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ON THE MINIMAL SUBMANIFOLDS IN CP™(c) AND S*(1)

By XiA CHANGYU

Abstract

Let M be an n-dimensional compact totally real submanifold minimally im-
mersed in CP™(¢). Let ¢ be the second fundamental form of M. A known
result states that if m=n and |¢ |?=(n(n+1)c)/(4(2n—1)), then M 1s either totally
geodesic or a finite Riemannian covering of the unique flat torus minimally
imbedded in CP2%(¢). In this paper, we improve the above pinching constant to
(n+1)c/6 and prove a pinching theorem for |¢|? without the assumption on
the codimension. We have also some pinching theorems for 6(u) :=|o(u,u)|?,
ucUM, M—CP™(c) and the Ricci curvature of a minimal submanifold in a
sphere. In particular, a simple proof of a Gauchman’s result is given.

1. Introduction.

Let M be an n-dimensional compact submanifold minimally immersed in a
complex projective space CP™(c) of holomorphic sectional curvature ¢ and of com-
plex dimension m. Denote by ¢ the second fundamental form of M. Chen and
Ogiue ([1]), Naitoh and Takeuchi ([7]), and Yau ([13]) proved that if M is
totally real, m=n and |c¢|*<(n(n+1)c)/(4(2n—1)), then M is either totally
geodesic or a finite Riemannian covering of the unique flat torus minimally im-
badded in CP?%*c) with parallel second fundamental form. In this paper, by
using a method different from those in [1], [7] and [13], we improve the above
result and prove a pinching theorem for |¢|? without the assumption on the
codimension of M. Namely, we have

THEOREM 1. Let M be an n-dimensional compact totally real manimal sub-
manifold in CP™(c). Let o be the second fundamental form of M. If |o|*<
(n+1)c/6, then M is either totally geodesic or a finite Riemanman covering of
the unique flat torus embedded in CP%c) with parallel second fundamental form.

THEOREM 2. Let M be an n-dimensional compact totally real minimal sub-
manifold immersed in CP™(c). If |6|*<nc/6, then either M 1s totally geodesic
or the immersion of M into CP™(c) is one of the following immersions
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©1,p1 RP¥c/12)>CP**?(c); ¢, p: S¥c/12)=CP**?(c) (p=0, 1, 2, ---).

A. Ros in [10] showed that if M is a compact Kaehler submanifold of
CP™(c) and if d(n)=":|o(u, u)|*<c/4 for any ucUM, then M is totally geodesic.
Moreover, in [9], Ros gave a complete list of Kaehler submanifolds of CP™(c)
satisfying the condition 11};21155[6(u)=c/4. In [3], H. Gauchman obtained the fol-

lowing analogous result for totally real minimal submanifold in CP™(c).

THEOREM 3. Let M be an n-dimensional compact totally real minimal sub-
manifold immersed in CP™(c). Then, o(u)=:|o(u, u)|*<c/12 for any uesUM
if and only if one of the following conditions is satisfied :

i) 0=0 (i.e., M is totally geodesic).

ii) 0=c/12 and the immersion of M into CP™(c) is one of the following im-
mersions * ¢y, RP¥c/12)—=CP**?(c); ¢a.p: S¥c/12)>CP**?(c); ¢s,p: CP¥c/3)—
CP™(¢); ¢u.p: QPc/3)—=CP™*?(c); 5., : Cay P¥(c/3)—CP*®*?(c)(p=0, 1, 2, ---).

For the definitions of ¢; ,:=1,---,5; p=0,1,2,---), one can consult [3, p. 254].
In this paper, we’ll give a simple proof of the above Gauchman’s result and
prove the following.

THEOREM 4. Let M be an n-dimensional compact totally real minimal sub-
manifold immersed in a complex projective space CP™(c). Assume that n is odd.
If 0(w)=<c/4(3—2/n) for all us UM, then M is totally geodesic.

Theorem 4 improves a result by H. Gauchman in [3].
For minimal submanifolds in a sphere, we have

THEOREM 5. Let M be an n-dimensional compact minimal submanifold im-
mersed in a unit sphere S™*P(1). Let A: be the Weingarten endomorphism as-
sociated to a normal vector §&. Define T : T3 MXT3M— R by T(§, p)=trace A:A,.
Assume that the Ricci curvature of M satisfies Ricy=n—1—((n+2)p)/(2(n+p+2))
and T=Fk{,>. Then the immersion of M into S™*?(1) is one of the following
standard ones (see [11] for details) S™(1)->S™(1); RP*(1/3)—S*1); S*1/3)—S*1);
CP*4/3)—-S"(1); QP*4/3)—S*(1); Cay P*4/3)—S*(1).

2. Preliminaries.

Let M be an n-dimensional compact Riemannian manifold. We denote by
UM the unit tangent bundle over M and by UM, its fiber over peM. If dp,
dv and dv, denote the canonical measures on M, UM and UM, respectively,
then for any continuous function f: UM—R, we have:

SUMf dv:SM{SUMI,f dv,,}dp :

Now, we suppose that M is isometrically immersed in an (n+ p)-dimensional
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Riemannian manifold M. We denote by <, the metric of M as well as that
induced on M. If ¢ is the second fundamental form of the immersion and A
the Weingarten endomorphism associated to a normal vector & we define

L:TM—>T,M and T:TiMXTiM—> R

by the expressions
Lyv= é/lm,,ei)ez and T(§, n)=trace A;A,,

where T3M is the normal space to M at p and e, -+, e, is an orthonormal
basis of T,M. M is called a curvature-invariant submanifold of M, if R(X,Y)Z
€T,Mfor all X,Y, ZeT,M, being R the curvature operator of M. Then, if
Ve and V¢ denote the first and second covariant derivatives of ¢ respectively,
one has that V¢ is symmetric and V?¢ satisfies the following relation

(2.1) (PreXX, Y, Z, W)=Fe)Y, X, Z, W)+ RYX, Y)a(Z, W)

—a(R(X, Y)Z,W)—a(Z, R(X,YW)
where R* and R are the curvature operators of the normal and tangent bundles
over M respectively.

If Ric is the Ricci tensor of M and M is minimanlly immersed in M, we
have from the Gauss equation

2.2) Ric (v, w)= :‘zlk(v, e., e, w)—{Lv, w.

LEMMA 1 ([4]) Let M be an n-dimensional compact minimal curvature-
invariant submanifold isometrically immersed in an (n+ p)-dimensional Riemannian
manifold M. Then

_n+4
T3

@3 0="3% 170w, v, w)tdvkt | | Ascon |y

—a <Ly, Agomddv—2{ | T(0w,v), otw, W)

+SUM i} {R(e,, v, a(v, e,), (v, V))+2R(e,, v, v, Accw,ep)}dv.

LEMMA 2 ([4]) Let M be an n-dimensional compact minimal submanifold
isometrically immersed in a Riemannian manifold M. Then, for any p=M, we
have

(24) SUMp<Lv’ Aa(v.v)v>dvp= » I LUI Zdvp

n+2um
2

2.5) SUM,, |6 (v, v)|2dv,= mgm lo|%dv,.

2
mgvMp Ly, vydv,=



144 XIA CHANGYU

3. Maximal directions.

Let M be an n-dimensional compact curvature-invariant submanifold minim-
ally immersed in M. Define S={(u, v)|u, v€eUM,, pM} and a function f on
S by

(3.1) flu, v)=lo(u, w)—a(v, v))*.

For any peM, we can take (%, 5)eUM,XUM, with <&, p>=0, such that

fa, v)= max f(u, v). We shall call such a pair (#, #) a2 maximal direc-
(u, NEUM pxUM

tion at p. To see this, we assume that max f(u, v)#0, since other-
(u,v)eUMpxUMp

wise it would be obvious. Let (u;, un)€UM,XUM, be such that f(u,, u)=

_0(uy, uy)—o(us, us)
(“,D)erll?}li;(xUMp flu,v). Set &= |o(uy, uy)—a(us, Us)|
basis ey, -+, e, of T,M which diagonalizes A,. Let {Ase,, e,>=4,, i=1, -, n
and assume further that A,=4,= -+ =4,. Then, we have

and take an orthonormal

n n n n
U= 23xe,, U= 2 Vie,, 2x7=1, 2yi=1,
1=1 1=1 1=1 1=1
and

(3.2) lo(us, u)—0(uy, u2)| =<a(us, U)—0(Us, Us), &

n

= (x.x;—~,5.)0(e,, e;), &

1, 7=1

(X =D = —2,

1=1
:<0'(€1, el)'—g(en? en)) $>
=l|a(e;, e1)—0(es, e,)|
S lo(uy, u)—0o(us, us)l .
Thus, (e, e,) is a maximal direction at p. Also, we have a(e;, ¢,)—0c(e,, e,)=
[a(er, er)—a(en, en)l€.
LEMMA 3. Let p=M and assume that max f(u, v)#0. Take an
(u,v)eUMpxUMﬂ
orthonormal basis e, -+, e, of TpM such that (e, e,) is a maximal divection at
g(e1, e1)—0(en, en) .
[a(es, e;)—a(es, €n)l and that 4= o(es, e, &
== 0(ey, ), £>= - == {0(en, ¢,), &. Then, at the point p, it holds

b, e, -+, e, diagonalizes Ag, E=

(3.3) é«r(el, e)—ales, e,), Viale,, e, i, e))—V?a(e,, e,, e, €2))
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=lo(es, e;)—d(en, e,)] LZ: {R(e., e\, a(ey, ¢,), E)—R(e,, e,, a(e,, €), &)
+(21—'21,)1_e(81, ey, e, et>_(zn_21)ﬁ(eu €n, Cn, eﬂ»)}
—%Io(eh e))—0(eq, €)% |a]|®.

Proof. From (2.1), the minimality of M, and the Gauss and Ricci equa-
tions, it follows

(3.4) £}1<0(e1, e))—0(en, en), Va(e,, e, e, e1))

=la(es, el —0(en, en) 2 <&, Ri(er, eates, e)
—a(R(e,, ee,, e,)—a(ey, R(e,, er)e))}
=|0(es, e)—a(en, en)l 3 {Rew, e, 0les, €, O+ Avcay.epAces, e
—(AsAqcey e €1p—<C Az, R(e,, er)ey—<{Azes, Re,, e))e,)}
=|a(es, e)—0(en en)| 3 {R(ew, &, ales, €, E+R—l (s, €]
+(A—2)R(e,, 01, &1, e)+<a(es, e.), a(es, ex)y—[a(es, &)%)}
=|0(er, e)—0(en en)| 3 {R(es, €1, aes, €, O+Hm=2IR(es, €1, 1, 2)

+2(2i—21)|0‘(81; el)lz'_zi<o'(el; e!)’ 0'(8,,, el)>} .

Similarly, we have

(3.5) :L21<<r(e1, e))—a(en, e3), Va(e,, ., en, €2))

=|0(e1, el)—a(eny en)lél {R(eu €n, G(en; 91): E)""(zn‘—lz)ﬁ(eu €n, €5, ez)

+2(Ai—22)| 0(en, €,)|*—2:{a(en, €n), 0(e., )} .
Combining (3.4) and (3.5) and noticing

\Y%
N
3

la(er, e1)—0a(en, ex)|=(a(ey, e1)—0(en, €r), E)=A1—2n, L= A= -+

we have

(3,6) 3Ka(es, e1)—a(en, €a), P2a(es, e, e, e)—V2a(e, e, en, €1))

1=1
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2| 0(es, e)—0(en, en)| 3 {R(es, €1, a(es, 0, =Ry, en, alen, €2), &)
+('21'-121,)R(eu ey e, ez>_(2n_21)ﬁ(9u Cny Cn, €)}

—|a(es, ey)—a(en, en)lz{éZHZ(é lo(es, e)|*+ :g‘.l lo(en, e.)lz)}-

e;+e, e,+e,,>_
V2 VT

On the other hand, one can easily deduce from ‘o(
(el——en e,—e,

N2 V2

2
)| <lates, e)—ate, en)l? that

(3'7) |a,(el e )IZS Io(el: el)_a(eny en)lz < lo(ely el)|2+ld(en) en)|2 .

4 = 2
Since
(3.8) lolt= %1 la(es, ej)|?
= Slote, e)™+2( S lotes, eI+ S loten, 1),
=1 1=2 1=2
we have
(3.9) 33 2t42(3 loes, e+ 3 aten, €)1
éé} lo(e,, el)l“rZé la(es, el)12+2:’2;}: |o(en, e,)|®
5 (10t )i+l o(en, )|+l aer, e]?)
1, ., 3
=lol*+5 gl ~~2-Ial2-
Substituting (3.9) into (3.6), we get (3.3). Q.E.D.

4. Proof of Theorem 1 and 2.

Proof of Theorem 1. Let L be a function on M defined by L(x)=

max f(u, v). Following an idea in [8] we prove that L is a constant
(u,VEUM zxUM 5

function on M by using the maximum principle. It suffices to show that L is
subharmonic in the generalized sense. Fix p=M, let (e, ¢,) be a maximal
direction at p and e, ---, e, be an orthonormal basis of T ,M as stated in Lemma
3. From the expression of the curvature tensor of CP"(c), we have

4.1) la(e, e)—a(en, e,)l 12; {R(e., e, a(ey, e.), &)—R(e., e, a(e,, e,), &)
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+u—2A)R(e,, €1, €1, e)—(An—A)R(e,, €n, en, €,)}

c

ibge

{o(e1, e1)—0(en, €x), ]ez>2+—72—c(21—2n)10(e1, e;)—o(en, ¢,)|

1

4
=L o0, e)—olen, en)l®.

In an open neighborhood U, of p within the cut-locus of p we shall denote by
E\(x)(resp. E,(x)) the tangent vectors to M obtained by parallel transport of
e,.=FE,(p)resp. e,=E,(p)) along the unique geodesic joining x to p within the
cut-locus of p. Define g,(x)=|0(E(x), Ey(x))—a(E(x), Ex(x))|?. Then,

42 F4g0)=5{1FoXes, o1, e)~ToXes, er, e’
+<a(e1, e1)—0(en, €2), T0)e., ., €1, e1)—(V?a) e, e,, e, €n))} .

If |a(es, e))—a(en, e,)| =0, then dg,(p)=0 by (4.2). If |a(es, e;)—a(en, e,)|#0,
then by (4.1), (4.2), Lemma 3 and the hypothesis on |¢|?, we have

(n+1ec 3 .
4 )go.

For the Laplacian of continuous functions, we have the generalized definition

AL:alj%%((SB(p.r) L/SB(P,T)I)_L(‘D)) ’

where a is a positive constant and B(p, r) denotes the geodesic ball of radius
r with center p. With this definition L is subharmonic on M if and only if
4L(p)=0 at each point p& M. Since g,(p)=L(p)and g,<L on U,, AL(p)=4g,(P)
=0. Thus, L is subharmonic and hence L=b=constant on M. When b=0, M
is totally geodesic. When b+0, it is easy to see that |¢|?*=(n-+1)c/6 on M and
that for any p= M, by the fact that the inequalities (3.6)-(3.9) now take equality

28,0z aes, e)—olen, en)|(

sigh, the orthonormal basis ey, ---, ¢, of T ,M further satisfies
4.3) a(ey, e,)=0(en,, e.)=0(e, ¢,)=0, 24, j=n-—1,
1 9
la(es, e)|*=]a(e,, ex)|*=]0d(e,, e,)|*= (n;; ) )

g(ey, e))=—0(en, ).

Substituting A,=—21,=|a(ey, e,)|, A= - =4,.,=0, (4.3) and the expression of
the curvature tensor of CP"(¢) into (3.4), we have

4.4) §<a(e1, ey), Via(e,, e, ey, e))>= él_?(e,, 1, a(ey, e.), o(e, ey))

+21§} {(Ai—R)R(e,, e5, €1, €,)+2(A;—A)la(es, e,)|>— A a(es, e1), a(e,, €.)>}
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ncll
4

= T loten, e+ (P +2—Wlo(es, en)*—2lo(es, e)l?)

1
=lotes, e){(EE 61 0(er, en1?)=0.
Similarly, we have
é(a(en, eq), Via(e,, e, en, en))= §<0(e1, ), Via(e,, e., ey, €,)>=0.
Thus, we have

— 1 2

2;: (Fa)es, e, ek)lz+é {Ka(es, e1), o )es, €., €1, €1))

1,7 1

+2{a(ey, e.), (Fa)(e,, e,, €1, €4)>+<a(en, €2), (P20 )(e,, e, €n, €n))}

= 2 |FoXe, e, en)|®.
1,7, k=1
Hence, M has parallel second fundamental form. Theorem 1 now follows from
the classification of n-dimensional totally real minimal submanifolds in CP™(c)
with parallel second fundamental form by Naitoh and Takeuchi in [7].

Proof of Theorem 2. As in the proof of Theorem 1, we show that the

function L(p)= max f(u, v) is subharmonic in the generalized sense.
(U, DEUM pxUM 5

For any p=M, let e, ---, ¢, be an orthonormal basis of 7',M as in Lemma 3
such that (e;, e,) is a maximal direction at p. Then,

45 laley, e)—a(en el I {R(en o1, alen, €, = R(e, e, ales, ea), &)
+HA—2)R(e,, e, €1, e)—(a—2)R(e,, €n, €s, €.)}

=7 2¢a(es, e)—alen, ea), Je+ (A a(es, e)—a(en, ea)|

%Ia(el, er)—a(en, e,)|*.
Let g, be the function defined as in the proof of Theorem 1. Then from (4.5),
Lemma 3 and |g|®*<nc/6, we have dg,(p)=0. By the same arguments as in
the proof of Theorem 1, we know that L is subharmonic (and so L=cont. on
M) and thet either |[¢|=0 or |g|®’=nc/6. When |¢|?=nc/6, the orthonormal
basis ey, ---, e, of T,M satisfies

=

(4'6) a(ey, ez):a(enx ez):a(eu ej)=0y AR Jén_lr
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nc
la(es, e))|’=]a(en, e.)|*=|a(e, en)!2=—23,

g(e;, e)=—a(e,, e,).

Using a similar calculations as in the proof of Theorem 1, we have
1 n n
O=5dlo|*= ]ZM (Va(e., e, en)l*+ 2 {Caley, @), Je’

+2{a(ey, ), Je ) +<a(eq, ern), Je, D%}

Thus, M is P(R)-totally real (i.e., Vp=M, we have <o(X, Y), JZ>=0, for any
X, Y, ZeT,M (Ref. [5])). Furthermore, for any p=M, we can obtain a locally
orthonormal frame E,, ---, E, in a neighborhood V, of p by translating the
orthonomal basis e,, -+, e, at p as stated in (4.6) along the geodesics from p.
For any ¢ V,, since M has parallel second fundamental form, {E(q), ---, Ex(g)}
has the same properties as {E,(p)=e,, -, E(p)=e,} has.

Now, one can deduce by using a similar arguments as in [2, p.70] that n=2.
Since n=2, it is easy to see from (4.6) that M is +/'¢/12-isotropic. Theorem 2
now follows from the classification of P(R)-totally real isotropic minimal sur-
face with parallel second fundamental form in CP™(c) by Naitoh in [5].

Remark. 1f M™ is a compact minimal submanifold in S**?(1) with |¢[|°<
2n/3, then one can deduce by the same function f defined in (3.1) that M is
either totally geodesic or a Veronese surface in S%l). This result has been
proved by Xu and Chen in [12].

5. Proof of Theorem 3 and 4

Proof of Theorem 3. Let p&M and e,, ---, e, be an orthonormal basis of
T,M, from the expression of the curvature tensor of CP™(c), we have

(GRY) i{f_?(e“ v, a(v, €,), a(v, V)+2R (e, v, v, Ascpepv)}

1

= —é—c<Lv, vy— %CIG(U, v)lz+%c 53<0(v, v), Je?.
1=1

From (2.4) and Holder’s inequality,

AL . . 1/2. . 1/2
(5.2) n+2 SIIMZ, I Lv] dvpg{gwnp | Lvl } {SUMP [ Asc.wol } ’
or
(5.3) [ 1 Ascovi®du,> LS (L, Ayervddy
g UMp o, ) = 7l+2 UMP > o(v, 0 D

Substituting (5.1) and (5.3) into (2.3), we obtain
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_n+4

T, v, 0) ot (48 1 Ascov | d

5.4) 0
4| <Lv, Avuuddv=2| T(aw,v), a(v, v)dv

+ SUM{%@% v)— —; la(v, v)I*+ %g‘.‘{ Ko, v), | e,>z}dy

n+4

=
= 3

2 ﬁi 20, 2
[y (a0, v, 0120+ 5 1o, v)1dv—n] | Ascovi®dy

—2S T(o(, v), 6(v, v))dv.
oM

For any v in UM, we can put ¢(v, v)=|a(v, v)|€ for some unit vector & normal
to M. Since |a(v, v)|?<c/12 for any veUM, we have by Schwartz’s inequality,

(5.5) | Asu |*<(maximum eigenvalue of A¢)*=c/12 for any usM.
Hence
(5.6) T 1o, )= Aseo. ] *—2T(0(v, v), o(0, v)

_ of MC 9%
= lo(, 0)[*(7 —nl A |*~2 5 Ace,, Ace))
2 ﬂ__ L_ . .L =
2o, W17 —n- 5 —2-n-5)=0,
where e, ---, e, is a locally orthonormal basis of TM. It follows from (5.4)
and (5.6) that M has parallel second fundamental form,

(5.7) o(X,Y), JZ>=0 for any vectors X, Y, Z<T , M. peM,

and that the inequalities (5.3) and (5.6) take equality sign. Hence, we have

(5.8) lAv(v.v)UIZZ’lﬁz‘ la(v, U)IZ:
(5.9) Lv:ﬁ'z*"—zA.,w_mv.

From (5.7), we know that M is P(R)-totally real (see [5]). Now, given p=M,
let @ be the 1-form on UM, defined by

we)=<ao(v, v), (v, e>|e(v, v)|*

for all veUM,, e=T,UM,. Integrating on UM, the codifferential of w, we
have



MINIMAL SUBMANIFOLDS 151

(5.10) (n +6)Swp la(v, v)l‘dvp=4SUMp | Aso.wv|®dvy, +25UMP<LU, e, v)|*dv,.
Substituting (5.8) and (5.9) into (5.10), we find

of € 2\ 7,,—
(5.11) SUM]o(v, DI = 1o, »)I7)dv=0.

Since |a(v, v)|2<c¢/12 for any veUM, we derive from (5.11) that either |a(v, v)|
=0 (i.e., M is totally geodesic) or |a(v, v)|*=c/12. When |a(v, v)|*=c/12, we
conclude from the classifications of isotropic P(R)-toally real minimal submani-
folds with parallel second fundamental form of a complex projective space (see
[4] and [11]) that the immersion of M into CP™(c) is one of the following im-
mersions: ¢, ,: RP¥c/12)—>CP**?(¢c); @2 p: S¥c/12—CP**?(c); ¢ p: CP¥c/3)—
CP™2(c); ¢4, p: QP¥c/3)»CP™*?(c); ¢s,,: Cay P¥c/3)—»CP*®"?(c) (p=0,1,2, ).
This completes the proof of Theorem 3.

Proof of Theorem 4. Let veUM,, and a(v, v)=|a(v, v)|&. Take an or-
thonormal basis e, -+, ¢, of T,M such that Aee,=4A;e,, i=1, ---, n. Then,

(5.12) 2,=0.

ibge

Denote by A=max A2 Since n is odd, it follows from [3, p.256] that

(n—1)c

(5.13) 1§1<Aée“ Aeez>=l§'zf§(n—1)/1§j4(‘3_—2m-

Using the same arguments as in the proof of Theorem 3 and the hypothesis:
lo(v, v)|2<Zc/4(3—2/n), we conclude that M is P(R)-totally real with parallel
second fundamental form and either |a(v, v)|?>=0 or |a(v, v)|?°=c/4(3—2/n) on
UM. Using the classifications of the isotropic P(R)-totally real minimal sub-
manifolds with parallel second fundamental form in a complex projective space
by Naitoh ([5]), we know that the case |o(v, v)|*=c/4(3—2/n) cannot occur.
Thus, M is totally geodesic. This completes the proof of Theorem 4.

6. Proof of Theorem 5.

Denote by R the curvature tensor of S**?(1). Let ey, -, e, be an or-
thonormal basis of T,M, p=M. Then,

(6'1) lé {R(eu v, O'(U, et)y O'(U, U))+2R(eu v, v, Av(v,ei)v)} :2<LU, U>"‘2|0‘(v, U)IZ

Since T=k<{,), taking the trace, we have k=|c¢|?/p. Thus, it follows from
Lemma 1 and Lemma 2 that
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. 4

_n+4 , s .
- n+2SUM]G| dv pn(n+2)SUM|G| v

(6.2) 0 3

S ((PaXo, v, v)|2dv+
UM

+t 0 Asovl®do—a] (Lo, Agqomrdv.

Suppose that Ricy=(n—1)—(p(n+2)/2(n+p+2)). Then, from Gauss’ equation,
one has that 0<<(Lv, v)=p(n+2)/2(n+p+2) for all y€UM. So, we have

. 2 np(n+2)
(6.3) '0" _t=21<Le“ ez>§ 2(n+p+2) ’
e D(n+2)
(6.4) | Lv| gbﬁ*&Z(n+p+2) {Lv, v>,

where e,, ---, e, is an orthonormal basis of T ,M, p= M.
By the Schwarz inequality, we have: [a(v, V)|*< | Asw.nv|?  So, (5.10) gives

2

2 _c
(6.5) SUMp [Agowv]?dv,= n+2

SUM,, (Lv, v>|a(v, v)|%dv,.

The equality in (6.5) holds if and only if M is isotropic at p. Combining (2.4),
(5.3) and (6.4), we get

6.6) 0, |Asceovlidvy—a{ (Lo, Aoy oddv,
2n _ —4n 2
Z*WSUMP<LU, A"(”’”)wdv”—Zn-l—Z)ZSUMplLvl dvy
4n p(n+2)
2 Gt Rnt 42 o, L D0
2np 1

_ ¢ — 2
T (n+2)n+p+2) n XUM,, o] dv,.
Substituting (6.3) and (6.6) into (6.2), we find

0>g 2la]? {1_ 2n+p+2)
“Jon (n+p+2) np(n+2)

Thus, M 1is isotropic with parallel second fundamental form. Using [11], we
know that M is a compact rank one symmetric space, and the immersion of M
into S®*?(1) is one of the following standard ones: S"(1)-S™(1); RP*1/3)—
S 1); S¥1/3)-S*1); CP*4/3)-S'(1); QP*4/3)—S"(1); Cay P*4/3)—S*(1).
Q.E.D.

6.7) laIZ}dvgo.

Acknowlegement. The author would like to thank the referee for his helpful
comments.



(1]
[2]

(3]
(4]
(5]
£61]
(7]
£8l
[91]
[10]
(11]

[12]
(13]

MINIMAL SUBMANIFOLDS 153

REFERENCES

B.Y. CuHEN anD K. OcIiug, On totally real submanifolds, Trans. Amer. Math. Soc.,
193 (1974), 257-266.

S.S. CHERN, M. po CarRMO AND S. KoBavasHI, Minimal submanifolds of a sphere
with second fundamental form of constant length, Functional Analysis and
Related Fields, Springer-Verlag, Berlin New York, (1970), 59-75.

H. GaucuMaN, Pinching theorems for totally real minimal submanifolds in CP™(c),
Tohoku Math. J. 41 (1989), 249-257.

S. MonTIEL, A. Ros anD F. UrRBANO, Curvature pinching and eigenvalue rigid-
ity for minimal submanifolds, Math. Z. 191 (1986), 537-548.

H. NarroH, Isotropic submanifolds with parallel second fundamental form in
CP™(c), Osaka J. Math. 18 (1981), 427-464.

H. Narrou, Totally real parallel submanifolds of CP"(c), Tokyo J. Math. 4 (1981),
279-306.

H. Narron anp M. TakeucHi, Totally real submanifolds and symmetric domains,
Osaka J. Math. 19 (1982), 717-731.

N. Mok AND J.Q. ZHONG, Curvature characterization of compact Hermitian sym-
mtric spaces, J. Diff. Geom. 23 (1986), 15-67.

A. Ros, A charactrization of seven compact Kaehler submanifolds by holomorphic
pinching, Ann. of Math. 121 (1986), 377-382.

A. Ros, Positively curved Kaehler submanifolds, Proc. AMS. 93 (1985), 329-331.

K. SakamoTo, Planar geodesic immersions, Tohoku Math. J. 29 (1977), 25-56.

S.L. Xu anp Q. CHEN, Rigidity for submanifolds in a sphere. preprint.

S.T. Yau, Submanifold with constant mean curvature I, Amer. J. Math. 96 (1974),
346-366.

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF SCIENCE AND TECHNOLOGY
oF CHiNaA, HEFEI, ANHUI,

PeoprLE’s REPUBLIC OF CHINA








