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EXISTENCE AND SMOOTHNESS OF TRANSITION
DENSITY FOR JUMP-TYPE MARKOV PROCESSES:
APPLICATIONS OF MALLIAVIN CALCULUS

By SEnj1 HIRABA

Introduction.

Let X; be a d-dimensional stable Lévy process with exponent 0<a<2,
defined on a probability space (2, &, P). Then its Lévy measure is given by

M K= | Mdo)| Lowuou™"du (A= 9(R),

where M(do) is a bounded Borel measure on a (d—1)-dimensional unit sphere
S%-'. For each t>0 denote by P,(dx), the distribution of X,. It is known that,
under the following non-degeneracy condition on M(do):

2) M{g: x-a%0})>0 for every x<R\{0},

P,(dx) is absolutely continuous with respect to the Lebesgue measure on R¢,
and moreover its density p.(x) is a C*-function of xR for all t>0 (cf. [7]).

Next let Y, be a d-dimensional Lévy process of class L (simply called an
L-process). Then its Lévy measure is expressed by

K=, Mdo)| Lok, a)du,

where M(de) is a bounded Borel measure on S%°! and k(u, ¢) is a nonnegative
measurable function on (0, c)XS%!, nonincreasing, right continuous in u

satisfying that 0<k(0+, ¢)<oo for each ¢=S%! and Sd lM((),'(I)S:)(u/\u“‘)
sd-

-k(u, 6)du<<oco. Then the distribution P,(dx) of Y. has a density p,(x) with
respect to the Lebesgue measure on R? (henceforth we simply say “a density
pi(x)”) for >0 under the condition (2) ([8]). Moreover for any »=0, p.(x) can
be chosen a C7-function of x=R¢%, provided ¢ is larger than some constant
depending on (M(do), k(0+, o), d, r) (cf. [7], [10]).

On the other hand Bass [1] discussed the martingale problem for the Lévy
generator L:
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@) Lo(x)=Dup(x)- a(0)+ |[gpx-+ )= ()= Do) yLary1<sTK(x, d)

and proved the well-posedness of the martingale problem for a fairly wide
class of the Lévy generator L. In fact, his class includes the following case:

@ L=—(—Ayr,
where a(x): R®*—R is Dini continuous and satisfies the inequalities
(5) 0<li<a(x)<E,<2 for all x=R?* with some constants {; and {,.

In this case the Lévy kernel of this operator is expressed by

®) K, D=00| | do| Lom(uay=e=du,
sd—1 0
where
—sin—~% di—fﬂ - 1+0L -1
490,—81117]1(14-04)[1(?2 >ﬂ;<+x)/2f( 5 ) )

To the Lévy generator (4) there corresponds a Markov process on R? which
is called a stable-like process following Bass [1].

Generalizing the Lévy kernels (1) and (6), we introduce the following class
of Lévy kernels:

™ Kz, )= M) Lao3(x, w, )= “m(x, u, o)du,

where

(i) M is a bounded Borel measure on a topological space S,

(ii) ¥(x, u, 0): R*X[0, ©0)XS—R® is measurable, of class C' in u on
[0, o) and y(x, 0, ¢)=0,

(iii) m(x, u, ¢): R*X(0, ©)XS—R is a bounded nonnegative measurable
function,

(iv) a(x): R*—[0, 2) is a measurable function.

Our main concern in the present paper is to investigate the absolute con-
tinuity of the transition probability and the smoothness of the transition density
for the Markov process on R¢ associated with the Lévy generator L of (3)
with (7). In particular, in the case where the condition (5) holds, it would be
expected that the transition probability P,(x, dy) has a density p.(x, y) which
is smooth in y or in (x, y) for every >0 under a regularity condition and a
non-degeneracy condition on K(x, dy). Furthermore we shall also discuss the
Lévy kernel (7) with a(x)=0. In this case the result on one-dimensional L-
processes ([10]) would suggest that for any »=0 the transition density p.(x, v)
would be of class C™ in y or in (x, y) only for sufficiently large ¢’s.

To avoid some technical difficulties, we shall mainly consider the following
Lévy generator obtained by cutting off big jumps in (7):
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®) Lo(x)=Dp(x)- () +|[o(s-+ )= (x)= Dup()- yIK(x, d)
with
(©) K, =] Mo Lo 3z, u, oDgtx, u, a)du,

where u,>0 is a fixed constant and we assume that

(i) »(x, u, 0) is a bounded measurable function on R*X[0, u,]XS, of
class C*' in u on [0, u,] and y(x, 0, ¢)=0,

(i) g(x, u, o)=u"*"*®m(x, )
with 0<a(x)<2 and a bounded positive function m(x, ¢). In particular, if
S=S%"1, y(x, u, ¢)=ucs and m(x, 6)=40 .., then the corresponding Markov process
should be called a stable-like process with bounded jumps, since big jumps are
suppressed in (6).

Our main results in the present paper are summarized as follows: Suppose
that a smoothness condition on a(x), ¥(x, u, ¢), m(x, ¢) and a(x), and a non-
degeneracy condition on M(de) and y(x, u, ¢) are fulfilled. Then

(a) if a(x) satisfies (5), the transition probability P.(x, dy) has a density
pi(x, ¥) which is smooth in y or in (x, y) for every ¢>0.

(b) If a(x)=0, then also Pyx, dy) has a density p.(x, ¥), and for a given
integer r=0 it is of class C” in x or in (x, y), provided ¢ is larger than a con-
stant depending on (y(x, u, a), M(do), m(x, o), d, 7).

The smoothness and non-degeneracy conditions are rather complicated in
the general case (which are given in § 3); however we can simply describe the
result for a stable-like process with bounded jumps: the transition probability
has a C=-density if a(x) is a C=-function whose derivatives of all order are
bounded, it satisfies (5) and |D.a(x)| is sufficiently small. We remark that
these results should, at least partially, hold for a stable-like process itself
because its Lévy generator is a perturbation from that of a stable-like process
with bounded jumps by adding a bounded operator.

The proof of our results is essentially based on Malliavin calculus on a
Poisson space which was developed by Bichteler, Gravereaux and Jacod [2],
but we have to modify their framework to apply it to our class including
stable-like processes with bounded jumps. Furthermore we have to emphasize
our smoothness result for the transition density holds for every ¢t>0 when a(x)
satisfies (5), although [2] discusses the smoothness of the density only for
sufficiently large t’s under a different situation from ours.

The present paper is organized as follows: In §1 we introduce a Poisson
space and a notion of derivatives of Poisson functionals with some modifications
of [2], and by using it we define a Malliavin operator. In §2 we apply
Malliavin calculus to stochastic differential equations and summarize the results
used later. In §3 we state the main results for the generator L defined by
(8) with the kernel K(x, dy) defined by (9) and for a stable-like process. In §4
the proofs of our main results are given by using the results in §2.
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Throughout this paper we shall use the following notations :

AT : the transpose of a matrix A,

|E| : the n-dimentional Lebesgue measure of FC R",

C7 : the totality of r-times continuously differentiable functions,

Ct: the totality of C"-functions with compact support,

C3: the totality of C7-functions with bounded derivatives of all order

between 0 and 7,

C=C,, C,=C}, C,=C}),
C°°=ﬂr=ocr, C‘6°=f\r;oCTo, C?=ﬂrgoci,
a,',:a/ax;.

1. Differential calculus on a Poisson space.

Let E be an open subset in the n-dimensional Euclidean space R"™ with
|E|=o0 and let & be the Borel o-field on £E. Fix T>0 and let (S, S, M(do))
be a topological finite measure space with S=%8(S) (the Borel o-field of S).
Next we take a Poisson space (2, %, (%,), P) associated with a Poisson random
measure distributing on [0, T]X EXS with the intensity measure v(dsdzde)=
dsdzM(de) in the following way. Let £ denote the collection of point measures
1=3300ct,. 2, 6,5 00 [0, TIXEXS such that ([0, T]X KX S)< oo for any compact
set K in E, p({t} X EXS)<X1 for all t=[0, T] and p({0} X EXS)=0. Set F{=
a(p(A): A= 3([0, tDRERS) for t<[0, T1, Fe=Ny:Fy for t<[0, T), and F=F%.
Then there exists a unique probability measure P on (£, ) such that, under
P, p is a Poisson random measure distributing on [0, T]X EXS with the inten-
sity measure v(dsdzdo). As usual we extend &, by adding all negligible events,
and we use the same notation &, as for the original. Then (2, 4, (&,), P) is
our basic Poisson space. We define a o-finite measure Q on 2x[0, T]XEXS
by Q(dpdsdzde)=P(dp)u(dsdzda).

Let @(p) be a Poisson functional, that is, a random variable on the Poisson
space (2, ¢, P). For p=£ and (s, z, o)Ssuppy, we set p’(s, z, a)=p—0dc.. o
+0¢s. 546,05, Which belongs to 2 if z-+0<E.

DEFINITION 1.1. We define an m-th derivative of @ by
D"D(p; s, 2, O)=DFO(p’(s, z, 0))| 9= (n™-vector)

if it is well defined for Q-a.e. (g, s, z, ), where DJ* is the m-th differential
operator in # (in the usual sense). Moreover define

D™ DY p; s, 2, )=DYD™D(p’(s, z, 0); s, 2460, )| 9-0 ;

then Q*Pm=g*+™,

Next we introduce basic functional spaces ®R‘™ (m=0, 1, 2, ---, o). Let
Ci'g denote the totality of real-valued measurable functions f(s, z, ¢) on
[0, T]XEXS those which vanish outside [0, T]X K XS for some compact set
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K in E, of class C™ in z and their derivatives in z up to order m are bounded
in (s, z, ). We set

Q(m):{¢(ﬂ)=F(#(f1); Tt ”(fk)): FECZL(Rk), fiecl;”,lE; Z.=1) ) k’ k:ly 2’ }:

where p(f)= f(s, z, a)p(dsdzde) and CPT(R*) is the totality of real-
p

[0,TIxXExS
valued C™-functions on R* with polynomial growth derivatives up to order m.
Then ®™ is dense in LP=L?(2, P) for all 1<p< oo, stable under C¥-composi-
tion (i.e. if @=(@*, - ®*), P*=R™ and F=CP(R*) then F(P)= R™) and
Fy=c(R™), Clearly every element of R is m-times differentiable in the
sense of Definition 1.1.
Now we fix an auxiliary function p(z)eCy(E—(0, «)) and introduce some
higher order symmetric differential operators.

DEFINITION 1.2. (i) For m=1 and @< R®™, set
m —_— & m k m-k
L ’Q)—,a{ k};,“o ( b )D’;p(g) (trace 9?) @)T},

where trace 9°@(u; s, z, 0)=AyP(p’(s, z, 0))| 9o (As is the Laplacian with
respect to the variable ). £™® is called the .L™)-derivative of @.
(ii) For m=1 and @, ¥= R®™, set

D™D, DT >=p(p O™ D D™,

Then we have the following proposition by a similar argument to Proposition
9-3 of [2].

PROPOSITION 1.3, For m=1, L™ : REM—N\, . L? is a linear operator such
that for @, ¥e ™

(1.1) E[® L ™P=E[T L™ ]=(—1)"E[(D™D, 9™T>].

Set L=LY and R=R®; then it holds that for @=F(u(f.), -+, p(f+)) and
T=H(p(h), -, ph))E R

D0=30F(u(f), ~+)D.f 1,
LO=p(ptrace D*@+D,p DP™)

= B 0F(UFD), o Ao +Dsp Duf T)

+ 30 BFT, o Dof DS,
(DD, D S=p(p 90 OUT)
= 5} B0, D0H (i), o Dof Dih3)
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Moreover of @=(@!, ---, @), O*<=R and FECL(R?), then

O(F- D)= 223, 3 F(D)D D",

.c(Foq))zé WED)LD+ 3 LF@DKDD, DD,

17=1

In particular, for @, Ve R
LOT)=0LYV+2{90, 9V>+T L D.

Proof. We shall show only (1.1) since the proofs of the other parts are
quite routine. Let @=F(u(f.), -, p(f+) and T=H(u(hy), -, plhed)eE RE™,
and K be a compact set in E such that [0, T] XK XS contains all the supports
of f.’s and h’s. Now set (S;, Z,, Aiisy=suppp ([0, TIXKXS) with
Si< -+ <Sy, where N=p([0, T]XKXS)=0. Then N is a Poisson random
variable with a parameter T|K|, and the random variables (Z,);sy are con-
ditionally independent on the ¢-field ¢=o(N, S;, ---, Sy) with the uniform
distribution over K, Ux(dz)=dz/|K]|; that is, for each =1 and bounded Borel
functions g on K7, it holds

E[g(Zy, -+ Z)lw-r14]
=[G ) 20UK(dz) - Unldzlevors
So it is enough to show that
(1.2) E[<9™®, 9"¥>|g]=(—1)"E[® L™ |q].

For simplicity of notation we set f}(z)=/1i«(S,, z, 4;) and hi(z)=h«(S,, z, 4,).
For a fixed p=£, set N=N(p) and

N N N
gy, o, 2= 2 pEIDR(F(Z /1), -+, B fi=))
N N T
pr(H(Z i), -+, Dhie)) s
then we have <9™®, 9™"¥>=u(p 9™0 9™V ")=g(Z,, -+, Zy). Moreover

E[{9™®, g)"‘?f>|g]=gKNUK(dzl) o Uxldzy)g(a, -, zx)

-3 = ’L'S Ur(dz) - Ux(dzx)p(zr)
KN

=1 |a|=m a!

xDg(F( 3 ficen, ~))0a(H( 3y hite, ),
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where a=(ay, -+, a,) is a multi-index and a!=a,! - a,!. Since suppf; and
supp i} are contained in K, DZ(F(--)) and Dg(H(---)) vanish in K° if |a|=1.
Hence by using the classical integration-by-parts formula we get

E{9™®, 9™¥»| 4]

)y 3 (e

=1 la[=m a!' ﬁga(ﬁ)SKNUK(dZ‘) -+ Ug(dzy)

N N
..\DA a-
F( 2 f1(z), Dotz Dia-s(H( Z Az, ).
On the other hand it is easy to see that

L= y{ é}o ( ’Z )@’;p(g)"(trace gpﬂ)m-kW)T}

- é | s (“)D,ﬁp(ZJDﬁg—ﬁ(H(é W(Zy), ))

di=m al s\

Therefore (1.2) holds, and this completes the proof of (1.1). O

Remark 1.4. (L, R) is essentially the same one as in [2]. Note that
LB @EM_LQER- =] ... m, but LP£LI=LoL.

Next we want to extend the domains of 9™ and £, which are of
interest for themselves, although they will be later used only in the case m=1.

Let 4 be the completion of FRB([0, T)HRERS by Q. For each k=1
and p=(0, «), denote by L%, the set of all (R™)*-valued 4 -measurable functions
F on 2X[0, TJXEXS with the norm |F|,=|u(p|F|®)"'*||,»<co, where || .»
denotes the LP-norm in LP=LP?(Q, P). For each k=1 and p[l, =), (L%, |-|,)
is a Banach space by identifying two functions which are equal Q-a.e¢. In
particular, L%, is a Hilbert space with the inner product (F, G),=E[(F, G)],
where {F, G>=u(pFG").

Let us introduce several spaces of Poisson functionals in a similar way to
the case of the Wiener space ([9]).

DEFINITION 1.5. For po, pi, -+, pm=2, it is said that @ belongs to
H(po, D1, =+ » Pm) (xesp. H(po|ps, -+, pm)) if there is a sequence {@,} in R™
(resp. R®™) such that @,—@ in LPo and, for each ¢ /=1, ---, m), {D*D,},
(resp. {L9P,}%,) is a Cauchy sequence in L%} (resp. L?i). Denote the limit
by 9*® (resp. .LP®), which is called the :-th weak derivative (resp. the L.
weak derivative) of @. Moreover set, for po, pi, =, P, G1, =+, §r 22,

H(po, pl» Tty pm'gl; Tty Qr):H(po» ply Tty pm)/’\H(po“]b Tty qT)-

By using (1.1) we shall show that 9™® and L@ are well defined for
every O<=H(po, b1, = » pm) and O H(po|py, -, pm) respectively. It is easy to
see that the approximating sequences can be chosen in R, Suppose that



MARKOV PROCESSES 35
0, R0 in L? and 9'@,—F, in L%,; then for any ¥e ™
(Fyy, 9U)=lim;.(D* D, D),
=(—1)1im; B[ D LOT] (by (1.1))
=0.

Thus |F,|3=(F,, F)r=lims.(F,, 9°D;).=0, i.e., F,=0 Q-a.e. Also suppose
that L@ ,—@, in L?; then for all e R

E[0.¥]=lim; B[ LPO]=lim; oE[@,LPT]=0.

Since R is dense in L?, we have 0,=0 a.s.
Clearly the above spaces in Definition 1.5 are Banach spaces with the
following norms respectively :

1@l 1o =192t 2 19D ,,

1Pl coyian = Pherat 3 ILOD 124
and
1920, 3 pmias 0 =[Pl220t 3 19O+ 2 1LDD] g2z,

In particular, from (1.3) of the following proposition it follows that

H§M)EH(2; 2: ) 2|2) ) 2)=H(2|2, M) 2):
m m m

PROPOSITION 1.6. a) L™ : H{™—L* 1s a symmetric linear operator ;
b) of we set I'(D, T)=p(p 9™D 9™¥T), then I'™: HMWXH™ L' 15 a
continuous bilinear symmetric nonnegative operator satisfying

(1.3) E[QL™TI=E[T L™ P]=(—1)"E[['™®, ¥)].

The proof is obvious.
By using them we can define a Malliavin operator (.£, H..) as in [2].

DEFINITION 1.7. For ¢=[2, ), denote by H, the Banach space H(q, qlq)
with the norm [|@]z =[®l2+|L D]+ [9D]|, and set Ho=(\¢:2H, which is
a Fréchet space. Then (.£, H..) (resp. ['(@, T)="Y D, ¥)) is called a Mall:avin
operator (resp. a Malliavin covariance of (@, T')).

We here list several properties of the Malliavin operator and the Malliavin
covariance which can be checked by the same arguments as in Theorem 8-18
of [2].

THEOREM 1.8. Let (L, H.) be the Malliavin operator.
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a) L HoCNp<ol?—Np<wl? 1s a linear operator and satisfies the following
properties:

(i) Hw is stable under C%-composition and Fy=0(Hw);

(ii) £ is symmetric in L?, i.e., E[OLUI=E[¥.L®];

(iii) I': HeX Ho—Np<oL? is a continuous bilinear symmetric nonnegative

operator ;
(iv) if O@=(@*, -, 0%, O*=H., and FEC%L(R °) then

D(Fo @)= ;:j! 8 F(D)DD*,

L(F0)= 3 0F(®).LO+ 3 8, FO(D, 7).

1,7=1
In particular, for @, ¥=H.
LOU)=0LY+2I'(D, U)+¥ L D.
by (i) If @=(@, -, ®%), O*=H,, FECL(R*) and ¥ =H., then

T(F-0, ¥)= £ 0. F(O)N(0, ¥);

(ii) £1=0, E[.L®]=0 and E[QLV]=E¥LO0]=—E[['(®, V)].
¢) For @=(9, ---, 09)e(H.)?, FECR*) and ¥ = H., the integration-by-parts
formula holds:

E( gaip(@r(q)l, 0))=—E(F@ONTLO+T(@, T))).

§2. Applications of Malliavin calculus to stochastic differential equations.

Now exactly in the same way as in [2], we can apply the Malliavin
operator to a solution of the following stochastic differential equation driven
by the Poisson random measure p(dsdzdo):

@.1) Xf=x+S:a(Xf)ds—!—g:SExsf(Xf_,z, o)i(dsdzds)  (xER%),
where ji=p—y is a compensated Poisson random measure and
a(x)=(a'(x)) : R°>R?,
f(x, z, 6)=(f(x, z, 6)): R*XEXS—R*
are measurable functions. We also write (2.1) in the differential form
dX*=a(X")dt+f(X2)dp, Xi=x.

We give an assumption on a(x) and f(x, z o). Let r=1.
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Assumption (A—r). (i) a(x) is a Ci-function on R¢;
(ii) f(x, z, o) is »-times differentiable in (x, z) on R*XE and moreover

AURFNEDES A LP(EXS, dzM(da)),
SPsoo
sup, | D% f(x, -, -)IE2 N LYEXS, dzM(de)) for 1<i<r,
SPs
SUp;. . o | DYDif(x, z, 6)| <o  for 1=:+j<r and j=1.

We shall always assume at least (A-1). Then (2.1) has a unique solution
¥, which satisfies sup;<r|X#|E/M\p<eLl? and defines a standard strong Markov
process X® with the generator L:

L(p(X)=Dz¢(X)~a(x)+S[§D(x+y)—90(x)-—sto(X)-y]K(x, dy)
where K is given by
Kx, D={ | Towlf(x, 2, a)dzM(do).

From now on, we fix a Malliavin operator with an auxiliary function p
satisfying

Condition (p). p: E—(0, «) is a Cy-function such that

(i) p(2)/d(z)%, | D.p(2)|/d(z)E\isp<e LP(E, dz), where d(z)=inf cpc|z—y | Al
(if E=R"\E+@), =1 (if E=R");

(ii) for r=0, |Dip|< LYE, dz).

For simplicity we consider the equation (2.1) with a fixed initial value
x&R®* and we denote the solution by X;=X#. Then we have

THEOREM 2.1 (cf. [2], Theorem 10-3). Assume (A-3). Then for each t<T
the components X} of the solution X, belong to H.. Moreover set U¥=I"(X}, X?)
and Vi=.LX}; then the processes U=(U"); ;24 and V=(V');zq are solutions to
the following equations, respectively :

dU=[U Dra(X ) +D,a(X)U]dt
U Do f(X )T+ Do f(X)U 1d
LoD (X )DL f (XY + Do f(XIU D f(X) 1dpe,
and
dV=D,a(X)V dt+D, f(X)V_d
J + ]é [6%,a(X) U™ dt+82, (XU d ]
l +LpAF(X )+ D, DLA(X ) dpe,
Ve
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where 0%,=0%/(0x:0x,).

Finally we modify the results of [2] according to the present situation,
which will be used to prove our main results of §3.

Denote by VX7 the Fréchet derivative of the map x€R*—>Xf=L?" Then
under (A-2) VX§ exists for each xeR® and t<[0, T], and it is a unique
solution to the following linear stochastic differential equation :

dNX*=D,a(X*NX*dt+ D, f(XZNX2dg, VXi=I

([2] Theorem 6-29). Let us introduce the R*QR¢-valued process K* defined
by

dK*=D a(X*)dt+D,f(X*)dj, K§=0.
Then
dVX*=dK*NX?Z, VX¢=I.

Define the sequence of stopping times:
T§=0, Ti=inf{t>T%_,: det(U+4K7)=0} (=T if {-}=¢),
where AKf=K?— K¢ . We further define the process VX*(n) by
dVX*(n)=dK*n)NX*(n)-, VX*(n)=I,

where K*(n),=Kf—Kfnrz_,. Clearly K*(1)=K® and VX*1)=VX*. Since
K* is a right continuous process with left-hand limits and {0<¢ < T': det(/+ 4 K§F)=0}
is a finite set, T¢ 1 T. It is also known that ([5])

VX*n)y=1Iif t<T%_,,
VX*#(n), is invertible if t<TZ,
VX?#(n), is not invertible if t=T%,
VX?*n),. is invertible if t<TE.
Moreover we define the process H* by
dH*=pD,fD,f"(X2)dp and H{=0.
Then it is shown in [2] (Proposition 10-22) that under (A-3)

Ur=vx*m)(Utz_, +|, (VX ()5 [+ Do f)D.f D,f"

TS 4 SEXS
U+Dof)yT(XE, 2, VX ()it p(2)} pldsdzda) )T X *(n)]

if T5.=t<T%,
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fe=AdH1z+(U+AK$2)Ufz, (I+4K%z)"  and U§=0.

Therefore, by Theorem 10-30 (a) of [2], we see that, under (A-4), if U¥
is invertible a.s. then the distribution of X7 has a density. Furthermore, using
the above formulae and the arguments in §11 of [2], we can obtain the follow-
ing lemma, which will be used to prove Theorem 3.1.

LEMMA 2.2. Let t>0. Under (A-4) if, for each n=1,
t
Z ~1 -1
Jrs o (KR4 Doy D.f
D.fTU+D. [y (XE, 2, o NX(n)2 " p(2)]p(dsdzdo)

1s invertible a.s. on {p: TE ()<t<TE(p)}, then the distribution of X§ has a
density.

To obtain the smoothness results, we introduce a function A(z) on E follow-
ing [2], which is related to the integrability of (U¥F)™'.

DEFINITION 2.3. Let {, #>>0 be given. A measurable function A: E—[0, «)
is called (, 0)-broad if

“ - _ _ ,=Sh(2)
Sodss 1exp{ 0SE(1 e ()dz}<00.

Example 2.4. Let E=(y, o) for some n<=R. Let {, 6>0 be given and
set h(z)=|z|7e %?' (z&E) for some constants 7, dcR. If 0<6/{ then h is
(&, @)-broad for all y=R. 1If 6=6/C then h is also ({, 8)-broad for y>d/6=1/C.
Otherwise h is not ({, #)-broad. In particular, if =0, that is, h(z)=]z|" then
h is (€, #)-broad for all {, >0 and y=R.

The assumption (SB—({, )) of [2] is modified as follows:

Assumption (B—({, 6)). There exist constants >0, =0, a ({, 6)-broad
function A, a function p satisfying the condition (p) and a family of disjoint
sets {S;}X,CS with M(S;)=M,>0 such that for each x, y= R?

N 2
; o) s EREAN
?:‘1 inf.. ner>0, 0es, Ok F(x, z, 0)y=e¢ e

where F is the function with values in the set of symmetric nonnegative
definite d Xd-matrices defined by

U+Df)'D.f D.fTU+D.f)y " (%, 2, 0)
(2.2) F(x, z, 6)= it det(/4+D.f(x, z, 6))%0,
0 otherwise.

Now we can modify the results of [2] (Theorems 2-27, 2-28 and 2-29) in
the following way.
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THEOREM 2.5. Let r=0 and t>0. Assume (A-j) and (B—(, @) for some
7 and §, 0>0. Assume also inf, , ,|det(/+D.f(x, z, ¢))|>0. Then
a) the distribution of X¥ has a density px, -) of class C™ for each x<R4,
provided either

(i) j=r+d+5, 0<Mit and {>2d(r+d+1)/[Mit/0] (where [a] denotes the

integer part of a), or

(i) j=r+5, 6 Myt and {>2d¥r+1)/[ Mt/0].
b) Moreover the function: (x, y)—p(x, ¥) isof class C", provided that j =Zr+2d+5,
0 <Myt and {>2d(r+2d-+1)/[Mit/0] hold.
c) Furthermore assume inf,eco,13, 2, ., o |det(I+vD, f(x, z, )| >0. If j=2r+4d+8,
<Myt and {>4d(r+2d+2)/[ Mot/0] then the function: (s, x, ¥)—ps(x, ¥) is of
class C™ on (¢, T)X R*X R®.

Remark 2.6. In the above theorem, we only give the result corresponding
to the first assertion (i) of Theorem 2-28 of [2]; the proof of the second
assertion (ii) of Theorem 2-28 includes trivial mistakes (see the equations (4-24)
and (4-37) in [2]) and it is hard to correct them. Here we need two more
degrees of differentiability on the coefficients (@, f) than that in [2], because
we use Malliavin’s approach (see Remark 10-33 of [2]). However if we take
Bismut’s approach the regularity assumption on (a, ) would be improved.

§3. Main results.

By using Theorem 2.5 and Lemma 2.2 of §2 we give some results on the
existence and smoothness of a density for the transition probability P.(x, dy)
of the jump Markov process associated with the Lévy generator L defined by
(8). Here its Lévy kernel K(x, dy)is given by (9) with the following functions:

wWx, u, a): R*X[0, uy]XS—R?*, y(x,0, ¢)=0 (curves);
g(x, u, 6): R*X(0, 1] X S—(0, ) (weight).
We restrict the function g(x, u, o) as follows:
g(x, u, o)=u"""*m(x, g),

where m(x, ¢)>0 and 0=Za(x)<2.
In order to relate L and the equation (2.1) we introduce the following
functions :

Gix, u, o)=S:0g(x, v, o)y for ue(, ul,
(3.1) G(x, -, o) is the inverse function of G(x, -, ¢) and
(3.2) f(x, z, 6)=y(x, G(x, z, @), 7).

Then K is expressed by
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K(x, =] Mo Lo (5, 2 oz,

We here choose E=(0, «) and a Poisson space (2, &, (F,), P)over [0, TIXEXS
with the intensity measure didzM(ds). Then we can consider the stochastic
differential equation (2.1) associated with a(x) and f(x, z, ¢) of (3.2) on the
Poisson space (2, ¢, (¢,), P); its solution solves the martingale problem for
the Lévy generator L.

Now we give an assumption on (a, v, m, a). Let r=1.

Assumption (L—r). (i) a(x) is a C}-function on R¢;

(ii) y(x, u, ¢)/u is r-times differentiable in (x, ) on R*X[0, u,],
DyDy(¥(x, u, ¢)/u) is bounded in (x, u, ¢) for all 7, ; with 0<:+7<r and
D,y(x, 0, ¢) is continuous at every g<supp M(da);

(iii) m(x, o) is r-times differentiable in x such that 0<& <m(x, 6)<&,<co
and Dim(x, o) is bounded in (x, ¢) for all £ with 0<k<r;

(iv) a(x)=0, or a(x) is a C}-function on R* and satisfies the inequality
0<liSa(x)<E,<2 with some constants j, {,.

Under the assumption (L-1) the equation (2.1) has a unique solution X7
for each initial condition Xf=x. Since X®*=(X¥) defines a standard Markov
process on R¢, we denote its transition probability by P(x, dy).

The next assumption is a non-degeneracy condition for K(x, dy):

Assumption (V).
span{D,y(x, 0, ¢): c =supp M(deo)} =R*
for every x< R®.
Note that under (L-1) and (N), K(x,dy) satisfies K(x, R*)=co and

[ivioKCr, dy) <o,
The first result of this paper is the following.

THEOREM 3.1 (Existence of transition density). Assume that (L-4) and (N)
hold. Then PJx, dy) has a density PJx, -) for all t>0, x=R®.

Remark 3.2. When S is a finite set, this assertion was shown in Theorem
3-8 of [2]. Léandre [6] also discussed this problem under a weaker non-
degeneracy condition than (N), in the case where S is finite and g(x, u, ¢) is
independent of x. We here generalize S and g(x, u, ¢), which enables us to
treat a stable-like process. We shall prove the above theorem by combining
two methods of [2] and [6].

Assumption (SN). There exist a constant ¢ >0 and a finite number of points
g;=supp M(do), i=1, ---, N and disjoint neighborhoods S; of ¢, /=1, -, N
such that for all x, ye R

N
2 infoes, (37 Duy(x, 0, 0)*zely|*.
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This is stronger than (N). The following assumptions are rather artificial,
but they are required by technical reasons. Let f(x, z, ¢) be defined by (3.2).

Assumption (C). inf, , .|detd+D.f(x, z, ¢))|>0.
Assumption (SC). infiero,17,2.20det+vD,f(x, z, ¢))] >0.

These assumptions hold, for instance, if either |y/u|, |D.y/ul, |DJ(y/u)l,
or |D.y/ul, |D.,m|, |D,a| are sufficiently small, or if u, is sufficiently small.
These conditions will be discussed in Remark 3.6.

Now we can state the main result of this paper.

THEOREM 3.3 (Smoothness of transition density). Assume that (SN) and
(C) hold. Let r=1 and let My=min, <<y M(S;) where S, s found in (SN).
a) Let 0<ti<a(x)SE<2.
(i) Under (L—(r+5)), PJ(x, dy) has a density Px, v)of class C" in y for
all x=R%, t>0.
(ii) Under (L—(r+2d+5)), px, y) 1s of class C™ n (x, y) for all t>0.
(iii) Assume further that (SC) holds. Then, under (L—2r-+4d+38)), p(x, v)
is of class CT™ n (¢, x, y) of (0, c0)X R*X R®.
(iv) In the cases (i), (ii) and (iii), +f (L—7r) is fulfilled for all r=1 then
the term C" can be replaced by C*.
b) Let a(x)=0, and set p=1/&,.
(i) Under (L—(r+d-+5)) (resp. (L—(r+5)), P.x, dy) has a density p,(x, y)
of class C™ wm v, 1f t>{4d(r+d+1)p+29%}/ M, (resp. t>{4d*(r-+1)y
+29%}/ M,).
(ii) Under (L—(r+2d+5)), p«x, ¥)of class C" mn (x, y), if t>{4d(r+2d+1)y
+29?}/ M,.
(iii) Assume further that (SC) holds. Then, under (L—2r+4d+8)), ps(x, y)
1sof class C™ 1s (s, x, ) of (¢, co)X R*XR?, of t>{8d(r+2d+2)n+27*}
/M.

Remark 3.4. (i) The result corresponding to (b) of Theorem 3.3 is found
in Theorem 3-12 of [2], but their assumption involves f(x, z, ¢). However it
would be desirable to give the assumption in terms of the Lévy generator (8)
with (9), without using f(x, z, o).

(ii) As mentioned in Remark 2.6 it is possible to drop one or two degrees
of differentiability on the coefficients (a, v, m, a) in our results. However it
is not interest for us.

Finally we shall apply our results to a stable-like process with bounded
jumps and a stable-like process itself. Recall that the generator of a stable-
like process is decomposed into L=A’+ A' where

Ap)={ | [olrt)—p(x)=Daglx)- y1K(x, d),

Agn=| | [gle+y)—px)IK(x, dy)
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and K(x, dy) is given by (6).

Assume that a(x) is a Cj-function satisfying that the inequalities (5).
Since A° is a special type of (8), there corresponds a Markov process on R*
which is defined by the unique solution of the SDE (2.1) with f(x, z, ¢) of
(3.2) on a Poisson space (2, &, (%), P) over [0, T]x(0, «0)XS*'. We denote
by P{(x, dy) its transition probability.

On the other hand Bass [1] establishes the well-posedness of the martingale
problem for L, so that L determines a Markov process on R? uniquely. We
denote by P,(x, dy) its transition probability. Then we obtain

THEOREM 3.5. Suppose that a(x) s a Ci-function on R* for some ;, and
satisfies (5). Let r=0.
a) (Stable-like process with bounded jumps)
(i) If j=4 then PY¥x, dy) has a density p¥x, v) for all 1>0 and x=R".
(ii) Assume (C). If j=r+5 then p¥x, v) is of class C" in y for all t>0,
xR If j=r+2d+45 then p¥(x, y)isof class C" mn(x, y) for all t>0.
(iii) Assume (SC). If j=2r+4d+8 then pi(x, v) is of class C™ in (¢, x, y)
of (0, o)X R*X R®.
b) (Stable-like process)
If 7=4 then P/x, dy) has a density p.x, y) given by

t
35) pue, 9=, )+ ds|Petr, dynanio, )
for all t>0 and x<=R".

Proof. a) It is easy to check that m(x, ¢)=0,, satisfies (L—j)-(iii).
Hence the claims follow from Theorem 3.1 and Theorem 3.3(a).

b) Let C.=C«(R?) be the Banach space of continuous functions on R?
vanishing at infinity with supremum norm. It is easy to see that Pi(x, dy)
induces an s-continuous conservative Markov semi-group {77} acting on C.,
and that A' is a bounded generator of a Markov semi-group acting on C..
Let (G°, 9(G®)) be the generator of {T}}, and set G=G"+ A* and 9= D(G)=D(G).
Then (G, 9(G)) generates an s-continuous conservative Markov semi-group {7}
acting on C.. Furthermore the following perturbation formula holds:

(3.6) T,= T?—}—S:T,_SAI Teds on C..

(see Theorem 3.1 of [3], also Chap. 1 and 4 of [4]). Then there is a Markov
process (X;, P,) associated with the Markov semi-group {7:}. Since 9DC}R?)
and G=L on C%R?), the probability law of (X;) under P, is a solution of the
martingale problem for (L, CiR%)). Hence by the well-posedness of the mar-
tingale problem, {T,.} coincides with the semi-group associated with P,(x, dy).
Therefore (3.5) follows from (3.6). 0

Remark 3.6. a) To obtain the smoothness results of Pux, dy) for a
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stable-like process, the formula (3.5) might be useful. But we need more
information on integrability of derivatives of PYx, y), which seems rather
difficult.

b) For the assumptions (C) and (SC) we can give a sufficient condition as
follows: Set n(x, u, ¢)=y(x, u, ¢)/u. Then, under (L—r), n(x, u, a) is r-times
differentiable in (x, u) on R%X{0, u,], its derivatives are bounded in (x, u, o)
up to order », and

f(x, z, 0)=G(x, z, a)n(x, G(x, z, @), 7).
(i) In the case of a(x)=0, G(x, z, 6)=u.exp[—z/m(x, ¢)]. Then we have
|D.f(x, z, 0)| Suo(In|+|DunlXx, G(x, z, @), 6)| Dam(x, 0)|/&:
+1Dan(x, G(x, 2, @), a)|).

From this we deduce that if either [n|, |D.n|, |D.n| or |D,m|, |D.n| are
sufficiently small then (SC) holds.

For instance, suppose that all the functions «, n, m are independent of
(x4, -+, x4). Then det(/+vD.f)=1+vd,f for v[0,1]. In this case (C) and
(S8C) hold if we<&/((Inll+1DunDIDem|+&:)Dnl), where ||| denotes the
supremum norm with respedt to the variables x, # and .

(ii) Inthecaseof 0<l <a(x)<{:<2, G(x,z, 0)=(a(x)/m(x, @)z+uz @) 1w,
It is easy to see that

| D.G(x, z, 0)| =| Da(x)] /GH1V Lo log uo)
+uo/C({ | Dea(x) i+ [ Dom(x, a)|/&:}V [ Dea(x)]| [l0g uo)
if uex1,
|D,G(x, z, 0)| | Dea(x)] /Glufi/ee-2o
+uo/C({1 Dea(x)1 /Ci+ | Dam(x, @)1/6:}V | Doa(x)|10g uo )
if uo<1.

Moreover
|D.f(x, z, o)| <(In|+|Dun|Xx, G(x, 2, a), )| D.G(x, z, 0)|
+1Don(x, G(x, z, ), 0)||G(x, z, a)].

From these inequalities we deduce that if either |n], |Dun|, |D.nl, or |D.a|,
| D.m}\, {D,n| are sufficiently small, or if u, is sufficiently small, then (SC)
holds. In particular, for a stable-like process with bounded jumps, we have
n(x, u, 6)=c and m(x, 0)=80 .. Let

&o=(sin 20 A (sin L) UHON (4L Dm0 T (U452,
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&=L A+C)(d L)/ 2)m PRI (14L,)/2)™!

and

n=(m cos ZLI 1+ (d+L)/ 21T (d+C/2)+ TA+CTs

+ AL A+E)/27s) (27T +8/2))

with 7,=2sup./’(1+a(x)), r.=sup.l"’(d+a(x))/2) and 7;=sup.l'(1+a(x))/2).
Then 0<6,<0 r(or<6:<<oo and [D.0ur| <9l D,a(x)|. Let uo=1. In this case
we have

1D f(x, z, 0)] =(1/G4+1/8+1/80C) | Dealx)] .
Therefore if a(x)=a(x,) and sup, | D.a(x)| <{3&/(26,+Cin), then (SC) holds.

§ 4 Proof.

This section will be devoted to the proofs of Theorem 3.1 and Theorem
3.3. Recall that G(x, z, ¢) and f(x, z, o) are defined by (3.1) and (3.2) respec-
tively, and E=(0, «). The following lemma is obtained by elementary
calculation.

LEMMA 4.1. For r=1, (L—r) implies (A—r) and that for every 0<i+)=r

sup., .| DL DIf (%, 2, U)i52 N L E, dz) is bounded.
SP<oo

Furthermore, if r=2, then lim,..sup.. ,|D.f(x, z, ¢)|=0 and for each ¢>0 there
is a constant 6=06(e)>0 such that

SUpz, 0. ;531 Duy(x, G(x, 2, @), 6)—D.¥(x, 0, 0)| <e.
First we prove the existence theorem.

Proof of Theorem 3.1. It suffices to show that the distribution of the
solution X7 of (2.1) with E=(0, «) has a density for every 0<¢t<7T and x& R“.
For simplicity we drop the super script “x” for X¢, T¥, etc. Let F(x, z, o)
be the same as in (2.2) and we define the process R, with values in the set
of all symmetric nonnegative definite dXd-matrices by

R‘:XZSEXSP@)F (X, 2, o)p(dsdzdo).

This is well-defined by Lemma 7-4 of [2] and satisfies the condition
YRyZy Ryy=0  for all y=S*! if 0<s<t.

By Lemma 2.2 it is enough to show that, for any fixed n=1 and 0<u<t,
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(4.1) gtVX(n);_ldRsVX(n);_"T is invertible a.s. on {T,>t}.

Here we restrict the Poisson space and the time interval to 2'=0N{T,>t}
and [u, t] respectively. That is, we take the restricted Poisson space
(2, F', (Fisetu.e, P7)  defined by P'(-)=P(-|2), Fi=(Nrs0({p(A4): Ac
B(u, rNRXERSI U)o and F'=9F;, where 71 is the totality of the P-null
sets of ¥. Then {Fi}seru, 7 IS right-continuous and &; is the trivial field.
The proof of (4.1) will be divided into three steps.

(Step 1) We fix x=R* and §=S%! arbitrarily. By the assumption (N)
there is a point o,=supp M(do) such that D,y"(x, 0, g,)5#0. Note that
D.f(x, z, 6)=—(D.y/gXx, G(x, z, ¢), ¢). Then, by Lemma 4.1 and the conti-
nuity of D,y(x, 0, ¢) at o,, there exist a constant L>0 and a neighborhood S,
of ¢, such that D,f(I+D.f) " "(x, z, 6)§+0 for every z=L and o<S,.

(Step 2) Next we prove that

4.2) for each y&S%! and s&(u, t],
Qy(s)EginVX(n)zldRVX(n):LTy>0 Pra.s.

Suppose that (4.2) does not hold. That is, there exist a vector y,&S%! and a
time point s=(u, t] such that P’(QY«(s)=0)>0. For >0 we introduce the
local martingale :

Yy(s)=exp(— ﬂQyO(s)—kgngxs{l—exp[— Bo)F(r, 2, a)l}drdzM(da)),
where ﬁ(s, z, 0)=9NXn)AF(X;_, z, e NX(n);>"y,. First we suppose that
Yi(s) is a martingale. If Q¥(s)=0 then

lim vaoy=exp(| dr| dzMdo)).

p(z)ﬁ(r,z, g)70

By Fatou’s lemma we have

L’ [exp(gs dr

u Sp(z)FN(r,z,a)*o

dzM(do ))] <1.
Hence it holds almost surely on {Q¥%(s)=0} that

(4.3) dzM(de) is finite for almost every re&(u, s].

Sp(z)ﬁ'(p,r,z,a);eo
In the case where Yjg(s) is not a martingale, we also have the same result by
using a stopping time argument. Since p>0 on FE and s, z, 0)=
|D,fTUU+D.f)y""(Xs_, z, o NX(n):*"v,|% (4.3) contradicts the result in Step 1.
Therefore (4.2) holds.

(Step 3) Finally we prove (4.1). Let
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szkerg‘VX(n):’dRVX(n):"T for sc(u, 1]

and K,,=Us K; (note that K, DK, if »<s). Then (4.2) implies that for each
yeS% 1! and any s>u P'(yeK,)=0, i.e. P'(y=K,,)=0. From this we can

deduce that P'(K,.={0})=1 as follows. Since rankaVX(n):‘dRVX(n):” is

i-measurable, it follows that dim K, is F,-measurable. Noting that & is
the trivial field, we have some 0<k<d such that P'(dim K, ,=k)=1. If k=1
then for each n=1 we can choose an ¥,,,,,-measurable unit random vector e,
which belongs to Ky, P’-a.s. Denote by CL({e,}) the totality of cluster
points of {e, : m=n}, thatis, CL({e,})=Nns:1{en : m=n}. Then from the trivality
of ., we see that there is a deterministic non-empty compact subset C of
S¢-t such that P/(CL({e,})=C)=1 (note that we can regard C,={e,: m=n} as
an ¥,.,,,,-measurable random variable with values in the set of all non-empty
compact subsets of S¢°!, which is a compact metric space with the Hausdorff
metric). Hence for any yeC, P'(y=K,,)=1, which contradicts (4.2). Thus
we have K,CK,,={0} P’-a.s., from which (4.1) follows. Therefore the proof
of Theorem 3.1 is complete. 0

Next we proceed to the smoothness results. The following inequalities
can be easily obtained.

LEMMA 4.2. (i) In the case of 0<{ Sa(x)<{,<2 there are constants
7, ' >0 and 9”20 such that

sup.,.g(x, G(x, z, @), 0)<n'(1+2)"  for all z>n".
(ii) In the case of a(x)=0 there are constants 7, n’ >0 and 7" =0 such that
sups, .g(x, G(x, z, @), 9)<n'e”  for all z>n"
(in this case we can take p=1/&,).

Proof of Theorem 3.3. First note that for S, of (SN) we may assume
M(S)=M,>0 for =1, ---, N by modifying M(de¢) and m(x, ¢) as follows:

M(do)=M, é M(doNS)/ M(Se)+M(da~S")

where S’=3¥,S;, and

m(x, ¢)M(S;)/ M, if oS,
m(x, a)——-{

m(x, o) otherwise

(then 7i(x, o)=m(x, 6)=& >0).
Next we verify the assertion a) by using Theorem 2.5 together with
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Lemma 4.1. For this end, it suffices to prove that for any {, §>0, the
assumption (B—({, 6)) holds (see §2). By the same argument as in the proof
of Theorem 3-12 of [2] we see that there exist positive constants &', ¢ and 7
such that if E’=(¢, co) then for all x, y=R*

N
(4.4) P inf.er ves, 3 F(x, z, a)y(1+2y=¢'|y[%/2.

In fact, set ¢g=sup{|D.y(x, 0, )| : x=R*, 0=X,S;}; then 0<p<oo by (L-1)
and (N). Since lim, .sup, ,|D.f(x, z, ¢)|=0, for V=(U+D,f)*—1I there is a
constant ¢,>0 such that

1
4

where | -|| denotes the operator norm. Let

(4.5) 1V(x, 2, ")”é(Tip“/g/W)/\ for all z>¢,,

U(x, z, 6)=(I+D.f(x, z, ¢))'D,f(x, 2, 0),
which is well-defined by (C). Then
U(x, z, 6)=(I+V(x, z, ¢))D,f(x, z, ¢)
=—g(x, G(x, z, 6), 6)"(D,¥(x, 0, 6)+V(x, z, 6)D,¥(x, 0, @)
+U+V(x, 2, O)[Du¥(x, G(x, 2, 0), 6)—Duy(x, 0, 0)]).

Thus Lemma 4.2 (i), (4.4) and (4.5) yield that if ¢=¢1v5(%«/é77\7)\/17” then
for all z>¢, c=XX,S, and x, y=R*

TI7 1 - T " 1 ~ /N
197U, 2, D)2 A+27 (17 Dus(x, 0, )| = |3 15 Ve/N).

Now we fix x, yeR® with y+0. From (SN) there is an index : such that
infses,|y"Duy(x, 0, 0)|*=e|y|?/N. Hence if z>¢ and ¢S, then

157U, 2 0)| 251427 g VEIN

Therefore, for all x, y= R¢, (4.4) holds (note that y"F(x, z, ¢)y=|y"U(x, z, ¢)|?.

Now we can choose a function p(z): E=(0, c)—(0, ) such that it satisfies
the condition (p) and p(z)=(1+2)"% for z>¢. If we set h(z)=(142)7p(z)lz(2)
=(1+42)7"21z(z) then, for any {, 6>0, A(z) is a ({, @)-broad function on E’,
which turns to a ({, #)-broad function on E (see Example 2.4). Since

infz:h(z»o%yTF(x, z, 0)y=inf,ep yTF(x, 2z, 0)y(1+2),

our claim follows.
Finally we prove the assertion b). Let »=1/&, and denote by H the con-
stants 2d(r+d+1)/y (resp. 2d*(r+1)/7n) in (i), 2d(r+2d+1)/n in (ii), and
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4d(r+2d+2)/% in (iii), respectively. By Theorem 2.5, for the proof of b) it
suffices to prove that (B—({, 6)) holds for (=%, 0=M,/[H+1]. This is
proved by a similar argument to the proof of a). In fact, (4.4) holds with
e®”* instead of (14z) by Lemma 4.2 (ii). Let p be a function satisfying the
condition (p) and p(z)=z"* for z>¢, and set h(z)=e *7%p(z)lz(2)=2"2e"*""1p(2).
Since 29 <Mt/(p[H+1])=0/9=0/ provided ¢ >29*(H+1)/M, (=29*[H+1]/M,),
h is (£, @)-broad on E. Therefore we see that the assumption (B—({, #)) holds.
O
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