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THE DERIVATIVE OF A HOLOMORPHIC FUNCTION

AND ESTIMATES OF THE POINCARE DENSITY

BY SHINJI YAMASHITA

Abstract

Let PG(Z) be the Poincare density of the Poincare metric PG(z)\dz\ in a
domain G in the complex plane C such that C\G contains at least two points.
Let δσO) be the distance of z<=G and the boundary of G in C. It is well
known that OG(Z)PG (Ό^ 1 everywhere, and if G is simply connected further,
then 1/4^^G(2')P(5(2') everywhere. These inequalities have their roots in the
classical and general inequalities of A. J. Macintyre, W. Seidel and J.L. Walsh
for holomorphic functions defined in the open unit disk D. We prove sharp
inequalities for the derivative of a holomorphic function in D, inequalities
which, in particular, generalize the classical ones. Applications to PG will be
given.

1. Introduction and some results. We shall prove some sharp inequalities
for the Bloch derivative

F(z, /)=(!- \z 1 2) I /'(*)!

of a function / holomorphic in D={\z\<l}. To show how our results are
effective, even in somewhat restricted expression, we remember here the clas-
sical results due to A.J. Macintyre [Me] and W. Seidel and J.L. Walsh [SW].
Let δ(z, f) be the maximum of r>0 such that the Riemann image surface of D
by / contains the one-sheeted disk {w; \w—f(z)\<r] of center f(z). We set
δ(z> /)-0 if /'(z)=0. It is easy to observe that δ(z, /)< + «>.

The following are known :

(D δ(z,f)^F(z,f),

( Π ) If / is univalent in D further, then

F(z, f)/^δ(z, /),

See [SW, p. 133, Theorems 2 and lr]. Note that ( Π ) is essentially due to
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POINCARέ DENSITY 103

Macintyre [Me, Theorem 1]. See Remark 1 at the end of Section 5 in the
present paper also. Set

r ( z , f ) = ( l - \ z \ * ) \ ( d / d z ) l o g F ( z , f ) \ , z<ΞD,

where 2d/dz=d/dx-id/dy for z=x+iy. If f'(z)=Q, then we set γ(z, /)= + «>.
Note that γ(z, f)<2 if / is univalent in D (see, for example, [G, I, p. 63, (5)]).
As will be seen, γ(z, /) has some important meanings. For z&D we let 3AZ

be the set of Mδbius transformations T(w)=a(w—z)/(l—zw), |α|=l. We have
the following improvements of ( I ) and ( Π ).

"•> «* '«
The equality at z with f ' ( z ) Φ § holds if and only if

(1.1)

where T^.MZ and />^0 and q are complex constants.
(Π') If / is univalent in D further, then

The equality at z holds if and only if

where (a)Te^; (b)£°T is the composed function, first T and then the Koebe
function k(w)—w/(l — w)2; (c)ί^O and q are complex constants; (ά)R is a con-
stant, 0^7?^4. The function / of (1.2) maps D one-to-one onto the complex
plane C slit along the half lines :

(1.3) (pt+q; -^^< + ool (=0, the empty set, if Λ=0),
I K }

(1.4) pt+q; - o o < ^ - - (=0, if Λ=4).

We remember that ( I ) and ( Π ) have applications to the estimates of the
Poincare density PG. A domain GcC whose complement C\G contains at
least two points has the Poincare metric PG(z)\dz\, z^G. More precisely,
for a holomorphic, universal covering projection / from D onto G, or /e
Proj(D, G) in notation, we have the expression

The right-hand side is independent of the particular choice of / and w as far
as z—f(w). The density PG is then a C°° function in G, and we can show [Y,
p. 167, (3.2)] that
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where z=f(w\ /eProj(L>, G). Let

δa(z)= inf \w—z\,
WEdG

where dG is the boundary of G in C. We note that

δβ(z)=δ(w, /), for z=f(w), /eProj(Z), G),

The following are consequences of ( I ) and ( Π ) :

( I P ) dG(z)PG(z)^l,

(ΠP) If G is simply connected, then

Note that there is no reference to the Poincare density in both papers [Me,
Sw]. Also no reference to [Me, Sw] is made in [K, p. 43 et jjf.]. The next
two propositions follow from (I ') and ( Π ') :

( I 'P) δc(z)PG(z)

The equality holds at (only) one point zeG if and only if G is a disk and z is
its center.

(Π'P) If G is simply connected, then

The equality holds at (only) one point zeG if and only if G is C slit along the
half lines (1.3) and (1.4) and z=q.

Throughout the present paper Univalent Function Theory occupies funda-
mental parts. As main references we adopt the books [G] of A.W. Goodman.

Makoto Masumoto and Nobuyuki Suita helped the author to obtain copies of
the papers of Fenchel and Pick. M. Masumoto, Yoshihiro Mizuta, and Masakazu
Shiba attended the author's seminar on almost all the subjects in the present
paper, at Hiroshima University during March 12-14, 1991, and gave him many
invaluable criticisms. Without their assistance he would have spent much time
to complete the present paper. It is a pleasant duty for the author to express
his cordial thanks to all of them.

2. Some preliminary notes. For / holomorphic in D, we let p(z, /),
be the maximum of r, OO^l, such that / is univalent in the Apollonius disk
{ w ; \w-z\l\l-zw <r\. If /'(3r)=0, then we define p(z, /)=0. If
then we have
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fίJ£+*L\--f(z)

α-tn/'ω
where

ώ / \Z)

Thus, r(z, /)=|fl(*, /)!• We begin with

LEMMA 2.1. // /'(*)=£() at z^D for f holomorphic in D, then

(2.1) p(z,f}γ(z,f)<2.

The equality in (2.1) /ι0Ws */ and 0n/;y // / is of the form

(2.2) f=pk*T+q,

where T^.MZ and p^Q and q are complex constants; this is the case R=Q in (1.2).

Proof. Let 5 be the family of functions h holomorphic and univalent in D
with λ(0)=Λ'(0)-l=0. Set ρ=ρ(z, /) (>0). Then the function of

(2.3)

is in S. The estimate (2.1) is just the Bieberbach second coefficient theorem
[G, I, p. 33, Theorem 1] for g. It is not difficult to see that the equality holds
for /of (2.2). Conversely suppose that the equality in (2.1) holds. Then, g—ka,
where ka is a rotation of the Koebe function k, that is, ka(w)—w/(l—awf,

\a\=l. We thus have

where p'=ρ(l— \z\2)f'(z) and q—f(z). If /><!, then / must have a pole at
(pa~l+z)/(L+zpa~l)^D. This contradiction shows that /o=l, and hence we
have (2.2) with p^p'a'1 and T(w)=a(w-z)/(l-zw).

We end this section by proving the continuity of δ(z, /) and p(z, /) as func-
tions of z&D though this fact will not be made use of until in Remark 2 in
Section 5. First, given z^D we can find ε^ε(z)>Q such that

(2.4) \δ(z,f)-δ(w,f)\^\f(z)-f(w)\ for \z~w\<ε.

If /'U)=0, then this is obvious because δ(w, f)~\f(z)—f(w)\ for small \z—w\.
In case f ' ( z ) Φ Q , we can choose s>0 such that, if \z—w\<ε, then f ( w ) is in
the one-sheeted disk of center f(z) and radius δ(z, /)/2 on the Riemann image
surface. Then,
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«(*,/M/(*)-/(M>)|^a(u;,/) and d(w,n-\f(z)-f(w)\^d(z,f)t

which show (2.4). We next prove that

(2.5) \p(z,f)-p(w,f)\^\z-w\/\l-zw\ in D.

We note that z—w\/\l—zw\ satisfies the triangle inequality, so that this is a
metric in D. In case /'(z)=0 or f'(w)=Q, (2.5) is obvious. In case f'(z)Φ QΦ
f ' ( w ) we may suppose that p(z, f ) > p ( w , /) by the symmetry of (2.5) in z and
w. If \z— w \ / \ l — zw\^p(z, /) we have nothing to prove. If \ z — w \ / \ l — z w \
<p(z, /), then p(z, f)-\z-w\/\l-zw\^p(w, /); this is (2.5).

3. An upper estimate. We consider p, γ, and δ in

THEOREM 1. Let f be holomorphic in D and suppose that f'(z}Φΰ at a point
Then,

p(z, f)F(z, f)

The equality holds if and only if f is of the form (1.2).

For the proof of Theorem 1 we make use of

LEMMA 3.1. // /eS, then

(3.2) _

The equality holds if and only if

(3 3)

for \a\=l and 0^/?^4.

Goodman attributes (3.2) to W. Fenchel [G, II, p. 245, Theorem 33] and
Fenchel attributes (3.2) "zum Beispiel" to G. Pόlya and G. Szegό; see the new
English edition [PS] (in particular, p. 24, Problem 148, and its answer in p. 195)
of the Pόlya-Szegδ problem book cited in [F, p. 431]. The equality discussion
in our form is never given in the cited literatures, so that it must be completed.

Let ce(7\/(£) and set

•^--
Since geS it follows that

1 |/'(0)| 1 , /"(O)
c 2
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Hence

We therefore have (3.2). For / of (3.3) we have |/*(0)|=2|Λ-2| and

/)=
4-R

_
R

if

if R>2.

We thus have the equality in (3.2). Conversely suppose that the equality in
(3.2) holds. We then choose c on the boundary df(D) such that \c\=δ(Q, /).
Thus, it follows from the one-quarter theorem of P. Koebe (see [G, I, p. 62,
Theorem 1]) (or directly from the second coefficient theorem for /) that

c =-
_ _

4 *

In case |c |=l/4 we have |/"(0)|—4, so that f — ka for a suitable a. Hence
(3.3) with R=Q, or R--=4 because £β = fc_β/{l+4(—«)*_«}. In case k|>l/4, we
consider g of (3.4) for the present c. Since the equalities in (3.5) hold, it fol-
lows that g—k a for a suitable a. Consequently,

cka

Since / is pole-free, ka must omit the value — c in D. Hence

and finally (3.3).

Proof of Theorem 1. Set ρ—p(z, /) (>0) and consider g of (2.3). Apply
Lemma 3.1 to g^S to obtain

(3.6)
?, /)= v 'a ' '

The estimate (3.1) now follows from (3.6), combined with

For / of the form (1.2) we have p(z, /)=!, F(z, /)=!/>!, rU, /)=|2-/?|, and

\P\
4-7? if

if /?>2.

It is now easy to observe that the equality holds in (3.1). Conversely suppose
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that the equality holds in (3.1). Then the equality in (3.6) holds. It then fol-
lows from Lemma 3.1 that g is of the form (3.3). Setting ρ=p(l— \z\z)f'(z)
and <?=/(z) we now have

If p<l, then / must have a pole at w^D, where WQ— (pty+zMl+zpy*) with
feΛ(7β)=— l/(/?α) (=00 if R=Q) and 1 70 1=1. This contradiction shows that
p=L This completes the proof that / must be of the form (1.2).

E. Netanyahu [Nt, p. 321, Theorem 3] claimed that, for

V

this result is also referred to in the textbook [G, II, p. 115]. However, this
estimate of Netanyahu has a counter-example for each A, Q<*A<2. Consider
the special function

Then, f"(Q)/2=A and <5(0, /)=l/(2+A). On the other hand, some calculations
show that

Our Lemma 3.1 claims that for each

and the estimate is sharp for all ^4, 0^/1^2.

Remark. Combining (2.1) and (3.1) we have

(3.7) P

at z where /'Cε)^0. The equality holds if and only if / is of the form (2.2).
If f'(z)—Q, then both sides of (3.7) are zero. One might say that (3.7) is an
improvement of (Π) because p(z, /)=! if / is univalent in D.

4. Lower estimate I. We consider γ and 3 in

THEOREM 2. Let / be holomorphic in D and suppose that f'(z)Φ§ at a point
Then
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fλ n A(4.1) K -——..

The equality holds if and only if f is of the form (1.1).

Some properties of rotations & α > Λ f eS of the bounded Koebe function kltM

are noted here (kltίt(z)=k(z, M) in [G, I, p. 38]). For M^l we set

where k* defined in k(D) is the inverse of the Koebe function k. Furthermore,
for a, \a\— 1, we set

Hence kaΛ(z)^z. The limit of ka,M(z} as z-»— a~l is denoted:

The function ka,M maps D one-to-one onto { z <M] slit along

{ta-1; -M<t^kl>M(-l)} (-0 if A/=l).

Thus,

We shall make use of

LEMMA 4.1. ([Pi, p, 252]; see [G, I, p. 38, Theorem 4]) For /eS with
\f\<M in D we have

(4.2) !/''(()) I

The equality in (4.2) holds if and only if f = ka,M.

Proof of Theorem 2. Set F-F(z9 /) (>0) and δ=δ(z, /) (>0). Let H be
the inverse function of / in the disk {w \ w — f ( z ) \ < δ } such that H(f(z))= z.
Then the function

. . .
δ \-zH(δw+f(zy)

of we/) is in S with |g|<Ms.F/d. Since

it follows from Lemma 4.1 for g that

~ ~ '
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SO that

(4 4) !*2+rbr
This is (4.1). If / is of the form (1.1), then we have F(z, /)=!/> I, ϊ(z, /)=0
and δ(z, f ) = \ P I , so that the equality holds in (4.1). Conversely suppose that
the equality in (4.1) holds, so that the equality in (4.4) holds. It follows from
Lemma 4.1 applied to g of (4.3) that g—ka,M. Then

where | j8 |=l, /'(2)=j8|/'(»|. Suppose that M>1. Then, the mapping η-+w
is one-to-one and conformal from D slit along L onto Zλ Here L is the part
of the circle or the line, passing through z and orthogonal to 3D, between the
points

note that |^ ι l=l and I^Kl Hence

(4.5)

But if η0<=L\{ηι, τy 2 }, then we have distinct points Wι and w2 on the circle 3D
such that w-*Wj as η (<=D\L)-*ηQ from one side of L (/=!, 2). Accordingly,
(4.5) shows that

This is a contradiction. We hereby have M=l. Consequently, β~lw—(η—z)/
(l-zη}> and

Remark. Theorems 2 and 1 now yield ( I ') and (Π') in Section 1, respec-
tively.

5. Lower estimate II. We consider p and δ in

THEOREM 3. Let f be holomorphic in D. Then

(51) δ( ^(Z> f}F(z>(5.1) δ ( <

. T/ze equality at z with f'(z)3=Q holds if and only if f is of the form
(1.1).

The right-hand side of (5.1) is not greater than F(z, /), so that (5.1) is an
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improvement of ( I ) in terms of p(z, /).

LEMMA 5.1. For f^S with \f\<M in D we have

(5.2) -;W-D^(0,/).

The equality holds in (5.2) if and only if f=ka>M

The inequality (5.2) is due to G. Pick (see (IV') for R^Mand for \z\~>l in
[Pi, p. 261]; see [G, II, p. 81, Problem 37] also.) The equality discussion in
the present form is never given in the literatures and should be proved. The
hint of Goodman [G, II, p. 287] for the cited problem appears to be not suited
for the argument on the equality.

Let c^{z\ \z\<M}\f(D). We choose β with |0|=1, βc=-\c\. Then

Λ i (M-βfγ
is a member of S and g omits the value

(5.4) __^__.

k i i
It then follows from the Koebe one-quarter theorem that ,Λ . , , , f ,-9- ̂  — or

(1+klM"1)2 4

(5.5) k l 2^ — &i,jif(—-1)

and the equality holds if and only if g~ka. Our requested (5.2) follows from
(5.5). For the equality we first remember that 3(0, ka,M}— — kl>M( — 1). Con-
versely suppose that the equality in (5.2) holds. Choose c^df(D) such that
k|=3(0, /)(= —feι, j f( —1)). Then g of (5.3) for the present c must be ka. The
image of D by g—ka is C slit along the half line {ία"1; f<^—1/4}. On the
other hand, the same g of the form (5.3) omits the values on {tβ~l;t<—l
Hence a—β. Consequently,

yields / = *«.*.

Proof of Theorem 3. We may suppose that f ' ( z ) Φ ΰ . Again, g of (4.3) is
in S and \g\<M, where M=F/δ. Thus Lemma 5.1, applied to g, yields the
following chain of inequalities :

The left-most is a decreasing function of M^l, so that we have
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whence (5.1). The equality argument is similar to that in the proof of Theorem
2, so that it is omitted.

Can the right-hand sides of (4.1) and (5.1), in case f ' ( z ) Φ θ y be comparable in
the sense that one of them is always greater than the other? For the negative
answer we first note that the problem is reduced to the comparison of the func-
tions

Φ(*,/)=l/{2+r(*,/)} and Ψ(z,f)=2p(z, /)/{^, /)+l}2

at z where /'(z)=£θ. A counter-example is supplied by the function f(z)~zz for
which we have Φ(*, /)=2M/{4|2| + |l-3|zΓ|} and Ψ(z, f ) = 2 \ z \ / { \ z \ + l } 2 for
all ze£N{0} because p(z, f } — \ z \ there. Note that / is univalent in each half
disk of D. Hence, for f(z)—z2 we have

Φ(z, f)<V(z, /) if 0<U|<l/2 or

Φ(z, f)=Φ(z, f) if |* |=l/2 or \z\=

Φ(z, f}>Ψ(z, /) if l/2<|z |< V 5

2 ~ 1 .

Finally, if / is univalent in D, then we always have Φ(z, f)^l/2=Ψ(z, /).

Remark 1. Seidel and Walsh [SW, p. 134] pointed out that the equality in
( I ) holds if f(w)—(w—z}/(\.—zw\ We can easily prove that, under the condi-
tion f'(z)3=Q, the equality holds if and only if f is of the form (1.1). It suffices
to consider the case where the modulus of the derivative at w=Q of the follow-
ing function of w :

H(δw+f(zy)-z
l-zH(δw+f(z»

is one, where δ~ δ(z, /)>0.
The situation is the same for the estimate in (Π) under the condition /'(z)

9^0. This is obtained by applying the Koebe one-quarter theorem to

.
ώ >(1-kl2) f'(z)

The equality holds if and only if this function is ka(w), so that we immediately
observe that / must be of the form (1.2) with R=Q. The equality discussion
in [Me, pp. 10-11] is incomplete.

Remark 2. The function δ(z, f)/ρ(z, /) for nonconstant / is continuous in
D except for the zeros of /'. It follows from (3.1), (2.1), and (5.1) that

, f)/p(z, f)£F(z, f)^δ(z, f)/p(z,
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at each z^D with f ' ( z ) Φ § . Since F(z, /) is continuous in D and is zero if and
only if f'(z)~Q, the same is true of δ(z, f)/p(z, /) if we define this to be zero
at the zeros of /'. An application is that a nonconstant holomorphic function /
in D is Bloch, that is, F(z, f) is bounded in D, if and only if δ(z, f)/p(z, f) is
bounded in D. The quantity δ(z, /) is "Euclidean", while p(z> /) is "non-
Euclidean". Thus, it would be of interest to compare these with

--j ----- r,τι"~- — rr
w->z {\Z — W\/\l—ZW\}

The numerator in the quotient in the right is "Euclidean", while the denominator
is "non-Euclidean".

6. The Schwarzian derivative. Let

be the Schwarzian derivative of / nonconstant and meromorphic in D. For the
later consideration of the Poincare density we prove two upper estimates of
the Nehari derivative:

of / at z^D. The reason why we call N(z, f) the Nehari derivative is ob-
vious; Z. Nehari [Nh] proved that if sup N(z, /)^1, then / is univalent in D

and E. Hille [Hi] proved the sharpness of the constant one. To make our style
consistent with the propositions up to now, we restrict ourselves within the
pole-free case; the possible extensions to the meromorphic case will be left as
exercises.

THEOREM 4. Let f be holomorphic in D and suppose that f'(z)Φb at z<=D.
Then we have the following two propositions.

( i ) We have
3

(C. i \ Λ7Y-* f\<~
W *•) *•* \^ ) J ) —— 7 /-\o

p(z> /)

The equality holds if and only if f is of the form (1.2).
(ii) We have

The equality holds if and only if f is of the form (1.1).

For M^l and for 0 < # ^ 4 l - r we set
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Then, ka>M,R^S and |/|<M in D. Further, ka,M=ka>M,Q, so that ka>1,0(z)=z.

LEMMA 6.1. // /eS, Men |σ(/)(0)|^6. Tte equality holds if and only if
f is of the form (3.3). // /eS and |/|<M zn Z>,

(6.3)

TΛβ equality in (6.3) Λd?Ws z/ and 0n/3> // f — kaιM,R

The first half is due to L. Bieberbach; see [G, I, p. 35, Theorem 2].
Actually, if

then <τ(/)(0)— 6(α3— α2

2). For the equality, Goodman [G, I, p. 35] adopted the
parameter φ, Q^φ<2π, such that 2cosφ--=2-R for R in (3.3). The second half
is in [G, I, p. 46, Problem 13]. To be more complete we give here a detailed
explanation on the equality.

There always exists β such that | j8 |=l and σ(/χθ)02=-|<K/Xo)|. Set

(6.4)

Then it follows from the first half of Lemma 6.1, applied to g^S, together
with o (^)(0)^-6/M2-|(τ(/χθ)|, that 6/M2+ k(/XO)| ^6; this is (6.3). It is
easy to observe that

Conversely we suppose that the equality in (6.3) holds. Then |σ(g)(0)|=6, so
that g must be of the form (3.3) or g=ka/(l+Raka). Now the image of D by
g=ka/(l+Raka) is C slit along {ta"1 l/R^Λ] (=0 if Λ=0) and {tcrl;t£
l/(R—4)} (—0 if /?=4). On the other hand the same g of the form (6.4) must
omit at least the values on {t;t<—M/4}. Hence the possible cases are two:
α=l (#<4) and α= —1 (/?>0). In case α=l, it follows from — M/4^1/(/?—4)
or /?^4(1—(1/M)) that f — k^iβ^,M,R> In case α — — 1, the similar procedure
yields that

where 4^^?^4/M. Since k(-η}=-k(-η}/(±k(η}+l\ η^D, it follows that /=
,4-R> or
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This is again the requested form.

Proof of Theorem 4. The first half. To g^S of (2.3) we apply the first
half of Lemma 6.1. Then

(6.5) ^(1-ki2)2 <K/X*)l = k(#XO)l^6.

This is (6.1). The equality in the last of (6.5) holds if and only if g is of the
form (3.3). By the same reasoning as in the proof of Theorem 1 we have /o = l,
whence / is of the form (1.2). The second half. For g^S of (4.3) we apply
the second half of Lemma 6.1. Then

(6-6)

where l/M=δ/F. This is (6.2). The equality in the right-most in (6.6) holds
if and only if g—ka>M,R. The equality in (6.2) holds for each / of the form
(1.1). Conversely suppose that the equality in (6.2) holds. The rest of the proof
is similar to that of Theorem 2. If M>1, then

N -F ^ nfor W(ΞD'
and η-^w represents a one-to-one conformal mapping from D slit along at least
one and at most two simple curves, onto D. We arrive at the contradiction by
the same argument. Hence M— 1 and consequently R— 0. Thus / must be of
the form (1.1).

The right-hand sides of (6.1) and (6.2) which we denote by Φ*(z, /) and
Ψ*(z, /), respectively, cannot again be comparable. For the same function
f(z)—zL considered in Section 5 we have p(z, f ) = \ z \ again and F(z, /)—
2 U |(1- k I 2 ) in ZN{0} and further,

f |z | 2 if 0
8(z, f)={

( 1-U 2 if \z

Elementary but tedious calculations show that

Φ*(z, f)<Ψ*(z, /) if 0 < U | 2 < ^ - or

Φ*(z, /)=y*(z, /) if |*| = - = = - or
O

Φ -k/ r \ -̂  ?7/*5fc/ r \ j; *̂  v «JO . - I \ 9 ^ v -i/ "T~ 1
*(2, f)>Ψ*(z, /) if - Q -- < l ^ l < ---- o ----

o o

7. The Poincare density. We return to G with the Poincare density PG as
described in Section 1. We set pG(z)=p(w, /) for z<^G, where /eProj(Z), G)
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and z=f(w). It is not difficult to prove that ρ(w, /) is independent of the
particular choice of / and w as far as z=f(w). We apply (2.1), (3.1), (4.1),
and (5.1) to /eProj(Z), G); we note that /' never vanishes in D. The results
obtained are the following (7.1)-(7.4).

(7.1) pG(z}rG(z)<2, z^G.

The equality holds at (only) one point z^G if and only if G is C slit along a
half line whose extension contains z.

(7.2)

The equality holds at (only) one point z^G if and only if G is C slit along the
half lines (1.3) and (1.4) and z=q.

(7.3) δG(z}PG(z}

The equality holds at (only) one point zeG if and only if G is a disk and z is
its center. In particular, δG(z)PG(z)<l everywhere in G except possibly for one
point zQ if and only if G is a disk of center zύ.

(7.4) ieCz)

The equality holds at (only) one point z^G if and only if G is a disk and z
is its center.

We set

A(G)=mfδG(z)PG(z),

We call G of finite type if Λ(G)>0. In general, Λ(G)^l by ( I ) and if G is
simply connected, then Λ(G)^l/4 by (Π).

First, γ(G)^2/p(G) by (7.1). We have from (7.3) and (7.4) that

2
2+r(G)

(7.5)

On the other hand, it follows from C. Pommerenke's result [Po, p. 115, (1.11)
or p. 116, Lemma 1.3] (see [G, II, p. 114]), applied to a projection, that
l/{2r(G)}, which, together with γ(G)^2/p(G), shows that
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It further follows from Pommerenke's another result [Po, p. 134, Folgerung 2.5]
(see [G, II, p. 110]) that p(G)^l/γ(G). Hence l^l/p(G)<γ(G)^2/p(G). Con-
sequently, G is of finite type if and only if Y(G)< + oo if and only if ρ(G)>Q.
We note that

resulting from (7.2) is not good since the left-hand side is not greater than
l/{2r(G)}. However, this again yields ρ(G)/4^A(G).

Since r(G)^l it follows from (7.5) that Λ(G)^2/3 for general G. If A(G)
=2/3, then (7.5) yields that r(G)^l, hence r(G)=l. Thus, G must be convex
(see [Po, p. 134, Folgerung 2.4]). We consequently have the problem of find-
ing the best possible, absolute constant £>0 such that A(G)^c implies that G
is simply connected. More generally, we have the inverse problem to ( Π ) :
Find the smallest of the absolute constants c>0 such that the condition inf {δ(z, /)/

z&D

F(z, f)}^c for f holomorphic with nonvanishing f in D, implies the univalency
of f in D. We know that the smallest is not greater than 2/3.

We next set

)} \/PG(z}.
*<ΞG

Then G is of finite type if and only if 5(G)< + c». This follows from

(7.6) min(l, l/B(G))<p(G)z^3/B(G).

For the proof of (7.6) we need

LEMMA 7.1. Let f be holomorphic with nonvanishing f in D. Then

(7.7) mind, l/||/||)£inf p(*, /)',

where

11/11 = sup #(*,/).
z&D

Proof. If ||/||^1, then the cited Nehari theorem reads ρ(z, f)=l in D.
Suppose that 1<||/||. If li/INH-0 0, then we have nothing to prove. Suppose

that KII/IK + oo and set r=l/V|7!ϊ F°r ̂ # we set φ(w)=(rw+z)/(l+zrw),
Then

This, together with

for g=f*φ, shows that ||g||gr2||/|| = l, whence g is univalent in D and
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We remember that

for /GΞProjφ, G), z=f(w\ w^D; see [Y, p. 168, (3.3)].
The first half of (7.6) is then a consequence of (7.7). The right-hand side

of (7.6) is a consequence of (6.1) applied to /eProj(Z), G), that is,

It is now easy to obtain the following from (6.2):

The results in the present section and those in [Y, Theorem 1 and Section
6] thus compensate for each other.

8. Further about domains of finite type. We continue the study of PG.
A. F. Beardon and Pommerenke [BP] considered the quantity

α, £e3G and \z-a\=δG(z)}

for z^G. Actually, the infimum is attained by a pair a, b on 9G. In the
light of J. A. HempeΓs sharp form of the Landau inequality (8.2) below, Beardon
and Pommerenke's theorem [BP, Theorem 1] should be

THEOREM 5 [BP]. At each point z^G we have

(8.1)

Γ(l/4)4

where CH——j-^—— 4.376-•• is HempeΓs constant.

The proof of the left-hand side of (8.1) is the same as in [BP] except for
the use of the Hempel estimate [He, p. 443, (4.1)] for jP*=Pc\(0 li}, namely,

(8.2) l/P*(z)£2\z\{\log\z\\+ca}, zeC\{0, 1},

where CH~{2P*(—I)}"1; note that Hempel adopted the Poincare density 2PG.
The equality in (8.2) holds at z~-l. If G^C\{0, 1}, then the equality holds
at z— — 1 in the left-hand side of (8.1). If G is simply connected, then one can
easily show that βG(z)~Q, so that the right-hand side of (8.1) is trivial.

It follows from Theorem 5 that G is of finite type if and only if
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is finite. More precisely, (8.1) yields

2{β(G)+cH}

If G is simply connected, then j8(G)=0, so that A(G}^1/ [2cH] , a worse result
than Λ(G)^l/4.

For the later use we slightly change the formulation of Beardon and Pom-
merenke's Corollary 1, together with their proof, in [BP] in

PROPOSITION [BP]. A domain G is of finite type if and only if there exists
a constant K~K(G)>1 such that, if a closed disk { z—a ^r\ (αeC, r>0) meets
dG, then either no ring domain (r<\z— a\<R} is contained in G, or else R^Kr
whenever {r<\z—a\<R}dG.

To prove that #=exp{ττM(G)} will do if Λ(G)>0, we suppose that
{ z—a\<r] meets dG and

Q={r<\z-a\<R}C.G.

Then, r=ςe~m and R=qem for q=VrR and m=(l/2)log(#/r). Since w =
), it follows that

actually, w=f(Q) and PQ(w)=l/\f'(Q)\, where

j ( D , Q).
π L—Z

Hence

shows that R<LrK. Conversely we shall prove that ]8(G)^(l/2)log/Πf K exists.
Suppose that β=βG(z)>0, z<^G, and choose a^dG such that \z— a\=δG(z')~d.
Then the ring domain

log
\w — a\

<β\={r<\w-a
j

where r=δe~β and R=δeβ, contains z, yet does not meet dG by the definition
of βG(z\ Hence £7cG, so that e*P=R/r£K yields j8GU)=(l/2) log K.

As an application of the Beardon-Pommerenke proposition above, we consider
here a sufficient condition for a multiply-connected G to be of finite type.
Suppose that all the compact, connected components of C\G are at most coun-
table and let them be Alf A2, ~ , An, ••• . If they are finite in number, n0, say,
then we set An—AHQ for all n^n0. Thus the components of the set
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B=C\{G\J(\JAΛ)}

are all noncompact if B^&. Let p(G) be the infimum of the diameters of An,
V

nΞ>l. Let disOΊ, ••• , jv) be the distance of U A]H and the set

where v is arbitrary and jlf ••• , jv are arbitrary distinct numbers. If the set of
(8.3) is empty, then we define disOΊ, ••• , jv)= + oo. Let q(G) be the supremum
of all disOΊ, ••• , jv). We now have the following:

Suppose that An's cluster nowhere in C in the sense that, for each pair
r>0, there are at most a finite number of An's which are contained in the disk
{ z-a\<r}. Suppose that p(G)>0 and #(G)< + oo. Then G is of finite type.
More precisely,

<s.4>

If ^4n's are finite in number and are nondegenerate continua, and further
B^&, then />(G)>0 and ?(G)< + oo automatically follow. Thus, M. Masumoto's
lemma [Ms, Lemma 2] immediately follows. In fact we try to extend Masu-
moto's lemma to infinitely connected domains with some detailed constant.

For the proof of our criterion, we let Δ Ξ { | Z — a \ ^r} (αeC, r>0)meetdG.
If Δn£^0, then no ring domain Q—{r<\z—a\<R] is contained in G. If
ΔΓ\B— 0, and if ζ?CG, then we let A,lt ••• , A)v be all the An's contained in Δ.
Then, p(G)^2r and R-r^q(G), so that R/r£l+2q(G)/p(G). Thus we may
adopt

in the Beardon-Pommerenke proposition.
It is now easy to give an example of G of finite type with B=9 and with

infinitely many An's. Let An— [αn, bn~} be closed intervals on the real axis such
that αΛ->+oo increasingly and 0<αn +ι— bn<c(bn— an), n—1,2, •- , where c>0
is a constant. Then G— C\(\J An) is of finite type. We may choose K(G}—

n*l

2c+l for the Beardon-Pommerenke criterion. For the proof we letΔΞ={ |^— α |
<Jr} meet 3 G, and suppose that {r< z—a\<R}c:G. Let n be the largest
number of / such that AjdΔ. Then, 2rl>bn— an and R—r^an+1—bnf so that
R/r^l+2c. We consider here three specified cases where K(G)~ 3 will do.

( i ) an-2n-2 and ftn=an+l. In this case p(G}-l and ^(G)=l.
( i i ) an~n2—n and bn~an+n. In this case p(G)—l and #(G)= + oo.

n-ί

(iii) an= Σ— -2— (=0 if n = l) and 6n=an+l/n. In this case />(G)=0 and
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