LIE CONTACT STRUCTURES AND
 CONFORMAL STRUCTURES

By Reiko Miyaoka

§ 0. Introduction.

In [SY] and [M1], the notion of Lie contact structures on a ($2 n-1$)-dimensional contact manifold is established as a geometry on a manifold corresponding to the classical Lie sphere geometry [CC]. Following the connection theory by N. Tanaka [T], we construct a normal Cartan connection ω (called Tanaka connection, for brevity) corresponding to the structure in [M1], which is the main tool to solve the equivalence problem (see [SY]).

A typical and important example of the structure exists on the unit tangent bundle $T_{1} M$ of an n-dimensional Riemannian manifold M. In this paper, we calculate the curvature K of Tanaka connection of this structure on $T_{1} M$. We call K the Lie curvature of $T_{1} M$. In particular, when $K \equiv 0, T_{1} M$ is called Lie flat, and is locally Lie equivalent to the model space $=T_{1} S^{n}$, the unit tangent bundle of the standard n-sphere [SY]. This is apparently the case when M is conformally flat (§1). The inverse problem is presented by Sato [S]: Is M conformally flat when $T_{1} M$ is Lie flat?

The purpose of this paper is to answer this problem affirmatively. The description of Tanaka connection and its curvature for this structure is given in Theorem in §5, where the Lie curvature is expressed in terms of all coefficients of Weyl's conformal curvature. As a result, we know that the structure depends only on the conformal structure of M, and moreover we obtain

Corollary 1. Let M be a Riemannian manifold of $\operatorname{dim} \geqq 3$. Then M is conformally flat if and only if $T_{1} M$ is Lie flat.

Corollary 2. Let M and M^{\prime} be two Riemannian manifolds of $\operatorname{dim} \geqq 3$. Let $\tilde{f}: T_{1} M \rightarrow T_{1} M^{\prime}$ be a bundle map which preserves the Lie curvature. Then the induced map $f: M \rightarrow M^{\prime}$ preserves the conformal curvature.

A resume of [M1] and the present paper is given in [M2].
The author would like to express her hearty thanks to Professors H. Sato and K. Yamaguchi for their valuable suggestions.

[^0]
§ 1. Preliminaries.

In this paper, we follow the argument in [M1] and use the notations in it.
Let $\boldsymbol{R}_{2}^{n+3}=\left\{x=\left(x^{0}, \cdots, x^{n+2}\right), x^{2} \in \boldsymbol{R}\right\}$ be an ($n+3$)-dimensional real vector space endowed with a scalar product \langle,$\rangle with signature (+, \cdots,+,-,-)$ and let $\boldsymbol{R}_{1}^{n+2}=\left\{x \in \boldsymbol{R}_{2}^{n+3}, x^{n+2}=0\right\}$. Denote by P^{n+2} and P^{n+1} the associated projective spaces. Furthermore, let $\boldsymbol{R}^{n+1}=\left\{x \in \boldsymbol{R}_{1}^{n+2}, x^{n+1}=0\right\}$ be the ($n+1$)-dimentional space-like subspace of \boldsymbol{R}_{1}^{n+2}. By \langle,$\rangle , we denote the induced scalar product on$ \boldsymbol{R}_{1}^{n+2} or on \boldsymbol{R}^{n+1}. Now, the unit sphere $S^{n}=\left\{x \in \boldsymbol{R}^{n+1} \mid\langle x, x\rangle=1\right\}$ is naturally embedded in P^{n+1} as a Möbius space Q^{n},

$$
S^{n} \cong Q^{n}=\left\{[y] \in P^{n+1} \mid\langle y, y\rangle=0\right\},
$$

by $x \rightarrow(x, 1) \in \boldsymbol{R}_{1}^{n+2}$. On the other hand, let Σ be the set of all oriented hyperspheres in $S^{n} ; \Sigma=\left\{(m, \theta) \in S^{n} \times[0, \pi) \mid\right.$ an oriented hypersphere with center m and radius $\theta\}$. Then Σ is naturally embedded in P^{n+2} as a quadratic Q^{n+1},

$$
\Sigma \cong Q^{n+1}=\left\{[k] \in P^{n+2} \mid\langle k, k\rangle=0\right\},
$$

by $(m, \theta) \rightarrow(m, \cos \theta, \sin \theta) \in \boldsymbol{R}_{2}^{n+3}$.
The Möbius group L is, by definition, a group consists of projective transformations of P^{n+1} preserving Q^{n}, and we have $L=P O(n+1,1)$. The Lie transformation group G is, by definition, a group consists of projective transformations of P^{n+2} preserving Q^{n+1}, and we get $G=P O(n+1,2)$. Clearly we have $L \subset G$. Now, let $\Lambda^{2 n-1}=\left\{\right.$ lines in Q^{n+1} generated by $\left(\left[k_{1}\right],\left[k_{2}\right]\right) \in Q^{n+1} \times Q^{n+1}$, $\left.\left\langle k_{1}, k_{2}\right\rangle=0\right\}$. Then we have

$$
T_{1} S^{n}=\left\{(u, v) \in S^{n} \times S^{n} \mid\langle u, v\rangle=0\right\} \cong \Lambda^{2 n-1}
$$

under a mapping $(u, v) \rightarrow\left(\left[k_{1}\right],\left[k_{2}\right]\right)$, where $k_{1}=(u, 1,0), k_{2}=(v, 0,1)$. Since G preserves \langle,$\rangle , it induces an action on \Lambda^{2 n-1}$. This action resticted to L is translated as follows: A Möbius transformation $\sigma: S^{n} \rightarrow S^{n}$ is lifted to Lie transformations $\sigma_{ \pm}: T_{1} S^{n} \rightarrow T_{1} S^{n}$, by

$$
\begin{equation*}
\sigma_{ \pm}(X)= \pm \sigma_{*} X /\left\|\sigma_{*} X\right\| \tag{*}
\end{equation*}
$$

We denote the subgroup $\sigma_{+}(L)$ of G by G_{M}. It is easy to see that G_{M}, and so G acts on $\Lambda^{2 n-1}$ transitively. Let G_{M}^{\prime} and G^{\prime} be isotropy subgroups:

FACT 1.1. $\quad \Lambda^{2 n-1}=G / G^{\prime}=G_{M} / G_{M}^{\prime}$.
As is shown in [M1], the Lie algebra \mathfrak{g} of G is given by

$$
\begin{aligned}
& \mathfrak{g}=\sum_{p=-2}^{2} \mathfrak{g}_{p}, \quad\left[\mathfrak{g}_{2}, \mathfrak{g}_{\jmath}\right]=\mathfrak{g}_{2+\jmath}, \\
& \mathfrak{g}_{-2}={ }^{t} \mathfrak{g}_{2}=\left\{\left(\begin{array}{lll}
0 & 0 & c_{p} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), c_{p}=\left(\begin{array}{rr}
0 & p \\
-p & 0
\end{array}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{g}_{-1}={ }^{\tau} \mathfrak{g}_{1}=\left\{\left(\begin{array}{lll}
0 & b & 0 \\
0 & 0 & { }^{t} b \\
0 & 0 & 0
\end{array}\right),{ }^{t} b \in \boldsymbol{R}^{n-1} \times \boldsymbol{R}^{n-1}\right\}, \\
& \mathfrak{g}_{0}=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & -{ }^{t} a
\end{array}\right), a \in \mathfrak{g l}(2, \boldsymbol{R}), e \in \mathfrak{o}(n-1)\right\} .
\end{aligned}
$$

Here, note that a base of \boldsymbol{R}_{2}^{n+3} is chosen so that

$$
\langle u, v\rangle=-2 u^{0} v^{n+1}-2 u^{1} v^{n+2}+\sum_{i=2}^{n} u^{2} v^{2},
$$

for $u=\left(u^{0}, u^{1}, \cdots, u^{n+2}\right)$ and $v=\left(v^{0}, v^{1}, \cdots, v^{n+2}\right) \in \boldsymbol{R}_{2}^{n+3}$. Thus we have $\boldsymbol{R}_{1}^{n+2}=$ $\left\{u \in \boldsymbol{R}_{2}^{n+3}, u^{n+2}=-(1 / 2) u^{1}\right\}$, and $\boldsymbol{R}^{n+1}=\left\{u \in \boldsymbol{R}_{1}^{n+2}, u^{n+1}=-(1 / 2) u^{0}\right\}$. We may assume that $G_{M}=\left\{h \in G \mid h\right.$ preserves $\left.\boldsymbol{R}_{1}^{n+2}\right\}$. Then the Lie algebra g_{M} of G_{M} is given by

$$
\mathrm{g}_{M}=\left\{\left(\begin{array}{ccc}
a & b & c_{p} \\
d & e & { }^{t} b \\
{ }^{t} c_{q} & { }^{t} d & -{ }^{t} a
\end{array}\right) \in \mathrm{g}, a=\left(\begin{array}{cc}
* & -\frac{1}{2} p \\
-2 q & 0
\end{array}\right), d=\left(d_{1}, d_{2}\right),{ }^{t} b=\left({ }^{t} b_{1},-2^{t} d_{2}\right)\right\} .
$$

Now, we have $\mathfrak{g}^{\prime}=\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}, \mathfrak{g}_{M}^{\prime}=\mathfrak{g}^{\prime} \cap \mathfrak{g}_{M}$, where \mathfrak{g}^{\prime} and $\mathfrak{g}_{M}^{\prime}$ are Lie algebras of G^{\prime} and G_{M}^{\prime}, respectively. Note that $\mathfrak{p}(n-1) \subset \mathfrak{c}(n-1) \subset g_{0} \cap g_{M} \subset g_{M}^{\prime} \subset \mathfrak{g}^{\prime}$. From these facts, we get

Fact 1.2. [see Lemma 1.2, M1].

$$
\begin{gathered}
G^{\prime}=\left\{h=\left(\begin{array}{ccc}
A & 0 & 0 \\
g d & g & 0 \\
{ }^{t} A^{-1}\left\{\frac{1}{2} t d d+f\right\} & { }^{t} A^{-1 t} d & { }^{t} A^{-1}
\end{array}\right), \begin{array}{l}
g \in O(n-1) \\
d \in \boldsymbol{R}^{n-1} \times \boldsymbol{R}^{n-1}, f=\left(\begin{array}{cc}
0 & -q \\
q & 0
\end{array}\right)
\end{array}\right\}, \\
G_{M}^{\prime}=\left\{h \in G^{\prime} \left\lvert\, A=\left(\begin{array}{ll}
\alpha & 0 \\
l \gamma & 1
\end{array}\right)\right., g d=(*, 0), \alpha \neq 0\right\},
\end{gathered}
$$

and $O(n-1) \subset C O(n-1) \subset G_{M}^{\prime} \subset G^{\prime}$.
Put, $\mathfrak{m}=T_{0}\left(G / G^{\prime}\right), \quad \tilde{G}=\rho\left(G^{\prime}\right)$ and $\tilde{G}_{M}=\rho\left(G_{M}^{\prime}\right)$, where $\rho: G^{\prime}, G_{M}^{\prime} \rightarrow G L(\mathfrak{m})=$ $G L(2 n-1)$ is the linear isotropy representation. Since $\operatorname{Ker} \rho=\exp g_{2}$, denoting $\rho(O(n-1))=O(n-1)$ and $\rho(C O(n-1))=C O(n-1)$, we get

Fact 1.3. [see Proposition 1.3, M1].

$$
\tilde{G}=\left\{\left(\begin{array}{ccc}
\operatorname{det} A & 0 & 0 \\
* & g \otimes A \\
* &
\end{array}\right)\right\}, \quad \tilde{G}_{M}=\left\{\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \alpha g & 0 \\
* & \gamma g & g
\end{array}\right)\right\}
$$

where A, g, α, γ are given in Fact 1.2, and

$$
\begin{equation*}
O(n-1) \subset C O(n-1) \subset \tilde{G}_{M} \subset \tilde{G} \tag{1.1}
\end{equation*}
$$

Now, let N be a ($2 n-1$)-dimensional contact manifold. It is well-known that the linear frame bundle $L(N)$ has a reduction $L^{\#}(N)$ with structure group $G_{0}(\mathfrak{m})^{\#}=\left\{\left(\begin{array}{lc}a & 0 \\ \zeta & \operatorname{CSp}(n-1, R\end{array}\right), a \neq 0\right\} . \quad$ Noting that $\tilde{G} \subset G_{0}(\mathfrak{m})^{\#},[\mathrm{M} 1]$, we define:

Definition. A \tilde{G}-reduction of $L^{\#}(N)$ is called a Lie contact structure on N.
Now, recall the way of construction of Lie contact structure on the unit tangent bundle $T_{1} M$ of an n-dimensional riemannian manifold (M, g). Let Q_{g} be the principal fibre bundle over M with structure group $O(n)$. According to [KN, p. 57], $P_{g}=\left(Q_{g} / O(n-1), O(n-1)\right)$ is a principal fibre bundle over $T_{1} M$ with structure group $O(n-1)$. It is shown in [M1] that the extended bundle

$$
\tilde{P}_{g}=Q_{g} \times{ }_{o(n-1)} \tilde{G}
$$

gives a Lie contact structure on $T_{1} M$.
It is obvious that $T_{1} M$ is Lie flat if M is conformally flat, since a conformal transformation is lifted to a Lie transformation by (*). But it is a non-trivial matter to see whether M is conformally flat when $T_{1} M$ is Lie flat, since the structure group is enlarged. The purpose of this paper is to solve this question.

For later use, recall the geometry of the unit tangent bundle $T_{1} M$ of an n-dimensional riemannian manifold M. Let $z_{1} \in T_{1} M$ and let (z_{1}, \cdots, z_{n}) be an orthonormal frame of M at $p=\pi_{1}\left(z_{1}\right) \in M$, where $\pi_{1}: T_{1} M \rightarrow M$ is the projection. By using the horizontal lift z_{\imath}^{n} and the vertical lift z_{\imath}^{v} of $z_{i} \in T_{p} M$ to $T_{z_{1}} T M$, we make a frame $u(z)=\left(u_{1}, \cdots, u_{2 n-1}\right)$ of $T_{1} M$ at z_{1}, where $u_{i}=z_{\imath}^{h}, 1 \leqq i \leqq n$, and $u_{n+\imath-1}=z_{\imath}^{v}, 2 \leqq i \leqq n$. Note that z_{1}^{v} is a normal vector of $T_{1} M$ in $T M$. It is wellknown that $u(z)$ is an orthonormal frame of $T_{z_{1}} T_{1} M$ with respect to the metric on $T_{1} M$ induced from the Sasaki metric on $T M$. Now, let $h \in O(n-1)$ and put $\tilde{h}=\left(\begin{array}{ll}1 & 0 \\ 0 & h\end{array}\right) \in O(n)$. We make h act on $u(z)$ by

$$
\begin{equation*}
u(z) h=u(z \tilde{h}) . \tag{1.2}
\end{equation*}
$$

Then we obtain an $O(n-1)$-bundle $\pi: P_{g} \rightarrow T_{1} M$, where $P_{g}=\left\{u(z) \mid z=\left(z_{\imath}\right)\right.$ is an orthonormal frame of M at $\pi_{1} \circ \pi(z)=\pi_{1}\left(z_{1}\right)$. We have shown in the end of the proof of [M1, Proposition 2.3] that $u(z)$ is a frame adapted to the Lie contact structure.

§ 2. Construction of a normal Cartan connection (Q, χ).

In this section, following the argument in [M1], we construct a normal Cartan connection of type H / H_{0} on an H_{0}-reduction (Q, ζ) of the Lie contact structure \tilde{P} over $T_{1} M$, when M is a Rimannian manifold. Let $\pi: \tilde{P} \rightarrow T_{1} M$ be the projection. Here, we start with the $O(n-1)$-reduction P_{g} of \tilde{P}.

Let $\mathfrak{f}=\mathfrak{m}+\mathfrak{p}(n-1)$, where $\mathfrak{p}(n-1)$ is the Lie algebra of $O(n-1)$, and let K be a Lie subgroup of G of which Lie algebra is \mathfrak{f}. As is mentioned in §1, an element $u(z) \in P_{g}$ is an orthonormal base of $T_{z_{1}} T_{1} M$, at $z_{1}=\pi(u(z))$ with respect to the metric s_{g} induced from the Sasaki metric s_{g} on $T M$. Therefore, as a basic form on P_{g}, we should take

$$
\begin{array}{ll}
\zeta^{i}(X)=s_{g}\left(\pi_{*} X, u_{\imath}\right), & 1 \leqq i \leqq n, \\
\zeta^{i}(X)=s_{g}\left(\pi_{*} X, u_{\bar{i}}\right), & 2 \leqq i \leqq n,
\end{array}
$$

where $X \in T_{u(z)} P_{g}$ and we put $u_{i}=u_{n+\imath-1}, 2 \leqq i \leqq n$. We will express them in a local coordinate of P_{g}. Around $u_{0}=u\left(z_{0}\right) \in P_{g}$, where $z_{0}=\left(z_{1}, \cdots, z_{n}\right), \pi\left(u_{0}\right)=z_{1}$, and $\pi_{1}\left(z_{1}\right)=p \in M$, we choose a local coordinate (x^{2}, z_{j}^{i}), $1 \leqq i, j \leqq n$, as follows: let $\left(x^{1}, \cdots, x^{n}\right)$ be the geodesic normal coordinate of M around p such that $z_{i}(p)=\partial / \partial x^{2}$, and let $\left(z_{\jmath}^{i}\right) \equiv G L(n, \boldsymbol{R})$ be such that

$$
\begin{equation*}
g_{\imath} z_{k}^{2} z_{m}^{j}=\delta_{k m}, \tag{2.1}
\end{equation*}
$$

where $g_{\imath \jmath}$ is the component of the Riemannian metric g on M with respect to $\left(x^{1}, \cdots, x^{n}\right)$. Here and hereafter, we use Einstein convension for $1 \leqq i, j, k, m$, $r, s, t, u, v \leqq n$, unless otherwise stated. Note that we have

$$
\left\{\begin{array}{l}
z_{j}^{2}(p)=\delta_{j}^{2}, \tag{2.2}\\
g_{\imath j}(p)=\delta_{i \jmath}, \\
\frac{\partial}{\partial x^{k}} g_{\imath j}(p)=0, \\
\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}(p)=0,
\end{array}\right.
$$

where $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ is the Christoffel's symbol. Let $\left(x^{2}, v^{i}\right)$ be a local coordinate of $T M$ expressing $v^{\imath}\left(\partial / \partial x^{i}\right) \in T_{\left(x^{2}\right)} M$, and $\left(x^{2}, v^{2}, \xi^{2}, \eta^{i}\right)$ be a coordinate of $T T M$ expressing $\xi^{\imath}\left(\partial / \partial x^{i}\right)+\eta^{2}\left(\partial / \partial v^{i}\right) \in T_{(x \imath, v \imath)} T M$. The coeffecients of the Sasaki metric ${ }_{g} s$ on $T M$ are then given by [SS]

$$
\begin{aligned}
& G_{\imath \jmath}=g_{\imath j}+g_{r u}\left\{\begin{array}{c}
r \\
s i
\end{array}\right\}\left\{\begin{array}{c}
u \\
t j
\end{array}\right\} v^{s} v^{t}, \\
& G_{\imath n+j}=g_{r j}\left\{\begin{array}{c}
r \\
u i
\end{array}\right\} v^{u},
\end{aligned}
$$

$$
G_{n+\imath n+j}=g_{\imath \jmath} .
$$

Since we can express $u \in P_{g}$ in a neighbourhood of u_{0} by

$$
\begin{cases}u_{i}=\left(z_{\imath}^{j},-\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{1}^{s} z_{\imath}^{t}\right), & 1 \leqq i \leqq n \tag{2.3}\\
u_{i}=\left(0, z_{\imath}^{j}\right), & 2 \leqq i \leqq n\end{cases}
$$

we can take $\left(x^{2}, z_{j}^{i}\right), 1 \leqq i, j \leqq n$, satisfying (2.1) as a local coordinate of P_{g}. Moreover, in this local coordinate, we can show easily that the basic forms are expressed by

$$
\begin{aligned}
& \zeta^{i}=g_{j k} z_{i}^{k} d x^{j}, \quad 1 \leqq i \leqq n \\
& \zeta^{\bar{i}}=g_{j k} z_{i}^{k}\left(d z_{1}^{j}+\left\{\begin{array}{l}
j \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}\right), \quad 2 \leqq i \leqq n .
\end{aligned}
$$

Now, define

$$
\chi_{r}^{\prime i}=g_{j k} z_{i}^{z}\left(d z_{r}^{j}+\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{r}^{s} d x^{t}\right), \quad 2 \leqq i, r \leqq n,
$$

and put $\chi^{\prime 2}=\zeta^{i}, 1 \leqq i \leqq n, \chi^{\prime i}=\zeta^{i}, 2 \leqq i \leqq n$.
Lemma 2.1. χ^{\prime} is a Cartan connection of type $K / O(n-1)$ on P_{g}.
Proof. Obviously, χ^{\prime} is an ${ }^{\text {f }}$-valued 1-form on P_{g}. Then χ^{\prime} is a Cartan connection of type $K / O(n-1)$ iff

C1) For $X \in T P_{g}, \chi^{\prime}(X)=0$ implies $X=0$.
C2) $\chi^{\prime}\left(A^{*}\right)=A, A \in \mathfrak{n}(n-1)$ and A^{*} is the fundamental vector field.
C3) $R_{a}^{*} \chi^{\prime}=\operatorname{Ad}\left(a^{-1}\right) \chi^{\prime}, a \in O(n-1)$.
For $X=\left(d x^{2}, d z_{\jmath}^{i}\right) \in T_{u_{0}} P_{g}$, we have $\chi^{\prime 2}(X)=d x^{2}, \chi^{\prime \bar{i}}(X)=d z_{1}^{2}, \chi_{r}^{\prime 2}(X)=d z_{r}^{2}$, and so C1) is obvious. For $A=\left(A_{r}^{i}\right) \in \mathfrak{p}(n-1)$, put $a_{t}=\exp t A=\left(a_{j}^{2}(t)\right) \in O(n-1)$. We use the Einstein convension over $2 \leqq i, j \leqq n$ as far as $a_{j}^{2}(t)$ is concerned. Since $u_{0} a_{t}=u\left(z_{0} \tilde{a}_{t}\right)$ by (1.2), the local coordinate expression of $A_{u_{0}}^{*}$ is given by $d x^{2}=0$, $d z_{1}^{2}=0$, and $d z_{r}^{2}=\left(d a_{r}^{i}\right)(0)=A_{r}^{2}$, and we get $\chi^{\prime}\left(A_{u_{0}}^{*}\right)=A$. Now, for $a=\left(a_{j}^{i}\right) \in O(n-1)$ and $X=\left(d x^{2}, d z_{j}^{i}\right) \in T_{u_{0}} P_{g}$, from $R_{a}^{*} \chi^{\prime}(X)=\chi^{\prime}\left(R_{a *} X\right)$ and $R_{a *} X=\left(d x^{2}, d z_{1}^{2}, d\left(z_{k}^{\prime} a_{r}^{k}\right)\right)$, $1 \leqq i \leqq n, 2 \leqq j, r \leqq n$ at $u_{0} a \in P_{g}$, it follows

$$
\begin{aligned}
& \zeta^{1}\left(R_{a *} X\right)=d x^{1}, \\
& \zeta^{i}\left(R_{a *} X\right)=\sum_{k=2}^{n} a_{i}^{k} d x^{k}, \quad 2 \leqq i \leqq n, \\
& \zeta^{i}\left(R_{a *} X\right)=\sum_{k} a_{i}^{k} d z_{1}^{k}, \quad 2 \leqq i \leqq n,
\end{aligned}
$$

$$
\chi_{r}^{\prime \prime}\left(R_{a *} X\right)=\sum_{j, k} a_{i}^{\jmath}\left(d z_{k}^{\jmath}\right) a_{r}^{k}, \quad 2 \leqq i, r \leqq n .
$$

On the other hand $\operatorname{Ad}\left(a^{-1}\right) \chi^{\prime}(X)=a^{-1} \chi^{\prime}(X) a={ }^{t} a \chi^{\prime}(X) a$ is given by

$$
\left(\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & { }^{t} a & 0 \\
0 & 0 & I_{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & \hat{\zeta} & \hat{\zeta}^{1} \\
0 & \hat{\chi}^{\prime} & { }^{t} \hat{\zeta} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & a & 0 \\
0 & 0 & I_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \hat{\zeta} a & \hat{\zeta}^{1} \\
0 & { }^{t} a \hat{\chi}^{\prime} a & { }^{t} a^{t} \hat{\zeta} \\
0 & 0 & 0
\end{array}\right),
$$

where $\hat{\zeta}=\left(\begin{array}{l}\zeta^{2} \cdots \zeta^{n} \\ \zeta^{\overline{2}} \cdots\end{array} \zeta^{n}\right), \hat{\zeta}^{1}=\left(\begin{array}{cc}0 & \zeta^{1} \\ -\zeta^{1} & 0\end{array}\right)$, and $\hat{\chi}^{\prime}=\left(\chi_{r}^{\prime i}\right), 2 \leqq i, r \leqq n$. Thus by an easy calculation, we get C3).
q.e.d.

Now, enlarging the structure group to $H_{0}=\left\{a \in G_{0} \mid \operatorname{det} a= \pm 1\right\}$, we get a principal fibre bundle $Q=P_{g} \times{ }_{o(n-1)} H_{0}$ over $T_{1} M$. A local coordinate of Q is given by $\left(x^{2}, z_{j}^{2}, h_{b}^{a}\right)$, where $\left(h_{b}^{a}\right) \in \pm S L(2, \boldsymbol{R})$, since $H_{0} / O(n-1) \cong \pm S L(2, \boldsymbol{R})$. Denote by $\tilde{\chi}^{\prime}$ the Cartan connection on Q naturally extended from χ^{\prime} on P_{g}, that is, at $u=\left(x^{2}, z_{j}^{2}, h_{b}^{a}\right)=u_{0} h$, where $h=\rho\left(\left(\begin{array}{ccc}h_{b}^{a} & 0 & 0 \\ 0 & I_{n-1} & 0 \\ 0 & 0 & { }^{t}\left(h_{b}^{a}\right)^{-1}\end{array}\right)\right)=\left(\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & h_{0}^{0} I_{n-1} & h_{1}^{0} I_{n-1} \\ 0 & h_{0}^{1} I_{n-1} & h_{1}^{1} I_{n-1}\end{array}\right)$, using C3), we have

$$
\begin{aligned}
& \tilde{\zeta}^{1}=\zeta^{1}, \\
& \tilde{\zeta}^{i}=h_{1}^{1} \zeta^{i}-h_{1}^{0} \zeta^{i}, \\
& \tilde{\zeta}^{\bar{i}}=-h_{0}^{1} \zeta^{i}+h_{0}^{0} \zeta^{\bar{i}}, \\
& \left(\tilde{\chi}_{r}^{\prime i}\right)=\left(\chi_{r}^{\prime i}\right), \\
& \left(\tilde{\chi}^{\prime \prime}{ }_{0}^{\prime}\right)=\left(\begin{array}{cc}
(s v+t u) \chi^{\prime \prime}+u v \chi_{1}^{\prime 0}-s t \chi_{0}^{\prime 1} & 2 t v \chi_{0}^{\prime 0}+v^{2} \chi_{1}^{\prime \prime}-t^{2} \chi_{0}^{\prime 1} \\
-2 s u \chi_{0}^{\prime 0}-u^{2} \chi_{1}^{\prime 0}+s^{2} \chi_{0}^{\prime} & -(t u+s v) \chi_{0}^{\prime 0}-u v \chi_{1}^{\prime}+s t \chi_{0}^{\prime}
\end{array}\right),
\end{aligned}
$$

for $(a, b)=(0,0),(0,1)$ and $(1,0)$, where

$$
\chi^{\prime} \frac{a}{b}=d h_{b}^{a},
$$

putting $\left(\begin{array}{ll}s & t \\ u & v\end{array}\right)=\left(h_{b}^{a}\right)$, and ζ^{r} and χ^{\prime} are evaluated at u_{0}. In the following, we use the notation χ^{\prime} instead of $\tilde{\chi}^{\prime}$ for simplicity. Let Ψ^{\prime} be the curvature form of χ^{\prime} and put $\Psi^{\prime}=(1 / 2) T^{\prime} \zeta \wedge \zeta$. With respect to the base of \mathfrak{g} given in [M1, §3], the g_{p}-component T_{p}^{\prime} is given by $T_{-2}^{\prime}=T_{\beta r}^{\prime 3} e_{1}, T_{-1}^{\prime}=T_{\beta r}^{\prime i} e_{i}+T_{\beta r}^{\prime i} e_{i}, 2 \leqq i \leqq n$, and $T_{0}^{\prime}=T^{\prime \prime}{ }_{r \beta r} e_{r}^{i}+T^{\prime 0}{ }_{0 \beta r} e_{0}^{0}+T^{\prime \prime}{ }_{1 \beta \gamma} e_{1}^{0}+T^{\prime \prime}{ }_{0 \beta \gamma} e_{0}^{1}, 2 \leqq i, r \leqq n$, and $\beta, \gamma \in\{1, \cdots, n, \overline{2}, \cdots, \bar{n}\}$.

Proposition 2.2. The curvature T^{\prime} of χ^{\prime} at $u_{0} \in P_{g}$ is given by

$$
\begin{aligned}
& T_{-2}^{\prime}=0, \\
& T_{1 j}^{\prime i}=\delta_{j}^{2}, \quad T_{\beta r}^{\prime i}=0 \quad \text { otherwise },
\end{aligned}
$$

$$
\begin{aligned}
& T_{1 j}^{\prime \prime}=R_{111}^{2}, \quad T_{j k}^{\prime \bar{i}}=R_{1 j k}^{2}, \quad T_{j ;}^{\prime \hat{j}}=0, \\
& T_{j s t}^{\prime i}=R_{j s t}^{2}, \quad T_{j \bar{k} \bar{m}}^{\prime i}=\delta_{k}^{i} \delta_{j m}-\delta_{m}^{2} \delta_{j k}, \quad T_{j \beta \gamma}^{\prime i}=0 \quad \text { otherwise, } \\
& T^{\prime}{ }_{0 \beta \gamma}=T^{\prime}{ }_{1}{ }_{\beta \gamma}=T^{\prime}{ }_{0 \beta \gamma}=0,
\end{aligned}
$$

where $i, j, k \in\{2, \cdots, n\}, s, t \in\{1, \cdots, n\}, \beta, \gamma \in\{1, \cdots, n, \overline{2}, \cdots, \bar{n}\}$, and $R_{j k m}^{2}$ denotes the coefficients of the Riemannian curvature of the base manifold M with respect to (x^{i}) at $p=\pi_{1} \circ \pi\left(u_{0}\right)$.

To prove this, we prepare:

Lemma 2.3. We have the following formulas:

$$
\begin{align*}
& d x^{2}=z_{j}^{i} \zeta^{j}, \quad \text { and at } u_{0}, \quad d x^{2}=\zeta^{i}, \quad 1 \leqq i \leqq n, \tag{2.5}\\
& d z_{1}^{2}=z_{j}^{i} \zeta^{j}-\left\{\begin{array}{c}
i \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}, \text { and at } u_{0}, \quad d z_{1}^{2}=\zeta^{i}, \quad 2 \leqq i \leqq n, \tag{2.6}\\
& d z_{r}^{i}=z_{j}^{i} \chi_{r}^{\prime}{ }_{r}^{j}-\left\{\begin{array}{c}
i \\
s t
\end{array}\right\} z_{1}^{s} z_{r}^{t}, \text { and at } u_{0}, \quad d z_{r}^{2}=\chi_{r}^{\prime i}, \quad 2 \leqq i, r \leqq n, \tag{2.7}\\
& 0=d z_{j}^{2}+d z_{i}^{j} \text { at } u_{0}, \quad 1 \leqq i \leqq n, \tag{2.8}\\
& 0=\partial_{r} z_{j}^{2} \text { for } 1 \leqq j<i \leqq n \text { and at } u_{0} \text { for } 1 \leqq i, j, k \leqq n, \tag{2.9}\\
& \partial_{\bar{r}} z_{1}^{i}=\delta_{r}^{i}, \quad 2 \leqq i, r \leqq n, \tag{2.10}\\
& \partial_{\bar{r}}\left(z_{j}^{i}\right)=\delta_{r}^{i} \delta_{j 1}-\delta_{r j} \delta_{1}^{i} \quad \text { at } u_{0} \text { for } 1 \leqq i, j \leqq n, \quad 2 \leqq r \leqq n, \tag{2.11}
\end{align*}
$$

where we use $\partial_{i}=\partial / \partial x^{2}$ and $\partial_{\bar{r}}=\partial / \partial z_{1}^{r}$.
Proof. Since $g_{j k} z_{i}^{k} z_{m}^{j}=\delta_{i m},\left(y_{j}^{i}\right)$ given by $y_{j}^{2}=g_{j k} z_{i}^{k}$ is the inverse matrix of $\left(z_{j}^{i}\right)$. The first three are direct consequence of this fact and (2.2). From $0=$ $d\left(g_{i j} z_{k}^{2} z_{m}^{j}\right)=\delta_{i j}\left\{\left(d z_{k}^{i}\right) \delta_{m}^{j}+\delta_{k}^{2} d z_{m}^{j}\right\}$ at u_{0} follows (2.8). Since we may consider z_{j}^{i}, $1 \leqq j<i$, as free variables, we have $\partial_{k}\left(z_{j}^{i}\right) \equiv 0$, for $1 \leqq k \leqq n, 1 \leqq j<i \leqq n$. Especially at u_{0}, by virtue of (2.8), we get (2.9). In the same way, since $\partial_{\bar{r}}=\partial / \partial z_{1}^{r}, 2 \leqq r$ $\leqq n$, we get (2.10) for $2 \leqq i, r \leqq n$, and $\partial_{\bar{r}} z_{j}^{2} \equiv 0$ for $2 \leqq i<j \leqq n$. The last formula follows from (2.8).
q.e.d.

Proof of Proposition 2.2. Since $\chi^{\prime}{ }_{b}=d h_{b}^{a},(a, b)=(0,0),(0,1),(1,0)$, and since $\Psi^{\prime}=(1 / 2) T^{\prime} \zeta \wedge \zeta$, we may ignore the terms $\chi^{\prime \prime}{ }_{b}$ in the structure equation (see (3.1) in $\S 3$), when we calculate the curvature. It is ovbious that $T^{\prime}{ }_{{ }_{b \beta \gamma} r}=0$. Now, we obtain

$$
\begin{aligned}
\Psi^{\prime \prime} & =d \zeta^{1}+\sum_{\imath=2}^{n} \zeta^{i} \wedge \zeta^{\bar{i}} \\
& =d\left(g_{j k} z_{1}^{k} d x^{j}\right)+\sum_{\imath=2}^{n} d x^{\imath} \wedge d z_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n} d z_{1}^{\jmath} \wedge d x^{\jmath}+\sum_{\imath=2}^{n} d x^{\imath} \wedge d z_{1}^{2} \\
& =0
\end{aligned}
$$

i. e. $T_{-2}^{\prime}=0$. Next, we get

$$
\begin{aligned}
\Psi^{\prime \prime} & =d \zeta^{i}+\sum_{r=2}^{n} \chi_{r}^{\prime i} \wedge \zeta^{r} \\
& =d\left(g_{i k} z_{i}^{k} d x^{j}\right)+\sum_{r=2}^{n} g_{j k} z_{i}^{k}\left(d z_{r}^{j}+\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}\right) \wedge \zeta^{r} \\
& =\sum_{j=1}^{n} d z_{\imath}^{j} \wedge d x^{j}+\sum_{r=2}^{n} d z_{r}^{i} \wedge d x^{r} \\
& =d z_{\imath}^{1} \wedge d x^{1} \\
& =-\zeta^{i} \wedge \zeta^{1}, \quad i \geqq 2,
\end{aligned}
$$

i. e. $T_{1 \bar{i}}^{\prime 2}=1$ and $T_{\beta r}^{\prime i}=0$ otherwise. From

$$
\begin{aligned}
\Psi^{\prime \bar{i}} & =d \zeta^{\bar{i}}+\sum_{r=2}^{n} \chi_{r}^{\prime i} \wedge \zeta^{\bar{r}} \\
& =d\left(g_{j k} z_{i}^{k}\left(d z_{1}^{j}+\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}\right)\right)+\sum_{r=2}^{n} d z_{r}^{i} \wedge d z_{1}^{r} \\
& =\sum_{j=1}^{n} d z_{2}^{j} \wedge d z_{1}^{\prime}+d\left\{\begin{array}{c}
i \\
1 t
\end{array}\right\} \wedge d x^{t}+\sum_{r=2}^{n} d z_{r}^{2} \wedge d z_{1}^{r} \\
& =\left(\partial_{s}\left\{\begin{array}{c}
i \\
1 t
\end{array}\right\}\right) d x^{s} \wedge d x^{t}, \quad i \geqq 2,
\end{aligned}
$$

follow $T_{s i}^{\prime \bar{i}}=R_{1 s t}^{2}$ and $T_{j \dot{j}}^{\prime \bar{i}}=0$. Now, we have

$$
\begin{aligned}
\Psi_{r}^{\prime i} & =d \chi_{r}^{\prime i}+\sum_{k=2}^{n} \chi_{k}^{\prime i} \wedge \chi_{r}^{\prime k} \\
& =d\left(g_{j k} z_{i}^{k}\left(d z_{r}^{j}+\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{r}^{s} d x^{t}\right)\right)+\sum_{k=2}^{n} d z_{k}^{i} \wedge d z_{r}^{k} \\
& =\sum_{j=1}^{n} d z_{\imath}^{j} \wedge d z_{r}^{j}+d\left\{\begin{array}{c}
i \\
r t
\end{array}\right\} \wedge d x^{t}+\sum_{k=2}^{n} d z_{k}^{i} \wedge d z_{r}^{k} \\
& =d z_{\imath}^{1} \wedge d z_{r}^{1}+\partial_{s}\left\{\begin{array}{c}
i \\
r t
\end{array}\right\} d x^{s} \wedge d x^{t} \\
& =\zeta^{i} \wedge \zeta^{\bar{r}}+\partial_{s}\left\{\begin{array}{c}
i \\
r t
\end{array}\right\} d x^{s} \wedge d x^{t},
\end{aligned}
$$

i. e. $T^{\prime}{ }_{r s t}=R_{r s t}^{2}, T^{\prime}{ }_{r j \bar{k}}=\delta_{j}^{i} \delta_{r k}-\delta_{k}^{i} \delta_{r,}$ and $T^{\prime i}{ }_{r \beta \gamma}=0$ otherwise.
q.e.d.

Since (Q, χ^{\prime}) is an H_{0}-reduction desired in [M1, Proposition 5.1], we can apply [M1, Proposition 5.2] to it. Namely, as in the existence proof of the connection (Q, χ) there, put

$$
\begin{aligned}
& A_{0 j}^{1}=-\frac{1}{n-2} \sum_{\imath=2}^{n} T_{j i}^{\prime i}=\frac{1}{n-2} \sum_{\imath} R_{12 j}^{2}=\frac{1}{n-2} R_{1 j} \\
& A_{0 j}^{0}=A_{1 \jmath}^{0}=A_{0 j}^{1}=A_{0 j}^{0}=A_{1 j}^{0}=A_{k \imath}^{2}=A_{i i}^{k}=A_{\imath j}^{k}=A_{i j}^{k}=0,
\end{aligned}
$$

for $2 \leqq i, j, k \leqq n$, where we use the Ricci curvature tensor $R_{j k}=\sum_{i=1}^{n} R_{j i k}^{2}$ of M at p. The scalar curvature tensor of M is denoted by $R=\sum_{j=1}^{n} R_{j,}$. In the following, we also use the notation $\tilde{R}_{j k}=\sum_{i=2}^{n} R_{j i k}^{2}, 1 \leqq j, k \leqq n$, and $\tilde{R}=\sum_{i=2}^{n} \tilde{R}_{j j}$. Immediately, we have

$$
\begin{align*}
& R_{1 \jmath}=\tilde{R}_{1 \jmath}, \quad 1 \leqq j \leqq n, \\
& R_{j k}=\tilde{R}_{j k}+R_{j 1 k}^{1}, \quad 2 \leqq j, k \leqq n, \tag{2.12}\\
& R=\sum_{i=2}^{n} R_{i i}+R_{11}=\tilde{R}+2 R_{11} .
\end{align*}
$$

Let $\Psi^{\prime \prime}=(1 / 2) T^{\prime \prime} \zeta \wedge \zeta$ be the curvature of the connection $\chi^{\prime \prime}$ defined by

$$
\chi^{\prime \prime \prime}{ }_{0}=\chi^{\prime}{ }_{0}+\sum_{j=2}^{n} A^{\prime}{ }_{0 j} \zeta^{j}
$$

and $\chi^{\prime \prime}=\chi^{\prime}$ for other indices. Then we have $\Psi^{\prime \prime}=\Psi^{\prime}$ except for

$$
\Psi^{\prime \prime \prime}{ }_{0}^{\prime}-\Psi^{\prime \prime}{ }_{0}^{\prime}=d\left(\sum_{j=2}^{n} A_{0 j}^{1} \zeta^{j}\right)-2 \chi_{0}^{\prime 0} \wedge A_{0 j}^{1} \zeta^{j}
$$

Note that $T^{\prime \prime 1}{ }_{0 \imath \imath}=-\partial_{\bar{i}} A_{02}^{1}$. Now, putting

$$
\chi_{\beta}^{\alpha}=\chi^{\prime \prime}{ }_{\beta}^{\alpha}+A_{\beta 1}^{\alpha} \zeta^{1},
$$

where

$$
\begin{aligned}
& A_{01}^{0}=-\frac{1}{2(n-1)} \Sigma\left(T^{\prime \prime}{ }_{12}-T^{\prime \prime}{ }_{0 i \bar{i}}\right)=0, \\
& A_{11}^{0}=-\frac{1}{2(n-1)}\left(\sum_{\imath=2}^{n} T^{\prime \prime 2}-T^{\prime \prime \prime}{ }_{0 i \bar{i}}\right)=-\frac{1}{2} \text {, } \\
& A_{01}^{1}=-\frac{1}{2(n-1)} \sum_{i=2}^{n}\left(T^{\prime \prime \bar{n}}{ }_{1 i}-T^{\prime \prime 1}{ }_{0 i \bar{i}}\right)=\frac{1}{2(n-1)}\left(R_{11}-\sum_{i} \partial_{\bar{i}} A_{02}^{1}\right) \text {, } \\
& A_{j 1}^{2}=-\frac{1}{n+3}\left(T_{1 j}^{\prime \prime 2}-T^{\prime \prime}{ }_{1 i}+T^{\prime \prime{ }_{1}}{ }_{i j}-T^{\prime \prime}{ }_{1 i}-\sum_{k} T^{\prime \prime \prime}{ }_{j k \bar{k}}\right)=0,
\end{aligned}
$$

we obtain the desired (Q, χ). Here, note that the curvatures given in Proposi-
tion 2.2 and so these coefficients are given pointwise. Thus, to get A_{01}^{1} explicitely, we must compute

$$
\partial_{j} A_{02}^{1}=-\frac{1}{n-2} \sum_{m=2}^{n}\left(\partial_{j} T_{i m}^{\prime \bar{m}}\right)
$$

From

$$
\begin{aligned}
\Psi^{\prime \bar{m}} & =d\left(g_{r k} z_{m}^{k}\left(d z_{1}^{r}+\left\{\begin{array}{c}
r \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}\right)\right)+\sum_{r=2}^{n} \chi_{r}^{\prime m} \wedge \zeta^{\bar{r}} \\
& \equiv \partial_{u}\left(g_{r k} z_{m}^{k}\left\{\begin{array}{c}
r \\
s t
\end{array}\right\} z_{1}^{s}\right) z_{\imath}^{u} z_{v}^{t \zeta^{i}} \wedge \zeta^{v}\left(\bmod \zeta^{\bar{r}} \wedge \zeta^{r}\right)
\end{aligned}
$$

we have for $j, m \geqq 2$,

$$
\begin{aligned}
\partial_{j} \Psi^{\prime, \bar{m}} \equiv & \left\{\partial_{j} \partial_{u}\left(g_{r k}\left\{\begin{array}{c}
r \\
s t
\end{array}\right\} z_{m}^{k} z_{1}^{s}\right) z_{\imath}^{u} z_{v}^{t}+\partial_{u}\left(g_{r k}\left\{\begin{array}{c}
r \\
s t
\end{array}\right\} z_{m}^{k} z_{1}^{s}\right) \partial_{j}\left(z_{\imath}^{u} z_{v}^{t}\right)\right\} \zeta^{i} \wedge \zeta^{v} \\
= & \left\{\partial_{u}\left(g_{r k}\left\{\begin{array}{l}
r \\
s t
\end{array}\right\} \partial_{j}\left(z_{m}^{k} z_{1}^{s}\right)\right) \delta_{i}^{u} \delta_{v}^{t}\right. \\
& +\left(\partial_{u}\left\{\begin{array}{l}
m \\
1 t
\end{array}\right\}\right)\left\{\left(\delta_{j}^{u} \delta_{i 1}-\delta_{j i} \delta_{1}^{u}\right) \delta_{v}^{t}+\delta_{i}^{u}\left(\delta_{j}^{t} \delta_{v 1}-\delta_{j v} \delta_{1}^{t}\right)\right\} \zeta^{i} \wedge \zeta^{v} \\
= & \left\{\partial_{u}\left\{\begin{array}{l}
k \\
s t
\end{array}\right\}\left(-\delta_{\jmath m} \delta_{1}^{k} \delta_{1}^{s}+\delta_{m}^{k} \delta_{j}^{s}\right) \delta_{i}^{u} \delta_{v}^{t}+\partial_{j}\left\{\begin{array}{l}
m \\
1 v
\end{array}\right\} \delta_{i 1}-\partial_{1}\left\{\begin{array}{l}
m \\
1 v
\end{array}\right\} \delta_{j i}\right. \\
& \left.+\partial_{i}\left\{\begin{array}{l}
m \\
1 j
\end{array}\right\} \delta_{v 1}-\partial_{i}\left\{\begin{array}{l}
m \\
11
\end{array}\right\} \delta_{j v}\right\} \zeta^{i} \wedge \zeta^{v} \\
= & \left\{-\partial_{i}\left\{\begin{array}{l}
1 \\
1 v
\end{array}\right\} \delta_{j m}+\partial_{i}\left\{\begin{array}{l}
m \\
j v
\end{array}\right\}+\partial_{j}\left\{\begin{array}{l}
m \\
1 v
\end{array}\right\} \delta_{i 1}-\partial_{1}\left\{\begin{array}{l}
m \\
1 v
\end{array}\right\} \delta_{j i}+\partial_{i}\left\{\begin{array}{l}
m \\
1 j
\end{array}\right\} \delta_{v 1}\right. \\
& \left.-\partial_{i}\left\{\begin{array}{l}
m \\
11
\end{array}\right\} \delta_{j v}\right\} \zeta^{i} \wedge \zeta^{v} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\partial_{j} T_{\imath v}^{\prime \bar{m}}=R_{j i v}^{m}+R_{1 \jmath v}^{m} \delta_{i 1}-R_{11 v}^{m} \delta_{j i}+R_{1 \imath j}^{m} \delta_{v 1}-R_{1 i 1}^{m} \delta_{\jmath v} \tag{2.13}
\end{equation*}
$$

for $1 \leqq i, v \leqq n, 2 \leqq j, m \leqq n$, and it follows for $2 \leqq i, j \leqq n$,

$$
\begin{align*}
\partial_{j} A_{0 i}^{1} & =-\frac{1}{n-2}\left(-\widetilde{R}_{j i}+R_{11} \delta_{j i}-R_{1 i 1}^{\jmath}\right) \tag{2.14}\\
& =\frac{1}{n-2}\left(R_{\imath j}-R_{11} \delta_{j}^{i}\right)
\end{align*}
$$

using (2.12). Finally we have

$$
\begin{aligned}
A_{01}^{1} & =\frac{1}{2(n-1)}\left(R_{11}-\sum_{i=2}^{n} \partial_{\bar{i}} A_{02}^{1}\right) \\
& =\frac{1}{2(n-1)}\left\{R_{11}-\frac{1}{n-2}\left(\sum_{i=2}^{n} R_{i i}-(n-1) R_{11}\right)\right\} \\
& =\frac{1}{n-2} R_{11}-\frac{1}{2(n-1)(n-2)} R .
\end{aligned}
$$

Thus, the Cartan connection (Q, χ) of type H / H_{0} defined by

$$
\begin{aligned}
& \chi_{-}=\chi_{-}^{\prime}, \quad \chi_{r}^{i}=\chi_{r}^{\prime}, \quad \chi_{0}^{0}=\chi_{0}^{\prime 0}, \\
& \chi_{1}^{0}=\chi_{1}^{\prime 0}+A_{11}^{0} \zeta^{1}, \quad \chi_{0}^{1}=\chi_{0}^{\prime}+\sum_{j=2}^{n} A_{0 j}^{1} \zeta^{j}+A_{01}^{1} \zeta^{1}
\end{aligned}
$$

is normal (i.e. $T^{-1}=\partial^{*} T^{0}=\left(\partial * T^{1}\right)\left(e_{1}\right)=0$, where $\Psi=(1 / 2) T \zeta \wedge \zeta$ is its curvature) [M1, Proposition 5.2].

Proposition 2.4. The curvature $\Psi=(1 / 2) T \zeta \wedge \zeta$ of (Q, χ) is given by

$$
\begin{aligned}
& T_{-2}=0, \\
& T_{1 j}^{i}=\frac{1}{2} \delta_{j}^{2}, \quad T_{\beta r}^{j}=0 \quad \text { otherwise, } \\
& T_{1 j}^{\bar{i}}=R_{11 j}^{2}+\delta_{j}^{2}\left\{\frac{1}{n-2} R_{11}-\frac{R}{2(n-1)(n-2)}\right\}, \\
& T_{1 j}^{i}=0, \\
& T_{j k}^{i}=R_{1 j k}^{2}-\frac{1}{n-2}\left(R_{1 k} \delta_{j}^{2}-R_{1 j} \delta_{k}^{i}\right), \\
& T_{j_{j r}}^{i}=0, \\
& T_{j k m}^{i}=R_{j k m}^{2}, \quad T_{j \bar{k} \bar{m}}^{i}=\delta_{k}^{i} \delta_{j m}-\delta_{m}^{\imath} \delta_{j k}, \quad T_{j \beta r}^{i}=0 \quad \text { otherwise, } \\
& T_{01 i}^{0}=-\frac{1}{2(n-2)} R_{1 \imath}, \quad T_{0 \beta \gamma}^{0}=0 \quad \text { otherwise, } \\
& T_{1 i \bar{i}}^{0}=\frac{1}{2}, \quad T_{1 \beta r}^{o}=0 \quad \text { otherwise, } \\
& T_{01 j}^{1}=\frac{1}{n-2} \partial_{1} R_{1 j}-\frac{1}{n--2} \partial_{j} R_{11}+\frac{1}{2(n-1)(n-2)} \partial_{j} R, \\
& T_{01 j}^{1}==-\partial_{j} A_{01}^{1}+\frac{1}{n-2} R_{1 j}, \\
& T_{02 j}^{1}=\frac{1}{n-2}\left(\partial_{i} R_{1 j}-\partial_{j} R_{12}\right),
\end{aligned}
$$

$$
\begin{aligned}
& T_{0 \bar{i} j}^{1}=\frac{1}{n-2} R_{\imath j}-\frac{R}{2(n-1)(n-2)} \delta_{j}^{2} \\
& T_{0 i \bar{j} \bar{j}}^{1}=0,
\end{aligned}
$$

where $2 \leqq i, j, k \leqq n$ and $\beta, \gamma \in\{1, \cdots, n, \overline{2}, \cdots, \bar{n}\}$.
Proof. We use the relation between T and T^{\prime} obtained in [M1, §5]. The first one is obvious. Next, we have

$$
\begin{aligned}
T_{1 j}^{i} & =T_{1 j}^{\prime i}+A_{11}^{0} \delta_{j}^{i}=\frac{1}{2} \delta_{j}^{i}, \\
T_{1 j}^{i} & =T_{1 j}^{\prime i}+A_{01}^{1} \delta_{j}^{i} \\
& =R_{11 j}^{2}+\delta_{j}^{i}\left(\frac{1}{n-2} R_{11}-\frac{R}{2(n-1)(n-2)}\right) \\
T_{j_{k}}^{\bar{j}} & =T_{j k}^{\prime \bar{j}}-A_{0 k}^{1} \delta_{j}^{i}+A_{0 j}^{1} \delta_{k}^{i} \\
& =R_{1, k}^{2}-\frac{1}{n-2}\left(R_{1 k} \delta_{j}^{i}-R_{1 j} \delta_{k}^{i}\right), \quad 2 \leqq j, k \leqq n, \\
T_{j \gamma r}^{i} & =T_{j \bar{j} r}^{\prime i}=0, \\
T_{r \beta r}^{i} & =T_{r}^{\prime i}{ }_{r \beta r}=R_{r s t}^{2} \delta_{\beta}^{s} \delta_{r}^{t}+\delta_{\beta}^{\bar{i}} \delta_{\bar{r} \gamma}-\delta_{r}^{i} \delta_{\bar{r} \beta}, \quad 2 \leqq i, r, s, t \leqq n .
\end{aligned}
$$

Now, from

$$
\begin{aligned}
\Psi_{0}^{0}-\Psi^{\prime 0} & =\chi_{1}^{0} \wedge \chi_{0}^{1}-\chi_{1}^{\prime 0} \wedge \chi_{0}^{\prime} \\
& =\left(\chi_{1}^{\prime}+A_{11}^{0} \zeta^{1}\right) \wedge\left(\chi_{0}^{\prime}+A_{0 j}^{1} \zeta^{3}+A_{01}^{1} \zeta^{1}\right)-\chi_{1}^{\prime 0} \wedge \chi_{0}^{\prime} \\
& A_{11}^{0} \zeta^{1} \wedge\left(\sum_{j=2}^{n} A_{0,}^{1} \zeta^{j}+A_{01}^{1} \zeta^{1}\right)
\end{aligned}
$$

we get

$$
T_{012}^{0}=T_{01 i}^{\prime 0}+A_{11}^{0} A_{0 \imath}^{1}=-\frac{1}{2(n-2)} R_{12}, \quad T_{0 \beta \gamma}^{0}=T^{\prime}{ }_{0 \beta r}=0, \quad \text { otherwise } .
$$

Similarly, from

$$
\Psi_{1}^{0}-\Psi_{1}^{\prime 0}=d\left(A_{11}^{0} \zeta^{1}\right)=-\frac{1}{2} d \zeta^{1}=\frac{1}{2} \sum_{i=2}^{n} \zeta^{i} \wedge \zeta^{i}
$$

we obtain

$$
T_{1 i \bar{i}}^{0}=\frac{1}{2}, \quad T_{1 \beta r}^{0}=0, \quad \text { otherwise. }
$$

Then, from

$$
\Psi_{0}^{1}-\Psi^{\prime \prime}=d\left(\sum_{j=2}^{n} A_{0 j}^{1} \zeta^{j}+A_{01}^{1} \zeta^{1}\right)=\sum_{j=2}^{n} d A_{0 j}^{1} \wedge \zeta^{j}+d A_{01}^{1} \wedge \zeta^{1}+\sum_{j=2}^{n} A_{0 j}^{1} d \zeta^{j}+A_{01}^{1} d \zeta^{1}
$$

to obtain $T_{01 j}^{1}=T_{{ }_{01 j}}^{\prime}+\partial_{1} A_{0 j}^{1}-\partial_{\jmath} A_{01}^{1}$, we compute

$$
\partial_{i} A_{0 \jmath}^{1}=-\frac{1}{n-2} \partial_{i}\left(\sum_{m} T_{j m}^{\prime \bar{m}}\right), \quad 2 \leqq i, j \leqq n .
$$

Here we use (2.9) and get

$$
\left.\left.\begin{array}{rl}
\partial_{i} \Psi^{\prime \prime} \bar{m} & \equiv \partial_{i}\left(\partial _ { u } \left(g_{r k} z_{m}^{k}\left\{\begin{array}{c}
r \\
s t
\end{array}\right\} z_{1}^{s}\right.\right.
\end{array}\right) z_{j}^{u} z_{v}^{t}\right) \zeta^{j} \wedge \zeta^{v}\left(\bmod \zeta^{\bar{r}} \wedge \zeta^{r}\right) ~ 子 \begin{aligned}
& \\
& \\
& \\
& =\partial_{i} \partial_{u}\left(g_{r k} z_{m}^{k}\left\{\begin{array}{l}
r \\
s t
\end{array}\right\}\right) \delta_{1}^{s} \partial_{j}^{u} \partial_{v}^{t} \zeta^{j} \wedge \zeta^{v} \\
& \\
& \\
& =\partial_{i} \partial_{j}\left\{\begin{array}{c}
m \\
1 v
\end{array}\right\} \zeta^{j} \wedge \zeta^{v},
\end{aligned}
$$

and so

$$
\partial_{i} A_{0 j}^{1}=-\frac{1}{n-2} \partial_{i} \sum_{m} R_{1 \rho m}^{m}=\frac{1}{n-2} \partial_{i} R_{1 \rho}, \quad 1 \leqq i \leqq n \quad \text { and } \quad 2 \leqq j \leqq n .
$$

Similarly, we get

$$
\partial_{j} A_{01}^{1}=\frac{1}{n-2} \partial_{j} R_{11}-\frac{1}{2(n-1)(n-2)} \partial_{j} R
$$

Therefore, we have

$$
\begin{aligned}
& T_{01 j}^{1}=T_{{ }_{01 j}}^{\prime}+\partial_{1} A_{0 j}^{1}-\partial_{j} A_{01}^{1} \\
& =\frac{1}{n-2} \partial_{1} R_{1 j}-\frac{1}{n-2} \partial_{j} R_{11}+\frac{1}{2(n-1)(n-2)} \partial_{j} R, \\
& T_{02 j}^{1}=T^{\prime}{ }_{0 \imath j}+\partial_{i} A_{0 j}^{1}-\partial_{j} A_{0 \imath}^{1} \\
& =\frac{1}{n-2}\left(\partial_{i} R_{1 j}-\partial_{j} R_{12}\right), \\
& T_{0 i{ }_{j}}^{1}=T^{\prime}{ }_{0 i}{ }_{j}+\partial_{\bar{i}} A_{0 j}^{1}+A_{01}^{1} \delta_{j}^{i} \\
& =\frac{1}{n-2}\left(R_{\imath j}-R_{11} \delta_{j}^{i}\right)+\delta_{j}^{2}\left\{\frac{1}{n-2} R_{11}-\frac{R}{2(n-1)(n-2)}\right\} \\
& =\frac{1}{n-2} R_{\imath j}-\frac{R}{2(n-1)(n-2)} \delta_{j}^{i}, \\
& T_{0 \bar{i} \bar{j}}=T^{\prime}{ }_{0}{ }^{\bar{j}}{ }^{2}=0 .
\end{aligned}
$$

Now, we have

$$
T_{01 j}^{1}=T_{01 j}^{\prime}{ }_{01 j}-\partial_{j} A_{01}^{1}+A_{0 \jmath}^{1}=-\partial_{j} A_{01}^{1}+\frac{1}{n-2} R_{1 \jmath}
$$

where $\partial_{j} A_{01}^{1}$ is given later (Lemma 4.3).
q.e.d.

§ 3. A Cartan connection.

Using the method of the proof of [M1, Proposition 5.3], we construct Tanaka connection on $P=Q \times{ }_{H_{0}} G^{\prime}$ from the normal Cartan connection (Q, χ) constructed in $\S 2$.

First of all, for later use, recall the structure equation [M1, (3.1)], of a Cartan connection (P, ω) of the G / G^{\prime}, where $\theta=\omega_{-2}+\omega_{-1}$ is the basic form, and Ω is the curvature form:

$$
\begin{aligned}
& d \theta^{1}=-\left(\omega_{0}^{0}+\omega_{1}^{1}\right) \wedge \theta^{1}-\sum_{i=2}^{n} \theta^{2} \wedge \theta^{\bar{i}}+\Omega^{1}, \\
& d \theta^{2}=\omega_{\bar{i}} \wedge \theta^{1}-\sum_{j=2}^{n} \omega_{j}^{2} \wedge \theta^{j}+\theta^{2} \wedge \omega_{0}^{0}+\theta^{\bar{i}} \wedge \omega_{1}^{0}+\Omega^{i}, \\
& d \theta^{\bar{i}}=-\omega_{i} \wedge \theta^{1}-\sum_{j=2}^{n} \omega_{j}^{2} \wedge \theta^{j}+\theta^{i} \wedge \omega_{0}^{1}+\theta^{\bar{i}} \wedge \omega_{1}^{1}+\Omega^{\bar{i}}, \\
& d \omega_{0}^{0}=-\omega_{1}^{0} \wedge \omega_{0}^{1}-\sum_{i=2}^{n} \theta^{2} \wedge \omega_{i}-\theta^{1} \wedge \omega_{1}+\Omega_{0}^{0}, \\
& d \omega_{1}^{0}=-\left(\omega_{0}^{0}-\omega_{1}^{1}\right) \wedge \omega_{1}^{0}-\sum_{i=2}^{n} \theta^{i} \wedge \omega_{\bar{i}}+\Omega_{1}^{0}, \\
& d \omega_{0}^{1}=\left(\omega_{0}^{0}-\omega_{1}^{1}\right) \wedge \omega_{0}^{1}-\sum_{i=2}^{n} \theta^{\bar{i}} \wedge \omega_{i}+\Omega_{0}^{1}, \\
& d \omega_{1}^{1}=-\omega_{0}^{1} \wedge \omega_{1}^{0}-\sum_{i=2}^{n} \theta^{\bar{i}} \wedge \omega_{\bar{i}}-\theta^{1} \wedge \omega_{1}+\Omega_{1}^{1}, \\
& d \omega_{j}^{i}=-\omega_{i} \wedge \theta^{j}-\omega_{\bar{i}} \wedge \theta^{j}-\sum_{k=2}^{n} \omega_{k}^{2} \wedge \omega_{j}^{k}-\theta^{2} \wedge \omega_{j}-\theta^{\bar{i}} \wedge \omega_{j}+\Omega_{j}^{i}, \\
& d \omega_{i}=-\omega_{i} \wedge \omega_{0}^{0}-\omega_{\bar{i}}^{\bar{i}} \wedge \omega_{0}^{1}-\theta^{\bar{i}} \wedge \omega_{1}+\sum_{j=2}^{n} \omega_{i}^{j} \wedge \omega_{j}+\Omega_{\imath}, \\
& d \omega_{\bar{i}}=-\omega_{i} \wedge \omega_{1}^{0}-\omega_{\bar{i}} \wedge \omega_{1}^{1}+\theta^{i} \wedge \omega_{1}+\sum_{j=2}^{n} \omega_{i}^{j} \wedge \omega_{j}+\Omega_{\bar{i}}, \\
& d \omega_{1}=\left(\omega_{0}^{0}+\omega_{1}^{1}\right) \wedge \omega_{1}+\sum_{i=2}^{n} \omega_{i} \wedge \omega_{\bar{i}}+\Omega_{1} .
\end{aligned}
$$

Now, let ω^{\prime} be the Cartan connection on P naturally extended from χ. Namely, let ($x^{2}, z_{j}^{2}, s_{b}^{a}, s_{i}, s_{i}, s_{1}$) be a local coordinate on P where (x^{i}, z_{j}^{i}) is the local coordinate of P_{g} around a point $u_{0} \in P_{g}$ chosen in $\S 2,\left(s_{b}^{a}\right) \in G L(2, \boldsymbol{R}), 0 \leqq a$, $b \leqq 1, s_{i}=s_{i}^{n+1}, s_{i}=s_{\imath}^{n+2}, 2 \leqq i \leqq n$ and $s_{1}=s_{0}^{n+2}$. As in $\S 2$, we define ω^{\prime} by $\omega_{-2}^{\prime}+$ $\omega_{-1}^{\prime}=\chi_{-2}+\chi_{-1}, \omega_{b}^{\prime a}=\chi_{b}^{a}, 0 \leqq a, b \leqq 1, \omega_{i}^{\prime}=d s_{i}, \omega_{i}^{\prime}=d s_{i}$ and $\omega_{1}^{\prime}=d s_{1}$ at $u \in Q$ (note that $\left.\left.s_{b}^{a}\right|_{Q}=h_{b}^{a}\right)$, and then extend it to P by $R_{a}^{*} \omega^{\prime}=\operatorname{Ad}\left(a^{-1}\right) \omega^{\prime}$ where $a \in G^{\prime}$. Obviously, $\left(P, \omega^{\prime}\right)$ is a Cartan connection of type G / G^{\prime} with basic form $\theta=\omega_{-2}^{\prime}$ $+\omega_{-1}^{\prime}$.

Proposition 3.1. The curvature $\Omega^{\prime}=(1 / 2) K^{\prime} \theta \wedge \theta$ of w^{\prime} at u_{0} satisfies

$$
\iota^{*} K^{\prime}=T
$$

where $\iota: Q \rightarrow P$ is the inclusion map and T is given in Proposition 2.4,

$$
K_{11 j}^{\prime}=\frac{1}{2(n-2)} R_{1 j}, \quad K_{1_{\beta \gamma}}^{\prime}=0, \quad \text { otherwise },
$$

and

$$
K_{\imath \beta r}^{\prime}=K_{i \beta \gamma}^{\prime}=K_{1 \beta \gamma}^{\prime}=0 .
$$

Proof. The non-trivial case is $\Omega^{\prime \prime}$. From the structure equation (3.1), we get

$$
\begin{aligned}
\Omega^{\prime \prime}{ }_{1} & =d \omega^{\prime \prime}{ }_{1}+\left(\chi^{\prime}{ }_{0}+\sum_{j=2}^{n} A_{0 j}^{1} \theta^{\jmath}+A_{01}^{1} \theta^{1}\right) \wedge\left(\chi_{1}^{\prime 0}+A_{11}^{0} \theta^{1}\right)+\sum_{i=2}^{n} \theta^{i} \wedge \omega_{\bar{i}}+\theta^{1} \wedge \omega_{1} \\
& =\sum_{j=2}^{n} A_{0,}^{1} A_{11}^{0} \theta^{\top} \wedge \theta^{1}
\end{aligned}
$$

and so

$$
K_{1_{j 1}}^{\prime}=-\frac{1}{2(n-2)} R_{1 \jmath}, \quad K_{1_{\beta r}}^{\prime}=0 \quad \text { otherwise }
$$

q.e.d.

Now, we construct a Cartan connection ($P, \omega^{\prime \prime}$) as in [M1]. To obtain $A_{2 \jmath}$ for $i \neq j$ in [M1], by Proposition 3.1, 2.4 and (2.12), we get

$$
\begin{aligned}
-K_{1 j}^{\prime \bar{j}}+K_{0 \imath j}^{\prime}+K_{0 i \bar{j}}^{\prime}-\sum_{k=2}^{n} K_{k k j}^{\prime 2} & =R_{1 j 1}^{2}+\frac{1}{n-2} R_{\imath j}-\sum_{k=2}^{n} R_{k k j}^{2} \\
& =\frac{n-1}{n-2} R_{\imath \jmath}
\end{aligned}
$$

so that noting $A_{\imath \jmath}=A_{j i}$, we have

$$
A_{\imath j}=-\frac{1}{n-2} R_{\imath \jmath}
$$

For $i=j$, we get

$$
\begin{aligned}
-K_{1 i}^{\prime \bar{i}}+K_{0 i i}^{\prime}+K_{0 \bar{i} i}^{\prime}-\sum_{k=2}^{n} K_{k k \imath}^{\prime i}= & R_{1 i 1}^{2}-\frac{1}{n-2} R_{11}+\frac{R}{2(n-1)(n-2)} \\
& +\frac{1}{n-2} R_{i i}-\frac{R}{2(n-1)(n-2)}+\tilde{R}_{i i} \\
= & \frac{n-1}{n-2} R_{i i}-\frac{1}{n-2} R_{11},
\end{aligned}
$$

and the summation over $2 \leqq i \leqq n$ gives

$$
\sum_{i=2}^{n}\left(-K_{1 i}^{\prime \bar{i}}+K_{0 i i}^{\prime 0}-\sum_{k=2}^{n} K_{k k i}^{\prime i}+K_{0 i \imath}^{\prime 1}\right)=\frac{n-1}{n-2}\left(R-R_{11}\right)-\frac{n-1}{n-2} R_{11}
$$

$$
=\frac{n-1}{n-2}\left(R-2 R_{11}\right)
$$

Therefore, we get

$$
\begin{aligned}
A_{i i} & =-\frac{1}{n-2} R_{i i}+\frac{1}{(n-1)(n-2)} R_{11}+\frac{1}{2(n-1)(n-2)}\left(R-2 R_{11}\right) \\
& =-\frac{1}{n-2} R_{i i}+\frac{R}{2(n-1)(n-2)}
\end{aligned}
$$

or,

$$
\begin{equation*}
A_{\imath \jmath}=-\frac{1}{n-2} R_{\imath j}+\frac{R}{2(n-1)(n-2)} \delta_{\jmath}^{\imath} \tag{3.2}
\end{equation*}
$$

The Left hand sides of $(7)^{\prime}$ and $(8)^{\prime}$ vanish so that we get

$$
\begin{equation*}
A_{i \jmath}=A_{\imath j}=0 \tag{3.3}
\end{equation*}
$$

As for (9)', since we have

$$
\begin{aligned}
K_{1 j}^{\prime i}+K_{12 j}^{\prime 0}+K_{1 \imath j}^{\prime 1}-\sum_{k=2}^{n} K_{k \bar{k} j}^{\prime 2} & =\frac{1}{2} \delta_{j}^{i}+\frac{1}{2} \delta_{j}^{i}-\sum_{k=2}^{n}\left(\delta_{k}^{i} \delta_{k j}-\delta_{j}^{i}\right) \\
& =\delta_{j}^{i}-\delta_{j}^{i}+(n-1) \delta_{j}^{i} \\
& =(n-1) \delta_{j}^{i}
\end{aligned}
$$

we get

$$
\begin{equation*}
A_{i j}=-\frac{1}{2} \delta_{j}^{i} \tag{3.4}
\end{equation*}
$$

Therefore, $\omega^{\prime \prime}$ is given by

$$
\omega_{p}^{\prime \prime}=\omega_{p}^{\prime}, \quad p \leqq 0, \quad \omega_{i}^{\prime \prime}=\omega_{i}^{\prime}+\sum_{j=2}^{n} A_{\imath j} \theta^{\jmath}, \quad \omega_{i}^{\prime \prime}=\omega_{i}^{\prime}-\frac{1}{2} \theta^{\bar{i}}, \quad \omega_{1}^{\prime \prime}=\omega_{1}^{\prime}
$$

Proposition 3.2. The curvature $\Omega^{\prime \prime}=\frac{1}{2} K^{\prime \prime} \theta \wedge \theta$ of $\omega^{\prime \prime}$ is given at $u_{0} \in P_{g}$ by,

$$
\begin{aligned}
& K_{-2}^{\prime \prime}=0 \\
& K_{\beta r}^{\prime \prime i}=0, \\
& K_{1 j}^{\prime \prime \bar{i}}=R_{11 j}^{2}+\frac{1}{n-2} R_{\imath j}+\frac{1}{n-2} R_{11} \delta_{j}^{i}-\frac{R}{(n-1)(n-2)} \delta_{j}^{\imath}, \\
& K_{1 j}^{\prime \prime \bar{i}}=K_{1 j}^{\prime i}=0, \\
& K_{j k}^{\prime \prime \bar{i}}=R_{1 j k}^{2}-\frac{1}{n-2}\left(R_{1 k} \delta_{j}^{2}-R_{1 j} \delta_{k}^{j}\right), \quad K_{\beta \gamma}^{\prime \prime \bar{i}}=0 \quad \text { otherwise, } \\
& K_{j k 1}^{\prime \prime i}=R_{j k 1}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& K^{\prime \prime \prime}{ }_{j k m}=R_{j k m}^{2}-\frac{1}{n-2}\left(R_{i k} \delta_{m}^{\prime}-R_{\imath m} \delta_{k}^{\jmath}+R_{\jmath m} \delta_{k}^{i}-R_{j k} \delta_{m}^{2}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(\delta_{k}^{i} \delta_{j m}-\delta_{m}^{2} \delta_{j k}\right) \\
& K^{\prime \prime \prime}{ }_{j \bar{k} \gamma}=K^{\prime \prime}{ }_{j \bar{k} \gamma}=0, \\
& K^{\prime \prime{ }_{01 J}}=-\frac{1}{2(n-2)} R_{1 j} \text {, } \\
& K^{\prime \prime \prime}{ }_{0 \imath \jmath}=0 \text {, } \\
& K^{\prime \prime \prime}{ }_{0 i \bar{i} \gamma}=K_{0 \hat{i} \gamma}^{\prime 0}=0, \\
& K^{\prime \prime}{ }_{1 \beta r}=K_{1 \beta r}^{\prime 0}=0, \\
& K^{\prime \prime 1}{ }_{011}=\frac{1}{n-2} \partial_{1} R_{1 j}-\frac{1}{n-2} \partial_{j} R_{11}+\frac{1}{2(n-1)(n-2)} \partial_{j} R, \\
& K^{\prime \prime \prime}{ }_{01 j}=-\partial_{j} A_{01}^{1}+\frac{1}{n-2} R_{1 j}, \\
& K^{\prime \prime 1}{ }_{0, J}=\frac{1}{n-2}\left(\partial_{i} R_{1 j}-\partial_{j} R_{12}\right), \quad K^{\prime \prime 1}{ }_{0 B \gamma}=0 \quad \text { otherwise }, \\
& K^{\prime \prime 1}{ }_{11}=\frac{1}{2(n-2)} R_{1 \rho}, \quad K^{\prime \prime 1}{ }_{1 \beta \gamma}=K^{\prime}{ }_{1 \beta \gamma}=0 \text {, otherwise, } \\
& K_{i 1 j}^{\prime \prime}=\partial_{1} A_{i j} \text {, } \\
& K_{i 1 j}^{\prime \prime}=A_{\imath j}+\frac{1}{2} A_{01}^{1} \delta_{j}^{i}, \\
& K_{\imath j k}^{\prime \prime}=-\partial_{k} A_{\imath j}+\partial_{j} A_{i k}, \\
& K_{\imath j \bar{k}}^{\prime \prime}=-\partial_{\bar{k}} A_{2 j}+\frac{1}{2(n-2)} R_{1 j} \delta_{k}^{2}, \\
& K_{\bar{i} 1 \jmath}^{\prime \prime}=-\frac{1}{2} R_{11 j}+\frac{1}{2} A_{\imath \jmath} \text {, } \\
& K_{\bar{i} j k}^{\prime \prime}=-\frac{1}{2} R_{1 j k}^{2}, \quad K_{\bar{i} \beta \gamma}^{\prime \prime}=0 \quad \text { otherwise, } \\
& K_{1 i \jmath}^{\prime \prime}=-\frac{1}{2} A_{\imath \jmath} \text {, } \\
& K_{1 \beta \gamma}^{\prime \prime}=0 \text { otherwise. }
\end{aligned}
$$

Proof. We can compute $\Omega^{\prime \prime}-\Omega^{\prime}$ by using (3.1) as follows:

$$
\Omega^{\prime \prime 1}-\Omega^{\prime 1}=0 \longleftrightarrow K_{-2}^{\prime \prime}=0,
$$

$$
\begin{aligned}
& \Omega^{\prime \prime 2}-\Omega^{\prime \imath}=\frac{1}{2} \theta^{\bar{i}} \wedge \theta^{1} \\
& \longleftrightarrow K_{1 j}^{\prime \prime i}=K_{1 j}^{\prime i}-\frac{1}{2} \delta_{j}^{i}=0 \\
& K_{\beta}^{\prime \prime \prime}=K_{\beta r}^{\prime i}=0 \quad \text { otherwise, } \\
& \Omega^{\prime \prime \bar{\imath}}-\Omega^{\prime i}=A_{2 j} \theta^{\prime} \wedge \theta^{1} \\
& \longleftrightarrow K_{1 \jmath}^{\prime \overline{2}}=K_{1 j}^{\prime \bar{i}}-A_{\imath \jmath}=R_{11 j}^{2}+\frac{1}{n-2} R_{\imath \jmath}, \quad i \neq j, \\
& K_{12}^{\prime \prime \bar{i}}=R_{11 i}^{2}+\frac{1}{n-2} R_{11}-\frac{R}{2(n-1)(n-2)}+\frac{1}{n-2} R_{i i}-\frac{R}{2(n-1)(n-2)} \\
& =R_{11 i}^{2}+\frac{1}{n-2} R_{i i}+\frac{1}{n-2} R_{11}-\frac{R}{(n-1)(n-2)} \text {, } \\
& K_{j k}^{\prime \prime \bar{i}}=K_{j k}^{\prime \bar{j}}=R_{1 j k}^{2}-\frac{1}{n-2}\left(R_{1 k} \delta_{j}^{i}-R_{1 j} \delta_{k}^{i}\right) \\
& K_{j r}^{\prime \prime \bar{i}}=K_{j r}^{\prime i}=0, \\
& \Omega^{\prime \prime \prime}{ }_{j}-\Omega^{\prime \prime}{ }_{j}=\sum_{k=2}^{n} A_{i k} \theta^{k} \wedge \theta^{J}-\frac{1}{2} \theta^{i} \wedge \theta^{j}+\sum_{k=2}^{n} \theta^{2} \wedge A_{j_{k}} \theta^{k}-\frac{1}{2} \theta^{\bar{i}} \wedge \theta^{j} \\
& \longleftrightarrow K^{\prime \prime \prime}{ }_{j k 1}=K^{\prime}{ }_{j k 1}=R_{j k 1}^{2}, \\
& K^{\prime \prime{ }_{j}{ }_{j k m}}=K^{\prime}{ }_{j k m}+A_{i k} \delta_{m}^{j}-A_{\imath m} \delta_{k}^{\prime}+A_{j m} \delta_{k}^{i}-A_{j k} \delta_{m}^{i}, \\
& =R_{j k m}^{i}-\frac{1}{n-2}\left(R_{i k} \delta_{m}^{\jmath}-R_{\imath m} \delta_{k}^{\dagger}+R_{\jmath m} \delta_{k}^{i}-R_{j k} \delta_{m}^{i}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(\delta_{k}^{i} \delta_{j m}-\delta_{m}^{i} \delta_{j k}\right) \\
& K^{\prime \prime}{ }_{j i \bar{j}}=K^{\prime \prime}{ }_{j i \bar{j}}-1=0, \\
& K^{\prime \prime}{ }_{j \beta \gamma}=K^{\prime \prime}{ }_{j \beta \gamma}=0 \quad \text { otherwise, } \\
& \Omega_{* 0}^{\prime \prime 0}-\Omega_{0}^{\prime 0}=\sum_{2 . j=2}^{n} \theta^{2} \wedge A_{2 j} \theta^{\nu} \\
& \longleftrightarrow K^{\prime \prime}{ }_{01 j}=K^{\prime}{ }_{01}{ }_{01}=-\frac{1}{2(n-2)} R_{1 j}, \\
& K^{\prime \prime}{ }_{02 j}=K^{\prime 0}{ }_{02 j}+A_{2 j}-A_{j i}=0 \text {, } \\
& K^{\prime \prime}{ }_{0}{ }_{\beta \gamma}=K^{\prime}{ }_{0 \beta \gamma}=0 \quad \text { otherwise, } \\
& \Omega_{1 " 0}^{1}-\Omega_{1}^{\prime 0}=-\frac{1}{2} \sum_{i=2}^{n} \theta^{2} \wedge \theta^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftrightarrow K^{\prime \prime{ }_{1 i i}}=K^{\prime}{ }_{1 i i}-\frac{1}{2}=0, \\
& K^{\prime \prime{ }_{1}{ }_{\beta \beta r}}=K^{\prime}{ }_{1 \beta r}=0 \quad \text { otherwise, } \\
& \Omega^{\prime \prime \prime}-\Omega_{0}^{\prime}=\sum_{\imath, j=2}^{n} \theta^{i} \wedge A_{2 j} \theta^{\nu} \\
& \longleftrightarrow K^{\prime \prime 1}{ }_{0 i \jmath}=K^{\prime 1}{ }_{0 i j}+A_{\imath \jmath}=0, \\
& K^{\prime \prime 1}{ }_{01}=K^{\prime}{ }_{011}=\frac{1}{n-2} \partial_{1} R_{1 j}-\frac{1}{n-2} \partial_{j} R_{11}+\frac{1}{2(n-1)(n-2)} \partial_{j} R, \\
& K^{\prime \prime}{ }_{01 j}=K^{\prime}{ }_{01 j}=-\partial_{j} A_{01}^{1}+\frac{1}{n-2} R_{1 j}, \\
& K^{\prime \prime 1}{ }_{0 \imath \jmath}=K_{o \imath \jmath}^{\prime}{ }_{0 \imath}=\frac{1}{n-2}\left(\partial_{i} R_{1 j}-\partial_{\jmath} R_{12}\right) \text {, } \\
& K^{\prime \prime}{ }_{0 i \bar{i} j}=K^{\prime}{ }_{0}{ }_{i} j=0, \\
& \Omega^{\prime \prime 1}{ }_{1}^{1}-\Omega_{1}^{\prime}=-\frac{1}{2} \theta^{\bar{i}} \wedge \theta^{\bar{i}}=0 \\
& \longleftrightarrow K^{\prime \prime}{ }_{11}=\frac{1}{2(n-2)} R_{1 j}, \quad K^{\prime \prime}{ }_{1 \beta r}=0 \quad \text { otherwise }, \\
& \Omega_{\imath}^{\prime \prime}-\Omega_{i}^{\prime}=d\left(\sum_{j=2}^{n} A_{\imath j} \theta^{j}\right)+A_{i \bar{i}} \theta^{\bar{i}} \wedge\left(\chi_{0}^{\prime 1}+\sum_{j=2}^{n} A_{0 j}^{1} \theta^{j}+A_{01}^{1} \theta^{1}\right) \\
& =\sum_{k=1}^{n} \sum_{j=2}^{n}\left(\partial_{k} A_{\imath \jmath}\right) \theta^{k} \wedge \theta^{\jmath}+\sum_{j, ~}^{k=2}{ }^{n}\left(\partial_{\bar{k}} A_{\imath \jmath}\right) \theta^{\bar{k}} \wedge \theta^{\jmath}-\sum_{j=2}^{n} A_{\imath j} \theta^{j} \wedge \theta^{1} \\
& -\sum_{j=2}^{n} \frac{1}{2(n-2)} R_{1 j} \theta^{\bar{i}} \wedge \theta^{\jmath}-\frac{1}{2} A_{01}^{1} \theta^{\bar{i}} \wedge \theta^{1} \\
& \longleftrightarrow K_{i 1 j}^{\prime \prime}=\partial_{1} A_{\imath \jmath}, \\
& K_{i j k}^{\prime \prime}=-\partial_{k} A_{2 j}+\partial_{j} A_{i k}, \\
& K_{i 1 j}^{\prime \prime}=A_{\imath j}+\frac{1}{2} A_{01}^{1} \delta_{j}^{i} \\
& K_{\imath j \bar{k}}^{\prime \prime}=-\partial_{\bar{k}} A_{\imath j}+\frac{1}{2(n-2)} R_{1 j} \delta_{k}^{2}, \\
& \Omega_{\bar{\imath}}^{\prime \prime}-\Omega_{\bar{\imath}}^{\prime}=d\left(-\frac{1}{2} \theta^{\bar{i}}\right)+\sum_{j=2}^{n} A_{\imath j} \theta^{J} \wedge\left(\chi_{1}^{\prime}+A_{11}^{0} \theta^{1}\right) \\
& =-\frac{1}{2} d \theta^{\bar{\imath}}+\sum_{j=2}^{n} A_{\imath \jmath} A_{11}^{0} \theta^{\jmath} \wedge \theta^{1}
\end{aligned}
$$

$$
\begin{gathered}
\leftrightarrow K_{\bar{i} 1 \jmath}^{\prime \prime}=-\frac{1}{2} R_{11 j}^{\imath}+\frac{1}{2} A_{\imath \jmath} \\
K_{\bar{i} 1 j}^{\prime \prime}=0, \\
K_{\bar{i} j k}^{\prime \prime}=-\frac{1}{2} R_{1 j k}^{2}, \\
K_{i j \gamma}^{\prime \prime}=K_{i j j r}^{\prime}=0, \\
\Omega_{1}^{\prime \prime}-\Omega_{1}^{\prime}=-\sum_{\imath, j}^{n} A_{\imath j} \theta^{J} \wedge\left(-\frac{1}{2} \theta^{\bar{i}}\right) \\
\leftrightarrow K_{11 \jmath}^{\prime \prime}=K_{11 j}^{\prime \prime}=K_{1 \imath \jmath}^{\prime \prime}=K_{1 i j}^{\prime \prime}=0, \\
K_{1 i \jmath}^{\prime \prime}=-\frac{1}{2} A_{\imath \jmath} .
\end{gathered}
$$

Corollary. Let $C_{j k m}^{2}$ and $C_{2 j k}=\Pi_{\imath \jmath, k}-\Pi_{i k, \rho}$ be the coefficients of Weyl's conformal curvature tensor at $p=\pi_{1} \circ \pi\left(u_{0}\right) \in M$. Then we have

$$
\begin{array}{ll}
K_{1 \jmath}^{\prime \prime 2}=C_{11 \jmath}^{\imath}, & K_{j k}^{1 / \overline{2}}=C_{1 j k}^{\bar{i}}, \\
K^{\prime \prime 1}{ }_{01 j}=C_{11 \jmath}, & K^{\prime \prime 1}{ }_{0 \imath j}=C_{1 \imath \jmath}, \\
K^{\prime \prime}{ }_{j k m}=C_{j k m}^{\imath}, &
\end{array}
$$

where $2 \leqq i, j, k, m \leqq n$
Proof. Since
$C_{j k m}^{2}=R_{j k m}^{2}+\frac{1}{n-2}\left(R_{j k} \delta_{m}^{2}-R_{\jmath m} \delta_{k}^{2}+g_{j k} R_{m}^{2}-g_{\jmath m} R_{k}^{i}\right)-\frac{R}{(n-1)(n-2)}\left(g_{j k} \delta_{m}^{2}-g_{\jmath m} \delta_{k}^{i}\right)$, noting $g_{\imath j}(p)=\delta_{i \jmath}$, the last formula follows immediately. Then for $i, j \geqq 2$, we have

$$
\begin{aligned}
C_{11 \jmath}^{2} & =R_{11 j}^{2}+\frac{1}{n-2}\left(R_{11} \delta_{j}^{i}+R_{j}^{i}\right)-\frac{R}{(n-1)(n-2)} \delta_{j}^{i} \\
& =K_{1 \jmath}^{\prime \prime 2} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
C_{1, k}^{2} & =R_{1 j k}^{2}+\frac{1}{n-2}\left(R_{1 j} \delta_{k}^{i}-R_{1 k} \delta_{j}^{i}\right) \\
& =K_{j k}^{\prime \prime \bar{i}} .
\end{aligned}
$$

Moreover, from

$$
\Pi_{j k}=-\frac{R_{j k}}{n-2}+\frac{R g_{j k}}{2(n-1)(n-2)},
$$

and $\partial_{k} R_{\imath \jmath}=R_{\imath \jmath, k}, \partial_{k} R=R_{, k}$ at p, we get

$$
\begin{aligned}
C_{11 j} & =\Pi_{11, j}-\Pi_{1 j, 1} \\
& =-\frac{1}{n-2} \partial_{j} R_{11}+\frac{1}{2(n-1)(n-2)} \partial_{j} R+\frac{1}{n-2} \partial_{1} R_{1,} \\
& =K^{\prime \prime 1}{ }_{01 \jmath},
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
C_{1 i \jmath} & =-\frac{1}{n-2} \partial_{j} R_{1 i}+\frac{1}{n-2} \partial_{i} R_{1 \rho} \\
& =K^{\prime \prime 1}{ }_{00 \jmath} .
\end{aligned}
$$

§4. The curvatures and the main result.

As in [M1, §5], we can construct Tanaka connection (P, ω) using Proposition 3.2. For the explicite description of ω, we need some more calculations, but the essential information of the curvature K of ω is given by its corollaly. In fact, it is shown in [SY] that the harmonic part $H^{p, 2}(K)$ of the curvature K of ω determines the structure essentially. Moreover, in the case of Lie contact structures, $H^{p, 2}(K)$ vanishes except for $p=0$ if $n \geqq 4$, and $p=0,1$ if $n=3$ [SY]. Therefore it is sufficient to compute K_{-1} for $n \geqq 4$ and K_{-1} and K_{0} for $n=3$. It is easy to see that $K_{-1}^{\prime \prime}=K_{-1}$ [M1]. Immediately, we obtain from Proposition 3.2 and its corollary:

Proposition 4.1. Let $C_{j k m}^{2}$ be the coefficients of Weyl's conformal curvature at $p=\pi_{1}{ }^{\circ} \pi\left(u_{0}\right) \in M, u_{0} \in P_{g}$. Then the curvature K_{-1} of Tanana connection ω on $\pi: P \rightarrow T_{1} M$ is given by

$$
K_{1 j}^{i}\left(u_{0}\right)=C_{11 j}^{\imath}(p), \quad K_{j k}^{i}\left(u_{0}\right)=C_{1 j k}^{2}(p) .
$$

and all other coefficients vanish.
In particular, when $n=3, K_{-1}$ vanishes identically, which is already proved in [SY] from the view point of integrability of $C R$-structures and twistor geometry. Thus in this case, we should compute K_{0}. As is shown in [M1], we can see that $K_{01 J}^{1}=K^{\prime \prime 1}{ }_{01 \jmath}$ and $K_{02 \jmath}^{1}=K^{\prime \prime 1}{ }_{02 \jmath}$. Now, we prove:

Proposition 4.2. When $n=3$, by using the coefficients $C_{i j k}$ of Weyl's conformal curvature tensors, the curvature K_{0} of Tanaka conection is given by

$$
K_{01 j}^{1}\left(u_{0}\right)=C_{11 j}(p), \quad K_{0 \imath j}^{1}\left(u_{0}\right)=C_{1 \imath j}(p) .
$$

and all other coefficients vanish.

Proof. We may prove the last statement. For the present, we do not assume $n=3$. Using (10$)^{\prime}$ of [M1, §5], we have

$$
\begin{align*}
& -(2 n-1) A_{i l} \tag{4.1}\\
= & K^{\prime \prime \prime}{ }_{0 i 1}+K^{\prime \prime 1}{ }_{0 i 1}-\sum_{k=2}^{n}\left(K_{k k 1}^{\prime \prime \prime}+K^{\prime \prime}{ }_{i k \bar{k}}\right) \\
= & \frac{1}{2(n-2)} R_{1 i}+\partial_{\bar{i}} A_{01}^{1}-\frac{1}{n-2} R_{1 i}+R_{1 i}-\sum_{k}\left(-\partial_{\bar{k}} A_{i k}+\frac{1}{2(n-2)} R_{1 k} \delta_{k}^{i}\right) \\
= & \frac{n-3}{n-2} R_{1 i}+\partial_{\bar{i}} A_{01}^{1}+\sum_{k=2}^{n} \partial_{\bar{k}} A_{i k} .
\end{align*}
$$

Now we prepare:
Lemma 4.3 We have at $u_{0} \in P_{g}$,

$$
\begin{aligned}
& \partial_{\bar{r}} R_{j k m}^{\imath}=-R_{j k m}^{1} \delta_{r i}-R_{1 k m}^{\imath} \delta_{r j}+R_{j r m}^{2} \delta_{k 1}-R_{j 1 m}^{\imath} \delta_{r k}+R_{j k r}^{\imath} \delta_{m 1}-R_{j k 1}^{\imath} \delta_{r m}, \\
& \partial_{\bar{r}} R_{11}=2 R_{1 r}, \\
& \partial_{\bar{r}} A_{01}^{1}=\frac{2}{n-2} R_{1 r}, \\
& \partial_{\bar{r}} A_{\imath \jmath}=\frac{1}{n-2}\left(R_{1 j} \delta_{r i}+R_{1 i} \delta_{r \jmath}\right),
\end{aligned}
$$

where $2 \leqq r \leqq n, 1 \leqq i, j, k, m \leqq n$.
Proof. Since we have $R_{j k m}^{2}=\Psi^{\prime}{ }_{j k m}, 2 \leqq i, j \leqq n, 1 \leqq k, m \leqq n$, from

$$
\begin{aligned}
& \partial_{\bar{r}} \Psi^{\prime \prime}{ }_{j}=\partial_{\bar{\tau}} d\left(g_{u v} z_{i}^{v}\left(d z_{j}^{u}+\left\{\begin{array}{c}
u \\
s t
\end{array}\right\} z_{j}^{s} d x^{t}\right)\right) \\
& \equiv \partial_{\bar{r}}\left(\partial_{h}\left(g_{u \tau} z_{i}^{v}\left\{\begin{array}{l}
u \\
s t
\end{array}\right\} z_{j}^{s}\right) z_{k}^{h} z_{m}^{t}\right) \zeta^{k} \wedge \zeta^{m} \quad\left(\bmod \zeta^{\bar{k}} \wedge \zeta^{r}\right) \\
& =\left\{\left(\partial_{h}\left\{\begin{array}{l}
v \\
s t
\end{array}\right\}\right) \partial_{\bar{r}}\left(z_{i}^{v} z_{j}^{s}\right) \delta_{k}^{h} \delta_{m}^{t}+\partial_{h}\left\{\begin{array}{l}
i \\
j t
\end{array}\right\} \partial_{\bar{r}}\left(z_{k}^{h} z_{m}^{t}\right)\right\} \zeta^{k} \wedge \zeta^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\partial_{h}\left\{\begin{array}{l}
i \\
j t
\end{array}\right\}\left(\delta_{r}^{h} \delta_{k 1}-\delta_{r k} \delta_{1}^{h}\right) \delta_{m}^{t}+\delta_{k}^{h}\left(\delta_{r}^{t} \delta_{m 1}-\delta_{r m} \delta_{1}^{t}\right)\right] \zeta^{k} \wedge \zeta^{m} \\
& =\left[-\partial_{k}\left\{\begin{array}{c}
1 \\
j m
\end{array}\right\} \delta_{r i}-\partial_{k}\left(\begin{array}{c}
i \\
1 m
\end{array}\right\} \delta_{r j}+\partial_{r}\left\{\begin{array}{c}
i \\
j m
\end{array}\right\} \delta_{k 1}\right.
\end{aligned}
$$

$$
\left.-\partial_{1}\left\{\begin{array}{c}
i \\
j m
\end{array}\right\} \delta_{r k}+\partial_{k}\left\{\begin{array}{c}
i \\
j r
\end{array}\right\} \delta_{m 1}-\partial_{k}\left\{\begin{array}{c}
i \\
j 1
\end{array}\right\} \delta_{r m}\right] \zeta^{k} \wedge \zeta^{m},
$$

we get

$$
\partial_{\bar{r}} R_{j k m}^{2}=-R_{j k m}^{1} \delta_{r i}-R_{1 k m}^{2} \delta_{r j}+R_{j r m}^{2} \delta_{k 1}-R_{j 1 m}^{2} \delta_{r k}+R_{j k r}^{2} \delta_{m 1}-R_{j k 1}^{2} \delta_{r m} .
$$

Therefore, we obtain

$$
\begin{aligned}
\partial_{\bar{r}} \tilde{R}_{j m} & =\sum_{i=2}^{n} \partial_{\bar{r}} R_{j \imath m}^{2} \\
& =-R_{j r m}^{1}-R_{1 m} \delta_{r j}-R_{j 1 m}^{r}-R_{j 1} \delta_{r m}
\end{aligned}
$$

for $j, m \geqq 2$, and

$$
\begin{aligned}
\partial_{\bar{r}} \tilde{R} & =\sum_{j=2}^{n} \partial_{\bar{r}} \tilde{R}_{\jmath \jmath} \\
& =-4 R_{1 r}
\end{aligned}
$$

Now, using (2.13), we have

$$
\partial_{\bar{r}} R_{11}=-\sum_{m=2}^{n} \partial_{\bar{r}} T_{1 m}^{\prime \bar{m}}=-\left(-R_{1 r}-R_{1 r}\right)=2 R_{1 r}
$$

Since R is a function on $M, \partial_{\bar{r}} R=0$ is trivial, but also follows from

$$
\partial_{\bar{r}} R=\partial_{\bar{\tau}}\left(\tilde{R}+2 R_{11}\right)=0,
$$

and so we obtain

$$
\begin{aligned}
\partial_{\bar{r}} A_{01}^{1} & =\frac{1}{n-2} \partial_{\bar{r}} R_{11}-\frac{1}{2(n-1)(n-2)} \partial_{\bar{\tau}} R \\
& =\frac{2}{n-2} R_{1 r} .
\end{aligned}
$$

Moreover, using (2.13) and (3.2), we get

$$
\begin{aligned}
\partial_{\bar{r}} A_{\imath \jmath} & =-\frac{1}{n-2} \partial_{\bar{r}}\left(R_{1 j 1}^{\imath}+\tilde{R}_{\imath \jmath}\right)+\frac{1}{2(n-1)(n-2)} \partial_{\bar{r}} R \delta_{\jmath}^{\imath} \\
& =-\frac{1}{n-2}\left(R_{r j 1}^{\imath}+R_{1 \jmath r}^{\imath}-R_{\imath r j}^{1}-R_{1 j} \delta_{r i}-R_{i 1 j}^{r}-R_{i 1} \delta_{r \jmath}\right) \\
& =\frac{1}{n-2}\left(R_{1 j} \delta_{r i}+R_{1 i} \delta_{r \jmath}\right) .
\end{aligned}
$$

Finally, we obtain from (4.1),

$$
\begin{equation*}
A_{i 1}=-\frac{1}{n-2} R_{12} . \tag{4.2}
\end{equation*}
$$

Next, the left hand sides of (11)' and (13)' of [M1, §5] are zero and we get

$$
\begin{equation*}
A_{i 1}=A_{1 j}=0 \tag{4.3}
\end{equation*}
$$

From (12)', we have

$$
\begin{aligned}
\left(K^{\prime \prime 0}{ }_{01 j}+K^{\prime \prime}{ }_{11 \jmath}\right)-\sum_{i=2}^{n}\left(K_{i \bar{i} j}^{\prime \prime}-K_{i i \jmath}^{\prime \prime \prime}\right)= & -\frac{1}{2(n-2)} R_{1 j}+\frac{1}{2(n-2)} R_{1 j} \\
& +\frac{1}{2} R_{1 j}+\frac{n+1}{2(n-2)} R_{1 j} \\
= & \frac{2 n-1}{2(n-2)} R_{1 \jmath},
\end{aligned}
$$

so that

$$
\begin{equation*}
A_{1,}=-\frac{1}{2(n-2)} R_{1 j} . \tag{4.4}
\end{equation*}
$$

Using (3.1), we obtain

$$
\begin{aligned}
& K_{j k 1}^{i}=K^{\prime \prime}{ }_{j k 1}-A_{i 1} \delta_{k}^{j}+A_{j 1} \delta_{k}^{i} \\
& =R_{j k 1}^{2}+\frac{1}{n-2}\left(R_{1 i} \delta_{k}^{\jmath}-R_{1 j} \delta_{k}^{i}\right)=C_{j k 1}^{2}, \\
& K_{j k m}^{\imath}=K^{\prime \prime \prime}{ }_{j k m}=C_{j k m}^{\imath} \text {, } \\
& K_{j \beta \gamma}^{i}=K^{\prime \prime}{ }_{j \beta \gamma}=0 \quad \text { otherwise, } \\
& K_{0 i 1}^{0}=K^{\prime \prime \prime}{ }_{0 i 1}+A_{i 1}-A_{12} \\
& =\left\{\frac{1}{2(n-2)}-\frac{1}{n-2}+\frac{1}{2(n-2)}\right\} R_{12}=0, \\
& K_{0 \beta r}^{0}=K^{\prime \prime \prime}{ }_{0 \beta r}=0 \quad \text { otherwise, } \\
& K_{{ }_{\beta} \beta r}^{0}=K^{\prime \prime}{ }_{1 \beta r}=0 \text {, } \\
& K_{01 \jmath}^{1}=K^{\prime \prime 1}{ }_{01 j}=C_{11,} \\
& K_{02 j}^{1}=K^{\prime \prime}{ }_{0 \imath \jmath}=C_{1 \imath \jmath} \text {, } \\
& K_{01 j}^{1}=K^{\prime \prime 1}{ }_{01 j}-A_{j 1}=-\partial_{j} A_{01}^{1}+\frac{1}{n-2} R_{1 j}+\frac{1}{n-2} R_{1 j}=0, \\
& K_{0 \beta \gamma}^{1}=K^{\prime \prime}{ }_{0 \beta \gamma}=0 \quad \text { otherwise , } \\
& K_{1 i 1}^{1}=K^{\prime \prime 1}{ }_{1 i 1}-A_{12}=\left\{-\frac{1}{2(n-2)}+\frac{1}{2(n-2)}\right\} R_{12}=0 \text {, } \\
& K_{1 \beta \gamma}^{1}=K^{\prime \prime}{ }_{1 \beta \gamma}=0 \quad \text { otherwise } .
\end{aligned}
$$

Since when $n=3$ we have

$$
C_{j k m}^{2}=0,
$$

the proposition is proved.
q.e.d.

From the property C3) of Cartan connections, or, since K is a tensorial 2form of type ($A d, \mathrm{~g}$) on P, the harmonic part of K is determined all over P by Proposition 4.1 and 4.2. Moreover, noting that the index 1 in Proposition 4.1 and 4.2 denotes the direction of the base point $\pi\left(u_{0}\right) \in T_{1} M$, which is arbitrarily chosen, we obtain the main results, Corollary 1 and 2.

Since we have used here the fact described in the beginning of this section, we will give a direct proof of these results in the next section, to be selfcontained.

§5. Tanaka connection and the Lie curvature in a local coordinate.

In order to give a complete description of ω, determine A_{11} by (14)' of [M1]. We prepare first

Lemma 5.1. We have at $u_{0} \in P_{g}$,

$$
\begin{aligned}
& \partial_{j} A_{i 1}=-\frac{1}{n-2}\left(R_{\imath j}-R_{11} \delta_{i \jmath}\right), \\
& \partial_{j} A_{1 \imath}=-\frac{1}{2(n-2)}\left(R_{\imath j}-R_{11} \delta_{\imath \jmath}\right) .
\end{aligned}
$$

Proof. This follows easily from (2.13) and

$$
\begin{aligned}
\partial_{j} R_{1 \imath} & =-\partial_{j} \sum_{m=2}^{n} T_{\imath m}^{\prime \bar{m}}=\tilde{R}_{\imath \jmath}-R_{11} \delta_{i j}+R_{1 i 1}^{\prime} \\
& =R_{\imath j}-R_{11} \delta_{i j} .
\end{aligned}
$$

q.e.d.

Now, we obtain

$$
\begin{aligned}
\sum_{i=2}^{n}\left(\partial_{\bar{i}} A_{i 1}+\partial_{\bar{i}} A_{12}\right) & =-\left\{\frac{1}{n-2}+\frac{1}{2(n-2)}\right\} \sum_{i=2}^{n} \partial_{\bar{i}} R_{1 \imath} \\
& =-\frac{3}{2(n-2)}\left\{\sum_{i=2}^{n} R_{i i}-(n-1) R_{11}\right\} \\
& =-\frac{3}{2(n-2)}\left(R-n R_{11}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=2}^{n}\left(-K_{\bar{i} i 1}^{\prime \prime}+K_{i \bar{i} 1}^{\prime \prime}-K_{1 i \bar{i}}^{\prime \prime}\right) & =\frac{1}{2} R_{11}+\frac{1}{2} \sum_{i=2}^{n} A_{i i}-\sum_{i=2}^{n} A_{i i}-\frac{1}{2}(n-1) A_{01}^{1}-\frac{1}{2} \sum_{i=2}^{n} A_{i i} \\
& =\frac{1}{2} R_{11}+\frac{1}{n-2} \sum_{i=2}^{n} R_{i i}-\frac{R}{2(n-2)}-\frac{n-1}{2(n-2)} R_{11}+\frac{R}{4(n-2)}
\end{aligned}
$$

$$
=-\frac{3}{2(n-2)} R_{11}+\frac{3 R}{4(n-2)} .
$$

Thus, we obtain

$$
A_{11}=-\frac{1}{2(n-2)} R_{11}+\frac{R}{4(n-1)(n-2)} .
$$

As for the curvature $\Omega=1 / 2 K \theta \wedge \theta$ of ω, the \mathfrak{g}_{p}-components K_{p} is given in Proposition 3.2 for $p<0$, and in the proof of Proposition 4.2 for $p=0$. For $p>0$, we have from

$$
\begin{aligned}
\Omega_{i}-\Omega_{\imath}^{\prime \prime}= & d\left(A_{i 1} \theta^{1}\right)+\theta^{\bar{i}} \wedge \sum_{j=2}^{n} A_{1 j} \theta^{j}+\theta^{\bar{i}} \wedge A_{11} \theta^{1}, \\
\longleftrightarrow K_{i 1 j}= & K_{i 1 j}^{\prime \prime}-\partial_{j} A_{i 1} \\
= & \partial_{1} A_{\imath j}-\partial_{j} A_{i 1}=\Pi_{\imath \jmath, 1}-\Pi_{i 1, j}=C_{\imath j 1}, \\
K_{i 1 j}= & K_{i 11}^{\prime \prime} \partial_{j} A_{i 1}-A_{11} \delta_{j}^{2} \\
= & -\frac{1}{n-2} R_{\imath j}+\frac{R}{2(n-1)(n-2)} \delta_{j}^{2}+\frac{1}{2(n-2)}\left\{R_{11}-\frac{R}{2(n-1)}\right\} \delta_{j}^{2} \\
& +\frac{1}{n-2}\left(R_{\imath j}-R_{11} \delta_{j}^{i}\right)-\left\{-\frac{1}{2(n-2)} R_{11}+\frac{R}{4(n-1)(n-2)}\right\} \delta_{j}^{i} \\
= & 0, \\
K_{\imath j k}= & K_{\imath j k}^{\prime \prime}=-C_{\imath j k}, \\
K_{\imath j k}= & K_{\imath j k}^{\prime \prime}+A_{i 1} \delta_{k}^{j}+A_{1 k} \delta_{j}^{2} \\
= & \frac{1}{n-2}\left(R_{1 i} \delta_{k}^{j}+R_{1 k} \delta_{j}^{i}\right)-\frac{1}{2(n-2)} R_{1 k} \delta_{j}^{2}-\frac{1}{n-2} R_{1 i} \delta_{k}^{j}-\frac{1}{2(n-2)} R_{1 k} \delta_{j}^{2} \\
= & 0, \\
K_{\imath j \bar{k}}= & K_{\imath j \bar{k}}^{\prime \prime}=0 .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
\Omega_{i}-\Omega^{\prime \prime} & =-\theta^{\imath} \wedge\left(\sum_{j=2}^{n} A_{1 j} \theta^{j}+A_{11} \theta^{1}\right) \\
\leftrightarrow & K_{i 1 \jmath}= \\
= & K^{\prime \prime}{ }_{i 1 j}+A_{11} \delta_{j}^{\imath} \\
= & -\frac{1}{2} R_{11 j}^{\imath}-\frac{1}{2(n-2)} R_{\imath j}+\frac{R}{4(n-1)(n-2)} \delta_{\jmath}^{i} \\
& -\frac{1}{2(n-2)} R_{11}+\frac{R}{4(n-1)(n-2)} \delta_{j}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} C_{113}^{2}, \\
& K_{i 1 j}=K_{i_{1 j}}^{\prime \prime}=0 \text {, } \\
& K_{i j_{k}}=K_{i{ }_{i} k}^{\prime \prime}-A_{1 k} \delta_{j}^{2}+A_{1 j} \delta_{k}^{2} \\
& =-\frac{1}{2} R_{1 j k}^{2}+\frac{1}{2(n-2)} R_{1 k} \delta_{j}^{2}-\frac{1}{2(n-2)} R_{1 j} \delta_{k}^{2} \\
& =-\frac{1}{2} C_{1 j k}^{2} \text {, } \\
& K_{i j_{k}}=K_{i j k}^{\prime \prime}=0, \\
& \Omega_{1}-\Omega_{1}^{\prime \prime}=d\left(\sum_{j=2}^{n} A_{10} \theta^{\jmath}+A_{11} \theta^{1}\right) \sum_{i=2}^{n} A_{\imath 1} \theta^{1} \wedge A_{i \bar{i}} \theta^{i} \\
& \leftrightarrow K_{11 \jmath}=\partial_{1} A_{1 j}-\partial_{\jmath} A_{11}=\frac{1}{2} C_{1,1}, \\
& K_{11 j}=A_{1 j}-\partial_{j} A_{11}-A_{j 1} A_{j j} \\
& =-\frac{1}{2(n-2)} R_{1 j}+\frac{1}{2(n-2)} \partial_{j} R_{11}-\frac{1}{2(n-2)} R_{1 j} \\
& =-\frac{1}{n-2} R_{1 j}+\frac{1}{n-2} R_{1 j}=0 \text {, } \\
& K_{1 j k}=\partial_{,} A_{1 k}-\partial_{k} A_{1 \jmath}=-\frac{1}{2} C_{1 \jmath k}, \\
& K_{1 j \bar{k}}=K_{1_{j \bar{k}}^{\prime}}^{\prime \prime}-\partial_{\bar{k}} A_{1 j}-A_{11} \delta_{k}^{j} \\
& =\frac{1}{2}\left\{-\frac{1}{n-2} R_{j k}+\frac{R}{2(n-1)(n-2)} \delta_{k}^{3}\right\}+\frac{1}{2(n-2)}\left(R_{j k}-R_{11} \delta_{j}^{i}\right) \\
& -\left\{-\frac{1}{2(n-2)} R_{11}+\frac{R}{4(n-1)(n-2)}\right\} \delta_{k}^{\prime} \\
& =0 \text {, } \\
& K_{1 j \bar{k}}=0,
\end{aligned}
$$

Now, we summarize our results as a theorem.
Theorem. Let $\left(x^{2}, z_{j}^{2}, s_{b}^{a}, s_{\imath}, s_{i}, s_{1}\right)$ be the local cordinate around $u_{0} \in P_{g}$ chosen as in §3. Then at $u=u(z)=\left(x^{2}, z_{\jmath}^{2}, \delta_{b}^{a}, \mathbf{0}, \mathbf{0}, 0\right) \in P_{g}$, Tanaka connection ω on $\pi: P \rightarrow T_{1} M$ is given by

$$
\theta^{2}=g_{j k} z_{i}^{k} d x^{\jmath}, \quad 1 \leqq i \leqq n,
$$

$$
\begin{aligned}
& \theta^{\bar{i}}=g_{j k} z_{i}^{k}\left(d z_{1}^{j}+\left\{\begin{array}{c}
j \\
s t
\end{array}\right\} z_{1}^{s} d x^{t}\right), \quad 2 \leqq i \leqq n, \\
& \omega_{j}^{2}=g_{u v} z_{i}^{v}\left(d z_{j}^{u}+\left\{\begin{array}{c}
u \\
s t
\end{array}\right\} z_{j}^{s} d x^{t}\right), \quad 2 \leqq i, j \leqq n, \\
& \omega_{0}^{0}=d s_{0}^{0}, \\
& \omega_{1}^{0}=d s_{1}^{0}+A_{11}^{0} \theta^{1}, \\
& \omega_{0}^{1}=d s_{0}^{1}+\sum_{j=2}^{n} A_{0 j}^{1} \theta^{j}+A_{01}^{1} \theta^{1}, \\
& \omega_{1}^{1}=d s_{1}^{1}, \\
& \omega_{i}=d s_{i}+\sum_{j=2}^{n} A_{i j} \theta^{j}+A_{i 1} \theta^{1}, \quad 2 \leqq i \leqq n, \\
& \omega_{i}=d s_{i}+A_{i \bar{i}} \theta^{\bar{i}}, \quad 2 \leqq i \leqq n, \\
& \omega_{1}=d s_{1}+\sum_{j=2}^{n} A_{1 j} \theta^{j}+A_{11} \theta^{1},
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{11}^{0}=-\frac{1}{2}, \quad A_{0 \jmath}^{1}=\frac{1}{n-2} R_{1 \jmath}, \quad A_{01}^{1}=\frac{1}{n-2} R_{11}-\frac{R}{2(n-1)(n-2)}, \\
& A_{\imath \jmath}=-\frac{1}{n-2} R_{\imath j}+\frac{R}{2(n-1)(n-2)} \delta_{\jmath}^{2}, \quad A_{i \bar{i}}=-\frac{1}{2}, \\
& A_{i 1}=-\frac{1}{n-2} R_{1 \imath}, \quad A_{12}=-\frac{1}{2(n-2)} R_{1 \imath}, \\
& A_{11}=-\frac{1}{2(n-2)} R_{11}+\frac{R}{4(n-1)(n-2)},
\end{aligned}
$$

using the Ricci curvature $R_{\imath \jmath}=z_{\imath}=z_{i}^{k} \partial / \partial x_{k}$, and the scalar curvature R of M at (x^{i}). The curvature K of ω at u_{0} is given by

$$
\begin{aligned}
& K_{1 \jmath}^{i}=C_{11 \jmath}^{\imath}, \quad K_{j k}^{i}=C_{1 j k}^{2}, \\
& K_{01 \imath}^{1}=C_{11 \imath}, \quad K_{0 \imath \jmath}^{1}=C_{1 \imath \jmath}, \quad K_{j k 1}^{i}=C_{j k 1}^{2}, \quad K_{j k m}^{i}=C_{j k m}^{\imath}, \\
& K_{i 1 \jmath}=-C_{i 1 \jmath}, \quad K_{\imath j k}=-C_{\imath j k}, \\
& K_{i 1 \jmath}=-\frac{1}{2} C_{11 \jmath}^{2}, \quad K_{i j k}=-\frac{1}{2} C_{1 j k}^{2}, \\
& K_{11 \jmath}=-\frac{1}{2} C_{11 \jmath}, \quad K_{1 j k}=-\frac{1}{2} C_{1 j k},
\end{aligned}
$$

for $2 \leqq i, j, k, m \leqq n$, and all other components vanish, where $C_{j k m}^{2}$ and $C_{2 j k}$ are the coefficients of Weyl's conformal curvature.

Since $R_{a}^{*} \omega=\operatorname{Ad}\left(a^{-1}\right) \omega, a \in G^{\prime}, \omega$ and K are determined all over P by this theorem.

References

[CC] Cecil, T. and Chern, S.S., Tautness and Lie sphere geometry, Math. Ann., 278 (1987), 381-399.
[M1] Mryaoka, R., Lie contact structures and normal Cartan connections, Kodai Math. J. 14 (1991), 13-41.
[M2] Мічаокa, R., A note on Lie contact manifolds, Preprint (1990), Tokyo Institute of Technology.
[O] Ogiue, K., Theory of conformal connections, Kodai Math. Sem. Rep. 19 (1967), 193-224.
[S] Sato, H., Lie's contact geometry and Lie manifolds (in Japanese), Proc. of 35th Top Symp. (1987), Ryukyu Univ., 41-63.
[S Y] Sato, H. and Yamaguchi, K., Lie contact manifolds, "Geometry of manifolds (ed. by K. Shiohama)", Acad. Press (1989), 191-238.
[SS] SASAKı, S., On the differential geomtry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-354.
[T] Tanaka, N., On the equivalence problems associated with graded Lie algebras, Hokkaido Math. J., 8 (1979), 23-84.

Department of Mathematics
Tokyo Institute of Technology
Оhokayama, Meguroku, 152
Tokyo/Japan

[^0]: Received June 14, 1989 ; Revised April 26, 1990.

