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NONLINEAR VOLTERRA INTEGRODIFFERENTIAL
EVOLUTION INCLUSIONS AND OPTIMAL CONTROL*

By NIKOLAOS S. PAPAGEORGIOU**

Abstract

In this paper we examine integrodifferential evolution inclusions of the
Volterra type driven by time dependent, monotone, hemicontinuous operators.
We prove two existence theorems; one for convex valued perturbations and
the other for nonconvex valued ones. We also establish a topological pro-
perty of the solution set of the “convex” problem. Then we prove a result
on the continuous dependence of the solutions on the data of the problem
(sensitivity analysis). We also consider a random version of the inclusion and
prove that it admits a random solution. Then we pass to optimal control
problems. First we establish the existence of optimal admissible pairs and
then using the notions of epigraphical and G-convergences, we obtain a varia-
tional stability result. Finally we work in detail two parabolic distributed
parameter optimal control problems, illustrating the applicability of our work.

List of symbols

2 : Upper case Greek letter omega W .. W subscript r
2 : Upper case Greek letter sigma % : Script P
S?: S subscript ¢ dy: d subscript H
S%: S superscript p, subscript F ¢ : Lower case Greek letter phi
w: Lower case Greek letter omega ¢: Lower case Greek letter psi
W pq: W subscript pg J: Lower case Greek letter delta
L%: L superscript ¢ By: B subscript M
L?: L superscript p a: Lower case Greek letter alpha
7: Lower case Greek letter tau B: Lower case Greek letter beta
e: Lower case Greek letter epsilon 7: Lower case Greek letter gamma
7 : Lower case Greek letter eta I": Upper case Greek letter gamma
.L: Script L al,: a superscript n, subscript 77
1. Introduction

In this paper we study Volterra integrodifferential evolution inclusions of
nonconvolution type with time dependent unbounded operators and with both
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convex and nonconvex multivalued perturbations. Our results are then applied
to distributed parameter optimal control problems. Our work extends those of
Chuong [9], Glashoff-Sprekels [15], Kiffe [16], Papageorgiou [27], [28], Ragi-
mkhanov [32] (on integral inclusions) and Angell [1], Cesari [8], Warga [39]
(on optimal control problems), since we allow for the presence of time varying,
unbounded nonlinear operators and also our system is an integrodifferential
equation. Furthermore for both our inclusion and optimal control problems we
conduct a detailed sensitivity (i. e. dependence on the data) analysis.

The structure of the paper is the following. In the next section we establish
our notation and terminology and we recall some basic definitions and facts
from nonlinear analysis and the theory of measurable multifunctions. In section
3 we pass to the study of the integrodifferential evolution inclusion and we have
two existence results; one for convex valued perturbations and the other for
nonconvex valued ones. Also in the “convex case”, we prove the solution set
is compact in an appropriate topology. In section 4 we examine the dependence
of the solutions on the data that determine them, namely the unbounded operator,
the multivalued perturbation and the initial condition (sensitivity analysis). In sec-
tion 5 we consider a random version of the integrodifferential evolution inclusion
and using techniques from the theory of measurable multifunctions, we establish
the existence of random solutions. Our result (theorem 5.1) extends earlier ones
obtained by Chuong [9], Papageorgiou [29] and Tsokos-Padgett [37]. In section
6 we turn our attention to optimal control problems for infinite dimensional
systems governed by integrodifferential evolution equations of the Volterra type
(i. e. systems with memory). We establish the existence of optimal controls and
we also conduct a sensitivity analysis using the notions of r-convergence (epi-
convergence) of functions and of G-convergence of operators. Finally in section
7 we work in detail two examples of distributed parameter control systems
governed by parabolic integrodifferential equations.

2. Preliminaries

Let (2, 2) be a measurable space and X a separable Banach space. Throug-
hout this paper we will be using the following notations:

q Pss(X)={AS X: nonempty, closed, (convex)}
an
Piwsreer(X)={AZS X: nonempty, (weakly-) compact, (convex)}.

A multifunction F: 2--P;(X) is said to be measurable (see Wagner [38]),
if for every x€ X, w—d(x, F(w))=inf{|x—z| : z&F(w)} is measurable. A mul-
tifunction F: Q—-2\{@} is said to be “graph measurable”, if GrF={(w, x)<
QxX: xeF(w)}s2xB(X), with B(X) being the Borel ¢-field of X. For P;(X)-
valued multifunctions measurability implies graph measurability. The converse
is true if there is a o-finite measure p(-) on X and 2 is p-complete. By SH(I=
p< ) we will denote the set of measurable selectors of F(-) that belong in



256 NIKOLAOS S. PAPAGEORGIOU

the Lebesgue-Bochner space L?(X); i.e. SHE={feLl?(X): f(wsF(w)p-a.e.}.
This set may be empty. For a graph measurable multifunction F: 2—-2%\{@},
S%. is nonempty if and only if w—inf{||z|: z&F(w)}=L%. In particular this is
the case if w—|F(w)|=sup{|z|: zeF(w)}=L%. Such a multifunction is said to
be LP?-integrably bounded. Using S} we can define a set valued integral for

F(-) by setting SQF(w)dy(w)={ng(w)d;1(w): fesih.

Let Y, Z be Hausdorff topological spaces and G : Y —2%2\{@®} a multifunction.
We say that G(-) is upper semicontinuous (u. s. ¢.) (resp. lower semicontinuous
(I.s. c.)), if for all VSZ open, the set GH(V)={yeY : G(y)SV} (resp. G (V)=
{yeY: Gy)N\V+@}) is open in Y. If Z is a metric space, then on P,(Z) we
can define a (generalized) metric, known in the literature as the Hausdorff metric,
by setting

h(A, B)=max{sup d(a, B), sup d(b, A)}
acAa beB

If Z is complete, then so is the metric space (Ps(Z), h).

Finally let T=[0, ], H a separable Hilbert space and X a subspace of H
carrying the structure of a separable, reflexive Banach space which is con-
tinuously and densely embedded into H(i.e. X< H). Having H as our pivot
space, we get XSG, HCG, X*. Such a triple of spaces (X, H, X*) is known in the
literature as “Gelfand triple” or “spaces in normal position”. By | -|| (resp. |-,
I-l+«) we will denote the norm of X(resp. of H, X*). Also by <{-, -> we will
denote the duality crackets for the pair (X, X*) and by (-, -) the inner product
of H. The two are compatible in the sense that <, ->|xxz=(-, *). By Wp(T)
we will denote the space of elements x< L?(X) such that the distributional
derivative £ LY X*). p~'4¢ '=1 Furnished with the norm

Ixllw, qers={lxllE7ce>+ 12 F2cxo}

W »o(T) becomes a separable Banach space (reflexive if p>1) and it is well known
that W,o(T) can be embedded in the Banach space C(T, H); i.e. W,(T)C
C(T, H). So every element in W ,4(T), after possible modification on a Lebesgue-
null subset of T is equal to an H-valued continuous function defined on T.
When X H compactly, from theorem 5.1, p. 58 of Lions [22], we have that
WooT)S LP(H) compactly. When p=¢g=2, we will simply write W(T).

3. Integrodifferential inclusions-existence theorems

Let T=[0, r] and (X, H, X*) a Gelfand triple of spaces, with all embeddings
assumed to be compact. This setting will remain in effect for the rest of this
paper. We will be studying the following Volterra integrodifferential evolution
inclusion :

{a‘c(tH—A(t, x(t))ES:k(t—s)F(s, x(s)ds a.eon T -
x(0)=x, }()
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By a solution of (*), we understand a function x(-)EW ,(T) s. t. there exists
f()eS%. 2y, for which we have x(t)+A(t, x(t)):S:k(t—s)f(s)ds a.e. in X*

and x(0)=x,.
We will need the following hypotheses on the data:

H(A): A: TxX—X* is an operator s. t.
(1) t—A(t, x) is measurable,
(2) x—A(t, x) is hemicontinuous, monotone,
3) JAE, ©)|x=c(1+]x]*"*) a.e. with ¢>0 and p=2,
4) <A@, x), x)=cillx|? a.e. with ¢,>0.

H(F): F: TxH-P;,(H) is a multifunction s. t.
(1) F(-, -) is graph measurable,

(2) F(, -) has a graph which is sequentially closed in HX H, where H,
denotes the Hilbert space H with the weak topology.

@) |F, x)|Sat)+blx|*? a.e. with a(-)eL%, b>0, where -%—}——;-:l.
H(k): ke LT, L(H)).
THEOREM 3.1. If hypotheses H(A), H(F), H(k) hold,
then (*) admits a solution.

Proof. First we will obtain an a priori bound for the solutions of (*). So
let x(-)&W,(T). By definition we have:

£(D+AG, x(t)):S:k(t—s)h(s)dS
x(0)=x,

with A(-)E 5%, z¢y. Multiply the above evolution equation with x(:). We get

G®), 2>+<A, x@), x0y=({ kt—h(s)ds, x®) a.e.

— L1012 A, 20, x>=2([ k= h(s)ds, 2(0) a.e.
(see Tanabe [36], p. 151)
— 01" +26, (P ds= 5ol +20 [ 1k 1al A dell(s)]ds

Using Cauchy’s inequality with ¢>0, we have

2[ ( 1E 1@ el x()lds
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s 2 ireneds+ L (ktain e
= 2L ke o120 oyaeds
= z%pﬁ ‘ & S:Slek!|&24-1<a<r>q+b41 x(7)|Ddds.

Let ¢é?=p¢,. Then we have:

xS ——7

= (p )q/p ”k"ws S:(a(f)q-l‘b"]JC(z')]z)dtds

=M( [ aterdeds+mo| | xoldeds(M= (pi o 1412)

Invoking theorem 1 of Pachpatte [26], we get
[x(D|=M,, M,>0.

Then we have:

26 1P ds= ol *42{ [ k1l @) el 2(5) s

t(s
< | xol*+2M, ”k”eogogo(a(r)+be)dr
= |x|lLrcxr S M,, M,;>0.
Next let p(-)e L?(X). We have:

[i<x), pspas= e, s 1p@Ids+{ [ 1e11a@ Izl p(s)lds

éS:[c(1+ ||x(s)ll”“)+llkllmS:Hh(T)”*d“'] Ip(s)llds

Using Hoélder’s inequality, we get
(@, PNo=c(A+1x( D"+ kllol (Il 22 1Pl
where 77(S)=g:||h(‘l')||*d‘l' and ((-, -)), denotes the duality brackets for the pair
(L?(X), LY X*)) (see Diestel-Uhl [12], p. 98). So we have
(&, pos(er+clxlF x, F kNl 7l0)- 12l 27 x>

Note that

Iig={ nsras={ ([ In@lde)ds<( [In@isdeds g | 1 r@1dzas
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(where 8>0 is such that [|-|4+<f8]|-|; it exists since Hc, X* continuouly). So
1] | 2 e@r+0) x|V ded s 2l a2 Mt = |yl

for some M>0.
So finally we have ||%|z2cxn<M,;, M;>0.
Now define the following modification of the orientor field F(¢, x):

F(t, x) if [x|=M,

F(t, K‘I") it x|>M,

Note that F(t, x)=F(, P, (x)), where py,(-) is the M,-radial retraction in
H. Hence it is easy to see that F(¢, x) has the same measurability and con-
tinuity properties as F(f, x). Furthermore |F(, x)|=4@®)=a@)+bM, a.e., 4(-)
e LY.

Set V={heLY(H): |h({)|<d() a.e.} and let p: VW, (T) be defined by
p(h)(-)=x(-) where x(-)EW ,(T) is the unique solution of the evolution equation

E@, x):{

£+ A, x(t))zgzk(t——s)h(s)ds a.e., x(0)=x

(see Barbu [5] and Lions [22]).
Our claim is that this map p(-) is sequentially weakly continuous. To this

end let A, ShinV. Let a()=Pp(ha)(- )EW po(T). From our a priori estima-
tion in the beginning of the proof, we know that {x,(:)}..: is relatively se-
quentially weakly compact. So by passing to a subsequence if necessary, we

may assume that x, Sxin W T). We have:
E.+AG, xn(t)):S:k(t—s)hn(s)ds ae..

Multiply the above equation with x,(f)—x(). We get
{&a(D), £a(O)—x(E>HLAE, x2(1), x(D—x@)>=Cus(t), x.()—x(})) 2. e.

where un(t)={ k(t—)ha(s)ds,
= ), xaO—x@>dt+ A, 320, 22— 50>t

:S(:(un(t), xaO)—x(t)>dt

Recall that (see Tanabe [36], p. 151)
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CnB)—3(D), 2a(B)—x(Dy= 1

oW [ xa(t)—x(t)]?

=>S:<xn(t), Za(O)—x()dt= % | %2(r)—x(r)|?— % [ £2(0)—x(0)|?

+S:<x(t), xa(O)—x(B)>dt

So we get

T b =21+ | 0, xa— 2t ] A, 2,00, 2aD—x(0da

={ cuat), 2a—xepat

Since W,oo(T)< LP(H) compactly (see section 2) and W,(T)o.C(T, H), by

s
passing to a subsequence if necessary, we may assume that x,(}) — x(?) in H
for all teT. So we have:

5 x5t —> 0
[i<i@, xa®—x@pat—>0
Also note that ua(t) — u(t)=S:k(t—s)h(s)ds in H for all tT. So we have:

[l<tatt), za®r— 20Dt —>0

= Im((A%xn, 22— 2)e=0(Ax)O=A{, x.()) (1)

Note that because of hypothesis H(A)2) and by passing to a subsequence
a w
if necessary, we may assume that Ax, — v in L% X*). Using this and relation
(1) above, we deduce that
m((Ax g, 22))=((, x))
But using hypothesis H(A), it is easy to check that A(-) is hemicontinuous,
monotone, everywhere defined on L?(X), hence is pseudomonotone (see Browder

[7]) and so it has property (M). Therefore Ax=v, i.e. Ax, 5 Ax in LYX*).
So

((Fn, DNo+((Axa, D))oe=(ttn, D)o
—> (&, PDo+((Ax, PNo=(u, p))s as n-—» 0.

Since p= L?(X) was arbitrary, we conclude that
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2O+ AG, x@)=u() a.e.
t
— 2O+ AG, x(t)):Sok(t—s)h(s)ds a.e., x(0)=x,
= x(-)=p(h)-)
= p(+) is sequentially weakly continuous as claimed.
Next let R: V—P;(V) be defined by R(h)=5}<.,p(h><.>>. Our claim now is
that R(-) is u.s.c. on V with the weak topology. Note that V is bounded in
the reflexive Banach space LY H), hence it is sequentially weakly compact. So

we only need to show that GrR is sequentially weakly closed in V XV (see for
example Klein-Thompson [17]). So let {(hn, f2)}2::EGrR and assume (h,, fi)

= (h, f) in VXV. Then from what we proved above, we have p(hn)ip(h)

in Wpo(T)= p(ha)t) A p(h)®) in H for all tT (recall W, (T) L?(H) compactly
and W,(T)cC(T, H)). Because of hypothesis H(F)(2) and since F(-, -) has
the same continuity properties as F(-, -) we have w-imE(t, p(h.))S F@¢, p(h)D)).
So invoking theorem 4.3 of [31], we get

few'li_lﬁR(hn)Zw-li_m-Sp}w,p(hnx-))gs}“(-.p(h)(-»:R(h)
== (h, f)eGrR i.e. R(-) is u.s.c. as claimed.

Apply the Kakutani-KyFan fixed point theorem to get A€V s.t. he R(h).
Then clearly p(h)(-)=x(-) solves (*) with the orientor field (¢, x). Then by
the same estimation as in the beginning of the proof, we have |x(})|<M,=
F(t, x(t)=F(t, x@))=x(-)EW ,(T) is the desired solution. Q.E.D.

An interesting consequence of the above proof, is the following property of
the solution set of (*).

THEOREM 3.2. If hypotheses H(A), H(F) and H(k) hold, then the solution
set of (*) is a nonempty, weakly compact subset of W ,o(T).

Proof. Let P(x,) be the solution set of (*). We have already seen in the
proof of theorem 3.1 that P(x,)Sp(V) where VS LYH) and p: LYH)-W ,(T)
are as in the proof of theorem 3.1. Since p(-) is sequentially weakly continuous
and VE LYH) is weakly compact, we have that p(V) is weakly compact in
Woo(T). So it suffices to show that P(x,) is sequentially weakly closed in

W ooT). Hence let {xn}ns1SP(xo), xa — x in W,o(T). We have
L2+ AQR, x2(t)=ha(t) a.e., x.(0)=x, @

where hu(®)=| k(t—5)fa(9)ds, f2E S e,z Note that | £(O S a(®)+b] xu(0)]*
S a(O)+bMYI= | £(D) 120 a (0427 15ME = | f ey < 207 a4 207 UM Sy =
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M,. (recall the a priori estimates obtained in the proof of theorem 3.1). So
{fn}az: is bounded in L%H), hence relatively sequentially weakly compact.

Thus by passing to a subsequence if necessary, we may assume that f, 5 f in
L%H). Then invoking theorem 3.1 of [31], we have f(t)econv w-lim{f.(t)}az:

Cconv w-limF(t, x.(t) a.e.. But as before since W, (T)c, LP(H) compactly and
W, T)SC(T, H), by passing to a subsequence if necessary, we may assume

that xn(t)—s> x() in H for all t=T. So because of hypothesis H(F)(2), we have
that w-limF(t, x.()SF(t, x(t))(see Delahaye-Denel [11])=f(eF(E, x(t) a.e. =

f()ES%c. 2. Also from the proof of theorem 3.1, we know that Ax, Y Ax
in LAX¥), while hy 5> h in LGH) with hd={k(t—s)f()ds and &, >4 in
LY X*). So by passing to the limit in (1) we get

A()+ AU, x@)=h(t) a.e., x(0)=x, 2)

From (2) we deduce that x=P(x,)=P(x,) is indeed nonempty, weakly com-
pact in W,(T). Q.E.D.

Remark. Since W,(T)S L?(H) compactly, we get that P(x,) is compact in
L?(H). Also, if p=¢=2 and X is a separable Hilbert space, then from Nagy
[24], we know that W(T)c.C(T, H) compactly. So, in that case, P(x,) is
compact C(T, H).

Next we will consider the case where the orientor field F (¢, x) is nonconvex
valued. We will need the following hypothesis on F(t, x).

H(F),: F: TxH— PsH) is a multifunction s. t.
(1) F(-, -) is graph measurable,
2) F(t, -)is Ls.c.
3) |F{#, x)|=a@®)+b|x]¥* a.e. with a(-)e L%, b>0.

THEOREM 3.3. If hypotheses H(A), H(F), and H(k) hold, then (*) admits a
solutzon.

Proof. Let B=p(V), where VELYH) and p: LYH)—W ,(T) are as in the
proof of theorem 3.1. We know that B is a weakly compact subset of W,(T)
and by the Krein-Smulian theorem so is B=convB (see Diestel-Uhl [12], p. 51).

Let R: B—P;(L'(H)) be defined by R(x)=Si. zcy», Where F(t, x) is as in the
proof of theorem 3.1. Combining hypothesis H(F),(2) with theorem 4.1 of [31],
we get that R(-) is l.s.c.. So we can apply the selection theorem of Bressan-
Colombo [6] and get »: B—L'(H) continuous from B with the relative weak
W po(T)-topology (which is metrizable; see Dunford-Schwartz [13], p. 434) into
L'(H) with the strong topology s.t. »(x)eR(x) for all x&B. Let n(x)(-)&
W,ooT) be the unique solution of the evolution equation y()+A(f, (@)=
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S:k(t—s)r(x)(s)ds, 9(0)=x, (see Barbu [5] and Lions [22])). Then 7(x)-)=B

and so 7: B—B. We claim that 5(-) is continuous for the relative weak
W ,o(T)-topology on B. Recalling that this topology is metrizable, we can use

sequences to check the continuity of 5(-). So let x,—x in B. Then r(x,) %
r(x) in L'(H). Also {n(x)}nz1 is bounded in W,(T) and so we may assume

that n(xn)f)»z in W,(T). Then working as before, in the limit as n—co we
will get that

O+ A, 20)=| kt—rx)s)ds, x0)=x,
=) z= n(x)
== y(-) is indeed continuous as claimed.

Applying the Schauder-Tichonov fixed point theorem, we get x<B s. t.
n(x)=x. This is the solution of (*) with the orientor field F(f, x). An estima-
tion as in the beginning of the proof of theorem 3.1 gives us that |[x(¢)[EM,=
F(t, x())=F(t, x()=x(-) solves (*). Q. E. D.

4. Sensitivity analysis

In this section we examine the dependence of the solutions of (*) on the
data of the problem; i.e. on the operator A, on the orientor field F(¢, x) and
on the initial condition.

So consider the following sequence of integrodifferential evolution inclusions :

Jl x,,(t>+An<t)xn(t)eg:k(t—s)Fn<s, xa(s)ds a.e. }(*ﬁ
22(0)=x7%

and the limit integrodifferential evolution inclusion

{ x(z)+A(z>x<t)eS’k(t—sws, x(s))ds a.e. }
0 (**
x(0)=xo

We will need a mode of convergence for the linear operators {A,(t)},::1S

L(X, X*) and {d/dt+A,},... Following Zhikov-Kozlov-Oleinik [40], we make
the following definitions.

DEFINITION I. A sequence of linear operators A, : X—X*n=1, G-converges
to a linear operator A: X—X* as n-—oo, if the operators Az!, A™': X*—X are

defined and for any x*< X*, A;lx* 2 A™'x* in X(strongly in H, since X< H
compactly).



264 NIKOLAOS S. PAPAGEORGIOU

DErFINITION II. A sequence of operators P, : W(T)—L*X*)XH, n=1, “PG-
converges” to an operator P: W(T)—L*X*)X H as n—oo, if the operators P},
P LA X*)xH—-W(T) are defined and for any (g, x,)= L X*)X H, P7;'(g, x,)

iP"(g, xo) in W(T) as n—oo(P3Y(g, xo)(t)—s>P“‘(g, x0)(t) as m—oo in H for
all t<T).

Here the operator P,(-) will be defined by xeW(T)—(x(-)+A.(-)x(:), x0)E
L*(X*)x H(the dynamics of the approximating problems) and the operator P(-)
will be defined by x(-)eW(T)—(x(-)+A(-)x(-), x,)(the dynamics of the limit
problem). So definition I refers to the convergence of the solutions of a sequence
of elliptic problems, while definition II refers to the convergence of the solutions
of a sequence of parabolic problems.

We will need the following hypotheses on the data of problems (**), and (**)

H(A),: A, A: T—.L(X, X*) are operators s. t.
1) t—A.()x, A(t)x are measurable,
2) x—A,1)x, A(t)x are continuous, monotone,
@) NAxOxl%, I1ADxx=cllx|l a.e. with ¢>0,
4) <{Aux, x>, CA)x, x>Zcilx[? a.e.

5) An(t)—G»A(t) a.e. and given ¢>0 there exists d(e)>0 s. t. for all n=1
sup [|A,(t+7)— A, ()||«<e provided 7<(0, 9).

0stsbd

H(F),: F,, F: TXH—P;(H) are multifunctions s. t.
(1) F,(-, ), F(-, -) are graph measurable,
2) h(F.(, x), F.@t, v)ZI@)|x—y| a.e. with {(-)e L1
@) |Fult, x)|<a®)+blx| a e with a(-)e L2, b>0,

@) Fut, ©)> F(t, x).
Denote the solution set of (**), by P, and the solution set of (**) by P.

THEOREM 4.1. If hypotheses H(A),, H(F),, H(k) hold and =x?% 4 xo in H,
then iImP, =P in C(T, H).

Proof. Let x,(-)€P,, n=1 and x,—x in C(T, H). By definition we have
x,,(t)—}—An(t)xn(t):Stk(t—s)h,,(s)ds a.e.
0 ey
xn(O)ng
with h,&S5% ¢ z,c». Note that
= h(S}an@,,n(.)), S}v(.,x<.)))§h(S},~(.,1n(.)), 5117',,(-,x<->>)+h(5}'n<-.x(-))),

Skezen= ”lnluxn—x”C(T,H>+h(sll"n(',x(-))’ Ske,ze»)—0
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(see [31], theorem 4.5).
Note that because of hypothesis H(F)y(3), {hn}nz: is bounded in L2%(H) and

so by passing to a subsequence if neccssary, we may assume that 4, Shin
L*(H). Then for every uc L*(H)=L*H)* we have

(hay Wirean=sup{(f, w)rzcm : fest%‘nﬁ’In<’>)=3%n<‘-rn<‘>>}=0'S}~n(.,zn(.))(“)

= (h, Wzan=0osp . ()  for every ueL*(H)

h
M 1 1
(note that since Sk, ..z, — Ske.zc»», We have “S}no,znon(”)—’”Sh-.zo))(”))'

So finally we have he Sk zc»-
Fix y(\)eW (T)={z(-)eW(T): z(r)=0} and set

— 3O+ A y(BO=g() @

Multiply equation (1) with y,(-), equation (2) with x,(-) and then subtract
the new equation (2) from the new equation (1). Then integrate over T=[0, r].
We get:

[ <aat®), ya@at+{ sa), 2a®ddt+{ <AnOR0, 70t
< Aurya@, 2a0ddr={ a0, ya0rdt={ <e®, atdet @

where vn(t)=g:k(t—-s)hn(s)ds. Invoking lemma 5.5.1, p. 151 of Tanabe [36], we

can perform integration by parts on the second integral in the left hand side
of (3). Doing that we get

S:<_’9n(t)’ Za{E)Ddt=(32(), x2(r))—(¥2(0), xn(o))_S:<yn(t); Za()>dt

= =20, )| 3al), Fa(E)at )

Substituting (4) in (3), we get

— (), 5)={ a0, 3a@)dt—{ <a®), xa0dt ®)

From theorem 10 of Zhikov-Kozlov-Oleinik [40], we know that @,=
. PG ~
—d—+An —> £P=—d—+A and so theorem 7 of the same paper tells us that

dt dt

G
Pk = #*. Then invoking lemma 3 of Zhikov-Kozlov-Oleinik [40], we get that
yn—7y in C(T, H). So since x,— x in W(T), in the limit as n—co, we get
from equation (5)
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~(0), x={ 00, 30dt—{ <e@, x®ydt, o= kt—N(5)ds)
={ oo, yerar={ <=5+ A0r3@, xpdr
={ w0, 50dt—), x0- >, 2@pat={r@, Avx@yar

— [ ao+awx, yopdr={ o, oyt

== (Z+Ax, ¥iecxy. r2cxn=, ¥rzcx>,L2¢x»

Since yeW .(T') was arbitrary and W,.(T) is dense in L* X)(see Zhikov-
Kozlov-Oleinik [407), we conclude that

2+ AW x@)=v() a.e., x(0)=x,
with v(t):S:k(t—s)h(s)ds, h(-)ESk. z¢y». Hence x(-)&P and thus we have
shown that imP,SP. Q.E.D.

Remarks. (1) If X is a separable Hilbert space, then w-limP,=P. This
follows easily from theorem 4.1 and that fact in this case W(T)o.C(T, H) com-
pactly (see Nagy [24]). Recall that IimP,Sw-imP,={x(:)eC(T, H): x=w-
limxn,, £n,E P, }. .

(2) It will be interesting to know if and when we have P, — Pin C(T, H).
Recall that K denotes the Kuratowski convergence of sets (i.e. limP,={x<
C(T, H): limd(x, P,)=0}=P=ImP,={x(-)eC(T, H): limd(x, P,)=0}; see Ku-
ratowski [197). The difficulty here is the “memory” feature of our evolution
inclusion. Namely, because of the integral term, the velocity doesn’t only
depend on the instantaneous values of the state, but also on the past ones.

5. Random version

In this section we examine a random version of the integrodifferential
evolution inclusion (*). So now all the data depend on a random parameter w
belonging in a complete probability space (2, 2, p).

So the integrodifferential evolution inclusion under consideration is now the
following :

{ #(w, D+ Ao, t, x(, t))eS:k(w, t—8)F(w, s, x(w, ))ds a.e. on T, 0= }(*)
(@, 0)=1x.(®) !

By a random solution of (*),, we understand a measurable stochastic process
x: RXT—X s. t. for every w8, x(w, -)EW ,o(T) and x(w, +) solves (¥),.
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We will need the following hypotheses on the data

H(A),: A: 2xTxX—-X* is an operator s. t.
1) (w, t)—A(w, t, x) is measurable,
(2) x—A(w, t, x) is hemicontinuous, monotone,
3) [Aw, t, x)[[+Zcl@)1+]x]|?"!) a.e. for all w=Q, c(w)>0, ¢(-)
is measurable, p=2,
4) <Alw,t, x), xd>=c;()]x||F a.e., ci(w)>0, ¢,(-) is measurable.
H(F)y: F: QXTxXH->P;H) is a multifunction s. t.
1) F(, -, -) is measurable,
(2) F(w,t, -) is sequentially closed in HXH,, for F(-, -, ) being Ps.(H)-
valued or F(w, ¢, ) is L. s. c. for F(-, -, -) being simply P,(H)-valued,
3) |Flw,t, x)|<a(w, )+blw)|x|¥? a.e. for all weQ, alw, -)=L4, a(-, -)
is measurable,

H(k),: k(w, -)= LT, L£(H)) and for all h€ Hw, t)—k(w, t)h is measurable.

THEOREM 5.1. If hypotheses H(A),, H(F);, H(E), hold and x,: Q->H is
measurable, then (*), admits a random solution.

Proof. Let S: Q--2%2¢™> be defined by
S(@)={xW(T): 2t)+Alw, t, x(t))zS:k(w, t—s)h(s)ds a.e., x(0)=x,w)
hES% . z¢»=Skw. z¢»} -

From theorem 3.1 (convex case) or theorem 3.3 (nonconvex case), we have
that S(w)# @ for all w=f. Then

GrS={(w, x)E2XW ,«(T): S:(x(t), u(t))dt+gor<A(w, t, x@), u@®)>dt
—_—SOT(S:k(w, t—s)h(s)ds, u(t))dt, ue LX), x(0)=1x,(®)

and S:dy(h(t), Fw, #, x()))dt=0}

where dy denotes the distance function in H. Since X is separable, L?(X) is
separable too. So let {u,}.»:S L?(X) be a countable dense subset. We have:

GrS= N {(@, YEDXW ,(T): S:O&(t), un(t)>dt+S:<A(w, LX), wn(t)dt
:S (S:’“"’» t—=$)h(s)ds, un®))dt, x(0)=1x(@)

and S:dg(h(t), Fla, t, x(1)dt=0} .
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Recall that x—4% is a continuous map from W,(T) into LY X*). Also note
that (w, x)HS:<A(w, t, x(1)), u.(t)>dt is a Caratheodory function, i. e. measurable
in w and continuous in x; hence it is jointly measurable. Also from Fubini’s
theorem we have that w—>g:(§:k(w, t—s)h(s)ds, u,,(t))dt n =1 1is measurable.

Finally let 7: WpoT)—C(T, H) be the continuous embedding map. Using the
measurability hypothesis on F(-, -, -)(see hypothesis H(F),(1)), we see that
(w, t, x, 2)—du(z, Flw, t, e,(i(x)))(here e,(-) is the t-evaluation map) is measurable
in (o, t, x) and of course continuous in z, thus it is jointly measurable. Hence
(@, t, x)—du(h(®), F(w, t, x(t))) is measurable from 2XT XW (T, H) into R.=

e x)—»SZdH(h(t), F(o, t, x(t))dt is measurable. Furthermore the map ¢:

(w, x)—ey(i(x))—x,(w) is Caratheodory, hence jointly measurable. So finally

Grs= N {(, X)ERQXW po(T): S:<x(t), u"(t)>dt+S:<A(a), t, x(2)), ua(t)>dt

={ ([ r@, t=9n)ds, us®)dt, g, =0, g(@, x)=0}
&3 XBW p(T)).

Apply Aumann’s selection theorem (see Wagner [38]) to find s: QW ,(T)
measurable s. t. s(w)=S(w) for all w=f. Then invoking theorem 17, p. 198 of
Dunford-Schwartz [13], we conclude that x(w, t)=s(w)(t) is the desired random
solution of (*),. Q. E.D.

Remark. The interesting feature of the above existence result is that it
covers also the nonconvex case. Most works in the literature, even for simple
differential inclusions in R", assume convexity and continuity of the random
orientor field (see for example Chuong [9], Nowak [25] and Papageorgiou [27],
[29]) or single valuedness of it (see for example Deimling [10], Kravvaritis-
Papageorgiou [18], Ladde-Lakshmikantham [20] and Tsokos-Padgett [37]).

6. Optimal control

In this section we consider applications to optimal control.
So consider the following infinite dimensional optimal control problem with
“memory”.

J(x, u)=S:L(t, x(t), u(t))dt — inf=m
[ s. t. x(t)+ A, x(t)):S:k((t—s)f(s, x(s))u(s)ds. a.e.
I xO)=x,cH

ut)eU(t, x(t)) a.e., u(-) is measurable

(***)
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We will need the following hypotheses on the data. Here Y is a separable
reflexive Banach space, modelling the control space.

H(f): f: TxH—-.L(Y, H) is a map s. t.
(1) t—f(t, x)u is measurable for all (x, u)e HXY(i.e. f(-, x) is
measurable for the strong operator topology),
(2) x—f(, x)*h is continuous for all (¢, h)eT X H(i. e. the adjoint of f(¢, x)
is continuous in x in the strong operator topology),
@) Nft, MNew.m>=a®)+blx|¥ a.e., with a(-)= L%, b0.

HWU): U: TXH—-P;(Y) is a multifunction s. t.
(1) U(-, +) is graph measurable,
(2) x—U(t, x) has a graph which is sequentially closed in H xY ,(here
Y., denotes the space Y with its weak topology),
3) U@, x)|<M for all (¢, x)eT X H.

H(L): L: TxHxXY—-R=R\U{+} is an integrand s. t.
(1) L(-, -, -) is measurable,
@) L, -, +)is Ls.c. on HXY and convex in u<Y,
3 sO—MUx|+IuDZLE, x, u) a.e. with ¢(-)e L, M >0.

Because of the feedback form of our control constraints and since our cost
integrand is R-valued, we also need the following feasibility type hypothesis :

H,: There exists an admissible “state-control” pair (x, u)EW ,(T)X LY Y)
for () s. t. J(x, u)<co.

THEOREM 6.1. If hypotheses H(A), H(f), H(k), HU), H(L) and H, hold, then
(***) has a nonempty, sequentially weakly compact in Woo(T)X LY Y) set of optimal
“state-control” pairs.

Proof. Let F: TXH—P;(H) be defined by F(t, x)=f( x)U({, x). We
claim that F(-, -) satisfies hypothesis H(F). First note that:

GrF={(, x, y)ETXHXH: yeF(t, x)}
={(t, x, ETXHXH: y=f(t, x)u, ucU(t, x)}
=projrxaxul(t, x, ¥, WETXHXHXBy(0): y=f({, x)u, ¢, x, u)=GrU]

where By(0)={veY : v|SM}.

Note that L ={{, x, v, u) €T XHXHXBy0): y=f({, x)u, (¢, x, u)esGrU}
€B(T)X B(H) X B(H) X B(Byx(0)). Also By(0), (i.e. By(0) with the relative
weak topology) is compact metrizable (see Dunford-Schwartz [13], p. 434) and
B(By(0),)=B(Y ,)N\By(0)=B(Y )N\ Bx»(0)=B(Bx(0)) (see Edgar [14]). So invok-
ing the Arsenin-Novikov theorem (see Levin [21]), we get that projrymxazl <
B(T)X B(H)x B(H).
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Next we will show that GrF(t, -) is sequentially closed in H xXH,. So let

(Xa, ¥2)EGrF(t, -) and assume that (x», ¥a) —> (x, ). We have y,=f(t, Xn)un
with u,€U(t, x,). Since |u,||<M, n=1, by passing to a subsequence if necessary,
we may assume that u, — u and because of hypotheses H(U)2) and (3) we have
that uew-limU(, x,)SU{, x). Also for all he H we have

(¥n, W)=, xn)un, N)=(un, f({, xa)*h)
But by hypothesis H(f)(2), x—f(t, x)*h is continuous. So
(n, [, X2)*R)y.yvs —> (u, [, X)*h)y v+
= (f(t, x)u, h)=(y, h) for all heH,
= y=f(t, x)u with wucU(, x),
== (x, y)&GrF,

Finally note that |F({¢, x)| < f@, )llrw.aexMZa(t)M+bM | x|%9. So we have
satisfied hypothesis H(F).
Now note that every trajectory of (***) also solves the integrodifferential

evolution inclusion #(f)+A(t, x(t))eS:k(t—s)F(s, x(s)ds, x(0)=x, and the latter

has a solution set that is weakly compact in W,(T)(see theorem 3.2). So to
prove our theorem, we need to show that the set of optimal pairs is nonempty
and sequentially weakly closed in W ,(T)X L'(Y).

To this end let {(x,, #n)}.z1 be a minimizing sequence of admissible pairs,
i.e. J(xa, u,)l m. By passing to an appropriate subsequence, we may assume

that x, —x in W,«T) and u, —u in LXY). Invoking theorem 2.1 of Balder
[4] we get

S:L(t, x(), u(B)dt<m=1mJ (xn, 1)

Also %, — % and Ax,— Ax in L%(X*)(see the proof of theorem 3.1) and
since W,o(T) LP(H) compactly and W,o(T)SGC(T, H), we may assume that

xn(t)—s>x(t) in H for all tT and so by using hypothesis H(f)(2), we have
S:k(t—s)f(s, xn(t»un(s)dsig:k(z—s)ﬂs, x(s)u(s)ds in H. Thus for every pe
L?(X) we have

(%, Do+ ((Axn, PNe=((Va, P))o(vn(t)=S:k(t—S)f(s, xa(8)un(s)ds)

—> (&, D)o+ (Ax, D=, PI)= kt=5)f (s, x(sDu(s)ds),
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— O+ A, 2O)={ kt—=)f(s, x(sDu(s)ds a.e.
x(0)=x,
u(®)eU(¢, x(t)) a.e., u(-) is measurable
== (x, u) is an admissible “state-control” pair for (***)
— J(x, u)=m i.e. (x, u) is optimal.

So the set of optimal pairs is nonempty. Furthermore it is clear from the
above proof that it is sequentially weakly closed in W,(T)X LY(Y). Thus it is
sequentially weakly compact in W,(T)X LY(Y). Q.E.D.

Now we turn our attention to the variational stability of the optimal control
problems. So consider the following sequence of problems:

0

{ Tal, u>=§'Ln(t, (), u(®)dt > inf=m,

s t. x(f)+An<t)x(f)=S:k(t—S)fn(s, x(SNus)ds a. e (%),
x(0)=x7
u@)eU,(t) a.e., u(-) is measurable

and the limit problem

I(x, u)=§:L(t, (), u(D)dt — inf=m

s t. a‘c(t)—I—A(t)x(t):S:k(t—s)f(s, *(NUDs 2. €. | snry
1 x(O)=x

u@)eU(t) a.e., u(-) is measurable

Recall that if Z is a Banach space and {C,, C}.:1S2°\{@}, we define
UmC,={zeZ: limd(z, C,)=0}={z&Z: z=s-limz,, z,&€C,, n=1}, ImC,={z&Z:
limd(z, C.)=0}={z€Z: z=s-limzy,, 22, ECn,, 1:1<n,<--<nz<--} and w-limC,
={z2&€Z: z=w-limz,,, 2,,ECr,, n1<ny<--<o-n;<---}. We say that the C,’s
converge to C in the Kuratowski sense (denoted by CniC) if and only if
limC,=C=1imC,(see Kuratowski [19]). We also say that the C,’s converge

to C in the Kuratowski-Mosco sense (denoted by Cnﬂ C) if and oglz if
limC,=C=w-limC, (see Mosco [23]). Note that we always have limC,<limC,
Cw-mC,. If {fa, f}n21SR?, then we say that the f,’s epi-converge to f

(denoted by f.->f) if and only if epif, —> epif. Recall that epif={(z, A=
ZXR: f(z2)<A} (similarly for epif,). This mode of convergence is in general
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different from pointwise convergence and is useful in the sensitivity analysis of
variational problems. For more details we refer to Attouch [3] and Mosco [23].
We will need the following hypotheses on the data of our problems:

H(f): fa f: TXH—-.L(Y, H) are maps s. t.
(1) t—f.(t x)u are measurable for all (x, u)e H XY,
2) 1 falt, 2V u—fa@ y*ul=l®lx—y| a.e. with [,(-)eLl, |ul|£L, x,
YEH,
3) Nfalt, Olrw.m=a®)+blx| a.e. with a(-)eL%, >0,

@) fa, x)i‘; f(t, x) a.e., where so denotes the strong operator topology.

HWU),: U,, U: T—P;(Y) are multifunctions s. t.
(1) U,(-) are measurable,
@) U.0IEM a.e.,

@) U.0)SU® a.e..
H(L),: L, L: TXHXY—R are integrands s. t.
(1) t—L,(t, x, u) are measurable,

2) (x, u) =L, x, u), L(t, x, u) are bontinuous, convex,
3) LA, x, W SdD+b( x| +1lul?) a.e. with ¢(-)= Lz, b>0,

@) Lat, -, )> L, -, -) ae.

THEOREM 6.2. Jf hypotheses H(A),, H(f):, H(k), H{U),, H(L), hold and x?%
$
— xo tn H, then m,—m.

Proof. Let (x, u) be an admissible “state-control” pair s.t. J(x, u)=m. It
existence is guaranteed by theorem 6.1. Note that for every v LY(Y) we have:
. . b
dsp, 0= jnf Jo—wli=jof, [ luO—wldt

b b
=S inf ||v(t)—h||a’z‘=g dye(w®)dt
0ReU p (L) 0

and similarly dsy(v)={ doc@()dt. Because by hypothesis H(U)UH() > U()
a.e. we have dy, o (v(t)—dyu>(v(t)) a. e. and so by the dominated convergence
theorem we have dsg,n(v)-»dsll,(v).

Let u,&S%, s. t. dsg,n(u)=llu—unllu<y>. Such an element exists since by
proposition 3.1 of [30], Sj, is weakly compact in L*Y). Then dsbn(u):
lu—unllzry—dsy(u)=0. Let x.(-)EW(T) be the unique trajectory generated by
u,(+). By passing to a subsequence if necessary, we may assume that x, 5 z
in W(T) and so x, 5% in L*H). Working with the auxiliary function y(-)e
W,.(T) as in the proof of theorem 4.1, we can show that £(-) is the unique
trajectory generated by the admissible control u(-). Also from theorem 3.1 of
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Salvadori [34], we know that J, A J and so from Mosco [23] (see also Salvadori

Eﬁﬂ)’ we know that we can find vy, 5 x in L¥H) and v, 4 u in LYY) s. t.
imJ.(ys, v2)=J(x, u)=m. From Rockafellar [33], we know that {J,(:, )}ns:
is locally equi-Lipschitz. Thus for some 2>0 we have

| Ja(%ns tn)=J (s va) | ZRLI%n—Yalzecar+un—valz2crs] — 0

== [ Ja(Xn, Un)—Jn(Yns va)| =0

== limm, <Tm J (x5, un)STmJ (0, va)<J(x, w)=m

= limm,<m 1)

Next let {(x,, uz)}n2: be admissible “state-control” pairs for (***),n=1 s. t.
Ja(%n, u,)=m,. Again their existence is guaranteed by theorem 6.1. By passing

to a subsequence if necessary, we may assume that x, S xin W(T) and u, 5 u
in L}Y). Clearly usS}. Also, once again as in the proof of theorem 4.1,
through the auxiliary function yeW .(T), we can show that (x, u) is admissible
for (***)’ (note that

If 2@ X2 v—f(t, x@OPV o, =1 f 2@ xa@)*v—Falt, 2OVl cw
Ff 2l x@OYv—f, x| rv. SO 22— 2D+ Falt, x@OYv

—f@ x@® vl rr.m>—0 a. e. for p|=L.
So

¢ w
[Let—976s, zatMun(olds —> [ kt—9)7(s, xeDu(srds
in H). Then since J, LN J, from the properties of the epigraphical convergence
(see Mosco [23] and Salvadori [34]), we have
m< J(x, w)Slimm,=lmJ.(%n, u,) —> m=limm, 2)
From (1) and (2) above, we conclude that

My —> M. Q.E.D.

7. Examples

In this last section of the paper we work out in detail two examples that
ilustrate the applicability of our work.

(a) In the first example we consider a distributed parameter optimal control
problem, governed by a nonlinear parabolic integrodifferential equation.

So let T=[0, ] and let Z be a bounded domain in R™ with smooth boundary
0zZ=rI".

The problem under consideration is the following :
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I(x, u)=S:SZL(t, 2, x(, 2), u(t, 2))dzdt —> inf=m

st P 5 (CDmDR AL, 2 (et D= K= (s, 7 2, 2)

ot " diEm
u(s, 2)ds on TXZ (F¥EE)
DPxlp.r=01B1Sm—1, x(0, =12}, | lutt, 2)I*dz

<[ 00 2 2, 2z

Here a=(a,, -, a,) is a multi-index, D*=D% --- Dg» is the elementary

partial differential operator with D;=

a‘;. Also |a|= glall is the “length”
of the multi-index a and p(x(2)={D"x(2): |r|=m}.

We take X=H™Z), H=L*Z) and X*=H ™(Z). It is well known that this
is a Gelfand triple of spaces, with all embeddings being compact (Sobolev-
Kondrachov embedding theorem).

We will need the following hypotheses on the data of (***):

(n+m)!
nlm!

1) @, 2)—A., z, n) are measurable,

(2) n—Aqt, z, ) is continuous,

3) 1A, 2z, PILa@, 2)+blyl a.e. with a(-, -)eLYT XZ), b>0,

@) 3 (At 2z, n)—Aal, 2, 92X P1a—N22) 20,

lalsm

®) C]Iﬂllz.—\flaé‘,m/la(t, 2, 7N, With ¢>0.

H(A): A,: TXZXR"‘"”->R(n(m)= ) are maps S. t.

H(f): f:TXZXR—R is a map s. t.
1) &, 2)—f({, z, x) is measurable,
(2) x—f(t, z, x) is continuous
3) 1@, z, x)| M\, 2z) a.e. with Mi(-, -)eL=(T XZ).

H(L),: L: TXZXRXR—R is an integrand s. t.
Q) L¢, -, -, ) is measurable
@) (x, u)—L(t, z, x, u) is . s. c. and convex in u,
3) ¢, a)—MEXx|+1u)SLQE, 2, x, u) a.e. with ¢(-, -)e L T XZ),
M()eLi2).

H({): ¢: TXZXR—R is a map s. t.
1) (@, 2)—¢(t, z, x) is measurable,
(2) x—¢(t, z, x) is continuous,
@) ¢, 2z, x) =M.

Let a: TXHMZ)XH™Z)—R be the time dependent Dirichlet form defined
by
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att, %, M= 2 | Adt, 2 9x@NDy*(@)dz, x, ySHYZ).

aljsm
Using the Cauchy-Schwartz and Minkowski inequalities, we can show that
lat, x, )| =(@8@+blxzp)Y | ama

with d(t)=|la(t, *)|z2cz>. S0 we can define a generally nonlinear operator A(t):
HMZ)—-H™™(Z) by

a(t, x, y)=<A(, x), y>.

From Krasnoselski’s theorem, we know that the Nemitsky (superposition)
operators corresponding to the maps A.(t, -, p(x(-))) are continuous from H{(Z)
into L%(Z). Using that, it is easy to check that A(t, -) is hemicontinuous. Also
clearly from Fubini’s theorem, we have that {—A(¢, x) is measurable.

Next note that

<A(t, x)—A(t, y): x—y>:S Z‘ (Aa(t: 2, ﬂ(x(z)»'_Aa(tr Z, ﬂ(y(z))))

Zlia|sm
X(D*x(z)—D*y(2))dz=0
= A(¢, -) is monotone.

Finally from hypothesis H(A),(5) we have that
¢ % |D“x(z)|2§| Izg: Adt, 2, 9(2(2))D*x(2) 2. e.
= cllxlizpa=<AE, 1), x> a.e.

Therefore we have satisfied hypothesis H(A).
Next let f: TX LY Z)—.L(L¥Z)) be defined by
(f(t, Du)D=f(t, 2, x(2)u(2).

Because of hypothesis H(f), we see that f(-, -) is well defined and satisfies
hypothesis H(f).
Let L: TXL¥Z)xLXZ)—R be defined by

L@, x, u)=SZL(t, z, x(2), u(z))dz.

Since L(-, -, -, ) is a normal integrand (i. e. measurable in all variables and
I.s.c. in (x, u); see for example Salvadori [34]), we can find Caratheodory in-
tegrands L,(t, 2, x, u) s.t. L, 1L and ¢@¢, 2)—M @) (1x|+|u)S L., 2, x, W)=

n. Set L.(, x, u):SZL,,(t, z, x(2), u(z))dz. Clearly L,(-, -, -)is Caratheodory,

hence jointly measurable and by the Monotone Convergence Theorem we have
L.t L=L is jointly measurable. Also L(t, -, -) is 1l s.c. and convex in u.
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So we have sati§ﬁed H(L).
Finally let k: T—.L(L*Z)) be defined by k()] and let

Ut, x)={uc L¥Z): llult2r=¢(t, x)*}

where §(t, x):SZgb(t, z, x(z))dz. Note that because of hypothesis H(¢)§(:, -) is

a Caratheodory function (hence jointly measurable) and so U(t, x) satisfies hy-
pothesis H(U).

Now rewrite (****) as the following equivalent abstract optimal control
problem :

J(x, u):S:IL(t, x(1), u(®t))dt —> inf=m 1
5.t HO+AW, 2= Ft—5)7(s, 15 a.e. | )
x(0)=x(+)
u®)eU(, x(t)) a.e., u(-) is measurable

This has the form of problem (***). So invoking theorem 6.1, we have:

THEOREM 7.1. If hypotheses H(A)s, H(f):, H(k), H(L),, H(¢p) hold and x-)
e LXZ), then (****) admits an optimal solution.

(b) This second example deals with the variational stability of a class of
parabolic optimal control problems.

So consider the following sequence of optimal control problem :
Ja(x, u)zS:SZL,,(t, z, x(t, z), u(t, z))dzdt —> inf=m,

s. t. %—wila{‘j(z)g—:lzg‘jk(t—s)f,,(s, z, x(s, 2))u(s, z)ds on TXZ

*lrar=0, x(0, =21(@), | lu(t, 2)*dz=rat) a.e.

and the limit problem

T(x, u):S:SZL(t, 2, x(t, ), u(t, 2)dzdt —> inf=m
ox n o0x ¢ .
st —— X alj(z)—-—=§ k(t—s)f(s, z, x(s, 2))u(s, z)ds on T XZ ((F¥kkx)y
0t 9= 0z, [)

1 rer=0, x(0, 2) =x42), Sz'“(f’ 2)|2dz<r(t) a.e.

Here X=H¥Z), H=L*Z) and X*=H " (Z). We will need the following
hypotheses on the data of the above problems.
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H(A)y: a.,=aj, there exist m;, my>0 s. t. m;<a}(z)<m,; and l/aﬁi 1/a4

* *
ay W oan , ahal W iy, ,. . .
— 4 g —>q,— 2000 G 1) in Lo(Z).
an an 1) an > A an (@ JF ) in (Z)
H(f)s: fa, f: TXZXR—R are functions satisfying H(f), and f.(t, z, x)—
f@, z x)

H(L);: L., L: TXZXRXR—R are Caratheodory integrand convex in (x, u)
eRXR,

[ Lat, 2, x, W), | LG, 2, x, W =6:@, 2)+b(1x1°+|ul®) a.e. with ¢i(-, -)

T
eL¥ TxZ),b>0 and L, -, -, -)—> L, -, -, -) a.e.
H@): |ra@)| =M a.e. n=1 and r,(t) — r(t) a. e..
Let A,, A: H{(Z)—»H % Z) be the bounded linear operators defined by

n ox 0
{An, x, y>=au(x, y)=SZ”2_lal‘j(2)v—a§ —aj dz
bl . 0z,

and

NN
Az, p=atx, =], 3 af@g 5 -dz.

Then A,, A=.L(X, X*) and because of hypothesis H(A), and Tartar’s
theorem (see Sokolowski [35]), we have A, i A.

Also let

L., x, u)=SZL,,(t, z, x(2), u(z))dz and L@, x, u):SZL(t, z, x(2), u(z))dz.

Then from hypothesis H(L), and theorem 3.1 of Salvadori [34] we have
zn(t) ) ')_t)z(t: ] ') a. e..

Finally set U.(t)={uc L*Z): |uallrecr=r.()} and U)={u&c L Z): l|lullr2cz
<r(t)}. Since by hypothesis H(r), r,(t) — r(t) a.e., it is easy to see that U,(¢)
SUuw a.e.

Rewrite problems (****)! and (****)’ in the following equivalent abstract
forms.

0

Vn(x, u)=§r£n(t, (), w()dt —> inf=my

/

5. t. ;’c(t)—l—Anx(t):S:E(t—s)f,,(s, X(NU(IS 8. €. | rnnny,
2(0)=x73(+) -

u(t)eU,(t) a.e., u(-) is measurable
and
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f(x, u):S:f,(t, x(t), u))dt — inf=m
s t. x(t)—l—Ax(t):S:E(t—s)f(s, x(s)u(s)ds a. e. L (e,

x(0)=x.(+)

u()eU(t) a.e., u(-) is measurable

These have the same forms as problems (***), and (***)’ respectively. So
invoking theorem 6.2, we can have the following result:

THEOREM 7.2. If hypotheses H(A),, H(f),, H(k), H(L),, H(r) hold and x?%
S
— xo in L¥Z), then m, — m.
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