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COMPOSITION OPERATORS ON THE SPACE

OF ENTIRE FUNCTIONS

BY B. S. KOMAL AND PREM SAGAR SINGH

Abstract

The composition operators on the space of entire functions Γ have been
characterized. The invertibility of a composition operator Cψ interms of the
invertibility of inducing map φ is obtained.

Preliminaries.

Let X be a non-empty set and let V(X) be a vector space of complex valued
functions on X. If φ: X->X is a mapping such that f°φ^V(X) whenever
/ G 7 ( I ) , then a composition transformation Cφ is defined by the equation

Cφf=f°φ for every f<=V(X).

In case V(X) is a topological vector space and Cφ is continuous, then we call
it a composition operator induced by φ. If u: X-*C\{0} is a mapping such that
(uCφ)f=u.f°φ<^V(X) whenever / G 7 ( Z ) , then a weighted composition operator
is a continuous linear transformation uCφ\ V(X)-*V(X) defined by

(uCφ)f=u.f°φ for every / G F ( I ) .

A complex valued function / : C->C of a complex variable is called an entire
function if it is analytic in the whole complex plane. If / is an entire function
then there exists a sequence {fn\ of complex numbers such that

I fn 11/n —> 0 as n->oo and / = / ( * ) = Σ fnz
n (D

71 = 0

The power series in (1) is a uniformly convergent power series. Conversely
every sequence {fn} of complex numbers with |/n|

1/7l-»0 as n-+oo defines an
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entire function / represented by (1). We can define a metric d in the class of
entire functions as d(f, g)=sup{ |/0—go\, \fn—gn\ί/n, n^l}. The class of entire
functions topologized by this metric is denoted by Γ. It is shown in Iyer [8]
that Γ is a non-normable complete metrizable locally convex topological vector
space. The convergence of a sequence of entire functions in the metric topology
of Γ is equivalent to the uniform convergence of entire functions in any circle
of finite radius. Such a convergence in Γ will be called strong convergence
in Γ.

oo

Every continuous linear functional / on Γ is given by f(a)=Σfnan, where
00

a—a{z)=^anz
n and {/»} is a sequence of complex numbers such that {|/J1/n}

is a bounded sequence. The set of all bounded linear f unctionals on Γ is denoted
by/7*. A sequence {an\ in Γ is said to converge weakly to « e Γ if and only
if /(αn)-*/(α) for every / e Γ * . If for each weZ+, we define en: C-+C as
en(z)=zn, then the sequence {en: neZ+) is a basis for Γ. A sequence {an\ in
Γ is called basis for Γ if for each α e Γ there exists a unique sequence {tn(a)}

oo

of complex number such that a=^tn(a)an. The space Γ of entire functions

has been studied extensively by Iyer ([9], [10] and [11]).
In this note we plan to study composition operators on Γ. Most of the

work on composition operators is done on Hardy spaces and Lp-sρaces. Nordgren
[13] has summarized some known information about composition operators on
L2 and H2 spaces. For further details about these operators we refer to
Schwartz [8], Swantan [9], Cowen [6], Boyd [2], Iwanik Mayer [12], Singh [16]
and Singh and Komal [17]. The weighted composition operators have been
studied by Carlson [3].

We have characterized composition operators on Γ. The invertibility of Cφ
in terms of the invertibility of φ is reported. Weighted composition operators
on Γ have also been characterized. For R>0, we denote by DR the open disc
{ZZΞC:\Z\<R}. If / G Γ , then M(R, /)=sup{ \f(z)\ : ZΪΞDR}. For 2<=C, the
evaluation functional is a map EZ:Γ-+C defined by E2(f)=f(z) for every / G Γ .
The symbol C(Γ) denotes the set of continuous linear operators on Γ into
itself.

2. Characterizations of composition operators.

In this section we obtain some characterizations of composition operators.
We first prove the following lemma:

LEMMA 2.1. Let R>0. Then for each ZSΞDR and

RM(Rff)
i n Z ) l - R-\z\
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Proof. By Cauchy integral formula

f(w)dw
)cR w—z '

where CR is the circle \w\ = R. Hence

ιf(2)ι<

 1 [ \fW\\dw\
\w\-\z\

f Jdu
~)oR R- I

^ M(R, f) r [dii l

"" 2π )cR R— \z\

__ RM(R, f)

" Λ — U l *

THEOREM 2.2. Let φ: C-+C be a mapping. Then CΦ^C(Γ) if and only if
φ is an entire function.

Proof. Suppose φ is an entire function. Since composition of two entire
functions is an entire function, so f°φ is an entire function for each f^Γ. We
prove that Cφ is continuous. It is enough to prove that Cφ is continuous at
origin. Let β>0 be given. Then DR is a compact subset of C. But φ is
continuous. Therefore φ{DR) is jilso compact subset of C. Hence we can find
K^MiR, φ) such that φ{DR)aDκ. Now convergence in Γ is equivalent to
uniform convergence in any circle of finite radius. Suppose /n-->0 strongly.
Then for each ε>0 we can find some no>0 such that M(K, fn)<εKJK where
KQ=K—M(R, φ), for all n^n0. From Lemma 2.1, we have

^~i?—AS/D J\ <£> f o r every z^DR and for all
K — M{K, ψ)

Hence Cφfn=fn°φ-*0 as n—>oo.
Conversely, suppose CΦ:F->Γ is continuous. Then Cφf—f^φ is an entire

function for every / e Γ . In particular, take / = / . Then φ-=l°φ—f°φ. Hence
φ is an entire function.

THEOREM 2.3. Let A^C(Γ). Then A is a composition operator if and only
if Aen^iAβi)71 for every

Proof. Suppose A is a composition operator. Then A=Cψ for some entire
function φ : C->C. Therefore

=(Cφeί)
n=(Ae1)

n for every
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Conversely, if the condition of the theorem is satisfied, then set φ=Λeί.
Clearly φ is an entire function. Hence Cφ is a composition operator. Now

= Σ MAei)
n= Σ fnφ

n

71=0 71=0

ί fneΛ=Cψf, for every /<ΞΓ. Therefore,
=o /

THEOREM 2.4. Let A^C(Γ). Then A is a composition operator if and only
if A*E(ZE, where E={EZ:

Proof. For each zeC, the evaluation functional EZ<=Γ* in view of Lemma
2.1. Since

(C$Ez)f=Ez(Cφf)=(foφ)(z)=f(φ(z))=EφcM)

for every /GΞΓ, SO C%(E)(ZE. Hence if A=CΦ, then ,4*(£)c£.
Conversely, if A*EZ=EW for some M G C , then define φ(z)=w. Now

for every z^C and / G Γ . Hence ^4—Cφ.

THEOREM 2.5. Lβί CΦ^C(Γ). Then CJ: Γ*-^Γ* is a composition operator
if φ(z)=az.

Proof. Suppose φ(z)=az. Define ψ: C->C by ψ(z)=az. We prove that

C%=CΦ. Let / e Γ * and Λ E Γ . Then f(z)=^fnz
n and Λ:(^)=I3i^n. There-

n=o n=0

fore, *Wz))= Σ (x°φ)(n)zn. But x ( ^ ) ) = Σ ^B(ί4W)n= Σ *»(az)*= Σ «n^n2π.
71=0 71=0 r 71=0 71=0

Hence by unique expansion of x(φ(z)), we have (x°φ)(n)=anxn. Similarly f(ψ(z))=

f(az)= fj α»/,Λ Now (Ci/)(x)=/(C^)= Σ fn(x°φ)(n)= fj anfnx(n)=(foψXx)
71 = 0 r 71 = 0 71 = 0

=(CφfXx) for every Λ G Γ and / e Γ * . Therefore CJ=C^.
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3. Invertible composition operators.

A continuous linear transformation A: Γ-+Γ is called invertible if there
exists a continuous linear transformation B: Γ->Γ such that A°B—B°A=I, the
identity operator on Γ. Similarly a mapping φ: C->C is called invertible if
there exists a mapping ψ: C-+C such that φ°φ—ψ°φ=I, the identity mapping
on C. Let A<BC(Γ). Then A is called an isometry if d(Af, Ag)=d(f, g) for
every /, g^Γ. In this section invertible and isometric composition operators
have been studied.

THEOREM 3.1. Let CΦ<^Γ. Then Cφ is invertible if and only if φ is in-
vertible with φ~ι(=Γ.

Proof. Suppose Cφ is invertible. Then thre exists AΪΞC(Γ) such that
ACφ=CφA=I. So we have

Aen=Aen

ι=A(ίCφAeι)*)=A(((Aeι)oφ)*)

=(Aex)
n for n=0, 1, 2, ••• .

By theorem 2.2 A—Cψ for some entire function φ. It follows that φ°ψ=φ°φ~I.
This atonce implies that φ and φ are bijections. Hence φ~ι^Γ.

To prove the converse, let φ be invertible with φ~ί<EΓ. Then Cψ-ι is a
composition operator. Clearly CφCφ-i=Cφ-ιCφ=I. Hence Cφ is invertible.

COROLLARY 3.2. Let CΦ^C(Γ). Then Cφ is invertible if and only if φ(z)
= az+b, where (Oφ)a,

Proof. By Theorem 3.1 Cφ is invertible if and only if φ is bijective on C.
And this is the case if and only if φ{z)=azJ

Γb with aφQ. (In fact, if φ is a
polynomial, then it should be linear. If it is not a polynomial, it has an es-
sential singularity at the point at infinity, so that it can not be one-to-one).

THEOREM 3.3. Let CΦ^C(Γ). Then Cφ is an isometry if and only if φ(z)
—az where \a\ —\.

Proof. Let Cφ be an isometry. Then, d(Cφ(eύ, 0)=d(*i, 0)=l, so that we
have | # ( 0 ) | ^ l and \φ(n)\ί/n£l for n = l , 2, •••. Also, d(Cφ(z+c), Q)=d(z+cy 0)
=max{l, \c\). If k | > 2 , then \c+φφ)\^\c\. This means that $(0)=0. Next,
suppose φ(m)Φθ for some ra^2. Since d{Cφ{aex)y 0)=d(aeu 0 ) = | α | implies that
\aφ(m)\ί/m^\a\ or \a\^\a\m/\φ(m)\, which yields a contradiction by letting
a-+0. Hence, φ(z)—φ(l)z. That \φ(l)\=l follows at once from the identity
d(φ, 0)=d(Cφ(eί), Q)=d(el9 0)=l .

Conversely if φ(z)=az for some αGC such that I α | = l , then clearly Cφ is
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an ίsometry.

4. Weighted composition operators on Γ.

A caracterization of weighted composition operators is obtained in this
section.

THEOREM 4.1. Let u:C->C and φ:C->C be two non-trivial mappings.
Then uCφ^C(Γ) if and only if u and φ are entire functions.

Proof. First we suppose that uCφ is a continuous linear operator. Then
u. f°φ is an entire function for every entire function /. Now, if we take / to
be a constant function which is equal to 1 every where, then we have u. f°φ
= M so that u is an entire function. Further, if we take / = / , the identity
function then u.f°φ=u. Suppose w^O. By the assumption we see that
u(z){φ(z){n=uCφ{en) is entire for every n=0, 1, 2, •••. That u is entire follows
from the case n=0. The case n — l shows that φ(z) is analytic wherever u(z)
ΦQ. Suppose that u has a zero of order ra>0 at a point a. If φ(z) has a pole
of order k at the point a, then Cφ(en) has a pole of order nk there. So, for n
with nk>m the function uCφ(en) cannot be analytic at a. In case a is an es-
sential singularity for φ, uφ cannot be analytic at a. This means that φ should
be analytic at a. Hence, φ is an entire function.

To prove the converse, let u and φ be entire functions. Since product and
composition of two entire functions is an entire function, it follows that uCφf
τ=u.f<>φ ^Γ for every f^Γ. Suppose /n->0 strongly. For a given R>0, as
in proof of Theorem 2.2 choose K>M(R, φ) such that φ{DR)aDκ. Let ε>0 be
given. Then there exists no>O such that

M(2K, fn)< 2M* v for every n>n0.

From Lemma 2.1, we have

U)\fn(φ{z))\

u)2K-\φ(z)\

u)M(2K, fn)<ε

for each \z\^R and n^n0. Hence

M(R, (uCφ)(fn))<ε for every n^nQ

Thus uCφfn->0. This proves that uCφ is continuous at origin. Since uCφ is
linear, so uCφ is continuous everywhere. This completes the proof of the
theorem.
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