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CONFORMAL STRUCTURES
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§ 0. Introduction.

In [SY] and [Ml], the notion of Lie contact structures on a (2n—^-dimen-
sional contact manifold is established as a geometry on a manifold correspond-
ing to the classical Lie sphere geometry [CC]. Following the connection theory
by N. Tanaka [T] , we construct a normal Cartan connection ω (called Tanaka
connection, for brevity) corresponding to the structure in [Ml], which is the main
tool to solve the equivalence problem (see [SY]).

A typical and important example of the structure exists on the unit tangent
bundle TXM of an w-dimensional Riemannian manifold M. In this paper, we
calculate the curvature K of Tanaka connection of this structure on TXM. We
call K the Lie curvature of TλM. In particular, when K=0, TXM is called Lie
flat, and is locally Lie equivalent to the model space^TΊS7*, the unit tangent
bundle of the standard w-sphere [SY]. This is apparently the case when M is
conformally flat (§ 1). The inverse problem is presented by Sato [ S ] : Is M
conformally flat when TλM is Lie flat?

The purpose of this paper is to answer this problem affirmatively. The
description of Tanaka connection and its curvature for this structure is given in
Theorem in § 5, where the Lie curvature is expressed in terms of all coefficients
of WeyΓs conformal curvature. As a result, we know that the structure de-
pends only on the conformal structure of M, and moreover we obtain

COROLLARY 1. Let M be a Riemannian manifold of dim ̂ 3 . Then M is
conformally fiat if and only if TYM is Lie flat.

COROLLARY 2. Let M and Mr be two Riemannian manifolds of άιm>2. Let
f: T1M-^T1M

/ be a bundle map which preserves the Lie curvature. Then the
induced map f: M->M' preserves the conformal curvature.

A resume of [Ml] and the present paper is given in [M2].
The author would like to express her hearty thanks to Professors H. Sato

and K. Yamaguchi for their valuable suggestions.
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§ 1. Preliminaries.

In this paper, we follow the argument in [Ml] and use the notations in it.
Let R%+Z={χ=(χ\ ... , χ n + 2 ) , χι^R} be an (n+3)-dimensional real vector

space endowed with a scalar product <,> with signature ( + , • • • , + , — , — ) and
let Rΐ+2={x^R%+\ χn+2=0}. Denote by Pn+2 and Pn+1 the associated projective

-dimentionalspaces. Furthermore, let Rn+1— {x^R^2, xn+1—0} be the
space-like subspace of i2?+2. By <, >, we denote the induced scalar product on
JR?+ 2 or on Rn+1. Now, the unit sphere Sn={xtΞRn+1\<x, x>=l} is naturally
embedded in Pn+1 as a Mδbius space Qn,

by *->(*, l)ei?? + 2 . On the other hand, let Σ> be the set of all oriented hy-
perspheres in Sn ^Σι—{{mf ί ) e S n x [ 0 , π) | an oriented hypersphere with center
m and radius θ}. Then Σ is naturally embedded in Pn+2 as a quadratic Qn+1,

by (m, Θ)-Km
The Mobius group L is, by definition, a group consists of projective trans-

formations of Pn+1 preserving Qn, and we have L=PO(n+l, 1). The Lie trans-
formation group G is, by definition, a group consists of projective transforma-
tions of Pn+2 preserving Qn+1, and we get G=PO(n+l, 2). Clearly we have
LdG. Now, let Λ2n~ι= {lines in Qn+1 generated by ([j^], tk2~])tΞQn+1xQn+1,
<fei, ^2>=0}. Then we have

under a mapping (M, v)->([i^i], [k2"]), where kγ—{u, 1, 0), k2=
z(v, 0, 1). Since G

preserves <,>, it induces an action on A2n"\ This action resticted to L is
translated as follows: A Mobius transformation σ: Sn->Sn is lifted to Lie
transformations σ±: T^-^T^71, by

(*) σ±{X)=±σ*X/\\σ*X\\.

We denote the subgroup <τ+(L) of G by GV. It is easy to see that GM, and so
G acts on Λ2n~ι transitively. Let G'M and G' be isotropy subgroups:

FACT 1.1. A*n-ι=G/G'=GM/G'M.
As is shown in [Ml], the Lie algebra g of G is given by
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Here, note that a base of

0 e 0 , αe=gl(2, Λ),

for M=(tt°, w1, ••• , un+2) and v=(ι;0, v1, - , vn+2)eΞR%+\ Thus we have # ? + 2 =
{ M G Λ ; + 3 , wn + 2=-(l/2)w 1}, and Rn+1={u(ΞR7l+2

ί un+1=-(l/2)u0}. We may as-
sume that GM~{h^G\h preserves R^+2}. Then the Lie algebra QM of GM is
given by

* --h
-2q 0

, rf=(di, d%\ t6=( ί61, - 2 ^

Now, we have g/=g0+gi+g2, g^^g'Πg^, where g' and §'M are Lie algebras of
G' and G^, respectively. Note that o(n —l)cco(n —lXzgoΠgjfCgjfCg'. From
these facts, we get

FACT 1.2. [see Lemma 1.2, Ml].

A 0
- l ) iGGL(2, Λ)

!,ΐ 1
, ^rrf=(*, 0),

and

Put, m=T0(G/G'), G=p(G') and G^^pCGif), where p : G', G!f->GL(m)=
GL(2n—1) is the linear isotropy representation. Since Ker1o=exρg2, denoting
/)(O(n~l))=O(n-l) and /o(CO(n-l))=CO(n-l), we get

FACT 1.3. [see Proposition 1.3, Ml].
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where A, g, a, γ are given in Fact 1.2, and

(1.1) Oίn

Now, let N be a (2ft — l)-dimensional contact manifold. It is well-known
that the linear frame bundle L(N) has a reduction L*(N) with structure group

' a φ 0 } ' N o t i n S t h a t #, [Ml], we define:

DEFINITION. A G-r eduction of L*(N) is called a Lie contact structure on N.

Now, recall the way of construction of Lie contact structure on the unit
tangent bundle TXM of an n-dimensional riemannian manifold (M, g). Let Qg

be the principal fibre bundle over M with structure group O(n). According to
[KN, p. 57], Pg=(Qg/O(n-l), O(n-l)) is a principal fibre bundle over T,M
with structure group 0{n — 1). It is shown in [Ml] that the extended bundle

Pg~Q'^XOCTI-DG >

gives a Lie contact structure on TXM.
It is obvious that TλM is Lie flat if M is conformally flat, since a conformal

transformation is lifted to a Lie transformation by (*). But it is a non-trivial
matter to see whether M is conformally flat when TXM is Lie flat, since the
structure group is enlarged. The purpose of this paper is to solve this question.

For later use, recall the geometry of the unit tangent bundle TXM of an
n-dimensional riemannian manifold M. Let ^ G T I M and let (zu ••• , zn) be an
orthonormal frame of M at p=π1(z1)^M, where πι\ TXM->M is the projection.
By using the horizontal lift z\ and the vertical lift z\ of z^TvM to TZlTM,
we make a frame u(z)—(ult ••• , u2n-i) of TXM at zlf where Uι—zh

%, lt^i^n, and

un+ι-i=zvι, 2<i<n. Note that z\ is a normal vector of TjΛί in TM. It is well-
known that u(z) is an orthonormal frame of TZ^ΓXM with respect to the metric
on TXM induced from the Sasaki metric on TM. Now, let / I G O ( W - I ) and put

h = il Ί e O ( n ) . We make h act on u(z) by

(1.2)

Then we obtain an O(n —l)-bundle π : Pg->T1M, where Pg= {u(z)\z=(zt) is an
orthonormal frame of M at πi<»^)=^i(^1)}. We have shown in the end of the
proof of [Ml, Proposition 2.3] that u{z) is a frame adapted to the Lie contact
structure.
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§ 2. Construction of a normal Cartan connection (Qy X).

In this section, following the argument in [Ml], we construct a normal
Cartan connection of type H/Ho on an i/0-reduction (Q, ζ) of the Lie contact
structure P over 7\M, when M i s a Rimannian manifold. Let π^ P->T1M be
the projection. Here, we start with the O(n—l)-reduction Pg of P.

Let ϊ=m+o(fl —1), where o(n—l) is the Lie algebra of O(n—1), and let K
be a Lie subgroup of G of which Lie algebra is !. As is mentioned in § 1, an
element u(z)ξΞPg is an orthonormal base of TZlTxM, at Zι=π(u(z)) with respect
to the metric sg induced from the Sasaki metric sg on TM. Therefore, as a
basic form on Pg, we should take

where X^TuMPg and we put Uϊ=un+ι-u 2^i^n. We will express them in a
local coordinate of Pg. Around uo=u(zo)^Pg, where zQ=(zu ••• , zn), n(uo)~zlf

and π^z^p^M, we choose a local coordinate (xι, zj), l<i, j^n, as follows:
let U1, •••, xn) be the geodesic normal coordinate of M around p such that

Zi{p)=d/dx\ and let {z))^GL(n, R) be such that

(2.1) gtjzlz1n=dkm,

where gtJ is the component of the Riemannian metric g on M with respect to
(x1, ••• , xn). Here and hereafter, we use Einstein convension for 1^/, /, k, m,
r, s, t, u, v<n, unless otherwise stated. Note that we have

(2.2)

where | i is the ChristoffeΓs symbol. Let (x\ v1) be a local coordinate of

TM expressing vXd/dx^eΞT^M, and (**, v\ ξ\ rf) be a coordinate of TTM
expressing ξKd/dx^+ηXd/dv^Tc^^TM, The coefficients of the Sasaki
metric gs on TM are then given by [SS]
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Since we can express u^Pg in a neighbourhood of u0 by

(2.3)

we can take (x\ zj), l^z, y^w, satisfying (2.1) as a local coordinate of Pg.
Moreover, in this local coordinate, we can show easily that the basic forms are
expressed by

Now, define

and put X/ι=ζ\ l^i^n, l/l=ζι

f 2<i<,n.

LEMMA 2.1. T is a Cartan connection of type K/O(n—1) on Pg.

Proof, Obviously, T is an ί-valued 1-form on Pg. Then T is a Cartan
connection of type K/O(n—1) iff

Cl) For X(=ΞTPgy X\X)=0 implies X=0.
C2) X'(i4*)=i4, A£Ξo(n-l) and A* is the fundamental vector field.
C3) R*T=Ad{a-ιW, α e θ ( n - l ) .

For X=(dx\ dz))^Tu,P8) we have r i (Z)=J% 1 , Z/J(^)=rfz}, Z'f(^)=^f, and so
Cl) is obvious. For i = ( 4 ) e o ( n - l ) , put αt=exp ίi4=(fl}(ί))^O(n—1). We use
the Einstein convension over 2< '̂, y^n as far as α}(0 is concerned. Since
uoat=u(zoάt) by (1.2), the local coordinate expression of A%0 is given by dxl=0,
dz}=0, and dzf=(dflίX0)=.4*, and we get Z'(.Λ*0)=A Now, for α=(α})Gθ(n-l)
andZ=(rfjc ι, dz))£ΞTUQPg, from R*X\X)=X\Ra*X) and Ra*X=(dx\ dz\, d(z{ak

r)),
l^i^n, 2<*j, r<n at uoa<=Pg, it follows
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Xfi

r(Ra*X)= Σ ai(dzJ

k)ak

r, 2^ί.

On the other hand Ad(a'1)Xf(X)=a'1Xf(X)a = taXf(X)a is given by

/, 0 0\/0 ζ iι\ίh 0 0\ /0 ζα ζ1

0 *α

0

α 0 = 0 ιaX'a ιa^

\0 0 OΛO 0 /./ \0 0 0

where £ = ( £ ϊ ^
calculation, we get C3).

' a n d * ' = w < ) ' 2 = ^ r = T h u s b y a n e a s y

q.e. d.

Now, enlarging the structure group to H0={a^G0 | detα = ±l}, we get a
principal fibre bundle Q=PgX0<:n-ΌHo over TXM. A local coordinate of Q is
given by (x\ z), hi), where (Af)e±SL(2, Λ), since //o/0(n-l)^±SL(2, Λ).
Denote by Xr the Cartan connection on ζ) naturally extended from Xr on P^, that

((hi 0 0 \\ /±1 0 0
is, at u=(x\ z), hξ)=uoh, where h=p\\ 0 /n_! 0 = 0 h°0In-i h\InΛ,

\\0 0 ^/Z?)-1// \ JO /!}/„.! A i / n /
using C3), we have

for (α, 6)=(0, 0), (0, 1) and (1, 0), where

putting ( j=(hξ), and ζ r and T are evaluated at M0. In the following, we

use the notation X' instead of X' for simplicity. Let W be the curvature form
of X' and put ?P=(l/2)T'ζΛζ. With respect to the base of g given in [Ml, §3],
the gp-component T'v is given by TL2=T$el9 TU^Tfrei+Tfreϊ, 2<i<n, .and
T'0=T'}βre}+T'*0β7el+T'lβrel+TflP7el, 2<i, r<n, and β, γtΞ{l, •••, n, % ••• , n}.

PROPOSITION 2.2. The curvature T' of X' at uo^Pg is given by

τ:,=o,

Tftj=d), T$=0 otherwise,
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T$=RliJ9 T%=R\jk, T$=0,

T%=R}st, Tn

rkffi=:δiδjm-δ^δjkf T'jβΐ=O otherwise,

T"oβr=T'lβr=TΊβr=O,

where i, j , k(Ξ{2, -' , n}, s, fe{l, ••• , n}, β, γtΞ {1, ••• , n, 2, — , n], and R)km

denotes the coefficients of the Riemannian curvature of the base manifold M with
respect to (#*) at p=π^π(u0).

To prove this, we prepare:

LEMMA 2.3. We have the following formulas:

(2.5) dx%=z%J, andatuo, dx%=ζi

 9 l^i£n,

(2.6) dzl^-z^-VXzldx1, and at u0, dz\=ζι, 2^i^n,
Lot J

(2.7) dzl^ziΠ-^zlzl, and at u,, dz\=ln

r, 2£i,r^n,

(2.8) 0=dz}+dzί at uo, 1^/^n,

(2.9) 0=3*2} /or l^j<i£n and at u0 for l^i, j,k^n,

(2.10) dfZ^δl, 2^i,r<n,

(2.11) 3f(2j)=δ^i-δ r iδί at uo for l^i, j^n, 2<r£n ,

where we use di—d/dxι and df=d/dzl.

Proof. Since gjkz\zL—δim> (yj) given by y)—gjkz\ is the inverse matrix of
(z*j). The first three are direct consequence of this fact and (2.2). From 0—
d(gljZlzlι)=δij{(dzi)δiι

Jt-δldzJ

m} at u0 follows (2.8). Since we may consider z)9

l<j<i, as free variables, we have dk(z))=0, for l^k^n, l^j<i<*n. Especially
at Uo, by virtue of (2.8), we get (2.9). In the same way, since df~d/dzr

lt 2 ^ r
^ n , we get (2.10) for 2<i, r^n, and 3 fz}=0 for 2<i<j£n. The last formula
follows from (2.8). q.e.d.

Proof of Proposition 2.2. Since T%=dha

b, (a, fc)=(0, 0), (0, 1), (1, 0), and
since ?Γ/=(l/2)T/ζΛζ, we may ignore the terms X'% in the structure equation
(see (3.1) in §3), when we calculate the curvature. It is ovbious that T'ξβr=0.
Now, we obtain

= d(gjkz
k

1dxJ)+ΣdxtΛdzl
1=2
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= Σ>dz{AdxJ+ Σ>

J=l 1 = 2

- o ,
i.e. TL2=0. Next, we get

Ψ'%=dζ*+ Σ Z'*Λζr

Σ dzι

rAdxr

r=2

i.e. T[\—l and T^ r=0 otherwise. From

follow T'ίt=R\u and T^=0. Now, we have

, ] Λύί;ct+ Σ
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i.e. Tfί

rSt=RU, T'ij^δjδrk-δlδrj and Tfi

rβr=0 otherwise. q.e.d.

Since (Q, X') is an i/0-reduction desired in [Ml, Proposition 5.1], we can
apply [Ml, Proposition 5.2] to it. Namely, as in the existence proof of the
connection (Q, X) there, put

n—

ΛO — ΛO Λl ΛO ΛO Λl Δk Λk Λk Λ

for 2^2, j , k^n> where we use the Ricci curvature tensor Rjk= ΣlRjik of M
n

at p. The scalar curvature tensor of Mis denoted by R= ΣRjj. In the follow-

ing, we also use the notation Rjk— Σ ^ } α , l^j,k^n, and R= Σ>Rjj. Im-

mediately, we have

(2.12)

Let Ψ"=(l/2)T/fζAζ be the curvature of the connection X" defined by

and X/f—V for other indices. Then we have Ψ"—W except for

Note that T"ltι=—dϊAlt. Now, putting

where

V (Tin T//o A — Π
2(n-l)

. / \ Ί Tin TIIO \ _ _

2{n-Y)\h n~ «V— 2'

"{, - T " ί t + r w ί j -τ"{ ϊ - Σ T " ; i S ) = o ,

we obtain the desired ((?, Z). Here, note that the curvatures given in Proposi-
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tion 2.2 and so these coefficients are given pointwise. Thus, to get Ah ex-
plicitely, we must compute

Γ 2J {.Oil %m) .
—l m=2

From

=du{grkz
k

m[r

st)z\)zu

τz
t

vζ
iΛζ" ( m o d ζ f Λ ζ O ,

we have for /, m^2,

Thus we obtain

(2.13) 3iTίβ*=/?

for 1^/, v ^ n , 2^/, m<n, and it follows for

(2.14) M i « . = ? = - - ^ ^
/Z

using (2.12). Finally we have
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1
Λ l l = 2(n

"-"-n-2 " 2(n

Thus, the Cartan connection (Q, 1) of type H/Ho defined by

y —yr yί — y/ί yo — y/o
Λ_—Λ_ , Λ.r — Λ r , ΛQ — A, o y

ζ % %

is normal (i.e. T-1=3*T°=(3*T1)(e1)=0, where F=(l/2)TζΛζ is its curvature)
[Ml, Proposition 5.2].

PROPOSITION 2.4. T/zs curvature ?Γ=(l/2)TζΛζ 0/ (Q, %) /s g/

j r = 0 otherwise,

T'- —ft

T}*«=Λ}»«, Γ} l m=3ίa ί l l i-ίia ί», Tj^r=O otherwise,

T8, t =- 2( n !2) ^ u ' τ ϋίr=° otherwise,

? i ? = y , Tί ί r =0 otherwise,

71 —

7Z — <
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R

where 2^i, j , k^n and β, Y^{1, ••• , w, 2, ••• , ft).

Proof. We use the relation between T and T' obtained in [Ml, §5]. The
first one is obvious. Next, we have

T ί T'ΐ\ Δl Άi
lj— * ljΊ~^10lv<;

=R\u+S^—2R^- 2 ( n - i χ n - 2 ) )

=R\Jk uδj-RiM)' 2^/, i ^ n ,

Now, from

&i, r, s, t£n.

we get

Similarly, from

we obtain

Then, from

- T ^ ^ O , otherwise.

r = 0 , otherwise.

^ hdAl)Λζi+dAl1Λζ,1+ ΣAljdζ?+A
j-2 j=2

to obtain Tl1J=T/l1j+d1Alj—dJAl1, we compute
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Therefore, we have

7
72 —

Here we use (2.9) and get

^ ^ } ) ) (mod ζ ?

and so

diA\j~ κdi^ΣiRfjm — —diR1Jf l<i^n and

Similarly, we get

~ n-2 xi 2{n-ϊ){n-2)°"

Tkj=T'lij=0.

Now, we have

τ-Ί 7̂ /i . 3.41 _i_/li Λ-41 1 p

where djA^ is given later (Lemma 4.3). q. e. d.
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§3. A Cartan connection.

Using the method of the proof of [Ml, Proposition 5.3], we construct
Tanaka connection on P=QXHQG' from the normal Cartan connection (Q, 1)
constructed in §2.

First of all, for later use, recall the structure equation [Ml, (3.1)], of a
Cartan connection (P, ω) of the G/Gf, where θ=ω-2+ω.χ is the basic form, and
Ω is the curvature form:

3=2

3=2

(3.1) dωl=(ωl-ωϊ)Λωl- Σ θϊAωi+Ω1

0,
1=2

>i=-ωjΛωϊ- Σ θιAωi-θ1 Aω1

JrΩ\,
1=2

dωi——ωiAωl—ωιA(o\—θιAo>1

Jt
3

Now, let ω' be the Cartan connection on P naturally extended from X.
Namely, let (x\ z), sξ, st, si, sx) be a local coordinate on P where (JC*, zj) is the
local coordinate of Pg around a point uo^Pg chosen in §2,(sf) G G L ( 2 , R), O^α,

^ ι ^ n and Sχ=sS+2. As in §2, we define ω' byωi 2 +
6^1, ωί=ds t, α>j=ίίsϊ and coί—cίsi at MGQ (note

thξit stlρ=Af), and then extend it to P by RW=Λd(a'1)ωf where αeG' .
Obviously, (P, α>') is a Cartan connection of type GIG' with basic form θ~ωL2
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PROPOSITION 3.1. The curvature Ω'=(l/2)K'θΛθ of ω' at u0 satisfies

c*K'=T

where c: Q-*P is the inclusion map and T is given in Proposition 2.4,

2(n—2)K%= 2(n—2) R l " χ / ^ " = 0 ' otherwise,

and
K>ιβr=Kίβr=K'lβr=0.

Proof. The non-trivial case is Ω'\. From the structure equation (3.1), we
get

Ω'l=dω'i+(X'1+ Σ,Aljθ}+Alιθ
1)Aa'

\ j=2 /

and so

R1Jf K'\βΐ=0 otherwise. q.e.d.
2(72-2)

Now, we construct a Cartan connection (P, ω") as in [Ml]. To obtain AtJ

for iφj in [Ml], by Proposition 3.1, 2.4 and (2.12), we get

n-1
" n-21VlJf

so that noting AlJ—Aji, we have

For i—j, we get

2(n-lXn-2)

R

n - l
M - 2 " u n-2

and the summation over 2^/^κ gives

72 —
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^(R-2Rn).
n—Δ

Therefore, we get

R+ R»+

( π _ i χ n _ 2 ) R»+2(n-l)(n-2)

1 7? + R

or,

~ 9 * Δ „ L_P , R *t

^ Z ) l3~ n-2 ι j + 2(n-l)(n-2) 3'

The Left hand sides of (7)' and (8)' vanish so that we get

(3.3) AΪ,=A%3=0.

As for (9)', since we have

=δj-δj+(n-l)δj

we get

(3.4)

Therefore, ω" is given by

(θ'ί=ω'p,

PROPOSITION 3.2. The curvature Ω"=-^K"Θ/\Θ of ω" is given at uo(=Pe by,

Ki'l=R\jk KriR^d'j-Rvdi), Kfr=0 otherwise,
71 — Δ
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J ΐi—2

R

(n-lXn-2)
(δι

kδjm-δι

mδjk)

59

2(n-2)

p

//0. Jf'O Λ

n- n—i

•«»• 0 1 ; — f Λoi

1
otJ n-2

1

1
72-2 " W '

Rij—djRit), K"iβr=0 otherwise,

? υ , K"lβr=K'\βr=0, otherwise,

Kϊjk=z-JRhk, K?β7=0 otherwise,

Kϊβγ—Q otherwise.

Proof. We can compute Ω"—Ω' by using (3.1) as follows:
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fi=K$=0 otherwise,

τsnΐ τsή A — p i ι _ _ _ _ _ / ?
JΛ. ij—1\ ij ί\%3 — iλ-iij -i ZZθ~ lJ '

7X /id

R
-Ru—

R
n-2 " 2(n-lXn-2)

R

iql=κ%=R\jk

^ 2 ~ J M i T ^ 2 ~ J V u ~ (»-iχn-2) '

72 —

k=2

j 1 j

1
; m n — 2

" (n-iXn-2){δlδ}*

K"jβr=K'jβr=O otherwise,

n

^ A Γ ^ ^ O otherwise,

2 i=2
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K"°lβΐ=K'olβr=O otherwise,

- β ' J = f] θiAΛιJθ
J

/Γ//1- ZΓ'1- _!_ Δ Π

01; — i Λ 0 1 ; — ί/ -T OlΊ
?2 —

Olj — •*»• Olj — Vf

<-* K'%= } Ru, K"lβτ=0 otherwise,

Ω»-Ωi=d( Σ AιjθΛ+A-i-iθ'Ά(xn

0+ Σ Atf'+M
\]=2 / \ ;=2

n

= Ά
n

n

1
i 2(n-2)
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n _ Pi _i_

/("// Z-Δ

COROLLARY. Let C)km and Cljk^=Πljtk—Πiht3 be the coefficients of WeyΓs
conformal curvature tensor at p—πι°π(uQ)^M. Then we have

LΓ rri r*x TSttϊ Γ ί
J\\j —^lljf J± jk —^Ίjk >

Λ oi; — ̂ l l ; > Λ Oij—^ltjy

in ri
• jkm — ̂  jkm )

where 2<i, j , k, m^n

Proof. Since

1 R
R ) Λ Λ R δ R δ l + R R ) )C)km = R ) k m Λ Λ R j k δ m R j r r i δ l + g j k R m g j ' n i R k ) , 7 T 7

n—Cι \7Ϊ—~ x.)\n -~~

noting gijip^δij, the last formula follows immediately. Then for i, ; ^ 2 , we
have

Similarly, we have

Moreover, from

jk —
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and dkRtJ=RtJ,k, dkR=R,k at p, we get

n—Δ 2(n —l)(n—2) n— 2

and similarly,

-3i#i,

=K'%. q.e.d.

§4. The curvatures and the main result.

As in [Ml, §5], we can construct Tanaka connection (P, ω) using Propo-
sition 3.2. For the explicite description of ω, we need some more calculations,
but the essential information of the curvature K of ω is given by its corollaly.
In fact, it is shown in [SY] that the harmonic part HP \K) of the curvature
K of ω determines the structure essentially. Moreover, in the case of Lie
contact structures, HP-\K) vanishes except for p=Q if rc;>4, and p=0, 1 if
n=3 [SY]. Therefore it is sufficient to compute / d for n^i and K_x and
Ko for w=3. It is easy to see that Kl^—K^ [Ml]. Immediately, we obtain
from Proposition 3.2 and its corollary:

PROPOSITION 4.1. Let C)km be the coefficients of WeyVs con formal curvature
at p-—π1°π(uo)^M, uo^Pg. Then the curvature K-x of Tanana connection ω on
π: P-*TXM is given by

KUuo)=C\lj(p)f K}k(uo)=C\jh(p).

and all other coefficients vanish.

In particular, when n—2>, K_x vanishes identically, which is already proved
in [SY] from the view point of integrability of Ci?-structures and twistor
geometry. Thus in this case, we should compute ΛΌ. As is shown in [Ml],
we can see that K\l3=K'% and K\X3=-K"\XJ. Now, we prove:

PROPOSITION 4.2. When n—3, by using the coefficients Cιjk of WeyVs con-
formal curvature tensors, the curvature Ko of Tanaka conection is given by

K1

oιj(uo)=Cnj(P), K

and all other coefficients vanish.
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Proof. We may prove the last statement. For the present, we do not
assume n = 3 . Using (10)' of [Ml, §5], we have

(4.1) -{2n-l)An

n—2

Now we prepare:

LEMMA 4.3 We have at

2
k2
2 dsAtt.

7Γ~ttlr y
n—L

—(Rxjδ
71 — Δ

where 2<Ξrίίκ, 1^«, /, k, m<n.

Proof. Since we have Rjkm—^'jkm, 2^Li, js^n, l^k, m<n, from

k Aζm (mod ζ* ΛζΓ)
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we get

Therefore, we obtain

for y, m^2, and

Now, using (2.13), we have

m=2

Since R is a function on M, dfR—0 is trivial, but also follows from

and so we obtain

. ,, 1
Mi—^rRu- 2(n-iXn-2) df

n-2

Moreover, using (2.13) and (3.2), we get

ft-2 κ rJ

72-2

Finally, we obtain from (4.1),

(4.2) Λn

Next, the left hand sides of (11)' and (13/ of [Ml, § 5] are zero and we get
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(4.3) Aϊl=Λί}=0.

From (12)', we have

2 n - l

so that

<4.4)

Using (3.1), we obtain

71

Tfffi Γx

jβr)βγ=0 otherwise,

= I 2(»-2) ~1P2" + 2(n-2) F l t =

/jf»ίr=/i:"»/,r=O otherwise,

—τζtι\
^ — •*»• oi.;

I Y oij — J± oij —

KlιJKll}Λnd}Al1+KΓ1J+
ΐl — Δ 71 —

Klβr=K"lβr=0 otherwise,

K\βΐ^K'nlβr=0 otherwise.

Since when n=3we have
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the proposition is proved. q. e. d.

From the property C3) of Cartan connections, or, since K is a tensorial 2-
form of type {Ad, g) on P, the harmonic part of K is determined all over P
by Proposition 4.1 and 4.2. Moreover, noting that the index 1 in Proposition
4.1 and 4.2 denotes the direction of the base point π{uo)^TiM, which is arbi-
trarily chosen, we obtain the main results, Corollary 1 and 2.

Since we have used here the fact described in the beginning of this section,
we will give a direct proof of these results in the next section, to be self-
contained.

§ 5. Tanaka connection and the Lie curvature in a local coordinate.

In order to give a complete description of ω, determine An by (14)' of [Ml].
We prepare first

LEMMA 5.1. We have at uQ<=Pg,

A

Proof. This follows easily from (2.13) and

771 = 2

=RtJ—Riiδij. q.e.d.

Now, we obtain

^ 2 + 2(M-2)

-^—{R-nR11))

and

n l l n π l 1 n

Σ ( TC H _1_ T<Γ tt Tf tt -\ ΐ? J X^ Δ ^s^ /I (ψt 1 N /11 ^Γi Λ
1=2 l t l l t l Z I t=2 t=2

λ R + J V ί ? R
R

2(κ-2) 2(n-2)"" ' 4(n-2)



68 REIKO MIYAOKA

Thus, we obtain

2(n-2Γ 4(n-2)

1

2(n-2) " ' 4(n-l)(n-2)

As for the curvature Ω=l/2KθAθ of <o, the gp-components /Γp is given in
Proposition 3.2 for p<0, and in the proof of Proposition 4.2 for £=0. For
p>0, we have from

=d1AtJ-d}Ail=Πt3.1-Πil.}=CtJ1,

R

w _ 2 ^ + 2(«-lXn-2) («-2) t u 2(«-l) Γ'

= 0 ,

= 0 ,

f^ ^'^ 4(»-fXn-2) ^

Similarly, we obtain

\;=2

R
l i r 2(n-2) ^ ^ 4(n-lXn-2) J

1

2(n-2) " ' 4(n-l)(n-2) ^



LIE CONTACT STRUCTURES AND CONFORMAL STRUCTURES 69

Kijk=K'{]k-Alkd)+Aυδl

R *
2 " 1 ' * " Γ 2 ( n - 2 ) i M * c / ' " 2(n-2) '

1 ^

1

2

1 „ . 1 Λ „ 1
2(71-2) *" 2(n-2)

V J
 " 2(n-2)'

n-2

——

2(n-lXn-2)

+2(n-2) ^ 1 1

Now, we summarize our results as a theorem.

THEOREM. Z,ef (x\ z), sξ, st, s-l} sx) ^ ί/ie /^α/ cordmate around uo

chosen as in §3. Then at u — u{z)—{x%, z), δξ, 0, 0, 0 ) G P Γ Tanaka connection ω
on π : P—>T1M is given by
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ω°o=ds°Q,

<θi=ds\,

ω.=dSi+ Σ Atjθ
3+Atlθ

ι,
J2

3=2

where

1 1 I D
0 _ Λl — -*• P Λl — ± P Λ

n—I n—Δ Z{n — l){n—Z)

I D I

R + δ 5 Λ1 ^ 2 R t i + 2(n-lXn-2) δ 5 '

L P 4 P

fte i?/cc/ curvature RlJ—zl—z\d/dxky and the scalar curvature R of M at
(xι). The curvature K of ω at uQ is given by

I\. lj — o n j f 1 \ j• k — L/ i , k ,

OH ^ l i Koij — Cuj, Klkl~Cljkl> K)km:=zC)km>OH — ^ l i t > K

M l ; - ~2^U3 y

1 ^
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for 2^i, j, k, mf^n, and all other components vanish, where C)km and Cljk are the
coefficients of WeyΓs con formal curvature.

Since R%ω~Ad(a~x)ω, a<^G', ω and K are determined all over P by this
theorem.
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