B.S. KOMAL AND P.S. SINGH KODAI MATH. J. 14 (1991), 463-469

COMPOSITION OPERATORS ON THE SPACE OF ENTIRE FUNCTIONS

BY B. S. KOMAL AND PREM SAGAR SINGH

Abstract

The composition operators on the space of entire functions Γ have been characterized. The invertibility of a composition operator C_{ϕ} interms of the invertibility of inducing map ϕ is obtained.

Preliminaries.

Let X be a non-empty set and let V(X) be a vector space of complex valued functions on X. If $\phi: X \to X$ is a mapping such that $f^{\circ}\phi \in V(X)$ whenever $f \in V(X)$, then a composition transformation C_{ϕ} is defined by the equation

 $C_{\phi}f = f^{\circ}\phi$ for every $f \in V(X)$.

In case V(X) is a topological vector space and C_{ϕ} is continuous, then we call it a composition operator induced by ϕ . If $u: X \to C \setminus \{0\}$ is a mapping such that $(uC_{\phi})f = u. f \circ \phi \in V(X)$ whenever $f \in V(X)$, then a weighted composition operator is a continuous linear transformation $uC_{\phi}: V(X) \to V(X)$ defined by

$$(uC_{\phi})f = u. f \circ \phi$$
 for every $f \in V(X)$.

A complex valued function $f: C \rightarrow C$ of a complex variable is called an entire function if it is analytic in the whole complex plane. If f is an entire function then there exists a sequence $\{\hat{f}_n\}$ of complex numbers such that

$$|\hat{f}_n|^{1/n} \longrightarrow 0$$
 as $n \to \infty$ and $f = f(z) = \sum_{n=0}^{\infty} \hat{f}_n z^n$ (1)

The power series in (1) is a uniformly convergent power series. Conversely every sequence $\{\hat{f}_n\}$ of complex numbers with $|\hat{f}_n|^{1/n} \rightarrow 0$ as $n \rightarrow \infty$ defines an

This work is partially supported by U.G.C. Grant NO: F-8-5(30)/87 SR II. Received October 19, 1990; revised April 11, 1991.

⁽¹⁹⁸⁰⁾ AMS (MOS) · Subject Classification (1985: Revision), Primary: 47B38, Secondary 30D10.

Keywords and Phrases. Entire function, Uniform convergence on compact sets, Composition operator, Invertible and isometric operators.

entire function f represented by (1). We can define a metric d in the class of entire functions as $d(f, g) = \sup\{|\hat{f}_0 - \hat{g}_0|, |\hat{f}_n - \hat{g}_n|^{1/n}, n \ge 1\}$. The class of entire functions topologized by this metric is denoted by Γ . It is shown in Iyer [8] that Γ is a non-normable complete metrizable locally convex topological vector space. The convergence of a sequence of entire functions in the metric topology of Γ is equivalent to the uniform convergence of entire functions in any circle of finite radius. Such a convergence in Γ will be called strong convergence in Γ .

Every continuous linear functional f on Γ is given by $f(\alpha) = \sum_{n=0}^{\infty} f_n a_n$, where $\alpha = \alpha(z) = \sum_{n=0}^{\infty} a_n z^n$ and $\{f_n\}$ is a sequence of complex numbers such that $\{|f_n|^{1/n}\}$ is a bounded sequence. The set of all bounded linear functionals on Γ is denoted by Γ^* . A sequence $\{\alpha_n\}$ in Γ is said to converge weakly to $\alpha \in \Gamma$ if and only if $f(\alpha_n) \rightarrow f(\alpha)$ for every $f \in \Gamma^*$. If for each $n \in Z_+$, we define $e_n: C \rightarrow C$ as $e_n(z) = z^n$, then the sequence $\{e_n: n \in Z_+\}$ is a basis for Γ . A sequence $\{\alpha_n\}$ in Γ is called basis for Γ if for each $\alpha \in \Gamma$ there exists a unique sequence $\{t_n(\alpha)\}$ of complex number such that $\alpha = \sum_{n=0}^{\infty} t_n(\alpha)\alpha_n$. The space Γ of entire functions has been studied extensively by Iyer ([9], [10] and [11]).

In this note we plan to study composition operators on Γ . Most of the work on composition operators is done on Hardy spaces and L^p -spaces. Nordgren [13] has summarized some known information about composition operators on L^2 and H^2 spaces. For further details about these operators we refer to Schwartz [8], Swantan [9], Cowen [6], Boyd [2], Iwanik Mayer [12], Singh [16] and Singh and Komal [17]. The weighted composition operators have been studied by Carlson [3].

We have characterized composition operators on Γ . The invertibility of C_{ϕ} in terms of the invertibility of ϕ is reported. Weighted composition operators on Γ have also been characterized. For R>0, we denote by D_R the open disc $\{z \in C : |z| < R\}$. If $f \in \Gamma$, then $M(R, f) = \sup\{|f(z)| : z \in \overline{D}_R\}$. For $z \in C$, the evaluation functional is a map $E_z \colon \Gamma \to C$ defined by $E_z(f) = f(z)$ for every $f \in \Gamma$. The symbol $C(\Gamma)$ denotes the set of continuous linear operators on Γ into itself.

2. Characterizations of composition operators.

In this section we obtain some characterizations of composition operators. We first prove the following lemma:

LEMMA 2.1. Let R>0. Then for each $z \in D_R$ and $f \in \Gamma$,

$$|f(z)| \leq \frac{RM(R, f)}{R - |z|}.$$

464

Proof. By Cauchy integral formula

$$f(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(w)dw}{w-z},$$

where C_R is the circle |w| = R. Hence

$$|f(z)| \leq \frac{1}{2\pi} \int_{c_R} \frac{|f(w)| |dw|}{|w| - |z|}$$
$$\leq \frac{M(R, f)}{2\pi} \int_{c_R} \frac{|dw|}{R - |z|}$$
$$= \frac{RM(R, f)}{R - |z|}.$$

THEOREM 2.2. Let $\phi: C \to C$ be a mapping. Then $C_{\phi} \in C(\Gamma)$ if and only if ϕ is an entire function.

Proof. Suppose ϕ is an entire function. Since composition of two entire functions is an entire function, so $f \circ \phi$ is an entire function for each $f \in \Gamma$. We prove that C_{ϕ} is continuous. It is enough to prove that C_{ϕ} is continuous at origin. Let R > 0 be given. Then \overline{D}_R is a compact subset of C. But ϕ is continuous. Therefore $\phi(\overline{D}_R)$ is also compact subset of C. Hence we can find $K \ge M(R, \phi)$ such that $\phi(\overline{D}_R) \subset \overline{D}_K$. Now convergence in Γ is equivalent to uniform convergence in any circle of finite radius. Suppose $f_n \rightarrow 0$ strongly. Then for each $\varepsilon > 0$ we can find some $n_0 > 0$ such that $M(K, f_n) < \varepsilon K_0/K$ where $K_0 = K - M(R, \phi)$, for all $n \ge n_0$. From Lemma 2.1, we have

$$|f_n(\phi(z))| \leq \frac{KM(K, f_n)}{K - |\phi(z)|}$$

$$\leq \frac{KM(K, f_n)}{K - M(R, \phi)} < \varepsilon, \quad \text{for every } z \in D_R \text{ and for all } n \geq n_0.$$

Hence $C_{\phi}f_n = f_n \circ \phi \rightarrow 0$ as $n \rightarrow \infty$.

Conversely, suppose $C_{\phi}: \Gamma \to \Gamma$ is continuous. Then $C_{\phi}f = f \circ \phi$ is an entire function for every $f \in \Gamma$. In particular, take f = I. Then $\phi = I \circ \phi = f \circ \phi$. Hence ϕ is an entire function.

THEOREM 2.3. Let $A \in C(\Gamma)$. Then A is a composition operator if and only if $Ae_n = (Ae_1)^n$ for every $n \in \mathbb{Z}_+$.

Proof. Suppose A is a composition operator. Then $A = C_{\phi}$ for some entire function $\phi: C \rightarrow C$. Therefore

$$Ae_n = C_{\phi}e_n = e_n \circ \phi = \phi^n = (e_1 \circ \phi)^n$$
$$= (C_{\phi}e_1)^n = (Ae_1)^n \quad \text{for every } n \in \mathbb{Z}$$

+•

Conversely, if the condition of the theorem is satisfied, then set $\phi = Ae_1$. Clearly ϕ is an entire function. Hence C_{ϕ} is a composition operator. Now

$$Af = A\left(\sum_{n=0}^{\infty} \hat{f}_n e_n\right) = \sum_{n=0}^{\infty} \hat{f}_n A e_n$$

$$= \sum_{n=0}^{\infty} \hat{f}_n (A e_1)^n = \sum_{n=0}^{\infty} \hat{f}_n \phi^n$$

$$= \sum_{n=0}^{\infty} \hat{f}_n e_n \circ \phi = \sum_{n=0}^{\infty} \hat{f}_n C_{\phi} e_n$$

$$= C_{\phi}\left(\sum_{n=0}^{\infty} \hat{f}_n e_n\right) = C_{\phi} f, \quad \text{for every } f \in \Gamma. \text{ Therefore}$$

$$A = C_{\phi}$$

THEOREM 2.4. Let $A \in C(\Gamma)$. Then A is a composition operator if and only if $A^*E \subset E$, where $E = \{E_z : z \in C\}$.

Proof. For each $z \in C$, the evaluation functional $E_z \in \Gamma^*$ in view of Lemma 2.1. Since

$$(C_{\phi}^*E_z)f = E_z(C_{\phi}f) = (f \circ \phi)(z) = f(\phi(z)) = E_{\phi(z)}(f)$$

for every $f \in \Gamma$, so $C^*_{\phi}(E) \subset E$. Hence if $A = C_{\phi}$, then $A^*(E) \subset E$. Conversely, if $A^*E_z = E_w$ for some $w \in C$, then define $\phi(z) = w$. Now

$$(Af)(z) = E_z(Af) = A^*(E_z)f$$
$$= E_w(f) = E_{\phi(z)}f$$
$$= f(\phi(z)) = (C_{\phi}f)(z)$$

for every $z \in C$ and $f \in \Gamma$. Hence $A = C_{\phi}$.

THEOREM 2.5. Let $C_{\phi} \in C(\Gamma)$. Then $C_{\phi}^* \colon \Gamma^* \to \Gamma^*$ is a composition operator if $\phi(z) = \alpha z$.

Proof. Suppose $\phi(z) = \alpha z$. Define $\psi: C \to C$ by $\psi(z) = \alpha z$. We prove that $C_{\phi}^{*} = C_{\psi}$. Let $f \in \Gamma^{*}$ and $x \in \Gamma$. Then $f(z) = \sum_{n=0}^{\infty} f_n z^n$ and $x(z) = \sum_{n=0}^{\infty} \hat{x}_n z^n$. Therefore, $x(\phi(z)) = \sum_{n=0}^{\infty} (\hat{x} \circ \phi)(n) z^n$. But $x(\phi(z)) = \sum_{n=0}^{\infty} \hat{x}_n (\phi(z))^n = \sum_{n=0}^{\infty} \hat{x}_n (\alpha z)^n = \sum_{n=0}^{\infty} \alpha^n \hat{x}_n z^n$. Hence by unique expansion of $x(\phi(z))$, we have $(\hat{x} \circ \phi)(n) = \alpha^n \hat{x}_n$. Similarly $f(\phi(z)) = f(\alpha z) = \sum_{n=0}^{\infty} \alpha^n f_n z^n$. Now $(C_{\phi}^* f)(x) = f(C_{\phi} x) = \sum_{n=0}^{\infty} f_n (\hat{x} \circ \phi)(n) = \sum_{n=0}^{\infty} \alpha^n f_n \hat{x}(n) = (f \circ \phi)(x) = (C_{\phi} f)(x)$ for every $x \in \Gamma$ and $f \in \Gamma^*$. Therefore $C_{\phi}^* = C_{\phi}$.

466

3. Invertible composition operators.

A continuous linear transformation $A: \Gamma \to \Gamma$ is called invertible if there exists a continuous linear transformation $B: \Gamma \to \Gamma$ such that $A \circ B = B \circ A = I$, the identity operator on Γ . Similarly a mapping $\phi: C \to C$ is called invertible if there exists a mapping $\phi: C \to C$ such that $\phi \circ \phi = \phi \circ \phi = I$, the identity mapping on C. Let $A \in C(\Gamma)$. Then A is called an isometry if d(Af, Ag) = d(f, g) for every $f, g \in \Gamma$. In this section invertible and isometric composition operators have been studied.

THEOREM 3.1. Let $C_{\phi} \in \Gamma$. Then C_{ϕ} is invertible if and only if ϕ is invertible with $\phi^{-1} \in \Gamma$.

Proof. Suppose C_{ϕ} is invertible. Then thre exists $A \in C(\Gamma)$ such that $AC_{\phi} = C_{\phi}A = I$. So we have

$$Ae_{n} = Ae_{1}^{n} = A((C_{\phi}Ae_{1})^{n}) = A(((Ae_{1}) \circ \phi)^{n})$$
$$= A((Ae_{1})^{n} \circ \phi) = AC_{\phi}((Ae_{1})^{n})$$
$$= (Ae_{1})^{n} \quad \text{for } n = 0, 1, 2, \cdots.$$

By theorem 2.2 $A = C_{\psi}$ for some entire function ψ . It follows that $\phi \circ \psi = \psi \circ \phi = I$. This atonce implies that ϕ and ψ are bijections. Hence $\phi^{-1} \in \Gamma$.

To prove the converse, let ϕ be invertible with $\phi^{-1} \in \Gamma$. Then $C_{\phi^{-1}}$ is a composition operator. Clearly $C_{\phi}C_{\phi^{-1}}=C_{\phi^{-1}}C_{\phi}=I$. Hence C_{ϕ} is invertible.

COROLLARY 3.2. Let $C_{\phi} \in C(\Gamma)$. Then C_{ϕ} is invertible if and only if $\phi(z) = az+b$, where $(0\neq)a, b\in C$.

Proof. By Theorem 3.1 C_{ϕ} is invertible if and only if ϕ is bijective on C. And this is the case if and only if $\phi(z)=az+b$ with $a\neq 0$. (In fact, if ϕ is a polynomial, then it should be linear. If it is not a polynomial, it has an essential singularity at the point at infinity, so that it can not be one-to-one).

THEOREM 3.3. Let $C_{\phi} \in C(\Gamma)$. Then C_{ϕ} is an isometry if and only if $\phi(z) = \alpha z$ where $|\alpha| = 1$.

Proof. Let C_{ϕ} be an isometry. Then, $d(C_{\phi}(e_1), 0)=d(e_1, 0)=1$, so that we have $|\hat{\phi}(0)| \leq 1$ and $|\hat{\phi}(n)|^{1/n} \leq 1$ for $n=1, 2, \cdots$. Also, $d(C_{\phi}(z+c), 0)=d(z+c, 0) = \max\{1, |c|\}$. If |c|>2, then $|c+\hat{\phi}(0)| \leq |c|$. This means that $\hat{\phi}(0)=0$. Next, suppose $\hat{\phi}(m)\neq 0$ for some $m\geq 2$. Since $d(C_{\phi}(\alpha e_1), 0)=d(\alpha e_1, 0)=|a|$ implies that $|\alpha\hat{\phi}(m)|^{1/m} \leq |\alpha|$ or $|\alpha| \leq |\alpha|^m/|\hat{\phi}(m)|$, which yields a contradiction by letting $\alpha \rightarrow 0$. Hence, $\phi(z)=\hat{\phi}(1)z$. That $|\hat{\phi}(1)|=1$ follows at once from the identity $d(\phi, 0)=d(C_{\phi}(e_1), 0)=d(e_1, 0)=1$.

Conversely if $\phi(z) = \alpha z$ for some $\alpha \in C$ such that $|\alpha| = 1$, then clearly C_{ϕ} is

an isometry.

4. Weighted composition operators on Γ .

A caracterization of weighted composition operators is obtained in this section.

THEOREM 4.1. Let $u: C \to C$ and $\phi: C \to C$ be two non-trivial mappings. Then $uC_{\phi} \in C(\Gamma)$ if and only if u and ϕ are entire functions.

Proof. First we suppose that uC_{ϕ} is a continuous linear operator. Then $u. f \circ \phi$ is an entire function for every entire function f. Now, if we take f to be a constant function which is equal to 1 every where, then we have $u. f \circ \phi = u$ so that u is an entire function. Further, if we take f=I, the identity function then $u. f \circ \phi = u$. Suppose $u \neq 0$. By the assumption we see that $u(z)(\phi(z))^n = uC_{\phi}(e_n)$ is entire for every $n=0, 1, 2, \cdots$. That u is entire follows from the case n=0. The case n=1 shows that $\phi(z)$ is analytic wherever $u(z) \neq 0$. Suppose that u has a zero of order m>0 at a point α . If $\phi(z)$ has a pole of order k at the point α , then $C_{\phi}(e_n)$ has a pole of order nk there. So, for n with nk > m the function $uC_{\phi}(e_n)$ cannot be analytic at α . In case α is an essential singularity for ϕ , $u\phi$ cannot be analytic at α . This means that ϕ should be analytic at α . Hence, ϕ is an entire function.

To prove the converse, let u and ϕ be entire functions. Since product and composition of two entire functions is an entire function, it follows that $uC_{\phi}f = u. f \circ \phi \in \Gamma$ for every $f \in \Gamma$. Suppose $f_n \to 0$ strongly. For a given R > 0, as in proof of Theorem 2.2 choose $K > M(R, \phi)$ such that $\phi(\overline{D}_R) \subset \overline{D}_K$. Let $\varepsilon > 0$ be given. Then there exists $n_0 > 0$ such that

$$M(2K, f_n) < \frac{\varepsilon}{2M(R, u)}$$
 for every $n > n_0$.

From Lemma 2.1, we have

$$|u(z)f_n(\phi(z))| \leq M(R, u) |f_n(\phi(z))|$$

$$\leq M(R, u) \frac{M(2K, f_n)}{2K - |\phi(z)|} \times 2K$$

$$\leq 2M(R, u)M(2K, f_n) < \varepsilon$$

for each $|z| \leq R$ and $n \geq n_0$. Hence

$$M(R, (uC_{\phi})(f_n)) < \varepsilon$$
 for every $n \ge n_0$

Thus $uC_{\phi}f_n \rightarrow 0$. This proves that uC_{ϕ} is continuous at origin. Since uC_{ϕ} is linear, so uC_{ϕ} is continuous everywhere. This completes the proof of the theorem.

468

ACKNOWLEDGEMENTS: The authors wish to thank the refree for his valuable comments.

References

- [1] AHLFORS, L.V., Complex Analysis, International Student Edition, McGraw Hill Kogakusha Ltd.
- [2] BOYD, D. M., Composition operators on $H^p(A)$, Pacific J. Math. 62 (1976), 55-60.
- [3] CARLSON, JAMES, W., The spectra and commutants of some weighted composition operators, Trans, Amer. Math. Soc. 317 (1990), 631-654.
- [4] CONWAY, JOHN, B., Functions of one complex variable Springer International student Edition, New Delhi.
- [5] CONWAY, JOHN, B., A course in functional analysis, Springer Verlag, 1985.
- $\begin{bmatrix} 6 \end{bmatrix}$ Cowen, C.C., Composition operator on H^2 , J. Oper. Theory 9 (1983), 77-106.
- [7] IWANIK, ANZELM, Pointwise induced operators on L_p spaces Proc. Amer. Math. Soc. 58 (1976), 173-178.
- [8] IYER, V.G., On the space of integral functions-I, J. Indian Math. Soc. 12 (1948), 13-30.
- [9] IYER, V.G., On the space of integral functions-II, Quart J. Math. Oxford Ser (2) Vol. I (1950), 86-96.
- [10] IYER, V.G., On the space of integral functions-III, Proc. Amer. Math. Soc. Vol. 3 (1952), 874-883.
- [11] IYER, V.G., On the space of integral functions-IV, Proc. Amer. Math. Soc. 7 (1956), 644-649.
- [12] MAYER, D.H., On composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 35 (1980), 191-206.
- [13] NORDGREN, E. A., Composition operators on Hilbert spaces, Lecture Notes in M_a thematics 693. Springer-Verlag, New York, 37-68.
- [14] SCHEEFER, H. H., Topological vector spaces. The Mac Millan Company, New York, 1966.
- [15] SCHWARTZ, H. J., Composition operators on H^p , Thesis University of Toledo, 1969.
- [16] SINGH, R.K., Invertible composition operators on $L^2(\lambda)$, Proc. Amer. M_a th. Soc. 56 (1976), 127-129.
- [17] SINGH, R. K. AND KOMAL, B.S., Composition operators on l_p and its adjoint, Proc. Amer. Math. Soc. 70 (1978), 21-25.
- [18] SWANTAN, D. W., Composition operators on $H^p(D)$, Ph. D. Thesis Northwestern University, 1974.
- [19] TITCHMARSH, E.C., The theory of functions, Oxford University Press, 1939.

Department of Mathematics University of Jammu Jammu, Jammu-180 001, India.