
K. YAMAGUCHI
KODAI MATH. J.
14 (1991), 144-162

SELF MAPS OF ΣkCP3 FOR fe^l

Dedicated to Prof. Shcro Araki on his 60th birthday

BY KOHHEI YAMAGUCHI

§ 1. Introduction.

Throughout this note, all spaces, maps and homotopies are assumed to be
based, and we will not distinguish the map and its homotopy class.

For two topological spaces X and Y, we denote by \_Xy Y~] the set of
homotopy classes of maps from X to Y.

If X=Y, then the set [X, X~\ becomes a monoid with its multiplication
induced from the composition of maps and we put M ( Z ) = [ Z , X~\.

Let 6{X) be the group consisting of all invertible elements of M(X) and
we call it the group of self-homotopy equivalences of X.

The group 6{X) has been studied by several authors since the paper of
W. D. Barcus and M. G. Barratt [1] appeared.

However, we have not yet obtained an effective method for calculating it
except classical ones, and its structure also has not been clarified sufficiently.
Furthermore, very little is known about it even when X is a simply connected
CW complex with three cells which is not a if-space.

Then the purpose of this note is to study the multiplicative structure of
M{ΣkCPz) and determine the group e(ΣkCPz) for k^l, where CPn is the
complex n dimensional projective space and Σk denotes the &-times iterated
suspension.

We denote by Zn (resp. Z/n) the multiplicative (resp. additive) cyclic group
of order n.

Our main results are stated as follows:

THEOREM A. (The case k=l)

(1) There is an exact sequence

V Σ

o —>z—> ε(ΣCP*) —> z 2xz 2xz 2 —> l.

(2) e(ΣCP")=Z\κ(Z2xZ2) (semidirect product).

Next we consider the case k>2.
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Then ΣkCPB is a double suspension space and it will be proved that
M(ΣkCPz) becomes a ring whose addition and multiplication are induced from
the track addition and the composition of maps.

THEOREM B. (The case k^2, 3)

(1) The suspension homomorphism Σ : M(Σ2CPB)-+M(Σ3CP3) is an isomorphism
as a ring.

(2) As an abelian group,

M(Σ2CP*)=Z{id}®Z{Σ'μ1\®Z{Σμ2}φZ/2{Σμs},

M(Σ*CPη=Z{id}®Z{Σ2μ1}®Z{Σ*μ2}®Z/2{Σ2μs}.

(3) Let φ and φ be two elements of M(Σ2CPS) of the following forms:

φ=a(id)+b(Σμι)+c(Σμ2)+u(Σμz),

ψ=d(id)+e(Σμi)+f(Σμ2)+v(Σμs),

where a, b, c, d, e, f^Z, and u, yeZ/2. Then

φ°ψ=(ad)id+(ae+bd+2be)Σμί+(af+cd+6cf)Σμ2

+(av+ud)Σμs.

(4)

THEOREM C. (The case &^4). We assume £^4 .

(1) As an abelian group,

M(ΣkCPη=Z{id}®Z{Σk-1μί}®Z{Σk-1μ2}.

(2) Let φ and ψ be two elements of M(ΣkCPz) of the following forms'

<p=a(id)+b(Σk-1μ1)+c(Σk-1μ2),

φ=d(id)+e(Σk-ίμ1)+f(Σk-1μ),

where a, b, c, d, e, f<^Z. Then

<poφ=(ad)id+(ae+bd+2be)Σk-1μ1

+(af+cd+§cf)Σk-ιμ2.

(3) e(ΣkCP*)=Z2xZ2.

COROLLARY D. Let k^L Then the homomorphism D: M(ΣkCPz)^D(3, Z)
is an isomorphism of rings, where the ring D(3, Z) and the homomorphism D are
defined in (5.8) and (5.10).

This paper is organized as follows:
In section 2, we will calculate the homotopy groups π*(ΣkCP2) and

π*(ΣkCP3) for 1^&^4. In section 3, we will determine the additive structure
of M(ΣkCPz), and in section 4, we will study the multiplicative structure of
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M(ΣkCPz). In section 5, we will consider the natural representation

Φ=deg:M(ΣkCPn)—> End(H*(ΣkCPn, Z))^Zn (k^2n-2)

which is defined by Φ(Θ)=H*(Θ, Z) for Θ^M{ΣkCPn).
Finally the author would like to take this opportunity to thank Professors

S. Sasao and J. M0ller for their sincere advices and suggestions. He would
also like to thank the referee who pointed out several mistakes in the original
version of this paper and gave many valuable suggestions.

§2. Homotopy Groups.

Let cn^πn(Sn) be the identity map of Sn, and η^^π^S2) and v 4eπ 7(S 4) be
the Hopf maps.

We put ηn=Σn'2η2f ηl=ηn°ηn+ι, ηl=VnoVn+ιoVn+2 for n^2 and vm=
Σm~4ι>4 for m^4.

Let ω(Ξπ6(S*) be the Blakers-Massey element, and p: S3->i?P3-SO(3) be
the double covering projection.

Then the following is well-known:

LEMMA 2.1. (H. Toda, [16])

(1) πn(Sn)=Z{cn}, and πm(Sn)=0 for n>m.

(2) πB(S2)=Z{τ)2}, and πn+1(Sn)=Z/2{ηn} for n^3.

(3) πn+2(Sn)=Z/2{η2

n} for n^2.

(4) π5(S2)=Z/2{ηl}f πβ(Sη=Z/12{ω},

π7(S4)=Z{v4}®Z/12{Σω}, and πnUSn)=Z/24{vn} for n ^ 5 .

(5) π6(S2)=Z/12{η2°ω},

π9(S5)=Z/2{vδ°τ]8}, and πn+i(Sn)=0 for n^6.

(6) J(p)= ±ω, where J : π3(SO(3))=Z{p}->π6(S*) denotes the J-homomorphism.

(7) [*4> C4]=2ui—Σω and ^3

oP4=
:Ci>o^6, where [ , ] denotes the Whitehead

product.

Consider the following three cofibre sequences:

τ}2 i P V* Σi Σp
(2.2) S3 — > S2 — > CP2 — > S4 — > S3 — > ΣCP2 — > S5

(2.3) CP2 --> CP3 -Λ. S6 —> ΣCP2 — I ΣCPZ —> S7

j°i π Σj°Σz
(2.4) S2 — > CP" — > CP3/S2^S4VS6 — > S3 > ΣCP3
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Since the order of ηs is two, there exists a coextension of 2c4, 2ci^πδ(ΣCP2)
such that,

(2.5) Σpo2ί<=2cE.

We recall the following two results:

LEMMA 2.6. ([19]; J. Mukai, [8]). There exists some element β(ΞπΊ(ΣCP2)
satisfying the following conditions:

(1)

(2) Σj°β=[α5, cz~]rj where aδ^πδ(ΣCP2, S3) denotes the characteristic map
of the 5-cell in ΣCP2 and the [ , ] r the relative Whitehead product.

(3) Σβ=Σ2iov4oVl.

(4) Σp°β=Q.

Proof. The assertions (1), (2) and (4) follow from (16) in [19] and (3)
follows from (8.5) in [8]. Q.E.D.

LEMMA 2.7. ([19], (1.7))

(1) πk(ΣCP2)=0 for 6 = 1 , 2 , 4 .

(2) πB(ΣCP2)=Z{Σi}.

(3) πδ(ΣCP2)=Z{2ί,}.

(4) πβ(ΣCP*)=Z/6{Σioω\.

(5) π7(ΣCP2)=Z{β}.

Next, we compute π*(ΣkCP2) for 2 ^ k <i.

LEMMA 2.8.

(1) πk(Σ2CP2)=0 for k=l, 2, 3, 5.

(2) π4(Σ2CP2)=Z{Σ2i}.

(3) π 6 ( Σ 2 C P 2 ) ^

( 4 ) πη(Σ2CP2)

(5) π8(Σ2CP2)

Proof. Consider the homotopy exact sequence of the pair {Σ2CP2, S4).
Since the pair (Σ2CP2, S4) is 5-connected, πk{Σ2CP2)=0 for 1^^^3,
π4(Σ2CP2)~Z{Σ2i} and we have the exact sequence:

(2.9) π9(Σ2CP2, S4) - Λ π8(S4) — > π,{Σ2CP2) — > π8(Σ2CP2, S4) - Λ
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π7(S4) — > πΊ(Σ2CP2) —* π7(Σ2CP2, S4) —

3e
— ^ π6(Σ2CP2, S4) — > πδ(S4) — > π ^ C P 2 ) — ^ 0.

Let aβ(Ξπ6(Σ2CP2, S4) be the characteristic map of the β-cell in Σ2CP2.

Then using the excision theorem and [2], it is easy to see the following:

(2.10) (1) πG(Σ2CP2, S4)=Z{α6} and dQ{aG)^η,.

(2) πlΣ2CP2

y S4)=

(3) πlΣ2CP2, S4)=

(4) π,(Σ2CP2, S*)=

Since d6(a6)=η4, it follows from (2.1) that πδ(Σ2CP2)=0. It is easy to see that
the diagram

πk(Σ2CP2, S4) "—> πk^(S*)

(2.11) I OLQ* „ I7)** is commutative.

πk{D«, S4) > π,. x(5 5)

Hence, using (2.1), (2.10) and (2.11), we have

(2.12) (1) 37 is an isomorphism.

(2) d8 is a monomorphism and its image is equal to

Im[3 8 : π8(Σ2CP2, S 4 )—> πΊ(S')]=:Z/2{ηl}=Z/2{6Σω}.

(3) d,{a^πlD\ S

Here we remark

(2.13)

In fact,

Hence it follows from (2.1), (2.9), (2.10), (2.12), (2.13) and the excision theorem
that we have

(2.14) (1) Σ2p* : π6(Σ2CP2) — > πG(SG) is a monomorphism and lm(Σ2p^)=Z{2cQ}.

(2) πΊ(Σ*CP*)

(3) πlΣ2CP2)

Furthermore, using (2.5) we have Σ2p^(Σ2c4c)=2c6. Hence πQ(Σ2CP2)=

2u);

This completes the proof. Q.E. D.
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Similar calculations show the following three results and we will omit the
proofs.

LEMMA 2.15.

(1) πk(Σ*CP2)=0 for l^k^i or fe=6.

(2) πJ,Σ*CP%)=Z{ΣH).

(3) ί

(4)

(5)

LEMMA 2.16.

(1) πk(Σ'CP*)=0 for 1±!&:£5 or k=7.

(2) πG(Σ4CP2)=Z{Σ4i}.

(3) ^

(4)

(5)

COROLLARY 2.17.

(1) π§(S°Uηe*)=

(2)

(3)

(4) ,

(5) πf(S°U^ 2 )-0.

Now we will compute the groups π*(ΣkCP3) for 1^&<:4. First we need the
following:

LEMMA 2.18. Let β6<=Ξπ5(CP2) be the attaching map of the 6-ceίl in CP*.
Then Σβ6=±Σi°ω.

Proof. Since the space C P 3 is the total space of the S2-bundle over S4

with its characteristic element ρ<Ξπs(SO(3))=Z{ρ}, it follows from (3.1) in [4]
and (6) of (2.1) that Σβ6=Σi°J(p)=±Σi°ω. Q.E.D.

PROPOSITION 2.19.

(1) πh(ΣCP*)=0 for k=l, 2, 4, 6.

(2) π£ΣCP*)=Z{ΣjΌΣi}.

(3) ^
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(4) πΊ(ΣCP*)=Z{Σf*β}ξBZ{6e}9 where the fo satisfies the condition

(2.20) Σqo'6ί=6cΊ.

Proof. Since the pair (ΣCP3, ΣCP2) is β-connected, the induced homo-
morphism Σj*:πk(ΣCP2)->πk(ΣCP3) is an isomorphism for 1^&^5 and
epimorphism for k=6. Thus using (2.7), it suffices only to show the case k~6
or 7.

Consider the homotopy exact sequence

d
(2.21) π8(ΣCP\ ΣCP2) — > π7(ΣCP2) — > π7(ΣCP3) — >

3
πΊ(ΣCP\ ΣCP2) — > π6(ΣCP2) — > π6(ΣCP3) — > 0.

Let aΊ<EΞπΊ(ΣCP\ ΣCP2) be the characteristic map of the 7-cell in ΣCP\
Then it is easy to see

(2.22) (1) πΊ(ΣCP\ ΣCP2)-=Z{a7}.

(2) πz{ΣCP\ ΣCP2)=aΊ*π${D\ S6)^Z/2.

Hence the boundary homomorphism d is trivial because πΊ(ΣCP2)=Z{β}.
Similarly, since d(aΊ)=Σβ6=±Σioω and π6(ΣCP2)=Z/6{Σi°ω}, the boundary

homomorphism 3 is surjective.
Hence, π6(ΣCP*)=0 and we have the exact sequence

(2.23) 0 — > πΊ(ΣCP2) — > πΊ{ΣCP*) — > Z{6a7} — > 0.

Here the induced homomorphism (Σq)*: π7{ΣCP\ ΣCP2)->π7(S7) is an
isomorphism.

Therefore, there exists some element 6c£Ξπ7(ΣCP3) such that

(2.24) (1) ΣqoΊϊc=6c » and

(2) π7(ΣCP*)=Z{Σjoβ}®Z{6'c}. Q.E.D.

Similar calculation shows the following three results and the proofs are
left to the reader.

PROPOSITION 2.25.

(1) πk(Σ2CP*)=0 for l^ fe^3 oi k=5.

(2) πlΣ2CP*)=Z{Σ2joΣH}.

(3) π6(Σ2CP*)=Z{Σ2j°Σ2ί4}.

(4) πΊ

(5) π
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PROPOSITION 2.26.

(1) πk(ΣsCPs)=0 for l^k^i or k=6.

(2)

(3)

(4)

(5)

PROPOSITION 2.27.

(1) πk(Σ*CP*)=Q for 1^^^5 or k=7.

(2)

(3)

(4)

(5)

§3. M(ΣkCP3).

For a based topological space X, let M(Z) be the monoid defined by

(3.1)

where its multiplication is induced from the composition of maps and its
identity element 1 is the identity map id. If X—ΣY (resp. Σ2Y), M(X) becomes
a group (resp. abelian group) with the track addition and there is a right
distributive law

(3.2) ao(φ+ψ)=aoφ+aoφ for a, φ, φ(=M(X).

However, left distributive law

(3.3) (φ+φ)oa=φoa+φ*a for a, φ, φ<=M(X),

is valid only when a is a co ϋf-map, e.g. a suspension map.
In this section, we will study M(ΣkCPz) for ktX.

First, consider the cofibre sequence

Σ(j°i) Σπ
(3.4) S3 > ΣCP3 — > ΣCP3/S3=S5VS7 — > S 4 .

Applying [ , ΣCP3'] to (3.4), we have the exact sequence

Σπ*
(3.5) πlΣCP3) —> πh(ΣCPz)@πη{ΣCPz) >

JO' ί)*
M(ΣCP3) > πz(ΣCPs).
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Since πz(ΣCPz)=Z{Σ(j°ϊ)} and Σ(j°i)*(id)=Σ(j°i), the induced homomorphism
Σ(j°i)* is surjective. Hence using π4(ΣCPs)—0, we have the following:

LEMMA 3.6. There is a split exact sequence of groups,

Σπ* Σ(j*ϋ*
0 — > π,(ΣCPz)®πΊ{ΣCP*) > M(ΣCP*) > πs(ΣCP*) —+ 0.

Remark 3.7. The group M(ΣCPZ) is not necessarily commutative and it
seems difficult to solve the extension problem of (3.6).

However, we remark the following:

LEMMA 3.8. The group M(ΣCPZ) is generated by the four elements id,, μu

μ2 and μs, where we put

(3.9) (a) μ^ΣjofaoΣπ!,

(b) μt—SίoΣq,

(c) μs=ΣjoβoΣq.

Here, let pr: CP*/S2=S4VSG-*S4' be the natural projection map to the first
factor and we define the map

by the following composition of maps,

(3.10) π^proπ: CPZ -^> CP 3 /5 2 =S 4 VS 6 — 1 S4.

In particular, the orders of the above four generators are all infinite.

Proof. From (2.19), we have πlΣCP%)^Z{Σjo^u\ and π7(ΣCP*)=

Z{Σj*β}®Zl6c}.
Hence the assertion easily follows from (3.6). Q.E.D.

Next, consider the cofibre sequence

Σ\joi) Σkπ
(3.11) Sk+2 > ΣkCPz > Σk(CP*/S2)=Sk+*VSk+«

— > S k + s .

Then we have the following:

PROPOSITION 3.12.

(1) M(Σ2CP*)=Z{id}@Z{Σμi}®Z{Σμ2}@Z/2{Σμ3}.

(2) M(Σ*CPη=Z{id}®Z{Σ2

μi}®Z{Σ2μ2}®Z/2{Σ2μs}.

(3) M(ΣkCP3)=Z{id}®Z{Σk'1μ1}®Z{Σk-1μ2} for k^
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Here the following relation holds:

(3.13) ΣμB=Σ2j°Σ2iov4°VloΣ2q.

Proof. Let2^&^4. If we apply [, ΣkCP*l to (3.11), since πk+B(ΣkCP*)=Q,
πk+2(ΣkCP*)=Z{ΣkjΌΣki} and Σ\j°i)*{id)-=Σkj°Σkiί we have the split exact
sequence

Σkπ*
(3.14) 0 — > πkUΣkCP*)®πkUΣkCP*) > M(ΣkCP*)

Σ\j*i)*

>πk+2(ΣkCPη—>0.

Hence we have

(3.15)

Using (2.25), (2.26), (2.27) and (2.6), we have the desired results for 2< k<4.
It follows from the Freudenthal suspension theorem that the suspension

homomorphism Σ: M(ΣkCP3)->M(Σk+1CPz) is an isomorphism for &^4. This
completes the proof. Q. E. D.

COROLLARY 3.16. The sequence

Σ
0 — > Z{2μ3} — > M(ΣCP3) — > M(Σ2CP*) — > 0

is exact as a group.

Proof. This easily follows from (3.8) and (3.12). Q.E.D.

COROLLARY 3.17. The sequence

is exact as a multiplicative group, where we put

(3.18)

Proof. It is easy to see that KerlΣ: e(ΣCP3)~>e(Σ2CP")']=l-\-Z{2μ3}.
Thus it suffices to show Σ(€(ΣCP*))=€(Σ2CP*). Clearly Σ(e(ΣCP*)(ze(Σ2CP*).

Conversely, let Θ^€{Σ2CPZ\ Then using (3.16), there exists some element £ e
M(ΣCP') satisfying the condition θ=Σξ. Since H*(θ, Z)=θ*(ΞAut(H*(Σ2CPs, Z))
and θ* commutes the suspension isomorphism of homology groups, //*(£, Z)=
ξ*^Aut(H*(ΣCP3, Z)). Because the space ΣCP* is simply connected, it follows
from the Whitehead Theorem that ξ<Ξβ(ΣCP*).

Hence e(Σ*CP*)=Σ(e(ΣCP')). Q. E. D.

COROLLARY 3.19. The suspension homomorphism Σ: M(Σ2CP*)->M(Σ*CPZ)
is an isomorphism as a ring.
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Proof. This easily follows from (3.12). Q.E.D.

§4. The multiplicative structure.

In this section, we will investigate the multiplicative structure of M(ΣkCPz)
for k^l.

First, we need the following:

LEMMA 4.1. (a(id)+mμs)°μs=aμ3 for a,

Proof. Since q°j~Q, using (3.9) we have

Hence,

aμs. Q.E.D.

PROPOSITION 4.2. Let 7 : Z-*l-\-Z{2μz} be the natural bijection defined by

(4.3) V(m)=id+2mμz for m(=Z.

Then, 7 : Z->1+Z{2μs} is an isomorphism of groups, where the multiplications
of 1+Z{2μs] and Z are induced from the composition of maps and the natural
addition, respectively.

Proof. It suffices only to show the following :

(4.4) (id+mμ3)
0(id-i-nμs)=id+(m+n)μB for m,

Then

=id+mμs+n{(id+mμs)°μz}

=id+mμs+nμz (by (4.1))

=id+(m+n)μΛ. Q.E.D.

LEMMA 4.5. 2ci°ηl=Q.

Proof. Since the order of ΎJ\ is two, the order of 2c^η\ is at most two.
However, because it is contained in πΊ(ΣCP2)=Zr we have

2Γ*o3y|=0 Q.E.D.
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PROPOSITION 4.6.

(1) μ1°μ1=2μ1.

(2) μ 2°μ2=% 2.

(3) μ3°/V— β//3.

(4) // l ^ n , £ ^ 3 and (n, k)Φ(l, 1), (2, 2) αwύί (3.2),

Proof. It is easy to see the following:

(4.7) *i /=/>.

Then we have the following:

(1) μ.oμ^Σjo^Σπ^

^ΣjΌ^oΣpo^oΣπ, (by (4.7))

=Σj° 2c4°(Σp° 2c4ί)°Σπ1

ί π i (by (2.5))

(2) μ2*μ2=(§

= 6c°(Σq°6c)°Σq

= 6io(ec7)oΣq (by (2.20))

(3) μt μ%

=Σjoβo(6Cl)oΣq (by (2.20))

(4) μίoμ2

=Σj° 2ci°{Σπ1° €>c)°Σq.

Since 2^Γi 6Ϊe;r7(Sδ)=Z/2{i7i}, we obtain
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Σπι°6c=ηl or 0.

If Σπ^βc^Q, then μ^μ^—O and we may suppose that Σπ1°6c=τ]l.

Then, μιoμ%=Σjo(%Aoηl)oΣq=0. (by (4.5))
Hence we have μ^μ^—0.

Next, we have

= 0 .

Similarly we have the following:

(by using q°j—O)

= 0 .

μz°μi=(Σj°β°Σq)°(Σj°

= 0 .

= 0 .

= 0 .

This completes the proof.

Next, it is easy to see the following:

(by (4.7))

(by (2.6))

(by using qojz=Q)

(by using q°j=O)

(by using q°j—O)

Q.E.D.

LEMMA 4.9. Let a, b, c, d, e, f be six integers and u, v be two elements in
Z/2={0,l}.

Suppose the following four conditions hold:
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( i ) ad=l.

(ii) ae+bd+2be=0.

(iii) af+cd+6cf=0.

(iv) av ^-du—Q.

Then the following hold:

(1) a = d=l, 6=^=0, - 1 , c = / ^ 0 end u=v=0, 1; or

(2) a = </=-l, 6=0=0, 1, c = / = 0 and w^i ^O, 1.

Proof. It is easy to see that α = d = ± l . Then, from the conditions (ii),
(iii) and (iv), we have

(l±2ftXl±2e)=(l±6c)(l±6/)=l and

Hence we have the desired results. Q.E.D.

Proof of Theorem B. The assertions (1) and (2) follow from (3.19) and
(3.12). First, we show the statement (3).

Let φ and φ be two elements of M(Σ2CPS) of the following forms:

(4.10) φ=a(id)+b(Σμι)+c(Σμt)+u(Σμ9),

φ=d(id)+e(Σμi)+f(Σμ2)+v(ΣμB),

where a, b, c, d, e, f^Z and u,
Since Σ: M(ΣCP3}^M(Σ2CP3) is surjective, the group M(Σ2CP3) becomes

a ring.

Hence, using (3.3) and (4.6) we have the following:

φ°φ=d{a(id)+b(Σμi)+c(Σμ2)+u(Σμs)}

•Jre{a(id)+b(Σμ1)+c(Σμ2)+u(iΣμs)}°Σμ1

+fla(id)+b(Σμί)+c(Σμ2)+u(Σμ,)}oΣμ2

+v{a(id)+b(Σμi)+c(Σμ2)+u(Σμ3)}°Σμ3

= {ad(id)+bd(Σμi)+cd(Σμ2)+du(Σμ3)}

+ e{a(Σμ1)+b(Σ(μ1°μ1))+c(Σ(μ2oμ1))+u(Σ(μ3°μ1))}

+v{a(Σμ3)+b(Σ(μ1oμs))+c(Σ(μ2oμz))+u(Σ(μ3°μ3))}

= {ad(id)+bd(Σμί)+cd(Σμ2)+du(Σμ3)}

+e{a(Σμ1)+2b(Σμ1)}+f{a(Σμ2)+6c(Σμ2)} + a

= ad(id)+(ae+bd+2be)Σμ1+(af+cd+6cf)Σμ2

Jr(avJrdu)Σμ3.
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Next, we prove the statement (4).

Let Θ^M(Σ2CP3) be the element of the form

(4.11) θ = a(id)+KΣμι)+c(Σ

where α, b, c^Z and weZ/2.

Then using (3), it is easy to see the following:

(4.12) θζΞS{Σ2CPz) if and only if there are integers d, e, f<=Z

and yeZ/2 satisfying the following:

( i ) ad=l.

(ii) ae+bd+2be=0.

(iii) af+cd+6cf=0.

(iv) av+du—0.

Hence it follows from (4.9) that

(4.13) €(Σ*CP*)={±id+u(Σμa), ±(id-Σμi)+v(Σμ3): u, v^Z/2).

Since θ-d^id for any element θ^e{Σ2CP%\ we have

S(Σ2CP3)=Z2xZ2xZ2. Q.E.D.

Proof of Theorem C. The assertions (1) and (2) follow from (3.19) and
(3.12).

Similar method as above also shows the statement (3).
Now we suppose that &^4.
Then, it follows from the modified proof of (4) of Theorem B that

€(ΣkCP*)={±id, ±(id-Σk-1μ1)} and θ<>θ=id for any θ<=Ξβ(ΣkCPz). Thus
we have e(ΣkCP3)=Z2xZ2. Q.E.D.

Proof of Theorem A. It follows from (3.17) that the sequence

Σ
1 — > l+Z{2μB] — > ε(ΣCP3)—>ε(Σ2CP3)—> 1

is exact.
Here, from (4.2) and Theorem B, there are isomorphisms of groups,

l+Z{2μ3}^Z and <5(Σ2CP*)=Z2xZ2χZ2.

Hence we have the exact sequence

V Σ
0 —>z—> e(ΣCP3) — > Z2xZ2xZ2 — > 1.

Furthermore, since the suspension homomorphism Σ: M(ΣCP3)-*M(Σ2CP3)
induces the isomorphism M(ΣCPB)/Z{μ3}->M(Σ2CP3\ it is easy to construct
the splitting s : Z2xZ2-*ε(ΣCPB) and we have the semidirect product S(ΣCP3)

Z2). Q.E.D.
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Remark 4.14. The statement (3) of Theorem C was already obtained by
S. Sasao [13] using the another method.

In fact, since the space CP3 is the total space of the S2-bundle over S4, it
follows from Theorem A in [13] that the sequence

(4.15) 0 — > πKS°\Jve
2) — > ε{ΣkCPz) ~^> β(ΣkCP2) — > 1

is exact if

Then it follows from (2.17) and (4.1) in [11] that e(ΣkCP*)=ε(Σ*CP2)=
Z2XZ2 if k^L Q.E.D.

The following remark was suggested by the referee and the author would
like to thank him for his valuable advices.

Remark 4.16. Using the Barcus-Barratt method (e.g. (2.11) in [11]), there
are two exact sequences,

(4.17) 0 —-> Z/2 —> β{ΣkCP3) -^> Z2xZ2 — > 1

for k~2 or 3, and

(4.18) 0 — > π,(ΣCP2) — > β{ΣCPz) -^> Z2xZ2 — > 1

where πΊ{ΣCP3)—Z{β) and φ denotes the

restriction homomorphism

φ:e{ΣkCP3)—> e(ΣkCP2)=Z2xZ2 for £ = 1 , 2 , 3 .

Here we remark the following two viewpoints:
(a) If we only use the Barcus-Barratt method, we must consider the

extension problem of (4.17).
(b) At first sight, it seems that (4.18) contradicts the assertion of The-

orem A. However, they are equivalent. In fact, this follows from the following :
From the definition of the homomorphism λ (e.g. (1.2) in [11]), it is easy

to see

(4.19) λ(mβ)=id+mμ3 for

Hence, from (4.18) we have the exact sequence

(4.20) 0 —

where we put

l+Z{μz) = {id+mμB:

Furthermore, it follows from (4.4) that l+Z{μs}=Z. Hence the exact sequence
of Theorem A and (4.18) are equivalent to the following two exact sequence:
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V (£>Xproj

(4.2i) o —> z —> edcpη > z2xz2xz2 —> l,

o —> z—> ε(ΣCPz) -^> z2xz2 —> l,
where

λ{2m)—l{m)—id-\-2mμz for m<=Z, and the

2 proj
sequence 0 — > Z—> Z > Z—> 1 is exact.

Hence the sequence given in Theorem A is equivalent to (4.18).

§5. The natural representation.

For a topological space X, let Φ: M(X)->End(if*(X, Z)) and Φ: e(X)->
Aut(H*(X, Z)) be the natural representation defined by

(5.1) Φ(Θ)=H*(Θ,Z) for ΘΪΞM(X) or β{X).

In this section, we consider the represntation Φ for X=ΣkCPn. Let
xm<ΞH2m+k(ΣkCPn, Z)^Zbe the generator for l^m^n. For Θ^M(ΣkCPn) and
l ^ m ^ w , let dm(θ)<^Z be the ra-th degree defined by

(5.2) θ*(xm)=dm(θ)xm.

Then we define the homomorphism deg: M(ΣkCPn)-+Zn (n-times product of Z)
by the following:

(5.3) deg(θ)=(dW, d2{θ\ - , dn{θ)) for Θ^M(ΣkCPn).

It is easy to see that we can identify Φ with deg:

(5.4) Φ=deg M(ΣkCPn) — > Enά(H*(ΣkCPn, Z))^Zn.

LEMMA 5.5. The map deg is an additive and multiplicative homomorphism for k^l.

Proof. It is clear. Q.E.D.

PROPOSITION 5.6. (The case n—3)

(1) deg(id)=a, 1, 1) for any k.

(2) ώ^(/£1)=(0, 2, 0).

(3) ώs(ί!,)=(0, 0, 6).

(4) deg(μs)=(0, 0, 0).

Proof. The statement (1) is obvious. Since μi=Σj°2ζι°Σπu the assertion
(2) follows from (2.5). Similarly, the assertion (3) follows from (2.24). Since
μzoμz-={)y the statement (4) is clear. Q.E.D.
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COROLLARY 5.7. (The case n=3). Let k^4 and n—3. Then the following
holds:

dx{Θ)^af d2(θ)=a+2b and ds(θ)=a+6c for

Proof. This follows from (5.4) and (5.5). Q.E.D.

For each natural number n, let Mn(Z) be the ring consisting of all (n, n)-
matrices with integer coefficients. Similarly, for each n, let D(n, Z) be the
subring of Mn(Z) consisting of all diagonal matrices of the following form:

(5.8) D(n, Z)= {diag(α1, a1+2\a2f •••, aι+n\an):

where we put

(5.9) diag(*i, x2,
x2

Xs

Then we define the ring homomorphism D: M(ΣkCPn)->Mn(Z) by the
following:

(5.10) D(θ)=diag(d1(θ), d2{θ\ ..., dn{θ)) for

Proof of Corollary D. The assertion easily follows from (5.7) and Theorem
C. Q.E.D.

Problem 5.11. Let k^2n—2. Then, does the homomorphism D induce the
monomorphism of rings, D: M(ΣkCPn)->Mn{Z)ϊ

Remark 5.12. The above problem (5.11) and \m\_D: M(i; f e CP n HM n (Z)] =
D(n, Z) are true for l ^ n ^ 3 . In fact, the case n—l is trivial and the case n—2
was proved by S. Oka in [10]. The case n—Z is obtained by Corollary D.

Now we define the subring of Mn(Z), I(n), defined by

(5.13) /(n)= Θ Z{diag(m, m\ m\ •••, mn)}.

Then, the following is well-known:

PROPOSITION 5.14. (C.A. McGibbon, [7]). // k^2n-2, I m [ £ : M(ΣkCPn)

Proof. This follows from Theorem 3.4 in [7]. Q.E.D.

Remark 5.15. It is easy to see that I{n)=D{n, Z) for l g n ^ 3 and
D(4, Z). Hence, in general, the ring I(n) is not always equal to D(n, Z).
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