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§ 1. Introduction

In this paper, we consider the so-called WKB type asymptotic expansions
of solutions of certain third order linear ordinary differential equations in the
whole complex x-plane. The equations we discuss are of the form

(1.1) ε3yw+ε2PMy"+ep2(x)y'+p3(x)y=0,

where pj(x) (/=1, 2, 3) are at this moment assumed to be entire functions of x
but in later sections polynomials or linear functions of x, and ε is a small posi-
tive parameter.

The characteristic equation for (1.1) is defined by

(1.2) k(λ, x)=λ2+pί(x)λ2+p2(x)λ+ps(x)=0

and the roots of the above equation are called the characteristic roots of (1.1)
which we denote by λi(x), λ2(x) and λs(x).

The points x0 where at least two characteristic roots coincide

(1.3) λj(xo)=λk(xo) (jΦk)

are called turning points of the equation (1.1). We define (/, &)-Stokes curves
and (/, &)-anti Stokes curves by

(1.4) (

(1.5) Im(* \λjt)-λt(t)}dt=θ

respectively, if there exists a turning point x0 satisfying λj(xϋ)=λk(xo).
The object of the WKB theory is to develop a set of rules for continuing
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asymptotic solutions to all regions of the complex plane. For the second order
ordinary differential equations, the theory has been successfully developed by
many authers, for examples Evgrafov and Fedoryuk [2], Heading [5], Froman
and Froman [3], Olver [6] and Voros [8]. On the contrary, the theory for
higher order cases is seemed to be quite incomplete, and most papers have con-
cerned with the behavior of solutions in the small neighborhood of an isolated
turning point, or constructing asymptotic expansions as x tends to infinity, that
is, in a neighborhood of infinity, Paris and Wood [7].

Recently Berk, Nevines and Roberts [1] gave a first step to the global
WKB analysis for higher order cases. The most remarkable assertion in that
paper is that under some assumptions the existence of secondary Stokes curves
is demonstrated. The secondary Stokes curve issues from a crossing point of
two anti Stokes curves and along them the so-called Stokes phenomenon occurs.
Here we have to notice that for the second order ordinary differential equations
the Stokes curves (or the anti Stokes curves) cross only at turning points but
for the higher order cases two Stokes curves (or anti Stokes curves) can cross
at ordinary points (not turning points) as shown in a simple example, see
Fig. 4.1.

To construct the WKB theory for equations of order n ^ 3 seems to be quite
difficult in general, Fedoryuk [4], then we start our studies of third order
ordinary differential equations by treating examples which can be analyzed
rigorously. Comparing with the WKB theory of second order equations, we
consider about several questions such as (1) Stokes curve configuration (2) ex-
istence of admissible domains and (3) the connection rules in the whole complex
x-plane.

The reasons why we focus upon the studies of the WKB theory for third
order ordinary diffential equations instead of considering those for general
higher order ordinary differential equations are as follows. Firstly we can
always calculate formal solutions of WKB type of (1.1) (given in the section 2)
by using the Cardano's formula to obtain λj(x), and secondly the characteristic
difficulties such as Stokes curve configuration and connection rules in the whole
complex plane for higher order equations are present even in the third order
ordinary differential equations.

This paper consists of six sections. In the section 2, we describe self-
containedly how to get formal solutions of (1.1). Firstly we transform the
equation (1.1) into a system of three differential equations and by using a suc-
cessive diagonalization technique we obtain formal solutions which we call
"formal WKB solutions". An existence theorem is also given.

In the section 3, we assume that the coefficients pj(x) of the equation (1.1)
are linear functions of x. Then it is possible to express solutions of (1.1) by
the Laplace integral, and asymptotic expansions of solutions as ε tends to zero
may be obtained by the so-called saddle point method or the method of steepest
descent. In this analysis, the independent variable x is contained as another
parameter in the asymptotic expansions which we compare with formal WKB
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soluions. The connection formulas or rules between solutions defined in different
regions can be obtained by applying the Cauchy's integral theorem of analytic
functions to the Laplace integral representation of solutions.

In the sections 4 and 5, we consider three examples which illustrate the
methods. Each example can be considered as a variant of the Λiry function
or the parabolic cylinder function in a sense but has different aspects.

In the section 6 we give several interesting examples to be considered. We
expect that these examples can be exploited as suitable related equations for
more complicated equations of similar natures, as the Airy equation plays in
the second order equations.

§ 2. The WKB solutions

In this section, we restrict ourselves to the case when all the coefficients
pj(x) are polynomials.

THEOREM 2.1. The differential equation (1.1) possesses formal WKB solutions
to the order ε yj(x, ε) of the following form

yj(x, ε)=ΛJexp(j^Jλj(s)+ελ^\s)}ds) (/=1, 2, 3),

where λjW(x) is given by (2.8), and x0 and A3 are constants.

Proof. Introducing dependent variables ya>> by

the differential equation (1.1) becomes a system of differential equations

(2.1) 8j^=A(x)Y,

where

•y

CΌ 0 1 0

A=\ 0 0 1

The equation άet(λE—Λ)=0 is the characteristic equation

(2.2) λ'+pW+pMλ+pάx^O.

By using the Cardano's formula, the roots λj(x) (/=1, 2, 3) are obtained as
follows:

(2.3)

, ξt=a> VF Vβ ,
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where

and

with

ω=exp (2πί/3)

g(χ)=
2pί(x)3-9p1(x)p2(x

27

By a linear transformation

1 1

(2.4) γ=P(x)Ulf P(x)J λί{x) λ2{x)

the equation (2.1) is changed into

(2.5)

where

=B(x, s)Ulf

with

B(x, ε)^P(xylΛ(x)P(x)-εP(xT1P\x)

fλi(x) 0 0

P(xy1Λ(x)P(x)=\ 0 λ2(x) 0 U

o o w
and

-M

Hereafter we construct successively linear transformations so that the matrix
B(x, s) becomes formal power series of ε with diagonal coefficients. To make
the coefficient matrix of s diagonal, for example, we change (2.5) by a trans-
formation

(2.6)
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where E is the unit matrix of order 3 and Qι(x) is to be taken appropriately
later. Then we have

dU2
1 dx =(E+εQ1)-1{(Λ-eP'1P')(E+eQι)-s*Q1'}U*

= {Λ+e(ΛQι-Qι4-P-ιP')+O(et)}Ut.

Here the matrix Q^ can be chosen so that the matrix {ΛQx—QxΛ — P ιP') dia-
gonal. Indeed, let elements of the matrix Qx be qjky then after a short calcula-
tion we have

0 {λι—λ2)ql2 {λι—λz)

AQί-Q1Λ= (λ2—λι)q2ί 0 (λ2-λs)q2s .

z—λi)qSι (λs-λ2)qB2 0
We choose qjk so that

ΛQί-QιΛ-P-1Pf=-άmg \_P~ιPf~\ ,
that is

0

'
\Λ2 Λl)\Λ2 /

-M 0

Here diag A means that it is a diagonal matrix whose diagonal elements are
the diagonal elements of the matrix A. Then by (2.6), the differential equation
(2.5) becomes

(2.7)
dx

ε))U2,

where A(x)=diag R c l ) , Λ2

(1\ Λ3

(1)} with

3

and
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+ t{Q1p-1P'Q1+QiQί'+(E+tQιy
1Qi\ΛQi-P-ιP')}

Further we can make a transformation of the form

by which the coefficient matrix of ε2 of (2.7) becomes diagonal, and so on.
The diagonal elements X,m{x) of Λi(x) can be written in other ways. Since

and

we have from (2.8)

Analogously,

(2.8')

K ' ~2(λ

Let U2(x, ε) be a fundamental system of solutions of the equation (2.7) to
the order of ε, that is

(2.9) U2(x, ε)=exp

By the transformation (2.4) and (2.6), we obtain the matrix Y{x, e) which
is the fundamental system of solutions of the equation (2.1) to the order of ε,
and then the elements y, of the first row of Y(x, ε) satisfy the differential
equation (1.1) to the order of s.

Here we put

(2Λ0) yjix, β)=Λ,exp(-ί* {λj{s)+ελ^

0 = 1, 2, 3; xo, i4=const.).

We call these functions yj(x, ε) "formal WKB solutions" of the equation
(1.1). If pi—pz—O, from (2.8r) the expression of yj(x, ε) becomes
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(2.100 W * .

and then the expressions (2.10) and (2.100 can be considered as a generalization
of the WKB solutions of the second order ordinary differential equations.
Q.E.D.

It is possible to prove the existence theorem: corresponding to each formal
WKB solution there exists a true solution of (1.1) in a certain ragion of the
x-plane whose asymptotic expansion as ε tends to zero coincides with the formal
WKB solution.

Let D be a simply-connected and unbounded domain in the complex x-plane,
and suppose that there are no turning points of (1.1) in D. We introduce the
notation

( 2 . U ) Ux >*) = )χUs)ds>

ξjk(Xo, x)-ξj(Xo, x)-ξk(Xo, X) (/, k = l, 2, 3, jφk) .

Let the curve ϊjk(x) lie in D which joins the point x and oo, and suppose that
Reξjk(f, x) increases when t^γjk(x) moves from x to oo. Then the curve γjk(x)
is called a (/, &)-canonical path.

A set /Y*)=(7Vi(*)> ?>(*)> ftβ(*)) consisting of (/, &)-canonical paths (fe =
1, 2, 3) is called a /-canonical vector path. D is called a ^-admissible domain
if for each I G D there is a /-canonical vector path Γj(x). Then we can prove
the following existence theorem by the usual method, for example, by the
method of successive approximation.

THEOREM 2.2. We assume that D is a λradmissible domain.

Then the equation (1.1) has a solution y>j(x, ε) of the form

ί 1 Γx Cx 1
ylx, ε)=expi—\ λi(t)dt+\ Λ,cl)(f)dίr[l+eδ*(*> ε)] ,

I ε J#o J*o J

where for 0 < ε ^ ε 0

Outline of proof. The differential equation (1.1) is transformed into the
differential equation (2.7) of the system type after some transformations (2.4),
(2.6) and so on. We are proving the theorem of the case for / = 1 .

Let

(2.12) tfs-exp^p^+ε^s)}^)-^ £/=(Ml, u2,

then the equation (2.7) becomes
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(2.13)
dU _
dx +ε

0

0 0 Λ C 1 ) -Λ ( 1 )

0 0 0

0 λι-λχ 0

0 0 λs-λi

The equation (2.13) is equivalent to the integral equation

(2.14) U(x, ε)=U0(x, ε)K

+ ε[ U0(x, ε)U0-\t, ε)C(t, ε)U(t, ε)dt,

where U0(x, ε) (UQ(x0, ε)~E) is the diagonal matrix solution of

U.

dlh
1 dx

= {diag(0, λ - ^

K is an arbitrary constant vector and Γλ is a 1-canonical vector path Γx—
(Γn, 7i2, 7is) in a Λi-admissible domain D.

We can get, as follows, the solution of the equation (2.14) by the succes-
sive approximation defined by

(2.15)
, β)=£/o(*, e)/f,

»+»(*, ε)=U0(x, ε)K

e[ t/β(x,
J "i

e)C(ί, 6)£/ ίn )(

(«=0, 1, 2, 3,
If we put

and
C=(Cpq),

then the equations (2.15) are equivalent to

ί 1

: 0

0,
(2.16)

S 3

Σ C W
Tu 3=1

dt

β[ exp
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As all coefficients pk(x) of the equation (1.1) are polynomial, the characteristic
roots λk and λk

w (k=l, 2, 3) have following properties in the Λi-admissible
domain D: along γίk (k—2, 3)

ReV{λk-λ1}ds=-Reξίk(t} x)£

(2.17)

and \Cpq\ (p, q=l, 2, 3) are bounded for x in D and for small ε, say, 0<ε
£ε0, and that C pq^=O{χ-v~2) (*->oo in D) since all λk = O(xv) (*--*«> in D, i^O).
After short calculation by using properties (2.17), we can get

Ux> β)=inf ( I Cm\dt (p, q=l9 2, 3),
Tik Jϊik

where the inf is taken for any path γlk from x to oo in D. From these in-
equalities, we get

(2.18) \uq-uq^\< fj | M 3

c n + 1 ) ~ V n Ί

= 1-365, (9=1,2,3),

and so MQ=lim wg

C7l) converges.
n-»oo

Thus U=(uu u2, usY is a solution of the integral equation (2.14). From the
inequality (2.18), we have a relation

(2.19) Uq= uq^+εδί(xf ε) (^=1, 2, 3),

where <5i is a bounded function for small ε (0<ε^ε 0 ) and xeZλ Put βx(x)
= sup |5i(x, ε) | .

o<εgso

Letting x-->co along the integral path γίk arbitrarily taken in the ^-admis-
sible domain D

therefore ^i(x)->0 (JC->C»,
From (2.19) we get

u1=l + εS1(x, ε), u^εδxix, ε) (^=2, 3,

By these relations and some transformations (2.12), (2.4), (2.6) etc., we can
get the solution yx{x, ε) for / = 1 . Q. E.D.
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The expression of the theorem 2.2 means the double asymptotic property
of the solution y5{xt ε):

yj(x> ε)^yj{x> ε) (ε—>C

yj(x, ε)^yj(x, ε) (*-><

We call the true solutions yj(x, ε) thus obtained the WKB solution of (1.1).
But quite different from the case of second order equations, to construct a
general theory specifying the admissible domain D of the existence theorem is
very difficult for the case of higher order equations even with polynomial co-
efficients. It is clear that the Stokes curves and anti Stokes curves play a
fundamental role to characterize D.

If x0 is a turning point such that λj(xo)=λk(xo) (jΦk), the level curves

Reξjkixo, * ) = R e £ {λj(t)-λk(t)}dt=O,

X {λj(t)-λk(t)}dt=O
XQ

issuing from x0 are called (/, &)-Stokes curves and (/, &)-anti Stokes curves
respectively.

The global structure of an individual Stokes curve and the whole Stokes
curve configuration in the whole x-plane are very complicated. One reason is
that the Stokes curves may intersect themselves at ordinary points (not turning
points) since there are three independent functions ξjk(xo, x) (j> k — l, 2, 3; j>k)
defining Stokes curves. The complicated expression (2.3) of the characteristic
roots is also a serious obstacle of studying general properties of the Stokes
curves.

It is possible to classify the equation (1.1) by means of the number of turn-
ing points and the order of merging of two characteristic roots.

Let the characteristic roots of (1.1) be λj{x) 0 = 1, 2, 3), then a turning point
Xo where λj(x0)=λk(x0) (jΦk) is said to be simple if

(2.20) kλλ(λj(x0),

and

(2.21) kx(λj(x0

We consider in this paper the equations containing a simple turning point
as well as multiple turning points which do not satisfy the condition (2.20) or
(2.21), as examples in sections 4 and 5.
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§ 3. Expressions by the Laplace integral

We assume in this section that the coefficients pj(x) are linear functions of
x : pj(x)=pJo-\-pjιX (/=1, 2, 3). Then (1.1) becomes

(3.1) ε*y»+ε\p

The solution y(x, ε) of (3.1) may be expressed by the Laplace integral

(3.2) y(x, β)=j φ(s, ε)exp (-~)ds .

Substituting the above expression into (3.1), we can see that the function
y(x, ε) represented by (3.2) satisfies (3.1) if φ(s, ε) and γ satisfy

(3.3) εa(s)φ'(s, ε)={b(s)-εa'(s)}φ(s, ε),

(3.4) [φ(s,

where

(3.5) a(s)=pns
2+p2ίs+p3l,

The equation (3.3) has a unique solution (up to a constant factor), which
can be written in the form

(3-6) ^

Then y(x, ε) becomes

(3.7) ,( , , ε )

and the contour γ must satisfy (3.4), that is

(3.8) [exp(«-S(s, *))] r=0, S(s, x)=

Solutions s=s(x) of the equation

(3.9) §-sS(s,x)=x

or

(3.10) k(s, x)^b(s)+xa(s)

are called saddle points of (3.7) or S(s, x). The zeros of a(s) and the saddle
points play important roles in the derivation of asymptotic expansions of (3.7).
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We note that the saddle points of the integral (3.7) are just the characteristic
roots λ(x) of the equation (3.1) which depend on x, and then the turning points
are those where at least two saddle points coalesce.

Now we classify the equation (3.1) by means of zeros of α(s), and indicate
a general principle for choosing the contours γ which we call admissible con-
tours.

Case I. α(s)=ίn(s—fliXs —α2) (pnΦO, axΦa2).

In this case, φ(s, ε) has a form

φ(s, ε)= ^ ( s α 1 ) ( 5 α 2 )

where R(s) is a polynomial of degree 2, and μj= \im (s—a j)(b(s)/a(s)).

Since R(s) has degree 2, the condition (3.8) is satisfied as s->oo in appro-
priate two sectors. Choosing one of those sectors, an admissible contour γ is
obtained by taking a curve coming from infinity in the chosen sector and going
out to infinity in another of the sectors where the condition (3.8) is satisfied.

Next, if μι or μ2 is zero then by taking as an admissible contour y a small
circle enclosing ax or a2 only we can obtain an exact solution of (3.1) by apply-
ing the residue theorem to the function (3.7).

When μ3 (/=1, 2) are not zero, we form an admissible contour γ consisting
of three parts:

(1) Any curve coming from infinity in a sector where (3.8) is satisfied and
not passing through ak{kφj) to the point of intersection with the circle \s — aj\
= p, p sufficiently small,

(2) One complete counter clockwise circuit of the circle \s — aj\=p.
(3) Part (1) traversed in the opposite direction (Fig. 3.1).

Fig. 3.1 The admissible contouy γ for Case I.

By these construction of admissible contours γ we can define several solu-
tions of (3.1).

Case II. a(s)=pn(s-a)2 (pnΦθ).



444 MINORU NAKANO, MASATOSHI NAMIKI AND TOSHIHIKO NISHIMOTO

In this case, φ(s, ε) has a form

Φ(s, ε)=j-(s-ay<*

where μ and μ' are constant and R(s) is the same as in the case I.
As admissible contours γ we can take the same curves as those defined in

the case I. Moreover, since there is a half plane with a vertex a where the
function φ(s, ε) tends to zero as s->α, we form contours as curves starting
from a in the half plane and join it to infinity or to itself after a complete
circuit around a.

Case III. When a(s) is a linear function or a non-zero constant, all possi-
ble admissible contours can be obtained as one of the contours defined in the
case I.

The integrals with respect to these admissible contours γ converge for all
x, and it may be possible to obtain asymptotic expansions of these integrals by
using the saddle point method. We compare the asymptotic expansions thus
obtained with the formal WKB solutions (2.10) defined in the section 2.

Here let us apply formally the saddle point method to the function y(x, ε)
of (3.7). We assume that the admissible contour γ can be deformed without
changing the value of y(x, ε) so that it passes through a saddle point λ(x) in
an appropriate direction.

Let x be not a turning point, then λ{x) is a simple saddle point. Then the
saddle point method gives us

(3.11)

where

and

S»(λ(x))=~S(λ(x),x).

The choice of a branch of the root is as follows: arg V—S"(λ(x)) is equal to
the angle between the positive direction of the tangent to the line of steepest
descent y passing through λ(x) and the positive direction of the real axis.

Since s=λ(x) is a simple saddle point, then a small neighborhood of s =
λ(x) in the complex s-plane is divided into four sectors by the curves Re 5(s, x)
=ReS(λ(x)). Two sectors in which Re S(s, %)<Re S(λ(x)) are called valley
regions and in the other two sectors we have ReS(s, x)>ReS(λ(x)) and we
call them mountain regions. We introduce a definition of the ΛU)-saddle con-
tour as a curve passing through λ(x) which comes up from a vally region and
goes down to another valley region (Fig. 5.2).
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Let X be the Riemann surface of the algebraic function λ(x) defined by
k(λ, x)=0, and we define a notion of the admissible domain 3) of Λ(jc)-saddle
contour. 3) is a simply connected and unbounded domain whose image under
the mapping s=λ(x) becomes a simply connected and unbounded domain in the
complex s-plane, which we denote by Q—λ{3))7 and satisfies the following con-
ditions :

(i) For all JCG^), there exists an admissible contour γ(x) in Q which passes
through a unique saddle point λ{x).

(ii) For all points s—λ{x) on the contour γ(x), the contour γ(x) is a λ(x)-
saddle contour passing through s=λ(x).

(iii) 3) is maximal. This means that if x is continued to the outside of
3) it is impossible to draw any admissible and Λ(x)-saddle contour, which satisfies
the above condition (i) and (ii), without changing value of the integral.

We remark here that the admissible domain 3) of Λ(x)-saddle contour is not
unique for a characterestic root λ(x).

Suppose that x is in 3)3 which is an admissible domain of Λ/x)-saddle con-
tour. Then there exists an admissible and ^(x)-saddle contour γ3{x) in the s-
plane which passes through s=λ3(x), and accordingly there exists an asymptotic
solution yj(x, ε) of the form (3.11). The asymptotic expansion (3.11) is valid
for x as long as the above path γ^x) is possible to be drawn without passing
through other saddle points λk{x) (kφj). On the other hand, the bounding
curves of valley regions at the point λj(x) is ReS(s, x)=Re S(λj(x)). Therefore
the boundary curves of 3)3 are the locus of points on which

Re S(λj(x))=Re S(λk(x)) {jΦk),

and emerges from the turning point x0 with ^/*o)=-W#o).
Since we have

dx J j

then these curves are just the Stokes curves defined in the section 1:

Re&*(*o, *)=Ref* {λj(t)-λk(t)}dt

-Re S(λj(x))-Re S(λk(x))=0

or defined by a differential equation

dxR=lmlλ3(x)-λk(x)-]

dxj Re[λjix)—λk(xy]y

where x — XR-\-ix.
At present we can not say further about general properties of (1) the ad-

missible domain of Λ(;c)-saddle contour and (2) analytic continuations of the
solution yj(x, ε), but we will discuss these problems (1) and (2) for individual
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equations as examples in the later sections.

§4. Example I

Firstly we consider the following equation:

(4.1) ε3/"— s23>" — εxy' + xy=0 .

The characteristic equation is

k(λ, x)=λ3-λ2-xλ+x=0

and the characteristic roots are

λ1(x)=l, λ2(x)=V~x~, 2 3 (x)=-Vί ,

The point x=0 is a simple turning point, but x—l is not a simple turning point
since the condition (2.21) is violated.

The equations of Stokes curves are given by

and

Fig. 4.1. Stokes curves (solid lines) Reξ2i(l, x)=0, Reί2 3(0, x)
=0, and anti Stokes curves (broken lines) Im£2i(l, x)=0, Im$28(0, x)
= 0 for (4.1). These curves are on two sheets of complex plane.
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Reί2 3(0, x)Ξ Vxdx=Re -^x*/2=0

The Stokes curve configuration is illustrated in Fig. 4.1. There are three Stokes
curves issuing from x—0, which we label ίlf l2 and /3, and four Stokes curves
from x=l, which we label U, /5, /6 and /7. The level curves Re| 2 i( l , Λ)=const.,
Im<f21(0, x)=const. and Re| 2 3(0, x)=const., Im£23(0, x)=const. are given in the
Fig. 4.2(a) and Fig. 4.2(b) respectively, when the branch cut is given by /3.
Thus the equation (4.1) has an exact solution of the form

(4.2) yi(x

and two formal WKB solutions of the form

(4.3) y2{x, ε)=A2x ~~

\mx

Rex

Fig. 4.2(a). Level curves of Re £2i(l, x)=const. (solid and dotted),
Imf2i(l, x)=const. (broken) and a (2, l)-canonical path γ2ι(xj) (XJ^SJ)
(cf. Fig. 4.4(a)). ίs is the branch cut. Dotted lines are on the
second sheet. In the shadow zone Re£2i(l>*)^0 and in the other
zones Re£2i(l, x)^0.
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Im x

R e *

Fig. 4.2(b). Level curves Re£23(0, x)=const. (solid), Im£88(θ,jc)
=const. (broken) and a (2,3)-canonical path fosM U e S i ) . /3 is the
branch cut. In the shadow zone Re£23(0, x)<0 and in the other
zones Re £2s(0, x)^0.

(4.4) ys(x, ε ) -

Here and hereafter, a letter A or A3 means a constant number independent
of x.

Now we show that corresponding to the characterestic roots ±Λ/X~ there
are V*~-admissible domains ^ 2

C 1 ) and £)2

( 2 ), and — V*~-admissible domain Wz

which we illustrate as unshaded regions in Fig. 4.3(a), (b), (c).
From the definition, the V^"-admissible domains consist of points from each

of which we can draw a 2-canonical vector path Γ2(x)—{γ2ί(x), γ22(x), r2s(x)}-

The function of t: Reξ2i(ί, x)=Re \ (V —l)ds increases when t moves

from x to 00 on the (2, l)-canonical path γ2i(x), and then the function of
rt

t: Re£ 2 i(l, O^Rei (Vs —l)ds decreases t moves from x to 00 along γ2i(x).

Analogously the function of t: Re| 2 3(0, 0=Re\ */s~ds decreases when t
Jo

moves from x to 00 along the (2, 3)-canonical path ris(x).
We take the branch of x3/2 such that Re x%l% is negative in the sector π/3
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<argx<τr, Let 3)2l and ^ 2 3 be sets of points from which the two canonical
paths 7*2I(JC) and γ2s(x) can be drawn respectively.

To construct the set <D2u we define regions Sz (*=1, 2, 3, 4, 5) and S5 ' as
follows, see Fig. 4.4(a).

51 is a region bounded by U and Z4 with —π/3<arg x<π/3,
52 is a region bounded by /4 and U with τr/3<arg #<τr,
5 3 is a region bounded by U and /7 with π<arg x<5πβ,
5 4 is a region bounded by /2, /B and the segment [0, 1] with 0<arg x<π,
Sb is a region bounded by l2) /6 and the segment [0, 1] with π < a r g x < 2 π ,
S5 ' is a region bounded by ί2, l6 and the segment [0, 1] with —π<arg x<Q.
Now we consider a variation of the function of t: Re£2i(l, t) in the neigh-

borhoods of the lines l4 and l2. Let the point ί on the curve y2i(x) be expressed
as ί=r(s)exρ \iθ(s)} by using a real parameter s.

Since we have

ds

the derivative rf{Reί2i(l, t)}/ds<0 by taking ύfr/cίs almost zero and dθ/ds
positive (negative) for θ nearly π/3 or — π (π) and r sufficiently large. By tak-
ing these facts into our consideration, we can draw (2, l)-canonical paths y2i(x)
which connect x and °o exp (*2τr/3) and along which the function Re £2i(l> 0

Imx*

0 Rex

Fig. 4.3(a). The Λ/X -admissible domain
(unshaded), ls is the branch cut.
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Im x

Rex

Fig. 4.3(b). The y/x -admissible domain
(unshaded), U is the branch cut.

—π

Fig. 4.3(c). The — Λ/X -admissible domain 0Z (unshaded) and
(3, l)-canonical paths yn(x)> h is the branch cut. Solid and broken
lines are level curves defined by Ref=const. and I m f = 0

\ζ—\ (λz—λ^dx) respectively. Level curves are symmetric with

respect to the real axis.
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decreases.
For typical points xx in St, (2.1)-canonical paths γ2l(Xi) are illustrated in

Fig. 4.4(a). For example, for x x e S i the (2, l)-canonical path 2̂1(̂ 1) starts xlt

goes to a neighboring point of l4 crossing the level curves Re£2i(l, 0=F
Re^2i(l, Xi)=const. traverses h into the region S2 and then tends to
00 exp (i2π/3) (Fig. 4.2(a)). Thus we can conclude that

^21=Sί\JUyjS2UhUS4Ul2yjS5\JU\jSzUS,fU[0> 1] (Fig. 4.4(a)).

Similarly it is easy to see that

#2β={*l -τr/3<arg *<5τr/3} (Fig. 4.4(b)).

Since for any x we can take a curve connecting x and 00 exp (z'2;r/3) as
Ϊ22(x), we have obtained a V^~-admissible domain <Φ2

C1) as the intersection of
^21 and ,023, which is illustrated in Fig. 4.3(a).

Next, if the branch of x3/2 is taken such that Re x3/2 is negative in the
sector — ττ<arg x<—πβf we have by the same way another V^-admissible
domain ^)2

C 2 ) as given by Fig. 4.3(b).

Fig. 4.4(a). 3)2\ (unshaded) and (2, l)-canonical
paths 721(XJ), XJΪΞSJ. (cf. Fig. 4.2(a)).
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Fig. 4.4(b). S)iz with the branch cut along /3, and
(2,3)-canonical paths γ23{x). (cf. Fig. 4.2(b)).

Lastly we can define a —V*~-admissible domain S)z for which Re(—x3 / 2)
is negative in the sector — π/3<arg x<π/3 (Fig. 4.3(c)). Therefore we obtain
the WKB solutions y^ix, ε) and y2

c2Kx, ε) of (4.1) whose asymptotic expan-
sions coincide with the formal WKB solution (4.3) in the domain £D2

W and £)2

C2)

respectively, and the WKB solution ys(x, ε) with the asymptotic expansion (4.4)
in S)z.

On the other hand, from (3.7) and (3.8) solutions defined by the Laplace
integral become in this case

(4.5) y(x, ε)= exp j(xs- j

with a constant A and a contour γ satisfying

(4.6)

Corresponding to the pole s—1 of the integrand of (4.5) (§3, Care I), there
is an exact solution y^x, ε) of (4.1) of the form
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(4.7) yι(X) ε)=2mA exp ( - ^ ) exp ( y ) .

This coincides with (4.2).
The saddle points of S(s, x)=xs—s3/3 are ±V*~, and we have

(4.8) s(s, χ)=±jχ*<zτvχ-(sτv-χry-j(s+vτγ.

In the followings, we define three admissible and ±V^~-saddle contours in
the complex s-plane. Let St ( ί=l, 2, 3) be sectors defined by

π
S2: γ

π ^ 5π

7π ^ 3τr
S3: χ < a r g s < — .

Then the curve f2

cl) is the admissible and V^"-saddle contour which satisfies
that it passes through the point *Jx~ in appropriate direction, passes above the
point s = l, and comes from infinity in cS2 and goes away to infinity in Si.
Similarly the curve γ2

w passes through the point ^/x~ passes under the point
s = l , comes from infinity in Sx and goes to infinity in Ss. Lastly the curve γ3

is the admissible and — V^f-saddle contour which comes from infinity in S3,
passes through the point — «Jx~ and goes to infinity in cS2, see Fig. 4.5.

By these choices of the contours γ2

σ\ Ϊ2C2y and r3 as γ in the expression
(4.5), we can define three solutions y2

(ί\x, ε), y2

c2\x, ε) and ys(x, ε) respectively.
These three solutions and yx{x, ε) of (4.7) satisfy the following connection rule
by the Cauchy's integral theorem.

Res

Fig. 4.5. The admissible and ±^/x -saddle contours.
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(4.9) yx{x, e)+y2

σXx, s)+;y2

(2)(x, ε)+yz(x, e)=0.

By applying the saddle point method, we have the asymptotic expansions

<-<»,

(4.10)

Next, we consider the admissible domains of the ±V-^~-saddle contour. It
is possible to prove that these are just the same with the ± V^~-admissible
domain ^ 2

c υ , ^ 2

< 2 ) and w8.

Im s

N

Fig. 4.6. £2

C 1 ) (unshaded), V^-saddle contour γ2

a\x\ Dotted
parts are valley regions at each point. If is the image of /, under
the map s=V*~, N=ooe~<*'*», K=ooe<*™*\

For example, let in the s-plane £ 2

α ) be the image of ^) 2

C 1 ) in the x-plane
under the mapping s=V^~(Fig. 4.6). From (4.8), the direction of the curve of
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steepest descent at the saddle point y/~x~ is arg(s—Λ/X~~)~ — (1/2) arg V*~ and
(—l/2)argV*~+π. Then the valley regions at V*~ are

_i_ /--— r~\ — /— —

and

1 __ 3 __ 1 _ 5
(4.12) — -^-arg Λ/X + — π<arg(s—y/x)< — -rrarg \/x + -rπ .

I 4 Z 4

The V^-saddle contour must pass through the point *Jx~ into the forme valley
region (4.11). In Fig. 4.6, the velly regions (dotted) at P are illustrated.

It is easy to see that for all x in ̂ 2

α ) we can draw an admissible and
V*~-saddle contour Γ2

(2)(;t) in ΰ2

σ\ which satisfies that
( i ) γ2

w(x) passes through a unique saddle point \/χ~,

(ii) for all points s= Vx on the contour γ2

iΌ(x) the contour r2

σ)(x) is a V*~-

saddle contour passing through s=V~% , and
(iii) T2σ\x) passes above the point M (s=l, the singular point of the inte-

grand), and extends to infinity in the sectors Sx and S2 (see Fig. 4.5
and 4.6).

Then to assert that £>2

CΌ is an admissible domain of the V^-saddle contour for
y2σ\x, ε), it is necessary to prove that £D2

W is maximal. For the points below
the line KN (Fig. 4.6), the admissible and yT-saddle contour must extend to in-
finity in the sectors S2 and S3.

Next, the V^~-saddle contours which pass through points below the curves
LM and MN can not pass above the point M. Then the integrals defined by
such contours does not define the function y2

w(x> ε). Therefore we have proved
that the admissible domain of V^-saddle contour for y2

a\x, ε) is the \/x~-
admissible domain «02

C1).

% 5. Example II

We consider the following two differential equations:

(5.1) εsy'"+iε2xy" + εy'+ixy=Q,

(5.2) ε*y»-ε2xy"-εy'+xy=0.

The above two equations have essentially the same characteristic, but since
each Stokes curve configuration or the admissible domains of Λ(;t)-saddle contour
are seemed to be interesting we refer these equations as examples.

1° At first, we analyse (5.1) in detail. The characteristic equation for it
becomes k{λ, x)=λs+ixλ2+λ+ix—(λ2+l)(λ-\-ix)=Q, characteristic roots are ±i,
—ix, and then turning points are x = ± l . Both turning points are not simple,
because the condition (2.21) does not hold.

The Stokes curve configuration is given in Fig. 5.1.
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Fig. 5.1. Stokes curves (solid lines) and anti-
Stokes curves (broken lines) for (5.1).

Solutions given by the Laplace integral have the form

y(x' β)=

where A is constant. By putting s=it, it becomes

(5.3) y(χ, ε)=

Taking as admissible contours y two small circles enclosing each of two poles
t=±l of the integrand (§3, Case I), we obtain two exact solutions:

yx(x, ε)=Λπ exp ( j^—y) >

(5.4)

Let us define w(t, x) as

then a saddle point of w(t> x) is x, and

w(t, x)=-jx*+j(t-x)*.

Therefore (5.3) can be written

ys(x, e)=^4/exp(— κ~x2)\ -Λ—τ^exp(^-(ί—

Here we put
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The asymptotic expansions of v(x, ε) as ε->0 are obtained by applying the
saddle point method except for neighborhoods of turning points. In this case,
an admissible and x-saddle contour γ(x) in the ί-plane is as follows:

(1) γ{x) comes from infinity in the third quadrant and extends to infinity
in the first quadrant of the ί-plane.

(2) at each x, γ{x) passes through x from the lower valley region to the
upper one (see Fig. 5.2).

By this choice of contour, we have

/
v(x, 1-x2 * 4

then the asymptotic expansion of ys(x, ε) becomes

(5.5) ys(x, ε>

In this example, it is easy to get the admissible domains of a x-saddle contour
and connection rules.

Suppose initially x is in the first quadrant of the ί-plane, then we can ob-
tain the asymptotic expansion (5.5). This asymptotic expansion is valid as long
as yΛ(x, ε) is analytically continued so that the admissible and jc-saddle contour
γ(x) passing through x is possible to be drawn without meeting turning points
and singular points of the integrand of ys(x, ε). By this condition, there are
three admissible domains of x-saddle contour, which we label £)a\ 3)^ and
as in Fig. 5.3.

the path of
steepest

descent

Fig. 5.2. Valley regions (shaded) in the
neighbourhood of x.
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Fig. 5.3. Admissible domains ^ 3

( 1 ) (shaded) of x-saddle contour, in
the x-plane, γ(x) is the admissible contour passing through a saddle
point x in the ί-plane.

To each domain ^)iί\ there corresponds the solution yzQi\x, ε) ( ί = l , 2, 3).
The following relations between y^x, ε), y%(x, ε) and y^i:>(x, ε) ( i = l , 2, 3) are
apparent from the Cauchys' intergral theorem

3>s
( 1 ) _ Λ , C2)_,

(5.6)

2" By analogous considerration, we can analyze the equation (5.2). The
characteristic polynomial is

k{λ, x)=λs-xλ2-λ+x^(λ1-ί)(λ-x).

Turning points are x—±l. The Stokes curve configuration is given in Fig. 5.4.
Solutions can be expressed by the integral

(5.7) y(x, e)= exp j(xt-j

As before the residue theorem gives us two exact solutions:

( 1 % \

~ 2 ε + 7 / '

( 1 x \
~ 2 ε ~ 7 / '

(5.8)

By applying the saddle point method to (5.7), we can define four solutions
3;8

c<)(x, ε), whose asymptotic expansions are of the form
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(5.9) ; i = l , 2, 3, 4).

Im x

0 Rex

Fig. 5.4. Stokes curves (solid lines) and anti-
Stokes curves (broken lines) for (5.2).

The admissible domain ^ ) c i ) of x-saddle contour for each yz^\x, ε) is illustrated
in Fig. 5.5, and the following linear relations hold

(5.10) _ΛJ ( 4 ) —

Im x

(a) QP (b)

Fig. 5.5. Admissible domains £>3

cί) (shaded) of ^-saddle contour in
the %-plane, γ(x) is the admissible contour passing through a saddle
point x in the ?-plane.
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§ 6. Further examples

In the sections 4 and 5 we analized rather simple three examples from the
two aspects: the one is the theory of differential equations containing a small
parameter, and the other is application of the saddle point method to the func-
tions represented by the Laplace integral.

We remark here that in these examples there is no need to consider the
secondary Stokes curves since the so-called Stokes phenomenon occurs only along
the usual Stokes curves. Then we can say that, even in the cases where there
exist multiple turning points and two turning points are joined by a Stokes
curve, it is not always necessary to consider the secondary Stokes curves. These
cases are excluded in the article [1].

To understand what new phenomena, such as the appearence of secondary
Stokes curves, occur in the WKB theory of higher ordinary differential equa-
tions, it is desirable to analyze further examples that exhibit various features
in the distribution of turning points or the Stokes curve configurations. There-
fore in this section, we list up several examples of third order ordinary dif-
ferential equations with linear coefficients which seem to be interesting.

The discriminant of the characteristic equation (2.2) is given by q2jr4/>3,
which is a 4th degree polynomial for linear coefficients pj(x){j—l, 2, 3). From
the discriminant we see that the differential equation (1.1) possesses at most
four turning points. The simplest equation is ε3y"'+xy=0. This is called
Turrittin type, and we excluded it here.

Case 1.

(6.1) ,0g
The characteristic equation is

There are two simple turning points x — ±2, and the Laplace integral representa-
tion becomes

(6.2) y(x, ε)=

This integral is a variant of the so-called Pearcey integral:

(6.3) F(β, x, y)=

Case 2.

(6.4) I^3«^
αr dx
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The characteristic equation is

λ3-3xλ+2=0.

There are three simple turning points x = ly ωy ω
2.

The integral representation becomes

(6.5) y(χ, ε)=Λ^

Case 3.

(6.6) 6 S 0

The characteristic equation is

There are four simple turning points % — — 1, — y> — ^

The integral representation becomes

( 6 7 ) * * •

Case 4.

(6.8)

The characteristic equation is

There are a double turning point x=0 and two simple turning points x = ± l / 2 .
The integral representation becomes

Γ 1
(6.9) y{x, ε ) ^ ^ ]

Case 5.

(6.10,

The characteristic equation is

There are a triple turning point x—l and a simple turning point x ——1/3.
The integral representation becomes

(6.11) y(x, e)=i
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