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LIE CONTACT STRUCTURES AND
CONFORMAL STRUCTURES

BY REIKO MIYAOKA

§0. Introduction.

In [SY] and [M1], the notion of Lie contact structures on a (2z—1)-dimen-
sional contact manifold is established as a geometry on a manifold correspond-
ing to the classical Lie sphere geometry [CC]. Following the connection theory
by N. Tanaka [T], we construct a normal Cartan connection w (called Tanaka
connection, for brevity) corresponding to the structure in [M1], which is the main
tool to solve the equivalence problem (see [SY]).

A typical and important example of the structure exists on the unit tangent
bundle T,M of an n-dimensional Riemannian manifold M. In this paper, we
calculate the curvature K of Tanaka connection of this structure on T, M. We
call K the Lie curvature of T\M. In particular, when K=0, T,M is called Lie
flat, and is locally Lie equivalent to the model space=T7,S™, the unit tangent
bundle of the standard n-sphere [SY]. This is apparently the case when M is
conformally flat (§1). The inverse problem is presented by Sato [S]: Is M
conformally flat when T,M is Lie flat?

The purpose of this paper is to answer this problem affirmatively. The
description of Tanaka connection and its curvature for this structure is given in
Theorem in § 5, where the Lie curvature is expressed in terms of all coefficients
of Weyl’s conformal curvature. As a result, we know that the structure de-
pends only on the conformal structure of M, and moreover we obtain

COROLLARY 1. Let M be a Riemannian manifold of dim=3. Then M is
conformally flat if and only if T:M is Lie flat.

. COROLLARY 2. Let M and M’ be two Riemannian manifolds of dim=3. Let
Jf: T M—T M be a bundle map which preserves the Lie curvature. Then the
induced map f: M—M’ preserves the conformal curvature.

A resume of [M1] and the present paper is given in [M2].
The author would like to express her hearty thanks to Professors H. Sato
and K. Yamaguchi for their valuable suggestions.
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§1. Preliminaries.

In this paper, we follow the argument in [M1] and use the notations in it.

Let R3**={x=(x° ---, x"*?), x*R} be an (n+3)-dimensional real vector
space endowed with a scalar product <,> with signature (4, -, +, —, —) and
let R?*?*={x=R?*®, x"**=0}. Denote by P"** and P"*' the associated projective
spaces. Furthermore, let R*"*'={x=R?*?, x"*'=0} be the (n+1)-dimentional
space-like subspace of R?*%. By <,», we denote the induced scalar product on
R?*? or on R"*'. Now, the unit sphere S"={x<R"*'|<x, x)=1} is naturally
embedded in P"*! as a Mobius space Q7

St=Q"={lyleP*"[Ky, y>=0},

by x—(x, 1)&R?*%. On the other hand, let >} be the set of all oriented hy-
perspheres in S*; 31={(m, 6)=S"X [0, =) | an oriented hypersphere with center
m and radius #}. Then 3 is naturally embedded in P"*? as a quadratic Q"*!,

S=Q*={[k]le P **|Kk, k>=0},

by (m, 68)—(m, cos @, sinf)=R?+*.

The Mobius group L is, by definition, a group consists of projective trans-
formations of P"*! preserving Q", and we have L=PO(n+1, 1). The Lie trans-
formation group G is, by definition, a group consists of projective transforma-
tions of P"** preserving Q"*!, and we get G=PO(n+1, 2). Clearly we have
LcG. Now, let A* '={lines in Q"*' generated by ([%.], [k.])EQ"*'XQ"*!,
<ky, kop=0}. Then we have

T.S"={(u, v)=S* X S*|<u, vy=0} = A2»~!

under a mapping (u, v)—([k.], [k.]), where k,=(u, 1,0), k;=(v, 0, 1). Since G
preserves <,», it induces an action on A2"7!, This action resticted to L is
translated as follows: A Mobius transformation ¢: S"—S™ is lifted to Lie
transformations ¢.: T,S"—>T,S*, by

* 0(X)=x0:X/]|oxX].

We denote the subgroup ¢+(L) of G by Gy. It is easy to see that Gy, and so
G acts on A*"! transitively. Let G) and G’ be isotropy subgroups:

FACT 1.1. A '=G/G'=Gy/Gly.
As is shown in [M1], the Lie algebra g of G is given by
2
0= 2 85, [0 8,]=0us,,
0 0 ¢
p 0 p
g-2=tg2= O O O ) cIJ: ’

_..po
00 0
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0 b 0
g.i="'¢,=4{{0 0 ‘b|, b=R"'XR" '},
00 0
a 0 0\
go=4(0 e 0], acgl(2, R), eso(n—1);.
0 0 —ta

Here, note that a base of R2*® is chosen so that
n
lu, U>:_2uovn+1_2u1vn+2+ Sutt,
1=2

for u=(u u*, ---, u™*? and v=0" v, ---, V*"**)€R%?**. Thus we have R?*’=
{ucs R, u"**=—(1/2)u'}, and R"*'={ucsR?*?, u"*'=—(1/2)u’}. We may as-
sume that Gy={h<=G|h preserves R?+*}. Then the Lie algebra g, of G, is
given by

a b ¢
* ———2—p
gM:‘ d e tb Eg: a= 2 0 ’ dz(dly d?)i tb:(tbb _2td2) .
—aq
beg td —ta

Now, we have ¢'=go+8:+82 8»=8""\gx, Where g’ and gj are Lie algebras of
G’ and G}, respectively. Note that o(n—1)Cco(n—1)CgoN\Ggx T8y Cg’. From
these facts, we get

Fact 1.2. [see Lemma 1.2, M1].
A 0
G'={h= gd g
tA-1 .l_t t A-1t t A-1
A {idd 4} tAT A

ge0(n—1) AeGL(2, R)

s deR xR, f:(g —g> B

L,
{

a 0

and O(n—1)cCO(n—-1)CGy,CG'.

Put, m=T(G/G"), G=p(G") and Guy=p(Gy), where p:G’, Gy—GL(m)=
GL(2n—1) is the linear isotropy representation. Since Ker p=exp g:, denoting
p(0O(n—1))=0(n—1) and p(CO(n—1))=CO(n—1), we get

Fact 1.3. [see Proposition 1.3, M1].
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detA O 0 a 0 O
G=ll = gRA |}, Gu={l0 ag O},
* * 78 g

where A, g, a, 7 are given in Fact 1.2, and

(1.1) O(n—1)CCOn—1)CG 4G .
Now, let N be a (2n—1)-dimensional contact manifold. It is well-known
that the linear frame bundle L(N) has a reduction L#*(N) with structure group

s J(Q 0 . ~ ¥ .
Gim?={( cspn_1, ) 4#0}- Noting that GCGi(my*, [ML], we define:

DEFINITION. A G-reduction of L*(N) is called a Lie contact structure on N.

Now, recall the way of construction of Lie contact structure on the unit
tangent bundle T,M of an n-dimensional riemannian manifold (M, g). Let Q,
be the principal fibre bundle over M with structure group O(n). According to
[KN, p. 57], P,=(Q,/O(n—1), O(n—1)) is a principal fibre bundle over T ,M
with structure group O(n—1). It is shown in [M1] that the extended bundle

PgIQgXO(n—l)G B

gives a Lie contact structure on T, M.

It is obvious that T M is Lie flat if M is conformally flat, since a conformal
transformation is lifted to a Lie transformation by (x). But it is a non-trivial
matter to see whether M is conformally flat when T,M is Lie flat, since the
structure group is enlarged. The purpose of this paper is to solve this question.

For later use, recall the geometry of the unit tangent bundle T,M of an
n-dimensional riemannian manifold M. Let z,&T,M and let (z,, -+, z,) be an
orthonormal frame of M at p=nr,(z,)&M, where =,: T,M—M is the projection.
By using the horizontal lift 27 and the vertical lift 2} of z,&T,M to T, TM,
we make a frame u(z)=(uy, '+, Us,_,) of T M at z,, where u;=z?, 1<7<n, and
Uni-1=2%, 2=7<n. Note that z? is a normal vector of T,M in TM. It is well-
known that u(z) is an orthonormal frame of T, 7T,M with respect to the metric
on T, M induced from the Sasaki metric on TM. Now, let h=O(n—1) and put

ﬁ:((l) 2)60(71). We make h act on u(z) by

(1.2) w(2)h=u(zh).

Then we obtain an O(n—1)-bundle =: P,—»T M, where P,={u(z)|z=(z,) is an
orthonormal frame of M at =,°n(z)=r,(z,)}. We have shown in the end of the
proof of [MI, Proposition 2.3] that u(z) is a frame adapted to the Lie contact
structure.
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§2. Construction of a normal Cartan connection (Q, X).

In this section, following the argument in [M1], we construct a normal
Cartan connectlon of type H/H, on an H,reduction (Q, {) of the L1e contact
structure P over T, M, when M is a Rimannian manifold. Let T PT.M be
the projection. Here, we start with the O(n—1)-reduction P, of P

Let f=m+o0(n—1), where o(n—1) is the Lie algebra of O(n—1), and let K
be a Lie subgroup of G of which Lie algebra is f. As is mentioned in §1, an
element u(z)& P, is an orthonormal base of T',,T.M, at z;=m(u(z)) with respect
to the metric s, induced from the Sasaki metric s, on TM. Therefore, as a
basic form on P,, we should take

C(X)=s,m+X, u,), 1=<i=n,
CE(X):sg(”*X; u;), 2=Zi=n,

where X&T )P, and we put u;=uy4,.1, 25i5n. We will express them in a
local coordinate of P,. Around u,=u(z,)<P,, where z,=(z, -+, 25), w(Uo)=2,
and 7m,(z,)=p< M, we choose a local coordinate (x*, zf), 1<7, j<n, as follows:
let (x%, ---, x™) be the geodesic normal coordinate of M around p such that
z(p)=0/dx*, and let (z})=GL(n, R) be such that

2.1) 8152k2h=0km ,

where g,, is the component of the Riemannian metric g on M with respect to
(x%, -+, x™). Here and hereafter, we use Einstein convension for 1=7, j, 2, m,
v, S, t, u, v<n, unless otherwise stated. Note that we have

zy(p)=03,
g.(P)=0:;,

0
2.2) BoF 8 P)=0,

{ W Jm=0,

where {].zk} is the Christoffel’s symbol. Let (x% v®) be a local coordinate of

TM expressing v(0/0x*)eT zwM, and (x*, v*, &, 3%) be a coordinate of TTM
expressing £%0/0x*)+9(0/0)ET z1,0uTM. The coeffecients of the Sasaki
metric ,s on TM are then given by [SS]

Gumsran [,

,
Gine,= grj{ }v“,
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Grtinti=gu,-
Since we can express u< P, in a neighbourhood of u, by
uz~=<z{, —{] }ZiZi), 1<isn

(2.3) st

ui=<0y 2{)’ Zélén

we can take (x*, 2%), 1</, j<n, satisfying (2.1) as a local coordinate of P,.
Moreover, in this local coordinate, we can show easily that the basic forms are
expressed by

Cizg,-kz’{dx’, lélgn:

O=gpa(da+{]}adxt), 2sisn.

Now, define

X’$=g;kz’§<dzi+{sjt }zﬁdx‘), 2=i,r=n,

and put X*={, 1<i<n, V=0, 2<i<n.
LEMMA 2.1. X’ is a Cartan connection of type K/O(n—1) on P,.

Proof. Obviously, X’ is an f-valued 1-form on P,. Then X’ is a Cartan
connection of type K/O(n—1) iff

Cl) For XeTP,, X (X)=0 implies X=0.
C2) Y(A*)=A, Ac=o(n—1) and A* is the fundamental vector field.
C3) R¥Y'=Ad(a X', acO(n—1).

For X=(dx*, dz})eT,,P,, we have ¥'(X)=dx*, ¥(X)=dzt, X' X)=dz, and so
Cl) is obvious. For A=(Af)so(n—1), put a,=exp tA=(a¥t))=O0(n—1). We use
the Einstein convension over 2=/, j<n as far as a)(¢) is concerned. Since
uoa,=u(z,d,) by (1.2), the local coordinate expression of A¥, is given by dx*=0,
dzt=0, and dz:=(dal)(0)=A% and we get X'(A%,)=A. Now, for a=(a})e0(n—1)
and X=(dx*, dz5)eT 4 Py, from R}V (X)=X'(RqxX)and R« X=(dx*, dzt, d(z}a})),
1=<i<n, 2<7, r<n at u,asP,, it follows

C(Rox X)=dx",
U(RaxX)= 3 aldx*, 25isn,

C(RuwX)=Faldzl, 2sisn,
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VYR X)= 2}‘: ai(dz)ak, 2Zi,r<n.
7

On the other hand Ad(a " )X'(X)=a A (X)a='aX'(X)a is given by
L 0 0\0 ¢ &L o 0 0 % ¢
0 ta 00 ¥ 20 a 0|=|0 tal’a *a‘l|,
0

0 0 L/\0 O 0 0 L/ W0 0 0

where ﬁ::(gz h gﬁ) C‘—( 21 g), and ¥'=%), 2<i, r<n. Thus by an easy

calculation, we get C3). q.e.d.

Now, enlarging the structure group to H,={e=G, | det a==+1}, we get a
principal fibre bundle Q=P,Xow-1yH, over T;M. A local coordinate of @ is
given by (x%, 2%, h§), where (h§)e+SL(2, R), since H,/O(n—1)=+SL(2, R).
Denote by ¥’ the Cartan connection on Q naturally extended from X’ on P,, that

hg 0 0 +1 0 0
is, at u=(x", z¢, h§)=uoh, where h=p|{0 I,., O =| 0 AL, K, .},
0 0 “hrp 0 holuy hily
using C3), we have
=z,
C=ni—n,
:_hll)ci hocz)
XH=@'y,
@ ((sv+tu)%’8+uv%’?—st%’s 210X §4+ 00— 12’} )
Ve)= ,
’ —25uX{—uX 9+’ —(tut+sv)X/d—uvd/i+st¥’}
for (a, b)=(0, 0), (0, 1) and (1, 0), where
X3=dhg,
putting (Z zi)z(hg‘), and {" and X’ are evaluated at u,. In the following, we

use the notation X’ instead of ¥’ for simplicity. Let ¥’ be the curvature form
of X" and put ¥'=(1/2)T'¢AL. With respect to the base of g given in [Ml, §3],
the gp-component 7T is given by TZ,=T4e;, TL=T4e, +T,gre“ 2<i<n, and
T{,:T’;',g,e;+T’8ﬁ,e8+T 06,00 +T"ps0b, 254, r<m, and B, r<{1, -+, n, 2, -+, Ai}.

PROPOSITION 2.2. The curvature T’ of X' at u,= P, is given by
T.I.z_——o,

T=5, }'91,:0 otherwise,
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T{,;:R}l] » T;’Z:Rbk » T_;-;'—"O »

Ti4=Ris:, T'%5n=0i0;,m—0mn0;e, T’'%s;=0 otherwise,

T8y =T"3p;=T"5;=0,
where i, ]’, kE{Z, ceey, n}, S, tE{l, Tty n}, ,8, Te{ly e, N, ?) Tty ﬁ}; and R}km
denotes the coefficients of the Riemannian curvature of the base manifold M with
respect to (x*) at p=miom(u,).

To prove this, we prepare:

LEMMA 2.3. We have the following formulas:

(2.5) dx*=z{{’, and at u,, dx*={', 1<i<n,

(2.6) dz{:z}{f——{szt}zfdx‘, and at u,, dz={*, 2<iZn,
@7 dz,=z}%’i—{szt}zfz£, and at w,, dzi=Yi, 2<i,r<n,
2.8) 0=dzi+dz]} at u,, 1<i<n,

(2.9) 0=0,2% for 1<j<i<n and at u, for 1<, j, k<n,
(2.10) 0:2t=0:, 2<i,r<n,

(2.11) 0:(2)=010,1—0,:0t at u, for 1<i, j<n, 2<r<n,

where we use 0;==0/0x* and 0;=0/0z.

Proof. Since gjzztz§,=0.n, () given by yi=g;,2* is the inverse matrix of
(2%). The first three are direct consequence of this fact and (2.2). From 0=
d(g.;zk25)=0:;{(dz})0h+0d 2%} at wu, follows (2.8). Since we may consider 2%,
1<j<4, as free variables, we have 9,(z%)=0, for 1<k<n, 1<j<i<n. Especially
at u,, by virtue of (2.8), we get (2.9). In the same way, since d;=0/0z], 27
<n, we get (2.10) for 2<i, r<n, and 0;z:=0 for 2</<j<n. The last formula
follows from (2.8). q.e.d.

Proof of Proposition 2.2. Since X'%=dh¢, (a, b)=(0, 0), (0, 1), (1,0), and
since ¥'=(1/2)T’{A{, we may ignore the terms X’% in the structure equation
(see (3.1) in §3), when we calculate the curvature. It is ovbious that T'g;,=0.
Now, we obtain

Pr=dli+ HUAL

Zd(gsz'fdxj)+2222dx’f\dz}
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M=

dz{/\dx’—i—l% dx*Ndzt

Il
-

7
=0,
i.e. TZ,=0. Next, we get
w‘ndei_l_élei/\Cr
=d(gpadx+ 3 gpal(dait{] Jatdx )N
= Sdaindx+ 3 daAdxT
= 7=
=dz*Ndx"
==0N, iz2,
ie. Ti3=1 and T4,=0 otherwise. From
Ti=dli+ 3 VINL

=d(gj,,z’:(dz{—i-{s]t }zfdx‘))—l— ézdzi/\dzi

- ﬁdz;,mdzﬁd{ : }/\dx‘+ > dztAdz]
=1 1t r=2

= : 8 ti>
(as{ltbdx Adxt, 22,
follow Tji=R:, and T4%=0. Now, we have

Trimgyit é}zx'g/\x'ﬁ

=d(gnat(dzi+{], basd))+ 3 dzindz

1l

:E‘dz{/\dzi—!—d{ : }/\dx‘—{— S dziAdzt
=1 rt =2

—_ 1 1 ? s t
—dzl/\dzr+a,{n‘}dx Adx

=Cz/\CF+9s{:t}dx’/\dx‘ ,
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ie. T'ly=Riy, T'l;5=00,,—0i0,, and T'is,=0 otherwise. q.e.d.

Since (@, X’) is an H,-reduction desired in [MIl, Proposition 5.1], we can
apply [M1, Proposition 5.27 to it. Namely, as in the existence proof of the
connection (@, X) there, put

1 a1 L1
A== g ZTi= g B R= 5’
A=Ay, = A= A= A= Ap = A= A= AL=0,

n
for 2<4, j, k<n, where we use the Ricci curvature tensor R;,= EIR;“ of M
-
n
at p. The scalar curvature tensor of M is denoted by R= ZER“. In the follow-
-

. . n . n
ing, we also use the notation ﬁjkz EZR}“,, 1<j,k<n, and R= Zzﬁjj. Im-
1= 1=
mediately, we have
Ruzﬁu, 1=/<n,

(2.12) R,=Ru+Ri,, 2<j, k<n,
R= 3 Ru+Ru=R+2Ry;.
Let ¥"=(1/2)T"{ AC be the curvature of the connection X” defined by
KA=i 3 Aol
and X”=2’ for other indices. Then we have ¥”"=¥" except for
V=0 h=d( S AL )2 A AL

Note that T”};=-—0;A},. Now, putting

Xg=1"§4+- A58,
where
1
g1 = m (T, —T"83)=0,
]' n'\ n n —_— l
?1 2(7’!“1) (tZJT _T ou> - 2 s
A= g BT )= e (R D 0143)
01 2(n l) 0i7 2(n__‘1) ) 1 1/

A}l.:_ n_li_g (T//i’ _T”{; +T//§‘J_ —T”{-Z _%]T//;kﬁ)zo ,

we obtain the desired (Q, X). Here, note that the curvatures given in Proposi-
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tion 2.2 and so these coefficients are given pointwise. Thus, to get A}, ex-
plicitely, we must compute
1 1 2 rm
0;A),=— 2 (0;T 7).

n—2 m=2

From

W"i:d(grkZ’in(dZH{ ’

s }zidx‘)) + ég )N

v

Eau(g'rkzlin{st

bat)atzl ALY (mod LT AL,
we have for j, m=2,
o m={00(gr{ | }ohat)ztat+9u (g | fohat)ostatan i nge
={0.(en{] Joxetan)us:
+(0u{[; }) (0900— 8,018+ 040100 — 8,89} L AL
={au{s’§}(—5Jm5f5f+5';n5;>5';a,§+aj{’l’j}}a“—al{;’j}}aj,-

+ai{’1’;.}am—ai{’l’;}aﬂ,}cf/\cv

—{adL ol s fu-al oo
—a,.{’l"l}a,,,}cmcv.

Thus we obtain
(2.13) 0;T =Rty +R00— R0+ Rt j0u— R%:5 .,

for 1<7, v<n, 2<j, m<n, and it follows for 2<7, j<n,

1 ~
(2.14) ajAéiz—'71“;—2(—Rji+R115ji—R{il>

1 ,
= n___—z(sz—Rua}) s

using (2.12). Finally we have
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Al= Z_(nL—F(R“— ﬁafA(ln)

=2
1 1 /=
e {Ru———(ZRu—(n—DRu)}
1 1
=g fu— 2(n—1)n—2) R.

Thus, the Cartan connection (Q, X) of type H/H, defined by
X=xL, A=X'E, X=N4,
B=WI+HARD, D=V AL AL,

is normal (i.e. T *=0*T°=(0*T")(e,)=0, where ¥'=(1/2)T{ A is its curvature)
[M1, Proposition 5.27.

PROPOSITION 2.4. The curvature U'=(1/2)T{NL of (Q, X) is given by

T_z—:O,

.1 .
Tt= 75}, T3,=0 otherwise,

i — Pt ) 1 R
T”_R“j_l_aj{n—Z Ru— 2(n—1)(n—2)} ’

T%=0,

- 1
T%=R};— 7_—2(ka5§— R.;0%),

T%ir=0r

Thmn=R%m, Tiimn=0i0,m—080s, Tigy=0 otherwise,
1 .

Tgli:_—Z(—nl_Z)—R”’ T35,=0 otherwise,

T?ﬁ:_;‘, T5,=0 otherwise,

1
2(n—1)(n—2) 9

1 1
T%l]“:?:z—alle_ n—2 alel+ R;

1
Tfujz'—ajAér‘}‘ n_—ERU ’

1
Toy=—"5 (0:Ry;—0;R ),
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1 R i
— R~ 2(n—1)(n—2) %

Ti= n
T§;=0,
where 254, 7, k<n and B, r<{l, -+, n, 2, -+, @i},

Proof. We use the relation between 7 and 7’ obtained in [M1, §5].
first one is obvious. Next, we have

X . 1
Ti= ,1?+A?153:'2‘5;;

Ti=Ti+ A0

(3 1 1 R
=Risy 0} g fu— 2(n——l)(n—2))
Tl =Tji— ALdi+ A0}
1 . A .
:R}]k— m(leag—lea}e)) 2..S_]; kén,
T%, =T4=0,

Tfﬂr:T’iﬂr:Rﬁs:5%5%'+5ip5n—5;57,9, 254, 7,8, t<n.

Now, from
T =LINU—A NS
=3+ ALY AQUS+ ALL + ALY — XA
n
A A(Bat+ant),
J=2
we get

1

311=T181i+A31Aéz:—mRu, TgﬂrzT'gﬁrzo, otherwise.

Similarly, from

V- T=d(Ant)=— 1 di=+ JOAT,
we obtain
T‘l’ii=-§—, T9,=0, otherwise.
Then, from

Ti-Wh=d( G AL+ ALE)= JdALAT+HAANT+ 3 AT+ ALdL,

to obtain T4,,=T'},;+0,Al;—0,A},, we compute

The
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dM=— o OS T, 254, j<n.

Here we use (2.9) and get

r
st

0#”’7'531-(311(&;;2’%;{ }Zi‘)z‘;z{,)cf/\C” (mod £ AE)

=00.(grih{ ] })ot0305% AC?

=aia,.{;’;}cmcv,
and so
1 1 . .
aiA“,,:—— ?_'—281 % Rl";mz n—_—z—aiRU B lélén and 2_§_]§TL .
Similarly, we get
1 1
1 — . [ —— I
9,Ah= n—2 OjR1 2n—1)(n—2) R
Therefore, we have
T(1)1]=T’(l)1j+alA%!j—ajAél
1 1

1
alle_ n—2 ajRu+ R,

=)
T51j=T'$zj+azA5j—a;A51

2n—1)(n—2) 9;

1
=m(aiRu-ajRu)»

bi,=T"%,;+0; Ab;+ Al 0
1 R
Ri— Z(n—l)(n—Z)}

1 A
=‘7;-_‘_*2‘(sz—1?1153)+5}{ p_—

1 R i
) Ri— 2n—1)n—2) %,

Th;=T"5;=0.
Now, we have

1
T%l‘;:TI(]ilj'_aiAél +A(l)]: _aj'Atln + —71_—_2- Rl] ’

where 0;4%, is given later (Lemma 4.3). g.e.d.
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§3. A Cartan connection.

Using the method of the proof of [MIl, Proposition 5.3], we construct
Tanaka connection on P=QXg,G’ from the normal Cartan connection (Q, X)

constructed in § 2.
First of all, for later use, recall the structure equation [M1, (3.1)], of a

Cartan connection (P, ) of the G/G’, where §=w_.+w_, is the basic form, and
2 is the curvature form:

d0*=—(d+oD A0~ DO NG+,
d0’=w;/\0’~—Jéw}/\ﬁ’—{—ﬁ'/\w%—}—&i/\w?-l-!?’,
d05=-co,-A0‘—J%w}A05+0‘,/\w<‘,+05/\wi+Qi,
dwd=—w? Nwh— :22 0' Awi— 0 Ao, + 23,
dot=—(}—eD Aot~ 30'Nwi+27,

3.1) dop=(ul—oDAol— 30 Ao+,
dwt=—w}Nw}— :22 0* Aw;—0* Ao, + 2%,
doj=—w, N0~ 0T~ S0 A= 0" Ao~ 07 A+ 25,
dw;=—0; \0}—w; A\@y— 05/\wl+J:22w%/\wj+Q“
dwz=——w,~/\w‘1’—wz/\w}+0‘/\w1+J%w%/\w;+9; R

do,=(@}+o) Ao+ éwi Ao+, .

Now, let w’ be the Cartan connection on P naturally extended from X.
Namely, let (x*, 2, s§, s,, s;, s;) be a local coordinate on P where (x%, z%) is the
local coordinate of P, around a point u,= P, chosen in § 2,(s§) G L(2, R), 0<a,
b<1, s;=s7*, s;=s7*%, 2</<n and s;=s?*%. As in §2, we define 0’ by w’,+
ol =%_+%,;, @'%=X¢, 0<Za, b1, wi=ds,, wi=ds; and w;=ds, at u=Q (note
that sflg=h¢), and then extend it to P by Ri*w'=Ad(a')o’ where a=G'.
Obviously, (P, w’) is a Cartan connection of type G/G’ with basic form f=w’,
+(DL1.
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PROPOSITION 3.1. The curvature 2'=1/2)K'0 NG of @' at u, satisfies
FK'=T
where ¢: Q—P is the inclusion map and T is given in Proposition 2.4,

1

T

Ry, K'ig=0, otherwise,

and
Kiﬁr=Kfﬁr=K§ﬁr:0 .

Proof. The non-trivial case is £2’}. From the structure equation (3.1), we
get

Q1=do" (’%,+]:22A 07+ AL0 )/\<x'°+Aua*>+:EzoiszJral/\w,

M§

A3, A0 NG,

2

J
and so
71 l

11— _2—(—7’[_:271?1] ’ AI}ﬁT=0 otherwise. g.e.d.

Now, we construct a Cartan connection (P, w”) as in [M1]. To obtain A4,,
for 7#7 in [M1], by Proposition 3.1, 2.4 and (2.12), we get

K K/ R— Ky =Ript — R~ SR}
y 01 0y e kg P T T ke

n—1
=z R
so that noting A,,=A;;, we have
1
Azj=—n—_2"Rz
For i=j, we get
- no R
—Kii+ Igii‘}'K’éii"k;K’im:an Ru-l- An—1)\n—2)
1 R ~
+ 2 Rii_{2(n—l)(n-2) +R;;
_n—1 1
T -2 P R ) n—2 R,
and the summation over 2=</<n gives
n b n—1 -1
(K K= SR G+ Khs)= =5 (R—Ru)—2—5 Ry
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-1
= :_2 (R—2R11)~
Therefore, we get
1 1 1

Aiiz— 9 Rii‘l‘ (n——l)(n-—Z) R11+ 2(n—-1)(n—2) (R—'ZRH)
1 R
=) R+ 2(n—1)Y(n—2)"’
or,
(3.2) Ay=—— RO

n—2 Rt S = O
The Left hand sides of (7)’ and (8)’ vanish so that we get
3.3) A;,=A,;=0.

As for (9), since we have
) n 1. 1. =& . )
i+ ’?1;+K'%i;—k§ ’i;}’-:75}+§5}~k§(5i5kj--5})
=05—05+(n—1)0}

=(n—1)3%,
we get

3.4) Aij=— L.

”

Therefore, ” is given by

n 1 -
oy=wy, p=0, w§’=w§+]2_2‘4“40’, wg”——-w{.—fﬁ’, 0w!=w].

PROPOSITION 3.2. The curvature .Q”:—;-K”ﬁ/\ﬁ of w” is given at u,= P, by,

K’—’2= s
44=0,
" — 1 1 R

=Rt g Rt g Rudl gy

" o— i —
K" =Ki=0,

jl:::R}jk—ﬁ(leﬁ}—'Ruﬁi); K4=0 otherwise,

K”}k1=R§k1 ’
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1 )
”}km:‘—R;km'—_nTz(Rikagn_Rzmai“I"R;malz"’Rjka%n)

R 1 7
+m<5k61m—5m6;’k)
K"jir=K"35=0,
K" —_ 1 R
o1y 2(n_2) 17
”3w:0,
K"y =K{=0,
K /1ﬁr—K1/3r—0
K"y,= 0,R;— ! 0;R —I——————l————aR
o n—2 T 2 T T 2 —1)(n—2)
1
”31j=—a A01+ ) Ruy

”511_—%_‘2—@:'1?1;'—3;'1311) , K"t,=0 otherwise,

————————1 .
2(n_2)Rln K"t =K"4p,=0, otherwise,

I{I/h]——-—
Ké’ljzalAn »
K7 :=Ay+— Aoﬁ, )

i1y

1Jk“ a Az]"'a Azk,

{Ijl?:_aEAtj"' R115k,

1
2(n—2)
1 1
K:,u_—f }1;“*‘7/1“ ,

1 .
K, =—5Ris, K¥,=0 otherwise,

2
1
Kf”_— EAU s

Kls;=0 otherwise.

Proof. We can compute 2”7—2’ by using (3.1) as follows:
Ql/l QII_O <> K/I —
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Ql/z_‘Ql’L:_%ai/\ 6*

1
2

Kii=Ki=0 otherwise,

ni— J/i
<> KIli=K/i—

5i=0

QV—Q=A,,0' N6

o 1 o
<> Ki’]": %‘-Au:th‘*‘_n:‘?-Ru » 1F7,
. 1 R 1 R
T — 1 .. J— y p —
Kit=Rit— =5 Ru—50 ==y t e B 3=
S 1 R
=R+ "2 R+ o) Ry~ n—D(n=2)"

= = 1 i
Kji=K5j=Rijs———5(Ru0j— R,00)
KY=Kj=0,
2%5-0'4= B Aub* NG — BN+ F 0N A1 =50 N0
> K”;"/u: ,g'lzl:R;‘kl;
K"om=K"bym~+ Ay — A, b+ A, ndi— A; 0%, ,
:R;km—7%_—-2—(R1,ka{n_Rzmai_!_leaz_RJkag")

R
T In—2)

Meee K10, 1—
K I Jij 1'_0’

(00,m—0md;%)

K"ig,=K"i5,=0 otherwise,

QB—0%= 3 0°AA0

v =2

<~ K",=K'},=—
"=K' b+ Ay—Au=0,

K"3g,=K'}3,=0 otherwise,

9//3—9’3:—-;— INE
i=2
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1
<« K”gii=K“1)1,i_"—=0 ’

2
K”lﬁr—K 15r=0 otherwise,

QM Q= i‘,z O NA, ;07
2, 5=
<> K”l' = 01,;""141]——0
1
An—1)\n—2)

/,&1]=K131]:7£—281R1j— n}—Z ajRu+

”31;——1{/315'——8 Aol+ Rl])

-2
”ni p— 1
K 01— K 01— _2 (aile—'a]Rlz):
K"i=K'45=0,
9//{—9@:-505/\05:0

1
2(n—2)

<> K”}lj: Rl] ’ K”}ﬂrzo OtherWise >
01— 0i=d( 3 A4.,0°)+ A0 A(X'i+ 3 A0+ AL0)

= 3 D@ANINGE D @5 AN — 3 AN
k=1 ;=2 7, k=2 =2

z D = 7 1
-2 2) 5o Rus0 NG 2A LOTAO
> KvlllljzalAz; ’
K{'jk=—akAzj+a;Aik ’
Ké’lz_ un Ao15i
Klp=—0 At Ry
1jE— EEY) 2(7’1—2) 15V% »

01— =a(—30)+ 3 A0 AT+ ALSY)

=—%d0i+ 31 A, A%O7 A 6"
=2

R,

61
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< Kl =— % hﬂ—%A”
K1;=0,
K{';k——g tins
K =K;;=0,

01-01=— 3 4,0'\(~50)

< l(illj—_ ;’1j_—1{£/1,]—~ ;’51——0,
1
"o —
Kif=—zA,.

COROLLARY. Let Clum and C,n=11,, ,—1I;4,, be the coefficients of Weyl’s
conformal curvature tensor at p=mnow(u)=M. Then we have

K"“_C}u, /" Cljk’
— ) —
K”(l)lj—clljy K”o;j—clu:

”;kmzc}km )

where 2<4, j, R, m=n

Proof. Since

) R .
C;'km R]km+ (R]ka R;mai-l'gij?n—g]mRi)—m(gjﬁ?n—gmai)’

noting g,;(p)=0;,, the last formula follows immediately. Then for i, =2, we
have
Ci,=R} + (R i+ R1)— ~——R——-5i
117 115 11 7 ( —-1)(72—2) J
=K1}
Similarly, we have

Cl;k'—lek'l" (R1]5k leaﬁ)
p— II’L
=K.
Moreover, from
RJk Rgj
T 2An—1)n—=2) "’

ij=—‘
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and 0,R,,=R,, ;, 0,R=R_, at p, we get
Cll]=H11,j_H1]. 1

. 1 1 1
=g Rt ey R A g O R
:K”(In;;
and similarly,
1 1
Clw—_ n—29 ajRuT 9 aile
=K",,. q.e.d.

§4. The curvatures and the main result.

As in [M1, §5], we can construct Tanaka connection (P, w) using Propo-
sition 3.2. For the explicite description of w, we need some more calculations,
but the essential information of the curvature K of w is given by its corollaly.
In fact, it is shown in [SY] that the harmonic part H?2(K) of the curvature
K of w determines the structure essentially. Moreover, in the case of Lie
contact structures, H?%(K) vanishes except for p=0 if n=4, and p=0, 1 if
n=3 [SY]. Therefore it is sufficient to compute K., for n=4 and K_, and
K, for n=3. It is easy to see that K”,=K_, [M1]. Immediately, we obtain
from Proposition 3.2 and its corollary:

PROPOSITION 4.1. Let Cln be the coefficients of Weyl’s conformal curvature
at p=mwien(u)=M, uysP,. Then the curvature K_, of Tanana connection @ on
n: P-T .M is given by

Ki;(uo)=Ch;(p), ng(uo>=C§jk(P)-
and all other coefficients vanish.

In particular, when n=3, K_, vanishes identically, which is already proved
in [SY] from the view point of integrability of CR-structures and twistor
geometry. Thus in this case, we should compute K,. As is shown in [Ml1],
we can see that K},,=K"},, and Kj,,=K"5,. Now, we prove:

PROPOSITION 4.2. When n=3, by using the coefficients C.;, of Weyl’s con-
formal curvature tensors, the curvature K, of Tanaka conection is given by

K3 j(uo)=Cusip), 3. (10)=C (D).

and all other coefficients vanish.
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Proof. We may prove the last statement. For the present, we do not
assume n=3. Using (10) of [MIl, §5], we have

(4.1) —(Zn-—l)Au
=K"}+K":— 2 (K"K 105)

1

= e 2 R0}

1 1
R, +0; A — o) ——R+Riu— 2( 0 At ———— 2n—2)
=—n:7Rn+aiA51+ éz 05 Ais.

Now we prepare:

LEMMA 4.3 We have at u,s Py,
aFR}ka _R}k‘mari-_Rikmarj“"R}rmakl—R}lmark_I_R}kraml_R}klarm ’
a1"R11=2R1r ’

2
ar = n—2 —5Rir,

1
afAtjzm—(leafi-i_Rli&Tj)’
where 2<r<n, 154, 7, b, m<n.

Proof. Since we have Ryn=""%n, 2<i, j<n, 1<k, m<n, from
J J = = = =
Pri—o. ) u u 3 t
J a’d(g’“’zg(dz’ {st}»zgdx ))

=0, (0u(gueat{}; }20)2bz ) AL (mod CFAL)

{@ { })a (#2908 +3n{ } NEES) N

Il

v
I:ak{sm} {(070:,—0-,01)0;+-0%(870,,— 0 ;01)}

00 [ [ O8u—8 010 OO = 0n3D) [T AL

- oo Jorsad o
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_ Z Z _ Z k m
0 orstai | Jom—a [ om ]t ntm,
we get
aTR}km:_R;kmsri_R}kmarj‘l‘R}rmakl_Rglmark+R;‘kr6m1_R§'k151‘m-

Therefore, we obtain

_R}rm_legrj—R;‘lm_R;larm
for j, m=2, and

a;ﬁ= é afﬁ“

=2
= _4er .
Now, using (2.13), we have

3rRu=— 31 9; Tifi=—(—Riy—Rir)=2Rs, .

Since R is a function on M, 0;R=0 is trivial, but also follows from
3;R=3f(k+2Ru)=0:

and so we obtain

1

1
Al — - — =
a7'14-01 n_z aTRll 2("—1)(71—2) aTR
2
) Rir.
Moreover, using (2.13) and (3.2), we get

1 . 1 )
aFALJ—‘——njz_a?(lex‘,"ﬁw)”i_mafRa]

1
2—7:2_(R;j1+R1i]r_R%rj_leéri-R;:‘lj_Rilarj)

1
:m(le51i+Rli5rj>n q.e. d.

Finally, we obtain from (4.1),
1

(42) Ail:_ﬁRll'

Next, the left hand sides of (11) and (13) of [M1, §5] are zero and we get
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“.3)
From (12)’, we have

(K”glj‘l"K”u])“‘

so that
“4.4)

Using (3.1), we obtain

I—K”]kl

'—R]k1+

REIKO MIYAOKA

A{1=A15=0.
" "o V— 1 R 1 R
(KW K')=— 2(n—2) 1yt 2n—2)
1 n+1
+‘2—R1j+'2(n—__2)-Ru
2n—1
T 2n—2) Ry
1
A= gy
An5i+Aj;51‘;
(Rliﬁk lealie)zc}ku

K}kmzK”}kaC;‘km »

Kigr=K"jg;=0

otherwise,

'Ll_K” ll+ 411 Alt

1 1 1
={ Nn—2)  n—2 " 2n—2) JRu=0,

K =K"}5=0 otherwise,
Kl =K"15=0,

’tln;:K”&!j:Cu]

ézsz”(%u:Cu; »
Ki;=K";—A;=—0;A+ 1 R+ ! R,,=0

017 01y J1 7420170 n_z 1j n_z 17 >
Kigr=K"§5,=0 otherwise,

1 1
1 Kn — 1 —
=K"= A= { g s b | Ru=0,

K%Igr:KI/},g;r:O

Since when n=3 we have

otherwise.

C;’km’:O:
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the proposition is proved. q.e.d.

From the property C3) of Cartan connections, or, since K is a tensorial 2-
form of type (Ad, g) on P, the harmonic part of K is determined all over P
by Proposition 4.1 and 4.2. Moreover, noting that the index 1 in Proposition
4.1 and 4.2 denotes the direction of the base point w(u,)< T,M, which is arbi-
trarily chosen, we obtain the main results, Corollary 1 and 2.

Since we have used here the fact described in the beginning of this section,
we will give a direct proof of these results in the next section, to be self-
contained.

§5. Tanaka connection and the Lie curvature in a local coordinate.

In order to give a complete description of w, determine A,, by (14)’ of [M1].
We prepare first

LEMMA 5.1. We have at u,=P,,
1
a;An=—7:—2‘(sz—Rnai;)’

1
a;‘Auz—m(sz—Ruau)-

Proof. This follows easily from (2.13) and
0;R.=—0; égm:ﬁ“-feua,.ﬁm“
=R,;—R,0;,. g.e.d.
Now, we obtain

n PN 1 1 XA
S @At diA)=—{5 g T gy | 2R

3 n
==z | B Ru—(r= DR
3
~—2—(n__—2)(R—nR,1),
and
B (K Kl K= s Rt s 3 Aum E Ave2n— DA —~ 5 4,
= i1 171 19t/ — 2 117 2 = i1 ers 1t 2 01 2 Frer i1
1 1 = R n-1 , R
=Rt ARy T s P T -2
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3 e 3R
T 2n=2) " 4n—2) "

Thus, we obtain

1 , R
2(n—2) Ru+t 4n—1)n—2) "

As for the curvature 2=1/2K0 N6 of w, the g,-components K, is given in
Proposition 3.2 for p<0, and in the proof of Proposition 4.2 for p=0. For
p>0, we have from

Ap=—

Q= QU=d(An0)+0' A\ 3 A,y07+07 A A6*,
i=
< iu:Kf'lj'_aJAn
=81Azj"a]Ai1=H1,;,I—Hil,]zctjl;
Knj:Ké'l;"ainl'—Aua}

1 R . 1 g R 3
==z Pt e Y s — B 2D J3;
1 ; 1 R ;
T2 (R”"R“af)_{_ 2An—2) Rut 4n—-1)(n—2) }5]
=0,
Kljk:K{/jk:_czjk s
Ki;e=K";0+ A0+ A0}

1 1 1 1
Z‘nz‘z—(R1i5i+R1k5§)—mR1k5}— — R 04— 2An—2) Rl}ﬁ}
=0,

Klj;;:K'{]',;:O.
Similarly, we obtain
01— 0"=— 0" \( 2 Ay’ +A00")
=2
<~ Ki1,=K"31;+Aud}
1, 1 N R ;
‘“?R”f“ 2An—2) R+ 4(n—1) n—2) %
1 R
T 2An—2) Ru+ 4(n—1)(n—2) %
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1
—2_C1il] ]

Ki=K7;=0,
Kijp=K? —A;:0%+ A0

1)k

1 1

R‘”J“z( gy Rudi— 50—

) = R1,0%

1
——Z‘Cﬁjk,

Ki]k Ki]_k ’

0,— Q= (zAl,auAuol)zA101/\‘4110’

1

<> Kll]:alAlj—a]All"—:?Cl]l B
I(ujzAlj—a}Au_‘AJ‘lAii
1 1
=S " ams )aR“ ) X
1 1
=g Ryt g Ru=0,
1
K]jk=a;A1k—akA1;="§cuk,
KljizKi'j/;—aﬁAlj—Au%
1 1 R 1 ‘
— ) __ o 7 (R . i
2{ n—2 Rjet 2An—1)(n—2) 5k}+ 2n—2) (Rjx—R1.03)
1 R
—_d J
{ T R R Tom o it
:0,
[{15)5:0,

Now, we summarize our results as a theorem.

69

THEOREM. Let (x*, 2%, s§, S,, i, S1) be the local cordinate around u,=P,
chosen as in §3. Then at u=u(z)=(x"*, 2%, 0%, 0, 0, 0)= P,, Tanaka connection w

on . P>T M is given by

0'=g;rzidx’, 1=z

!l/\
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0€:gjkzg(dz{+{£}z§dx‘), 2<i<n,
w}zguvz’{(dz§‘+{:t}z§dx‘) ,  2Zd, j<n,
wy=dsj,

i=dsi+A%6°,

wi=dsi+ 3 A0+ A6,

wi=dsi,

wi=dsit 5 A0+ 406", 2<isn,

wi=dsi+ A0, 2<i<n,

oi=ds+ 3} A7+ Aub*,

where
=g, A=y Ry, A=y R 2<n—11§(n—2)’
A=t Rt 2(n—11§(n—2) %, An=—g,
Aw=——Tr R, AM:——WI:Z—)RI,,
Au=— 2(n1—2) Rut 4(n—11)e(n—2) ’

using the Ricci curvature R,,=z,=z%0/0x,, and the scalar curvature R of M at
(x*). The curvature K of w at u, is given by

%]:C‘il]’ K}kzc.ijk:

) Gp— ) J— —_ ) —_
Kon——cun Kou—clwy K;kl‘—cg‘kh I('j‘km—"cj‘km,
I{iU:“C'tU: Kljk:‘—ctjk’

1 1
Kinz—‘é‘chy, Kijk=—§cij/z,

1 1
K1U=——7Cu], Kxjk=—§sz,
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for 24, §, k, m<n, and all other components vanish, where C%ym and C.;; are the
coefficients of Weyl’s conformal curvature.

Since R¥w=Ad(a™")w, a=G’, w and K are determined all over P by this

theorem.
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