, then either M is totally geodesic
or the immersion of M into CPm(c) is one of the following immersions
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φlιp: RP*(c/l2)->CP*+p(c); φ2,p : S2(c/12)->CP*+p(c) (p=Q, 1, 2, .-).

A. Ros in [10] showed that if M is a compact Kaehler submanifold of
CPm(c) and if d(n)- : σ(u, w)| 2<c/4 for any u^UM, then Mis totally geodesic.
Moreover, in [9], Ros gave a complete list of Kaehler submanifolds of CPm(c)
satisfying the condition maxδ(w)— c/4. In [3], H. Gauchman obtained the fol-

uι=UM

lowing analogous result for totally real minimal submanifold in CPm(c).

THEOREM 3. Let M be an n-dimensional compact totally real minimal sub-
manifold immersed in CPm(c). Then, d(u}-:\σ(u, u)\2^c/l2 for any utΞUM
if and only if one of the following conditions is satisfied:

i ) δ=Q (i.e., M is totally geodesic).
ii) δ=c/12 and the immersion of M into CPm(c) is one of the following im-

mersions- φίtp: RP2(c/12)->CP4+p(c); φ2,p : S\c/l2)-+CP4+p(c); φ3,p: CP\c/3)-+
0, 1, 2, -»).

For the definitions of φiιpfy = l, - - - , 5 ; p—^,l,2, •••), one can consult [3, p. 254],
In this paper, we'll give a simple proof of the above Gauchman's result and

prove the following.

THEOREM 4. Let M be an n-dimensional compact totally real minimal sub-
mamfold immersed in a complex protective space CPm(c). Assume that n is odd.
If <5(w)^c/4(3-2/n) for all u&UM, then M is totally geodesic.

Theorem 4 improves a result by H. Gauchman in [3].
For minimal submanifolds in a sphere, we have

THEOREM 5. Let M be an n-dimensional compact minimal submanifold im-
mersed in a unit sphere Sn+p(l). Let Λξ be the Weingarten endomorphism as-
sociated to a normal vector ξ. Define T: T^MxT$M-*R by T(ξ, η)— trace AξAη.
Assume that the Ricci curvature of M satisfies Ric^n— 1— ((w+2)/>)/(2(n+/>+2))
and T — k<^,y. Then the immersion of M into Sn+p(l) is one of the following
standard ones (see [11] for details) Sw(l)->Sn(l) #P2(l/3)->S4(l); S2(l/3)-+S4(l);
CP2(4/3)->S7(l) <2P2(4/3)->S13(l); Cay P2(4/3)-»S25(l).

2. Preliminaries.

Let M be an n-dimensional compact Riemannian manifold. We denote by
UM the unit tangent bundle over M and by UMP its fiber over p^M. If dp,
dv and dvp denote the canonical measures on M, UM and UMP respectively,
then for any continuous function / : UM-+R, we have :

fdvp\dp.μ\

Now, we suppose that M is isometrically immersed in an (rc-f/0-dimensional
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Riemannian manifold M. We denote by < , > the metric of M as well as that
induced on M. If σ is the second fundamental form of the immersion and Λξ

the Weingarten endomorphism associated to a normal vector ξ , we define

L:TPM — >TPM and T : Tj,MxT$M — > R

by the expressions
n

Lv— ΣMσα>.e<>βι and T(ξ, -η)— trace AξAη,

where T£M is the normal space to M at p and e ί f ••• , en is an orthonormal
basis of TPM. M is called a curvature-invariant submanifold of M, if R(X, Y)Z
eTpMfor all X, Y, Z<=TPM, being R the curvature operator of M. Then, if
Vσ and F2<r denote the first and second covariant derivatives of a respectively,
one has that F<τ is symmetric and F2<τ satisfies the following relation

(2.1) (P*σχx, Y, Z, WO=(F2<r)(r, X, Z, W)+RL(X, Y)σ(Z, W)

-σ(R(X, Y)Z, W)-σ(Z, R(X,

where RL and R are the curvature operators of the normal and tangent bundles
over M respectively. _

If Ric is the Ricci tensor of M and M is minimanlly immersed in M, we
have from the Gauss equation

(2.2) Ric(?;, w}= Σ>R(v, et, et, w}

LEMMA 1 ([4]) Let M be an n-dimensional compact minimal curvature-
invariant submanifold isometrically immersed in an (n-\-p)-dimensional Riemannian
manifold M. Then

(2.3) 0=- |(P*Xv, υ,
jUM

UM
(Lv, Aσ^^vydv-2 T(σ(v, v), σ(v, v))dv

S n _
Σ {/?(βt, v, σ(v, el), σ(v, v

U M ι = l

LEMMA 2 ([4]) Let M be an n-dimensional compact minimal submanifold
isometrically immersed in a Riemannian manifold M. Then, for any p^M, we
have

(2.4) <Lv, Aσ^vydvp = -- \Lv\*dvp
~UM p

(2.5) f \σ(v, v)\2dvp^-^{ <Lv, v>dvp = -7^Tήτ\ \σ\2dvp.JUMI p n+2JuM p n(n+2)J^M p

l p
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3. Maximal directions.

Let M be an ^-dimensional compact curvature-invariant submanifold minim-
ally immersed in M. Define S~ {(u, v)\u, v<ΞUMp, p<=M} and a function / on
S by

(3.1) f(u,v)=\σ(u, u)-σ(v,v)\\

For any p^M, we can take (ΰ, v)<^UMpxUMp with <«, v>=0, such that
f ( ΰ , £)= max /(M, v). We shall call such a pair (ΰ, v) a maximal direc-

tion at p. To see this, we assume that max f ( u , i^O, since other-
(tt .toeiΛΛfpxZ/Jifp

wise it would be obvious. Let (uίt U2)^UMPXUMP be such that /(ui, u2)=

max /(u,v). Set ξ= -^^~C^J^ and take an orthonormal
—

basis βi, ••• , £n of TPM which diagonalizes .̂ Let <^
and assume further that λ^λ2^ ••• ^Jln. Then, we have

and

(3.2)

= Σ

=<σ(elf eι)—σ(en, en), f >

1)—σ(enf en)\

ι)—σ(ut, M 2 ) l

Thus, (βj, en) is a maximal direction at />. Also, we have <j(βι, βi)— σ(en, en)—
\σ(βι, βι)—σ(enf β n ) \ ξ .

LEMMA 3. Let p<=M and assume that max f ( u , v)^0. Take an

orthonormal basis e ί f ~- , en of TPM such that (eίt en) is a maximal direction at

p, elf ••• , en diagonalizes A*, ξ— . ,1' e\ — ̂ -̂̂ r- and that λι= :<σ(βι, βi), f>
k(βι, βi)— <j(en, en)l

^^2- :<eτ(^2, β2), f>έ ••• ^Λn- :(σ(en, en\ ξ>. Then, at the point p, it holds

(3.3) Σ<<τ(0ι, eί)-σ(en) en\ P*σ(el, et, elf eί)-P*σ(el, et, en, en}y
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σ(βι, eί)—σ(ent en)\ Σ {R(et, e ί f σ ( e ί } et), ξ}~R(el) en, σ(et, en), ξ)
1 = 1

λl)R(el, e l f eί} el)-(λn-λl}R(el) en, en, el)}

- — 1*7(0!, e1)-σ(en) e n ) \ 2 - \ σ \ 2 .

Proof. From (2.1), the minimality of M, and the Gauss and Ricci equa-
tions, it follows

(3.4) Σ <σ(βι, el)—σ(en, en), V 2 σ ( e τ ) eT) elt
Z = l

= |σ(β!, ej\-σ(en, OIΣ {<$, R±(el> e
1 = 1

-σ(R(el, e,)e1} el}-σ(el, R(el} βι)e.)>

= ^i, *ι) — ff(βn, Ol Σ {^(^t, βi, σ(βι

_

~\σ(e1, el)~σ(en, 0 n ) I Σ {R(βι, β
ι=ί

+2(λi-λ1)\σ(eί, et)\ί-λi<σ(βl, et), σ(

Similarly, we have

n
(3.5) Σ<X0ι> £ι)— <r(en, en), V 2 σ ( e l , et, en,

-\σ(e1) el)\2)}

_

— λt)R(et, eΐt elt

Combining (3.4) and (3.5) and noticing

we have

(3,6) , e1)—σ(ent en\ V2σ(el, eτ, el, elf en,
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, eι)—σ(en, en)\ Σ {R(eτ, eίy σ(eίf eτ),

t, £ι, βι, el)-(λn—λl)R(el, en, en, βτ)

l) en, σ(et, en),

On the other hand, one can easily deduce from

(3.7)

Since

(3.8)

1( en) |
 2^

\σ(eί9 et)\*+ Σ \σ(en, *t)

f

 gl"t*M )
v 2 '

i, el)\!!+\σ(en,

we have

(3.9) Σ!

Substituting (3.9) into (3.6), we get (3.3). Q.E.D.

4. Proof of Theorem 1 and 2.

Proof of Theorem 1. Let L be a function on M defined by L(x)~
max /(w, v). Following an idea in [8] we prove that L is a constant

C u , V)GffM x x UM x

function on M by using the maximum principle. It suffices to show that L is
subharmonic in the generalized sense. Fix £eM, let (βi, en) be a maximal
direction at p and e ί f ••• , en be an orthonormal basis of TpMas stated in Lemma
3. From the expression of the curvature tensor of CPn(c), we have

(4.1) \σ(elf el)-σ(en) en)\ Σ {R(et, eί} σ ( e l f el), ξ)-l
1 = 1

elt en), ξ)
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0ι, el}-(λn-λl)R(el) en, en, eτ)}

C n TIC
-T Σ<0 (0ι, e1)—σ(en, en), /^>2H — ι-
4 t=ι 4

In an open neighborhood Up of p within the cut-locus of £ we shall denote by
EιW(resp.En(x)) the tangent vectors to M obtained by parallel transport of
0ι=Eι(jί>)(resp. en—En(p)) along the unique geodesic joining x to p within the
cut-locus of p. Define gP(x)=\σ(El(x\ El(x))-σ(En(^\ En(x))\\ Then,

(4.2) Δgp(p)=

If kOi, e1)-σ(enf βn)|=0, then J£P(£)S;0 by (4.2). If |σ(β1? ej-σ(en,
then by (4.1), (4.2), Lemma 3 and the hypothesis on |σ | 2 , we have

~Δ

For the Laplacian of continuous functions, we have the generalized definition

5 C 2 9 . r ) δ c p . r )

where β is a positive constant and B(p, r) denotes the geodesic ball of radius
r with center p. With this definition L is subharmonic on M if and only if
JL(£)^0 at each point />eM. Since gp(p)=L(p) and £P^L on UP9 ΔL(p)^Δgp(p)
^0. Thus, L is subharmonic and hence L— b^constant on M. When 6=0, M
is totally geodesic. When 6^0, it is easy to see that |<r|2=(w+l)c/6 on M and
that for any p<^M, by the fact that the inequalities (3.6)-(3.9) now take equality
sigh, the orthonormal basis elf ••• , en of TPM further satisfies

(4.3) σ(el9 ej=σ(en, eτ)=σ(el} e,)=0,

<y(βι, ^1)^ — ̂ (^71, «„)•

Substituting λί=—λn=\σ(eί) eO|, ^2= ••• =Λn-ι=0, (4.3) and the expression of
the curvature tensor of CPn(c) into (3.4), we have

(4.4) Σ<X*ι, «ι), ^(βt, βt, βi, *ι)>= S^(6r, 0ι, (7(0!, 0t), σ(0ι, 0ι))

n

λ Σ
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= \σ(eί9 00 1 2

Similarly, we have

n, 0J, F2σ(et, et, en, en)y= Σ<σ(elt en), f72σ(el) et, e ί f βn)>=
1=1 t=l

Thus, we have

|(P<0(*t, e,, 0*)|2+ Σ [<σ(eί9 e,\ (P2σ)(et, elf el9 0J>

- Σ l(ΓσXβ t,ι , . 7 , f t = l

Hence, M has parallel second fundamental form. Theorem 1 now follows from
the classification of n-dimensional totally real minimal submanifolds in CPn(c)
with parallel second fundamental form by Naitoh and Takeuchi in [7].

Proof of Theorem 2. As in the proof of Theorem 1, we show that the
function L(p)= max /(M, υ) is subharmonic in the generalized sense.

For any £eM, let e ί f ••• , en be an orthonormal basis of TPM as in Lemma 3
such that (0ι, en) is a maximal direction at p. Then,

(4.5) 1(7(0!, eι)—σ(en9 en)\ Σ {£(<?z, eί9 σ(elt et), ξ)-R(el) en, σ(et, en), ξ)

λt)R(el9 elf 0!, el)-(λn-λl)R(el, en, en, et)}

C n TIC
= -τ Σ<^ι, «ι)— σ(en, 0J, /0ι>2+-rWι

4 t=ι 4

^ — |<7(0j, 0ι)-(7(0π, 0 Λ ) | 2 .

Let gp be the function defined as in the proof of Theorem 1. Then from (4.5),
Lemma 3 and \σ\2^nc/6, we have Δgp(p)^. By the same arguments as in
the proof of Theorem 1, we know that L is subharmonic (and so L^cont. on
M) and thet either | σ | = 0 o r \σ\2^nc/6. When \σ\2=nc/6, the orthonormal
basis 0ι, ••• , 0n of TPM satisfies

(4.6) σ(eί9 el)—σ(ent el)=a(el, β^)=0,
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σ(eί} e1)-— — σ(eΐl, en).

Using a similar calculations as in the proof of Theorem 1, we have

\ n •"

+2<σ(el9 2n\ J

Thus, M is P(R)-totallγ real (i.e., Mp<=M, we have <σ(X, Y), JZ>^Q, for any
Jϊ, Y, ZeΓpM (Ref. [5])). Furthermore, for any p^M, we can obtain a locally
orthonormal frame E ί f - , En in a neighborhood Vp of p by translating the
orthonomal basis eit ~ , en at p as stated in (4.6) along the geodesies from p.
For any q^Vp, since Mhas parallel second fundamental form, {Eι(q\ ~ , En(q)\
has the same properties as {Eι(p)=elf •••, En(p}—en} has.

Now, one can deduce by using a similar arguments as in [2, p. 70] that n— 2.
Since n—2, it is easy to see from (4.6) that M is Vc/12-isotropic. Theorem 2
now follows from the classification of jP(/?)-totally real isotropic minimal sur-
face with parallel second fundamental form in CPm(c) by Naitoh in [5].

Remark. If Mn is a compact minimal submanifold in Sn+p(l) with \σ\2^
2n/3, then one can deduce by the same function / defined in (3.1) that M is
either totally geodesic or a Veronese surface in S4(l). This result has been
proved by Xu and Chen in [12].

5. Proof of Theorem 3 and 4

Proof of Theorem 3. Let />eM and e ί f ••• , en be an orthonormal basis of
TPM, from the expression of the curvature tensor of CPm(c\ we have

n _ _
(5.1) S {^(#t> ι>, ff(v, βι), σ(v, v))Jτ2R(el, v, v, Λσ< υ e >v)}

1=1 ' l

1 1 1 »
= -^rC(Lv, Vy τ rC | t f ( i>, f)|2+-Γ ί : Σ ^0"(f> v), 7β l)

2 .
2 2 4 1=1

From (2.4) and Holder's inequality,

(5.2) "n^2\UM

 |Lv|2^^{Ljf | L v | ίF

or

f 2 f
(5.3) \ I A f f i υ , V ) V \ z d v p έ Z : y\ (Lv, j-

Substituting (5.1) and (5.3) into (2.3), we obtain
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(5.4) 0=- \(?σy(v,v,v)\ dv+(n+4:)
O JUM JUM

4\ (Lv, AσtVtV)V'>dv—2\ T(σ(v, v), σ(v, v))dv
J UM J UM

<Lv,v>—^\ σ(v, v) 1 2+ -£- Σ <σ(v, v), Jβ

-2 T(σ(v, v), σ(v, v))dv.
JUM

For any ι> in /7M, we can put σ(v, v)—\σ(v) v)\ζ for some unit vector ξ normal
to M. Since \σ(v, v)\2<c/12 for any v^UM, we have by Schwartz's inequality,

(5.5) I A^u | 2 ̂ (maximum eigenvalue of Aξ)
2<ίc/12 for any

Hence

(5.6)

where elt ••• , ^7l is a locally orthonormal basis of TM. It follows from (5.4)
and (5.6) that M has parallel second fundamental form,

(5.7) <σ(X, Y), JZy=0 for any vectors X, Y, Z^TPM. pς=M,

and that the inequalities (5.3) and (5.6) take equality sign. Hence, we have

(5.8) \A.<VtV>v\*=-fi\a(v,v)\*,

(5.9) £l>=— 9— ArCt>,t»ί>

From (5.7), we know that M is P(Λ)-totally real (see [5]). Now, given j^eM,
let ω be the 1-form on UMP defined by

<o£e)=<σ(v, v), σ(v, e)>\σ(v, v)\2

for all v^UMp, e^TvUMp. Integrating on UMP the codifferential of ω, we
have
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(5.10) (n+6)( \σ(v,v)\idvp=4( Aβί,.,ίv\tdvf+2[ <Lv, v>\σ(v, v)\*dvp.
JUMp JUMp jUMp

Substituting (5.8) and (5.9) into (5.10), we find

(5.11)

Since \σ(v, v)\z<c/l2 for any v^UM, we derive from (5.11) that either \σ(v, v)\
ΞΞO (i.e., M is totally geodesic) or \σ(v, v)\z~c/l2. When \a(v, v)\z=c/12, we
conclude from the classifications of isotropic P(/?)-toally real minimal submani-
folds with parallel second fundamental form of a complex projective space (see
[4] and [11]) that the immersion of M into CPm(c) is one of the following im-
mersions: φlιp: RPz(c/12)-+CP*+p(c); φ2>p: S\c/l2-+CP*+p(c)\ φ3tp: CP2(c/3)->

This completes the proof of Theorem 3.

Proof of Theorem 4. Let υ^UMp> and σ(v,υ)=\σ(υ,v)\ξ. Take an or-
thonormal basis elt •••, en of TPM such that Λξel=λielf z—1, ••• , n. Then,

(5.12) ΣUi=0.
1=1

Denote by Λ^maxλt Since n is odd, it follows from [3, p.256] that
I

(5.13)

Using the same arguments as in the proof of Theorem 3 and the hypothesis:
\σ(v, f)|2^c/4(3—2/n), we conclude that M is P(/?)-totally real with parallel
second fundamental form and either \σ(v, i;)|2^0 or \σ(v, ?;)|2^c/4(3—2/n) on
UM. Using the classifications of the isotropic P(/?)-totally real minimal sub-
manifolds with parallel second fundamental form in a complex projective space
by Naitoh ([5]), we know that the case \σ(v, v)l 2ΞΞ£/4(3—2/n) cannot occur.
Thus, M is totally geodesic. This completes the proof of Theorem 4.

6. Proof of Theorem 5.

Denote by R the curvature tensor of Sn+p(l). Let elf •••, en be an or-
thonormal basis of TPM, p^M. Then,

(6.1) Σ{/?(et, v, σ(v, ej, σ(v, v»+2R(et, v, v, Λσ^e.,v)}=2<Lv) v>-2\σ(v, v)\2

Since T=&<,>, taking the trace, we have k — \ σ \ z / p . Thus, it follows from
Lemma 1 and Lemma 2 that
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(6.2) 0- |(PσXv, v, v)\*dv+---^ \ a \ * d v - ^ \σ\*dv
3 JUM n+2juM pn(n~\-2)juM

>
UM JUM

Suppose that RιcM^(n—l)—(p(n+2)/2(n+p+2)\ Then, from Gauss' equation,
one has that 0^<Lv, vy^p(n+2)/2(n+p+2) for all υ(=UM. So, we have

where ^, ••• , en is an orthonormal basis of TPM,
By the Schwarz inequality, we have: \σ(v, v)\4^\Λσ(_Vt^v\2. So, (5.10) gives

(6.5) I \AfftotV)V\*dvp^-—A <Lv,vy\σ(v,v)\2dvp.JUMp H~\~ί/jUMp

The equality in (6.5) holds if and only if M is isotropic at p. Combining (2.4),
(5.3) and (6.4), we get

(6.6) (τ2+4)ί \Aσa,v,v\zdvp-4 <Lv,

4π Xn+2) f
- ) ^ 2

2np
(κ+2Xn+/>+2)

Substituting (6.3) and (6.6) into (6.2), we find

(6.7) O

Thus, M is isotropic with parallel second fundamental form. Using [11], we
know that M is a compact rank one symmetric space, and the immersion of M
into Sn+p(l) is one of the following standard ones: Sn(l)--»Sn(l); #P2(l/3)->
54(1); S2(l/3)->54(l); CP2(4/3)-»S7(l); QP2(4/3)->S13(l); Cay P2(4/3)-»S2B(l).

Q.E.D.

Acknowlegement. The author would like to thank the referee for his helpful
comments.



MINIMAL SUBMANIFOLDS 153

REFERENCES

[ 1 ] B. Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. Amer. Math. Soc.,
193 (1974), 257-266.

[ 2 ] S. S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere
with second fundamental form of constant length, Functional Analysis and
Related Fields, Springer-Verlag, Berlin New York, (1970), 59-75.

[ 3 ] H. GAUCHMAN, Pinching theorems for totally real minimal submanifolds in CPm(c},
Tohoku Math. J. 41 (1989), 249-257.

[4] S. MONTIEL, A. Ros AND F. URBANO, Curvature pinching and eigenvalue rigid-
ity for minimal submanifolds, Math. Z. 191 (1986), 537-548.

[ 5 ] H. NAITOH, Isotropic submanifolds with parallel second fundamental form in
CPn(c), Osaka J. Math. 18 (1981), 427-464.

[ 6 ] H. NAITOH, Totally real parallel submanifolds of CPn(c}, Tokyo J. Math. 4 (1981),
279-306.

[ 7 ] H. NAITOH AND M. TAKEUCHI, Totally real submanifolds and symmetric domains,
Osaka J. Math. 19 (1982), 717-731.

[ 8 ] N. MOK AND J. Q. ZHONG, Curvature characterization of compact Hermitian sym-
mtric spaces, J. Diff. Geom. 23 (1986), 15-67.

[ 9 ] A. Ros, A charactrization of seven compact Kaehler submanifolds by holomorphic
pinching, Ann. of Math. 121 (1986), 377-382.

[10] A. Ros, Positively curved Kaehler submanifolds, Proc. AMS. 93 (1985), 329-331.
[11] K. SAKAMOTO, Planar geodesic immersions, Tohoku Math. J. 29 (1977), 25-56.
[12] S. L. Xu AND Q. CHEN, Rigidity for submanifolds in a sphere, preprint.
[13] S.T. YAU, Submanifold with constant mean curvature I, Amer. J. Math. 96 (1974),

346-366.

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF SCIENCE AND TECHNOLOGY
OF CHINA, HEFEI, ANHUI,
PEOPLE'S REPUBLIC OF CHINA






