ON A FACTORIZATION OF A PRIME NUMBER IN AN ALGEBRAIC NUMBER FIELD

By Shôichi Watanabe

We study in this paper a factorization of a prime number p in an algebraic number field k of degree n.

NOTATION. Let notation be as follows:

 $Z \cdots$ the ring of rational integers

 $[\omega_0, \omega_1, \cdots, \omega_{n-1}]$ $(\omega_0=1)\cdots$ an integral basis of k

$$\omega_i \omega_j = \sum_{k=0}^{n-1} x_{ijk} \omega_k \ (i, j=0, 1, \dots, n-1; x_{ijk} \in \mathbb{Z})$$

 $X, U_j \ (0 \le j \le n-1) \cdots \text{ indeterminates}$

$$\xi = \sum_{j=0}^{n-1} \omega_j U_j$$

$$\xi^{(i)} = \sum_{j=0}^{n-1} \omega_j^{(i)} U_j \ (0 \le i \le n-1)$$

$$a_{ik} = \sum_{j=1}^{n-1} x_{ijk} U_j.$$

The following fact is well known: if $p = \prod_{i=1}^g P_i^{e_i}$ is the factorization of p in k, then

$$\prod_{i=0}^{n-1} (X - \xi^{(i)}) \equiv \prod_{i=1}^{q} P_i(X, U_0, U_1, \cdots, U_{n-1})^{e_i},$$

where $P_i(X, U_0, U_1, \dots, U_{n-1})$ is an irreducible polynomial mod p in k. We shall show an application of this result.

LEMMA 1. Let notation be as above. Suppose that there exist rational integers $e(\ge 1)$, $c_i^{(r)}$ and $k_r^{(s)}$ satisfying

$$\begin{cases} \sum_{s=0}^{r} k_{r}^{(s)} c_{i}^{(s)} c_{j}^{(r-s)} \equiv \sum_{k=0}^{n-1} x_{ijk} c_{k}^{(r)} \pmod{p}, \\ \\ c_{i}^{(s)} = \begin{cases} 1 & (\text{if } s=i) \\ 0 & (\text{if } s>i), \end{cases} \\ 0 \le r \le e-1, \quad 0 \le i \le n-1, \quad 0 \le j \le n-1, \quad r, i, j \in \mathbb{Z}. \end{cases}$$

Received September 17, 1990; revised June 14, 1991.

Then $k_r^{(r)} \equiv 1 \pmod{p}$.

Proof. By definition of x_{ijk} ,

$$x_{i0k} = \begin{cases} 1 & \text{(if } k=i) \\ 0 & \text{(if } k \neq i) \end{cases}.$$

So putting j=0 in $(1)_e$, we have

$$\sum_{s=0}^{r} k_r^{(s)} c_i^{(s)} c_0^{(r-s)} \equiv c_i^{(r)} \pmod{p}.$$

By the condition about $c_i^{(s)}$ in $(1)_e$,

$$c_0^{(r-s)} = \begin{cases} 1 & \text{(if } s=r) \\ 0 & \text{(if } s\neq r). \end{cases}$$

Therefore $k_r^{(r)}c_i^{(r)} \equiv c_i^{(r)} \pmod{p}$. Putting i=r, we have $k_r^{(r)} \equiv 1 \pmod{p}$.

LEMMA 2. Under the assumption of Lemma 1, we have

$$\sum_{k=0}^{n-1} c_k^{(r)} a_{ik} \equiv \sum_{j=0}^{n-1} \sum_{s=0}^r k_r^{(s)} c_i^{(s)} c_j^{(r-s)} U_j \pmod{p}.$$

Proof.

$$\begin{split} \sum_{k=0}^{n-1} c_k^{(r)} a_{ik} &= \sum_{k=0}^{n-1} c_k^{(r)} \sum_{j=0}^{n-1} x_{ijk} U_j = \sum_{j=0}^{n-1} \left(\sum_{k=0}^{n-1} x_{ijk} c_k^{(r)} \right) U_j \\ &\equiv \sum_{j=0}^{n-1} \sum_{s=0}^{r} k_r^{(s)} c_i^{(s)} c_j^{(r-s)} U_j \pmod{p}. \end{split}$$

LEMMA 3. Let notation be as in Lemma 1. Put

$$A(i, w_1, \dots, w_z) = (-1)^z c_i^{(w_1)} c_{w_1}^{(w_2)} \cdots c_{w_{z-1}}^{(w_z)},$$

$$B(i, s, z, r) = \sum_{r > w_1 > \dots > w_z} A(i, w_1, \dots, w_z) c_{w_z}^{(s)}.$$

Then

$$\sum_{i=1}^{r} B(i, s, z, r) = \begin{cases} -c_{i}^{(s)} & (\text{if } s < r) \\ 0 & (\text{if } s \ge r). \end{cases}$$

Proof. If $s \ge r > w_1 > \dots > w_z$, then $w_z < s$. so $c_{w_z}(s) = 0$. Therefore B(i, s, z, r) = 0. Suppose s < r. Since

$$c_{w_1}(s) = \begin{cases} 1 & \text{(if } w_1 = s) \\ 0 & \text{(if } w_1 < s) \end{cases}$$

we have

(2)
$$B(i, s, 1, r) = -c_i^{(s)} - \sum_{r>w_1>s} c_i^{(w_1)} c_{w_1}^{(s)}.$$

Further

$$\begin{split} & \stackrel{r-s-1}{\sum_{z=2}^{r-s-1}} B(i,\,s,\,z,\,r) = \stackrel{r-s-1}{\sum_{z=2}^{r-s-1}} \{ \sum_{r>w_1>\cdots>w_{z-1}>s} (-1)^z c_i{}^{(w_1)} c_{w_1}{}^{(w_2)} \cdots c_{w_{z-1}}{}^{(s)} c_s{}^{(s)} \\ & + \sum_{r>w_1>\cdots>w_z>s} (-1)^z c_i{}^{(w_1)} c_{w_1}{}^{(w_2)} \cdots c_{w_z}{}^{(s)} \} \\ & = - \sum_{z=1}^{r-s-2} \sum_{r>w_1>\cdots>w_z>s} (-1)^z c_i{}^{(w_1)} c_{w_1}{}^{(w_2)} \cdots c_{w_z}{}^{(s)} \\ & + \sum_{z=2}^{r-s-1} \sum_{r>w_1>\cdots>w_z>s} (-1)^z c_i{}^{(w_1)} c_{w_1}{}^{(w_2)} \cdots c_{w_z}{}^{(s)} \\ & = - \sum_{r>w_1>s} (-1) c_i{}^{(w_1)} c_{w_1}{}^{(s)} \\ & + \sum_{r>w_1>\cdots>w_{r-s-1}>s} (-1)^{r-s-1} c_i{}^{(w_1)} c_{w_1}{}^{(w_2)} \cdots c_{w_{r-s-1}}{}^{(s)} \,. \end{split}$$

Therefore

(3)
$$\sum_{z=2}^{r-s-1} B(i, s, z, r) = \sum_{r>w_1>s} c_i^{(w_1)} c_{w_1}^{(s)} + (-1)^{r-s-1} c_i^{(r-1)} c_{r-1}^{(r-2)} \cdots c_{s+1}^{(s)}.$$

Similarly

(4)
$$B(i, s, r-s, r) = (-1)^{r-s} c_i^{(r-1)} c_{r-1}^{(r-2)} \cdots c_{s+1}^{(s)}.$$

If $z \ge r - s + 1$ and $r > w_1 > \dots > w_z$, then $w_z < s$, so $c_{w_z}(s) = 0$. Therefore

(5)
$$B(i, s, z, r) = 0$$
 (if $z \ge r - s + 1$)

By (2), (3), (4), (5), we get

$$\sum_{z=1}^{r} B(i, s, z, r) = \begin{cases} -c_{\iota}^{(s)} & (\text{if } s < r) \\ 0 & (\text{if } s \ge r). \end{cases}$$

LEMMA 4. Let $A(i, w_1, \dots, w_z)$ be as in Lemma 3. Put

$$b_{ikr} = a_{ik} + \sum_{z=1}^{r} \sum_{r>w_z > \cdots > w_z} A(i, w_1, \cdots, w_z) a_{w_z k}$$
.

Then $b_{ik\,r+1} = b_{ik\,r} - c_{i}^{(r)} b_{rk\,r}$.

Proof. By the definition of $A(i, w_1, \dots, w_s)$,

$$c_i^{(r)}A(r, w_1, \dots, w_z) = -A(i, r, w_1, \dots, w_z).$$

Substituting w_{i+1} $(1 \le i \le z)$ for w_i in $A(i, r, w_1, \dots, w_z)$, we have

(6)
$$b_{i}^{(r)} \sum_{z=1}^{r} \sum_{r>w_{1}>\cdots>w_{z}} A(r, w_{1}, \cdots, w_{z}) a_{w_{z}k}$$

$$= -\sum_{z=2}^{r+1} \sum_{r>w_0>\cdots>w_r} A(i, r, w_2, \cdots, w_z) a_{w_z k}.$$

Therefore

$$\begin{split} b_{ik\ r+1} &= a_{ik} + \sum_{z=1}^{r+1} \sum_{r+1>w_1>\cdots>w_z} A(i,\ w_1,\ \cdots,\ w_z) a_{w_zk} \\ &= a_{ik} + \sum_{z=1}^r \sum_{r>w_1>\cdots>w_z} A(i,\ w_1,\ \cdots,\ w_z) a_{w_zk} + A(i,\ r) a_{rk} \\ &+ \sum_{z=2}^{r+1} \sum_{r>w_2>\cdots>w_z} A(i,\ r,\ w_2,\ \cdots,\ w_z) a_{w_zk} \quad \text{(by } w_z \geq 0) \\ &= a_{ik} + \sum_{z=1}^r \sum_{r>w_1>\cdots>w_z} A(i,\ w_1,\ \cdots,\ w_z) a_{w_zk} - c_i^{(r)} a_{rk} \\ &- c_i^{(r)} \sum_{z=1}^r \sum_{r>w_1>\cdots>w_z} A(r,\ w_1,\ \cdots,\ w_z) a_{w_zk} \quad \text{(by (6))} \\ &= b_{ikr} - c_i^{(r)} b_{rkr} \,. \end{split}$$

THEOREM 5. Suppose that there exist integers $e(\ge 1)$, $c_i^{(r)}$ and $k_r^{(s)}$ satisfying $(1)_e$. Then p is divisible by P^e in k, where

$$P=(p, \omega_1-c_1^{(0)}, \omega_2-c_2^{(0)}, \cdots, \omega_{n-1}-c_{n-1}^{(0)})$$

Proof. By definition

$$\omega_{i}\xi = \sum_{j=0}^{n-1} \omega_{i}\omega_{j}U_{j} = \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} x_{ijk}\omega_{k}U_{j} = \sum_{k=0}^{n-1} a_{ik}\omega_{k}.$$

Therefore we have

$$\begin{vmatrix} a_{00}-\xi & a_{01} & a_{02} & \cdots & a_{0n-1} \\ a_{10} & a_{11}-\xi & a_{12} & \cdots & a_{1n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-10} & a_{n-11} & a_{n-12} & \cdots & a_{n-1n-1}-\xi \end{vmatrix} = 0,$$

so $N\xi = \prod_{i=0}^{n-1} \xi^{(i)} = |a_{ik}|$, where a_{ik} is the (i+1, k+1)-entry of the matrix. Let b_{ikr} be as in Lemma 4. We shall show that

(7)
$$N\xi \equiv \left(\sum_{j=0}^{n-1} c_j^{(0)} U_j\right)^r |b_{ikr}| \pmod{p}$$

holds, where b_{ikr} is the (i-r+1, k-r+1)-entry of the matrix.

(7) holds when r=0, since $b_{ik0}=a_{ik}$. Suppose that (7) holds when $r\leq e-1$. If we add

$$\sum_{k=r+1}^{n-1} c_k^{(r)} \times (\text{the } (k-r+1) - \text{th column of } |b_{ikr}|)$$

to the first column, then (i-r+1, 1)-entry becomes

Therefore

$$N\xi \equiv \left(\sum_{j=0}^{n-1} c_j^{(0)} U_j\right)^{r+1} |b_{ikr} - c_i^{(r)} b_{rkr}| \qquad (\text{mod } p)$$
$$= \left(\sum_{j=0}^{n-1} c_j^{(0)} U_j\right)^{r+1} |b_{ikr+1}| \qquad (\text{by Lemma 4}).$$

So we get

$$N\xi \equiv \left(\sum_{j=0}^{n-1} c_j^{(0)} U_j\right)^{\epsilon} |b_{ik\epsilon}| \pmod{p},$$

hence $\prod_{i=0}^{n-1} (X - \xi^{(i)})$ is divisible by $\left(X - \sum_{j=0}^{n-1} c_j^{(0)} U_j\right)^e \mod p$. Putting $X = \xi$, we get that p is divisible by P^e , where P is as mentioned in Theorem 5.

Example 6. Factorization of 3 in $Q(\alpha)$, $\alpha^3 + 3\alpha + 31 = 0$.

Put $\omega_0=1$, $\omega_1=\alpha$, $\omega_2=(\alpha^2-\alpha+1)/3$. Then $[\omega_0, \omega_1, \omega_2]$ is an integral basis of $Q(\alpha)$, and

$$\omega_1^2 = -\omega_0 + \omega_1 + 3\omega_2$$
,
 $\omega_1\omega_2 = -10\omega_0 - \omega_1 - \omega_2$,
 $\omega_2^2 = 7\omega_0 - 3\omega_1$.

Therefore $c_0^{(0)}=1$, $c_1^{(0)}=-1$, $c_2^{(0)}=1$, $k_0^{(0)}=1$ satisfy the condition $(1)_1\pmod 3$ of Lemma 1 and $c_0^{(0)}=1$, $c_1^{(0)}=c_2^{(0)}=-1$, $c_1^{(1)}=1$, $c_2^{(1)}=0$, $k_0^{(0)}=k_1^{(0)}=k_1^{(1)}=1$ satisfy the condition $(1)_2\pmod 3$ of Lemma 1. So by Theorem 5, 3 is divisible by P_1 and P_2^2 , where

$$P_1=(3, \omega_1+1, \omega_2-1), P_2=(3, \omega_1+1, \omega_2+1).$$

Hence $3 = P_1 P_2^2$.

The following Theorem is an application of Theorem 5.

THEOREM 7. Let notation be as follows: $\alpha \cdots \alpha \text{ algebraic integer of degree } n,$ $f(X) \cdots \text{ the minimal polynomial of } \alpha,$ $g_i(X) \ (i=0, 1, \cdots, n-1) \cdots \alpha \text{ monic polynomial of degree } i,$ $G_i(X) = g_i(X)/a_i \ (a_i \in \mathbf{Z}),$ $[G_0(\alpha), G_1(\alpha), \cdots, G_{n-1}(\alpha)] \cdots \alpha \text{ integral basis of } \mathbf{Q}(\alpha),$ $g_i(X)g_j(X) = f(X)q_{ij}(X) + r_{ij}(X) \ (\deg r_{ij}(X) \leq n-1),$ $F_{ij}(X) = f(X)q_{ij}(X),$ $p^{m_i} \| a_i.$

Suppose that there exist ratsonal inteZers b and $e(\ge 1)$ such that $F_{i,j}^{(r)}(b) \equiv 0$ (mod $p^{m_i+m_j+1}$) and $G_i^{(r)}(b) \in \mathbb{Z}$ $(i, j=0, 1, \cdots, n-1; r=0, 1, \cdots, e-1)$, are the $F_{i,j}^{(r)}(X)$ and $G_i^{(r)}(X)$ are the r-th derivative of $F_{i,j}(X)$ and $G_i(X)$ respectively. Then p is dsvisible by P^e in $\mathbf{Q}(\alpha)$, where

$$P=(p, G_1(\alpha)-G_1(b), G_2(\alpha)-G_2(b), \dots, G_{n-1}(\alpha)-G_{n-1}(b)).$$

Proof. Put
$$G_i(\alpha)G_j(\alpha) = \sum_{k=0}^{n-1} x_{ijk} G_k(\alpha) \ (x_{ijk} \in \mathbb{Z})$$
. Then

(8)
$$g_{i}(\alpha)g_{j}(\alpha) = \sum_{k=0}^{n-1} y_{ijk}g_{k}(\alpha) \qquad (y_{ijk} = x_{ijk}a_{i}a_{j}/a_{k}).$$

On the other hand, since $g_i(\alpha)g_j(\alpha)=r_{ij}(\alpha)$, we have

$$(9) r_{ij}(\alpha) = \sum_{k=0}^{n-1} y_{ijk} g_k(\alpha)$$

from (8). Since $\deg g_k(X) \le n-1$ and $\deg r_{ij}(X) \le n-1$, we have $r_{ij}(X) = \sum_{k=0}^{n-1} y_{ijk} g_k(X)$ from (9), so

(10)
$$r_{ij}^{(r)}(X) = \sum_{k=0}^{n-1} y_{ijk} g_k^{(r)}(X).$$

By definition $(g_ig_j)^{(r)}(b) \equiv r_{ij}^{(r)}(b) \pmod{p^{m_i+m_j+1}}$, since $F_{ij}^{(r)}(b) \equiv 0 \pmod{p^{m_i+m_j+1}}$. Therefore $(g_ig_j)^{(r)}(b) \equiv \sum_{k=0}^{n-1} y_{ijk}g_k^{(r)}(b) \pmod{p^{m_i+m_j+1}}$ by (10). Dividing both sides by a_ia_j , we get

(11)
$$(G_i G_j)^{(r)}(b) \equiv \sum_{k=0}^{n-1} x_{ijk} G_k^{(r)}(b) \pmod{p}$$

since $G_i^{(r)}(b) \in \mathbb{Z}$, $p^{m_i} \| a_i$ and $p^{m_j} \| a_j$. Now we put

(12)
$$c_i^{(s)} = a_s G_i^{(s)}(b)/s!$$
 and $k_r^{(s)} = a_r/a_s a_{r-s}$.

Then $c_1^{(s)}$ and $k_r^{(s)}$ are integers and

$$c_{i}^{(s)} = \begin{cases} 1 & \text{(if } i = s) \\ 0 & \text{(if } i < s). \end{cases}$$

Further

$$\begin{split} \sum_{s=0}^{r} k_{r}^{(s)} c_{i}^{(s)} c_{j}^{(r-s)} &= \sum_{s=0}^{r} (a_{r}/a_{s} a_{r-s})(a_{s} G_{i}^{(s)}(b)/s!)(a_{r-s} G_{j}^{(r-s)}(b)/(r-s)!) \\ &= (a_{r}/r!) \sum_{s=0}^{r} \binom{r}{s} G_{i}^{(s)}(b) G_{j}^{(r-s)}(b) \\ &= (a_{r}/r!) (G_{i} G_{j})^{(r)}(b) \\ &= (a_{r}/r!) \sum_{k=0}^{n-1} x_{ijk} G_{k}^{(r)}(b) \pmod{p} \pmod{p} \pmod{p} \\ &= \sum_{k=0}^{n-1} x_{ijk} c_{k}^{(r)} \pmod{p}. \end{split}$$

Therefore p is divisible by P^e in $Q(\alpha)$ by Theorem 5, where P is as mentioned in Theorem 7 since $c_i^{(0)} = G_i(b)$.

Example 8. Factorization of 2 in $Q(\alpha)$, $f(\alpha) = \alpha^3 - \alpha^2 - 2\alpha - 8 = 0$. (See [1]). Put $G_1(X) = X$ and $G_2(X) = (X^2 - X)/2$. Then [1, $G_1(\alpha)$, $G_2(\alpha)$] is an integral basis of $Q(\alpha)$. Since $f(X) \equiv X(X-2)(X+1)$ (mod 8), we get $f(0) \equiv f(2) \equiv f(-1) \equiv 0$ (mod 8) and $G_1(0) = G_2(0) = 0$, $G_1(2) \equiv 0$, $G_2(2) = 1$, $G_1(-1) \equiv G_2(-1) \equiv 1$ (mod 2). Therefore 2 is divisible by

$$\begin{split} P_1 &= (2, \, \alpha, \, (\alpha^2 - \alpha)/2), \\ P_2 &= (2, \, \alpha, \, (\alpha^2 - \alpha - 2)/2) \quad \text{and} \\ P_3 &= (2, \, \alpha - 1, \, (\alpha^2 - \alpha - 2)/2), \end{split}$$

by Theorem 7. So we have $2=P_1P_2P_3$.

REFERENCES

[1] T. Takagi, Algebraic number theory (in Japanese), Iwanami, Tokyo (1982), 76-80.

Tokiwagigakuen High School, 4-3-20 Odawara, Aoba, Sendai 983, Japan