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§0. Introduction.

Studies of G-structures and connections concerned with differential systems
on a manifold have been deeply developed by N. Tanaka in these ten years
[Tl; 2’ 3’ "']~

Classical examples of G-structures are the projective and the conformal
structures on a differentiable manifold. The former is a geometry with model
space P"(R) and group PL(n, R), [KN], the latter is with model space S*, the
Mobius space, and group PO(n+1, 1), [O].

Here, we study a Lie contact structure considered by H. Sato [S, SY], which
is a geometry over (2n—1)-dimensional contact manifolds with model space
T,S”, the unit tangent bundle of the n-dimensional standard sphere, and group
PO(n+1, 2). Since the grading of the Lie algebra of O(n-+1, 2) is from —2 to
2 (of the second kind), the structure is much more complicated than the clas-
sical ones.

In this paper, we give basic facts on Lie contact structures in §1. In §2,
we discuss on some examples. In particular, the structure given on the unit
tangent bundle T,Af of a riemannian manifold M is important because it is
related with both conformal structure of M and contact structure of T, M [M2].
To investigate the relation, we must calculate the curvature of the normal
Cartan connection defined in §3. In fact, by the connection theory due to N.
Tanaka [T1, 2, 3], which is thoroughly applicable to Lie contact structures, the
normal Cartan connection determines the structure completely (§ 4). Nevertheless,
the concrete description of its torsion and curvature have not yet been done.
In §5, we give an explicit description of these objects, proving at the same time
the existence of the connection in a constructive way. All of these results are
used in [M2] to calculate the curvature of the normal Cartan connection of the
Lie contact structure on 7T,M. Note that the definition of normal Cartan con-
nections in [T2] is different from the one in [ T3], the latter would be preferable
theoretically. We adopt here the definition in [T3].
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Except for elementary facts, the argument in this paper is self-contained;
the theory itself depends on [T2]. A resume of the present paper and [M2] is
given in [M3]. The author would like to thank to Professors H. Sato, K. Ya-
maguchi, S. Tanno and K. Sakamoto for their valuable suggestions.

§1. Preliminaries.

Let R2**={x=(x° --- x"*?), x*=R} be an (n-+3)-dimensional real vector
space endowed with a scalar product <,) with signature (+, -+, +, —, —) and
let R *={x=R?%**, x"+**=0}. Denote by P"** and P"*! the associated projective
spaces. Furthermore, let R*"*'={x=R?*?, x"+'=0}. By <(,)>, we denote the
induced scalar product on R7*?* or on R™"!, Now, the unit sphere S"=
{x=R"**|{x, xp=1} is naturally embedded in P™*' as a Mobius space Q",

St=Q"={[yle P "<y, y>=0},

by x—(x, 1)€R7?*%. On the other hand, let 3} be the set of all oriented hy-
perspheres in S™; X={(m, 8)=S"X[0, =) | an oriented hypersphere with center
m and radius 6}. Then 3} is naturally embedded in P"** as a quadratic Q™*?,

D=Q"'={[k]=P"**Kk, k>=0},

by (m, 8)—(m, cos @, sin )= R3*3,

The Mobius group L is, by definition, a group consists of projective trans-
formations of P"*! preserving Q", and we have L=PO(n—+1, 1). The Lie trans-
formation group G is, by definition, a group consists of projective transforma-
tions of P"*% preserving Q"*!, and we get G=PO(n+1, 2)[P]. Clearly we have
LcG. Now, let A**'={lines in Q"*' generated by ([k.], [k:])=Q"*'XQ"*!,
{ky, k:»=0}. Then we have

T.S*={(u, v)eS*XS*Ku, v)=0} = A**~*

under a mapping (u, v)—([k,], [k.]), where k,=(u, 1, 0), k,=(v, 0, 1). Since G

preserves <, >, it induces an action on A%*~*, It is easy to see that G acts on

A"t transitively and A*""'=G/G’ for an isotropy subgroup G’ of G.
Choosing a suitable base of R%*® so that <u, v)>="uev, where

0 0 —L
sz(saﬂ): 0 ]n—l 0
—I, 0 0

we have O(n+1, 2)={S=GL(n+3, R)|'SeS=¢} and G=PO(n+1, 2). The Lie
algebra g of G is then given by g={X&gl(n+3, R)|!Xe+eX=0}. Note that g
is a graded Lie algebra with grading g=g_.+8-14+80+8:+82, (., 8,]=8,+,, Where
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0 0 ¢
0 p
9—2:292= O O 0 > p: ) ’
0 00
05 0
9-1=tQ1: 0 0 ,thRn-IXRn—l ,
\0 0 O
a 0 0
g,={t0 e 0 |, asgl2, R), eso(n—1)}.
0 0 —ta

LEMMA 1.2. The isotropy subgroup G’ is given by
A 0
G'= gd g 0
-1 ,l_t t A-1t t A-1
A(gtdd+f) AT A

g=0(n—1), AcGL(, R)

" deR™IXR™, f-.:(g )

The Lie algebra of G’ is ¢'=go+8,+8,, and dimG’_—__;.(n2+n+8),

Proof. This follows from [T2, Lemma 2.5, 6]. In fact, we have
A0 O 1 0 0
expXo={0 g 0 LexpXi={ 4 1 0},
t A-1 i(_i_(i t
0 0°4 5 d 1
100
expX,=(0 1 0|, X;=g,:=0,1,2,
f 01

where 4, g, d, f are given above. g.e.d.

Now, we give an explicit description of the isotropy representation po:G'—
GL(2n—1). Note that g=g’+m where m=T(G/G’) We choose a base
ey, €, **+, 02,1 Of m as follows

0 0 ¢
01
e1= 00 0 , C= )7

-1 0
W0 0 0
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0 b 0 .
0; ’ 0; 1’ 0} Tt 0
e, = 00 tbi 5 bz: ), Z=2;' y N,
0’ ..................... N 0
0 0 0
0 b O
0, ..................... s 0
Cntr-17— 0 0 tb’: ’ b;,:< )7 =2, s n.
O; Ty 0, 1: 0) ;0
00 O *

PROPOSITION 1.3. With respect to this base, the isotropy representation C=
o(G’) is obtained by

sysi—s%si 0 0
G=1| —sfst+siss sisi sisi|, (sp)eG’, i, j=2, -, ny.
—shsitsish  shst  sisy

Remark. With respect to a natural embedding O(n—1)CCO(n—1)CG’, we
have ’

(1.1) O(n—1)cCO(n—1cG .

Proof. For S=(s§)=G’, we will calculate Se;S™* modulo ¢, /=1, ---, 2n—1.
By Lemma 1.2, we have

A o 0
S= gd g 0 |,
‘A(tdd+f) tATE A
so that
A 0 0
st=| —da- g 0

(3da—r)a —dig ‘4
Then we have
x —Actdtg Ac'A
Se,; S™1=

*
*
[}
IS
ﬁn
S

*

o
N
<
o

Se;S7l=l % % g'htAl, =2, -, n,
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and
= Abj'g 0

Sepi, 1 STI= k% gibitAl, i=2, -, n.

(52¢i s%ié) ‘<SS S?)" 1 ( si ——S$)
= = >
spit snis sy sl @\—s}  s§

a=sjsi—sis},

Noting that

where

we get the proposition. q.e.d.

DEFINITION. For a (2n—1)-dimensional differentiable manifold M, a G-
reduction of the linear frame bundle of M is called a Lie frame bundle over M
or a G-structure on M.

Now, we define a Lie contact structure. For a G-structure (P, §) on a
(2n—1)-dimensional manifold, the basic (usually, called a canonical) form @ is,
by definition, an m-valued 1-form on P given by

0 X)=u'nsyX, X&T,P, rn:P— M, the projection.

DEFINITION. Let (P, 8) be a G-structure on a (2n—1)-dimensional manifold
M. Let 6, be the g,-component of #, where m=g_,+g_,., When 6 satisfies

1
(1.2) dﬁ_z‘l"z‘[ﬁ_n 0_,]=0 (mod 6.,),
the G-structure is called of type m, or equivalently, a Lie contact structure.

Clearly, a Lie contact structure is the G-structure of type m discussed in
[T1, 2,3] when G=PO(n+1,2). It is mentioned by H. Sato [S] that there
exists a Lie contact structure on the unit tangent bundle T, M of any n-dimen-
sional Riemannian manifold. We show this in the next section. More generally,
the structure possibly exists, on a (2n—1)-dimensional contact manifold, as we
investigate in § 2.

§2. The Lie contact structure.

In [T1, p. 10], for a regular differential system D on M, Tanaka constructed
a graded Lie algebra m(x) at each point x of M, and when m(x) is isomorphic
to a fixed fundamental graded Lie algebra m= ng for all x, he calls D of

type m. Moreover, he shows that if (M, D) is a regular differential system of
type m, then it corresponds to a G.(m)*-structure (P¥, ) of type m over M,
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that is, a Go(m)*-structure over M with the basic form 6, satisfying
2.1) d0p+%r+zs}_p[0r, 0:1=0 (mod @,(r<p); 0. NbOs, r+s<p, p<r, s<0),

where p<—2 and 6, denotes the g,-component of #. For the definition of
(P%*, 60) and Gy (m)¥, in general cases, see [T1]. This is a beautiful geometric
interpretation of (M, D), and the more important is the existence of a normal
Cartan connection on (P#, §) when the structure group satisfies a certain condi-
tion.

When D is, in particular, a contact structure of a (2n—1)-dimensional mani-
fold M, (2.1) is reduced to a simple equation (1.2). We will explain this case
in detail. At each point x of M, put g_«(x)=T.M/D,, g_«(x)=D, and m(x)=
g_a(x)+g_(x). A Lie bracket in m(x) is defined by [m(x), g_.(x)]=0, and for
X, Yeg (x), [X,Y]==([X, Y]), where n: T ,M—g_x(x) is the projection. This
is well-defined since n([f X, Y])=f=n([X, Y]) for a function on M. We put a
generic assumption that m(x) is isomorphic to a fundamental graded Lie algebra
m, at each xeM. Now, let P* be the set of frames on M satisfying

(1) z:g¢_,—g_y(x) a linear isomorphism,

(2) %:wm—-m(x) a Lie algebra isomorphism,
where Z is a map naturally induced from z: m—T,M. Let G«(m) be the auto-
morphism group of m, Ny={ceGL(m)|cY =Y _, (modg.,), cY.,=Y_,, Y,=4q,}
and G(m)*¥=G,m)-N,. Actually, P¥ is a Go(m)*-bundle over M.

LEMMA 2.1. Let (M®**', D) be a contact manifold and let (P*¥, ) be the as-
soctated Go(m)¥-structure with basic form 0. Then it satisfies

(2.2) dﬁ-z"‘%‘[ﬂ_b 0..]=0 (mod 6_,).

Proof. As is well known [S2], with a contact manifold M is associated a
contact metric structure (%, ¢, §, g), 7 the contact form, ¢ is an endomorphism
of TM, & is a vector field on M and g a metric on M satisfying

7n(é)=1,

P*=—id+7Q%,

8lpX, oY)=g(X, V)—9(X)n(Y), X,YeTM,
2.3) dn(X, V)=g(X, ¢Y), X,YTM.

Let @ be the canonical form on P#, We can choose a local section ¢: M— P¥,
0(x)=(2,, 22, *** , Zn, 23, *** , Z5) Where z,=2§, z, is a unit vector orthogonal to
&, 2z3=¢2,, z; is a unit vector orthogonal to z,, z; and 23, -+, and so forth. Note
that ¢§=0 and 7(z,)=7(z;)=0 for /=2, ---, n [B, p. 20]. Construct a Lie algebra
m consisting of a base ey, -, e,, e3, -, ez where the Lie bracket is defined by

2.4) Les, e.]=[es, ei]=[e,, e,]=[e;, ¢;1=0, [e., ej]=0;se;.
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Then from (2.3), we have

25) @0, 2= 1Tz 2 D=8z, p2)=—00y,

and d7(z., z3)=0 for other pair (z,, zg), which implies that D is of type m.
Put f=¢*0. Since we have an isomorphism ¢(x): m—T .M, x& M, given by
o(x)aPeg)=aPzy for aPzy=T .M, where B is summed over 1, -, n, 2, -+, i, we
see that

6(afz5)=0(oxafzg)=0a(x)alzs=aey.
Thus we can write
b= ner, 0= Sltecties).
Then from (2.3) and (2.4), we obtain
(2.6) At 50, 0.,1=0,

Now, at u=oc(x)a 'S P#, a=bc, b&G,m), cEN,, identifying §=n*f, we have

0=ad=bch,
ie.
0_2-—:1)0-_2, and 0_1:bé_1+b(65_2)_15b6_-1 (mOd 0__2).

Therefore, we get
dﬁ_zEbdé_z (mod 0-_2),
but since

(2.7) 0_.=b7'0_,,

we have
de_z'zbdﬁ-_z (mOd 0-2).

On the other hand, form #_,=b"'0_; (mod d_,), (2.6) and (2.7), it follows
d9_2=—-%[0-_1, 9_1]5—‘—;‘17_1[0_1, 0_1] (mOd 6_2),
and we get the lemma. q.e.d.

By using the base (e, ¢,, ¢;) of m above, the structure group G,(m)# can be

represented as
a 0
Go(m)*‘z{ ), a#0;,
* CSP(n—1, R)

~

and so contains G.
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COROLLARY 2.2. For a contact manifold (M?*"™*, D), a G-reduction of (P*, 0)
is a Lie contact structure.

Noting (1.1), we show:

PROPOSITION 2.3. Let (M, g) be an n-dimensional Riemannian manifold. Then
on the unit tangent bundle T\M of M exists a Lie contact structure.

Proof. Let @, be the principal fiber bundle over M with structure group
O(n). Then by [KNI, p. 57], P,=(Q,/O(n—1), O(n—1)) is the principal fiber
bundle over T,M. Noting (1.1), we define an extended buncle

ﬁgIPgXo(n_l)G .

In order to show that this G-structure is of type m, recall the geometry of T, M
when M is a riemannian manifold [S1, 3]: For z&Q,, where z=(z;, ', Za),
let 2%, 22TTM be the horizontal and the vertical lift of each vector z,. Then
for z,&T\M, u(z)=(z%, 2%, 2%), 2<i<mn, is an orthonormal base of T, T,M with
respect to the induced Sasakian metric S, on 7:M. Thus P,={u(z)lz=Q,} is
an O(n—1)-principal bundle over T,M under the action ¢ of heO(n—1) given

by o(h)u(z)=u(zh) where
10
h=( )EO(n).
0 A

Now, on the contact structure (7,M, D) defined by
D={XeT, T:M|S (2}, X)=0},
the associated contact metric structure (7, &, ¢, §) is given by
§=%Sg, £=2z%, 7 is the duval to & w.7.t. g
0&)=0, @hH=z, e@)=—z}, i=2,-,n,

[B, p. 133], using u(z), z=Q,. Thus (2.5) is satisfied for z,=2z%, z;=2z%,
1<i<n, 2<j<n, and hence we get [z, z¥]=2z"%, which implies that u(z) is a
frame adapted to the structure. Thus the proposition follows from Corollary
2.2. q.e.d.

Remark 2.4. The Lie contact structure on 7,M defined as above depends,
in fact, only on the conformal structure of M [see SY].
§3. A normal Cartan connection of type G/G’.

To a Lie contact structure, we can apply the theory of N. Tanaka [T3]
which guarantees the existence of a normal Cartan connection of type G/G’.
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In §5, we prove this fact directly in a constructive way. This section is a
preliminary for it.

2
We fix a base of g= Ezgp as follows; let ey, e,, e;=¢@n4+.-1, 2<i<n, be the
=
base of m defined in § 1. Define e¥="‘e,, e¥='e, and ef='e; (=2, ---, n) which
form a base of m*=g;+g,. Furthermore, let E¢ denote the 2X2 matrix with
(7, j)-component =1 and the others zero. Define

Ef 0 0 Ei 0 0 E2 0 0
ed=[0 0 0f =0 0 0] =0 0 0}
0 0 —F1 0 0 —E% 0 0 —FE3
E3 0 0 0 0 0
ei= 0 0] e=0 F; 0]
0 0—F3 0 0 o0

where F!, 2<i<j<n, is the (n—1)X(n—1) matrix with (7, j)-component =—(J, 7)-
component =1 and the others zero. Put el=—e¢] if 7>;. The following is
elementary.

LEMMA 3.1. The Lie bracket [a, b] of g is given in this base by the follow-
ing table:

’ e, e, e; e | e} | eq | el | of e¥ e¥ e¥
a

e; | 0 0 0 —e| 0 0 |—e| O —e; e, E
e, | 0 0 Oty |—e.| 0 |—e;| O | E|Oled+el 0Oled |—ef
e; | 0 | —dle 0 0 e, | 0 | —e;| Ei%| 0lb | 0Oeidel of
el | e e, 0 0 | e |—es| O | O —e¥ 0 |—e¥
e | 0 0 —e, |—e}| O Fl e| 0 —e¥ 0 0
e | 0 e; 0 el | —F| 0 |—ei| O 0 —e¥ 0
et e 0 e; 0 |—e}| e | O 0 0 —e¥ | —ef
et 0 | —E% | —E% | O 0 0 0 A| —Ef | —EX%| O
e¥ | e; | et—0%el —dlel | e¥| ef| O 0 | EY 0 —d%et| 0
e | —e, | —0% | et—dle} O 0 et | of | E¥f| ole 0 0
e¥ | —E| ef —e¥ ex| 0 0 ex| 0 0 0 0
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where
E=cl+el, F=e}—el, Eii=c30i—eidl, E;i}=c0i—e50t,

e=nothing or *, A=0%l"+0f"e*—0dTe}—0dieT.
From this table, we get

LEMMA 3.2. The Killing form B of ¢ gives the duality between m and m*:
B(ey, e¥)=2(n+1), Ble,, e¥)=Bl(e;, e%)=2(n+1)d;,,
and B(,)=0, for other pairs.

Now, we give the Mauer-Cartan equation of G, taking a local coordinate
(Sg+2’ s1zl+1y S;i+2r 38; S?, s(l)y S}, S;, s})y S7i; Sg+2), Zgz, ]gn: Of Gy Where (S%‘)EG.

LEMMA 3.3. Let w§ be the left invariant 1-form on G which coincides with
ds§ at ideG, where (a, B) moves so that (s§) gives the local coordinate defined
above. Then the Mauer-Cartan equation is given by

dwdio=—(0§+ODNAOS 12— 0INBE 42,

AWk 11=OIN\O} 12— WA O} 11+ 0 1 AW+ 0% 12 A0,
dw}m:—w%y/\w%ﬂ—wﬁ/\w,’,+z+m},+1/\wé+wﬁ+z/\wi ’
doi=—0I\0}— 0} AOF—0L 1 AOTFE,
do}=—(wf—o) Ao} -} Ao,
dwi=(0—0) A0} —0k A0},
dol=—i AW} —0} 2 ANOF—05 L A0,

0= =0\, 11— O\ 12— O N\ O — 0 1 N O] — 0} s AT,
dwd=—0i NS — NG} —IN O — 0} 1. AN@TH?
dwi=— N} —0INOI—0 A0+ 0L AOTHE,
dot*=(0d+o) Aot —wi Ao} .

Proof. Let @=s"'ds, s=(s§). Then it is obvious that @ is left invariant,
of=wj§ at ideG and
d@g=—as \N&) .

Noting the relation among @j obtained in § 1, we get the lemma. q.e.d.

A Cartan connection (P, w) of type G/G’ over a manifold M with dim M=
dim G/G’, is by definition
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Cl) P is a principal fiber bundle over M with structure group G/,
C2) o is a g-valued 1-form on P satisfying

(i) If o(X)=0, then X=0.

(ii) R¥w=Ad(aV)w, a=G'.

(iii) w(A*)=A, Asyg’.

In our case, let (P, w) be a Cartan connection of type G/G’ with §=w_,+w_,,
where w, denotes the g,-component of w. We put 67, w#, and o,, the com-
ponents of w with respect to the base of g given above. Then the structure
equations of w are given by

d0'=—(d+oHNO'—0* NG+ 01,

d0*=i N0 — i\ G+ 0" N3+ 0 N} +2°,
dO'=—w; N0 — i\ G+ 0 Awy+ 60 Not+ 2%,
dod=—Ni— 0" Now,—0' No,+ 28,
do}=—(@§—o) N} —0* ANw; + 29,

3.1 dot=(0}—oh) Aoi— 0 Nw;+ 2},
doi=—oi A} —0' Ao —0* Ao, + 21,
doi=—; A0’ —0; A — i A0i— 0 Nw;— 0 Aw;+ 2%,
dw;=—0; A0§—; A0} +0IN0;—0* Ao, +2, ,
dwoi=—0; AN} —wi Ao+l ANoj+0 N +82;,
dw1=(0>8+wi)/\w1+§wi/\wz+Qx ,

where i=2, .-+, n, i#j and 27, Q¢, Q, are the curvature forms of w.

In the same way as [KN, p. 220], we can write

Q=7 K676
where K(z)eg®A*m*, z&P. For this curvature, Tanaka defines the %-curva-
ture K*: P-»g®Qm* by

K*(Z)(X)=Zrl[e?‘, K(z)e;, X)], Xem,

up to scalar multiple 2(n41) (see Lemma 3.2), where 7 is summed over 1, ---,
n, 2, -+, #i. In [T2] he calls a Cartan connection of type G/G’ is normal when
its *-curvatures vanish. On the other hand, he gives another definition of
normal Cartan connections in [T3], and shows the meaning of the definition
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from the harmonic theory on the cohomology of Lie algebras. Here, we give
and adopt the latter definition and apply it to the Lie contact structures.
For a simple graded Lie algebra g= é}zgp of non-compact type with
p

subalgebra m=1§ogp, Tanaka constructed in [T3] a cochain complex (C%m, g), )

where C4m, g)=gRAYm*), and d: C?—C?* is the coboundary operator (see
also [K]). Let 0*: C?%*'—C? be the adjoint operator with respect to the metric
(X,Y)=—B(X, dY) defined by the Killing form B and the involution ¢ of g.

Explicitely, they are given by

@) XA AXgr)=—1*[X,, o( XA - AKA - AXgan)]

+ (D[ Xy XIAXA < AKA < AZA = AXon)
1<j

) (XN - AXg)=2[e¥, cle, AXIN -+ AN Xgo1)]
J

1 -
o BTl LIAGAXN = AXA = AXoo) s

where ¢c=C%¥m, g), X,, -+, Xgr1Em, [e¥, X,]_ denotes the m-component of
[e¥, X.], {e¥} is the base of m*= gogp dual to a base {e;} of m with respect
D

to B. Define
NE=3gE N - N,

q
where the summation is taken over 7y, -, 7,<0, kgll rr,=i. Then we have
A(m*)=3NL Put
k2
CPi=318;Q N} p-g+1.
J

Now, in our case, the curvature 2=(1/2)KO N6 of a Cartan connection ® on
(P, 0) is regarded as K(z)=C*m, g), z=P. Let K? be the C?::-component of
K. Then in [T3], w is called normal if

1) K~'=0,
2) 0*K?=0 (p=0).

We will express them using the components of K with respect to the base de-
fined above, i.e.

K(z)(ea’ e,ﬂ:; K:’xﬁ(z)er+#§ Kfaﬁ(z)ef'l'; Kraﬂ(z>e;k ’

where 7 is summed over 1, ---, n, 2, -+, @, (g, v)=(0, 0), (0, 1), (1, 0), (1, 1), =, 7),
2<i<j<n. Now, note that

NH()= A2+ A2+ A2,
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since m=g_,+4g_,. Noting also that dimg_,=1, we have
K'eC ™ =g_,QAN% — PFKTeC"'=g_,Q8%+6..Q8%,
K°'eC"*=g_,QAN2%+3.1QAN2 — *K'=Ch'=¢_,Q@g*:+8:Rg* ,
K'eCh?=¢_,QNZ+gQ@N2 —> 0*K'eC*'=g,Q8%+3,:&8%,,
K?eC**=g QN 2+8.:QN2% —> FK*cC*'=3,Q8%+9:Q8* ,
K*eC*?=g,QN2:;+38. QN2 — *KcC*'=g,Q8%,,
KeCh =gQ N2, — *K*=C%'=0.
On the other hand, since we have
[e¥, X1.=0, Xem,
[e¥, e,]_=e;, [e*, g_,]-=0,
[e}, ex]-=—e,, [ef, 6..]-=0,
the second term of the right hand side of (*) where ¢=K? is written as

—>K?(e,;, e;55) for X=e,, and 0 for X=g_,.
J

Therefore, using the g,-component K3 of the x-curvature, we get

(O*KP)X)=K}X), Xeg.i,
and

(O*KP)e,)=K%_i(ey)— 2"2} Kp_i(e,, e5).
=
Now we have

PROPOSITION 3.4. A Cartan connection w on (P, 8) is normal in the sense
[T3] if and only if

(3.2) K'=0o K},=K};=K}=0,
3.3) (G*K°)e))=0 < K%;—;K{;:O ) }l—; Ki;=0,
B4 (@*K)g-)=0
© DK§=K},, BKL=0, TK5=0, SKhi=K}), Kji+Kii=Kiu+Kjs G#k),

%]K;;: b, ;K%:O, ;K};:O, ;K?;: 15 K;f.i-{-K%—_—-K}.k-{.K% (#k),
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(3.5)

(3.6)

3.7

(3.8)

(3.9)
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(@*KM(e)=0 = J(Kti—Ki:)=0, Z(Ki—Ki)=0, ?(K’L—Kéﬁ)=0,
;(K%—Kiiiﬁo, Kii— 1+K15—K§?i—?K:’ez;=0
(0*K*)(g-1)=0
< —Ki+ Kb+ Kisy— DK5,=0, Kl K+ K= 2K, =0,
— K+ K+ Kii— ZKM;—O Kij+ Kb+ K~ ZKi5=0,
(0*K®)(e)=0
o K§n+Ki— Z(Kkkx+[{tkﬁ) 0, KY+Ki— Z(Kisl-l-Kius):O,
(0*K*)(g-1)=0
© (Kot Kuy)— Kooy~ Ko )=0, (Ko + Ky —3(Kaij— Kiip)=0,

@*K*)e)=0 < (= K+ Ko —Ku)=0.

Proof. Since K'eC ™' =g_,QA2%, we have K '=0-K_ X, Y)=0, X,V
cg¢_,-(3.2). Now, we calculate *-curvature K* using the table of Lemma 3.1:

K*(e)=3([e¥, Ko, en]+Lef, Koolei, e)])

=2 {Let, Kile]+[e¥, Kied}
=3(Khei—Khe),

K*(e)=3Kiei—Kjje:), K ie)=2(Kizei—Kije.)

Ki¥(e)=2[e¥, K_(e,, e)]+Zlef, K iles, e1)]
=z {K1:(85e8+e])+ K{u(dted) + K:d%el+ K {x(dlel+el)}
=S {Klied+ Kliei+ Ktiet+ Khiel} + 2 (Kfi+Kiel,

K¥(ep=L[et, K_o(es, e,)]+ZLe¥, K_i(es, e)]+Lef, K i(es, ¢,)]
=—KLE+ pY {K%:(0tes+eb)+ K & (0red)+ K 4:(0led) + K §3(Ofel+eh)}
=(ZKji—Kipel + D {Khel+ Khel} HSKbi— %f)e{+§ (K4 +KEet,

K¥(e))=—Ki;E +2 {K%(0ied+eb)+ K 5(85ed)+ K 5(0hed) + K i (Ghel+ b))

=(DKu—Kiped+D{Kieh+ Knelt +HSKsi— Kijel+ Z;(K’}ﬁKfz)ef,
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Kien=3{let, Kilew, eN]+Lef, Kiles, en]}
=5t Klef + 5 5 Ku(dies—dieh)
D) 7.

1

Kot Kinef+5 5 Kin@lef—0iep)}
=§‘.{(K3u+ K%il_%]ngl)ef"ll‘(Kll)il‘}"K}h_%}Kii1)3%“:
Ki(e,)=Let, K.iley, )]+ {let, Kiles, e)]+Lef, Koles, e;)]}
=§{(—K’;1+K8u+Ké;j—Zk‘lKim)ei‘-l-(KL-+K?u+Kizr-Zk‘nKiz;)ei
Kf(ei)=;(_K§i+Koozj+Kéii—%ngi)ef‘,'(Kfi'f‘[{?zj'}‘ '%{;—kZKirsi)ei",
Ki(en=2{[et, Kies, en]+Ler, Kies, e)]}
=§(—Kiu+Km)e’i‘,
Kilep=Let, Kiles, e)]+Z{Lel, Kile, e;)]+Lef, Kile, e,)1}
=(K81j+K§1;)eT_Zz(Kiij—Kii;)eT;
K¥(e)={K8;+Kij— 2(Kaij— Ky,
Now, for d*K°=0, noting that
2K iey, ei)=z}l; (Klie;+Kiej)
we get (3.3). (3.4) is clear. For 0*K'=0, from
Skoley, e)=S(Kiued+ Klaet+ Kiael+ Klaelt 4 3 Kiael),
we obtain (3.5) and (3.6). Similarly we get (3.7), (3.8) and (3.9). q.e.d.
LEMMMA 3.5. When K_,=0, (3.2)~(3.4) are equivalent with
3.4) ;K§i=0, 121('}1120, ;K};zo, ng;:O, K4+ KE=Ki,+ Ky (1#k),

SK}=0, DKL=0, SKH=0, BKF=0, K+ Kh=Kju+Kl (i#h).

Proof. For convenience, denote by (3.7), the k-th formula in (3.5). Sum-
ming up /= in (3.4),, and (3.4);, we get
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SKL=SKL+3KhE,  DKhE=SKh+ZDKE .

Noting (3.4); and (3.4),, (3.4), and (3.4),, we get the lemma. qg.e.d.

§4. Tanaka theory.

When (P, w) is a Cartan connection of type G/G’ over a manifold M a
principal fibre bundle P, d) over M with structure group G is defined by P=
P/ker p, is a unique m-valued 1-form on P with 6=4*f, where 0=w_,40_,
and g: P—»P is the bundle homomorphism correspondmg to the homomorphism
o: G'—G. Then (P d)is a G- structure on M and every isomorphism ¢ : (P, w)
—>(P’ ') induces an isomorphism ¢: (P, 0)—+(P' 4" [T2,1.2]. When K'=0,
the G-structure is of type m, which is the case when (P, ) is a normal Cartan
connection.

The purpose of this section is to construct a normal Cartan connection
(P, w) of type G/G’ corresponding to a given G-structure (P, §) of type m,
uniquely up to isomorphism.

a 0 0

To begin with, let f)o={XEgo|p_z(X)=0}={(8 8 tO)EQo, Tra=0}, and let
—'a

H, be a closed subgroup of G, corresponding to o, i.e. Hy={a=G,|det p(a)==+1}

A0 O —I; 0 0
:{ 0 g 0 |, det A==+1;. Note that g,=RE+Y,, where E={0 0 0.

0 0 A 0 0 I
Moreover let Y)=g_.+g_,+89,, with a corresponding group H=G_-H,, where G.
is the Lie subgroup of G generated by the subalgebra m. Then since G/H, is
homeomorphic to RXg;, there exists an H,-reduction (Q, ) of (P, §). In the
riemannian case, this is given by, for instance, Q=P, X o -1rHo.

Now, we introduce the theory in [TZ] on the uniqueness of the normal
Cartan connection on a given G-structure (P d) step by step.

Step 1 [T2, Proposition 6.1]. Take an H,-reduction (Q, {) satisfying
1
4.1 dC-2+'2‘[C-1; €-.1=0.

Step 2. Extend (Q, {) naturally to a G’-bundle (P, 8) by
p =Q X g,G’

Step 3. Let X be any Cartan connection of type H/H, on (Q, {), compatible
with .

Step 4 [T2, Lemma 1.6]. Extend X uniquely to a Cartan connection w of
type G/G’ on (P, 6).

Step 5. Noting that K_,=0 for o in Step 4, we can make an E-system
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(P, 0, wg) from .

Step 6 [T2, Proposmon 7.1 (1)]. This E-system (P, 0, wg) induces the
original G-structure (P d) of type m.

Step 7 [ T2, Proposition 7.1 (2)]. If two G-structures of type m induced by
two E-systems are isomorphic, then the two E-systems are isomorphic. In this
sense, the E-system in Step 6 is unique.

Step 8 [T2, Proposition 7.2]. For a given E-system (P, 8, wz), there exists
a unique normal Cartan connection of type G/G’, (P, w).

Step 9 [T2, 7.2]. Following Step 1-8, we can construct a normal Cartan
connection (P, w) corresponding uniquely to a given G-structure of type G/G’
from a specified X on (Q, {) of Step 1.

Now we briefly investigate each step: we prove Step 1 in §5. Step 2-4 are
elementary. An E-system (P, 8, a) is by definition,

E0) P is a principal fibre bundle over a manifold of dimension 2n—1 with
structure group G’, 6 is an m-valued 1-form on P and « is an RE-valued 1-
form on P.

El) 6(X)=0 if and only if X is vertical, Xe&TP.

E2) RE¥0=p(a™)0 for a=CG'.

E3) R¥a=a+(Ad(a™1)0)z for a=G’, where ( )z denotes the E-component.

E4) a(X*)=Xg for Xeg'.

1
E5) de_z+§-[0_1, 0_]+[a, 6_.1=0.

Note that 8_,=60%,, _,=0%;+0%;. Now, Step 5 is obvious since K_,=0 is a
consequence of (4.1). As for Step 6, since we have p(x)=x for x=Q, it fol-
lows ¢*0=C=c*(3*f) where ¢: Q— P is the inclusion map, we get 6=p*G. Step
7 is important and we show it in detail. By a simple calculation, we obtain:

LEMMA 4.1. Let x<=g, and let ey, -+, en, €3, *+ , ez be the base of m given
m §1 and 3. Then

(Ad (exp x)ePe=—"[es, x],
(Ad (exp x)e;)z=0, r=i,1,2<i<n.

Now, Let (P, 0, @) (resp. (P’, 6’, @")) be an E-system on M (resp. M’) and let
(P d) (resp. P, 6 )) be the corresponding G- -structure of type m on M (resp.
M’). We show that if ¢ is an isomorphism (P, 6’)—>(P’ d"), there is a unique
isomorphism ¢: (P, 6, a)—(P’, 6’, a’) which induces the given ¢. In fact, for
the uniqueness; Let ¢, and ¢.: (P, 8, a)—(P’, §’, &’) be two isomorphisms
which induce the given isomorphism ¢. We can find a unique map ¢ : P—G’
such that ¢s(z)=¢,(2)a(z) for z&P. Clearly o(z)=Ker p, and so we may ex-



30 REIKO MIYAOKA

press g(z)=exp(z), 7: P—g,. For z&P and XTP, we can decompose
Oex X=(Ros)p1x X +Y 000,

where Y =g,. Using Lemma 4.1 and E3), we can show

4.2) oia'=¢pfa’ +-[p¥0.,, 7].

Since ¢¥0’'=0 and ¢¥a’=a, i=1, 2, we get [0_,, 7]=0 or z=0. Now, we con-
struct the isomorphism ¢ from any bundle isomorphism ¢,: P»P’* By the
uniqueness, we may assume P and P’ are trivial. In order to be ¢*a'=a, we
must find a function 7: P—g, satisfying a—¢¥a’=[0_;, ] (note (4.2)). Since
we have (a—¢fa)AG*=0 from E5) and ¢¥'=8, we get a—¢¥a’'=A'E for
some function A on P. Now, since (a—¢¥a’(X)=A(z)0(X)E=[0"(X )e:, A(z)e¥]
for z&P, and X<TP, we obtain r=Ae¥. Because of R¥a—¢ta')=a—op¥a’,
using Ad(a)e*<g, and (Ad(a™")E)s=E, we see that Ad(a)r(za)=t(z) for z& P
and a=G’. Then for g(z)=exp r(z), we get o(za)=a"'¢(z)a. Thus we obtain
the desired bundle isomorphism ¢: P—P’ by ¢(z2)=¢.(2)a(2).

In the next section, we prove Step 1 and construct a normal Cartan con-
nection from this H,-reduction, proving Step 8 at the same time.

§5. The construction.

In this section, we prove the following three propositions to Aobtain the
normal Cartan connection corresponding to a Lie contact structure (P, 6).

PROPOSITION 5.1. For any Hy-reduction (Q’, ') of (P, 6), there exists an H,-
reduction (Q, §) with basic form C, satisfying

5.1) 4ot TG, £0=0.

PROPOSITION 5.2. Let n>3. Then on (Q, §) of Proposition 5.1, there exists
a unique Cartan connection X of type H/H, satisfying {=X_o+X_,, T '=0*T°=
(0%¥T*)e,)=0, where T denotes the curvature of X.

PROPOSITION 5.3. Let n>3. Extend (Q,{) of Proposition 5.1 to a G'-
principal bundle P by

PZQXHG' .

Then there exists a unique normal Cartan connection (P, w) of type G/G’ in the
sense [ T3], which induces the Lie contact structure (P, §).

f’roof of Proposition 5.1. Let (@, {) and (Q’, {’) be any two H,-reductions
of (P, §). Then, there exists a map ¢: Q—exp RE exp g, such that xe(x)=Q’,
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x€Q. Note that an element s=(sj3) in exp RE exp g, is written as

A, 0 0\/I, 0 0
In-l O d In—l 0

S= 1 tdd

0 0 7]2 2 Ld 12
A, O 0
d I,., 0
=idd a1,
22 2 At
and so from Lemma 1.3, we get
A2 0 0
o(s)=|—2st A, , O
Asy 0 AL,

Now, since we have {'=0¢"¢, {'=C"¢,+{"%e;+{"%; and {=L'e;+e;+Le;, put-
ting ¢ '=p(s), we obtain

U= l=0"Ter+Lei+Ter)
=L (A%e,—Aste;+Aske;)+LiAe; +LPAe;
=20, + AL —siMei+AC +siCe;
and so
V=Y, C=AC-sE, U=ACHSED.
From the structure equation, we obtain
dl ==L N+,
dll=—L AL 027,
therefore
(5.2) Q1 —Q'=d0+ N = d0=OAL
=(d2)0 +2{d0 +C = sIOAC s —d 0~ AT
=(d A A= 1)L+ NG+ 2 —sIC AL —sIC AL
Now, since (P, d) is of type m, we can write
Q=TL0NE, =2, ,n,2, -, 7.

Noting this fact, from an arbitrary Hy-reduction (Q’, {’) which exists by the
reason stated in the beginning of §4, we construct the desired (Q, {) as follows:
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Define @ map 7: Q—g, by

0o 0 0
t Sg ...... SB‘
t(xN=|d 0 0], d= ,
S% ...... s"l"
0 d 0
where s} and st are given by
st=—T"1, si=—T'};.

From R¥T'=Ad(a™)T’ for a=H,, we get t(x'a)=Ad(a *)r(x’). Now, for a(x’)
=exp 7(x’), since g(x’a)=a"'¢(x’)a and so x’ac(x’a)=x'c(x")a hold, we obtain
a subbundle (Q, {)={x'a(x"), x'Q’}. Now, from (5.2), where 2=1 for this o,
we get (5.1) on (Q, Q). q.e.d.

Remark. In the Riemannian case, the basic form of P, X1y H, satisfies
(6.1) [M2].

Proof of Proposition 5.2. By (5.1) and X}+Xi=0, note that a Cartan con-
nection (Q, X) of type H/H, such that {=X_,-+X_, satisfies T_,=0. Then by
Lemma 3.2, we may check (3.4)’ and (3.5) for X to satisfy T '=0*T°=(0*T")(e1)
=0.

Uniqueness: Let X and X’ be two Cartan connections satisfying the condi-
tions in the proposition. Then X_,=X’,, X_;=X_,. Since X,-—X;=0 on the fiber,
we can write

g-1g=AgLr,

where (a, $)=(0, 0), (0, 1), 4, 0), (1, 1), ¢, 7), 2<i<j<m, Xi+X1=1"3+X"1=0 and

7 is summed over 1, ---, n, 2, ---, fi. Let ¥ and ¥’ be the corresponding cur-
vature forms. Then by the structure equations (3.1), we get
(6.3) Ur—Ui=— AL U NTHENALT+ONAYLT,
(5.4) Ui—Wi=— AL T NCHONALTHENALL .

Here and hereafter, 7, j, £ are summed over 2, ---, n, and 7 is summed over
1, -, n, 2, -, 7, by using Einstein convention. Now, using the components
T4 and T4, of ¥ and ¥”, we can write the left hand side of (5.3) and (5.4),

1 . 1 . i
7T =TT and 5 (T —TH)P AL,

where we may assume that T4,=—T}s, T'p,=—T'ts. For simplicity, put
Tg,:T'g,—Tg,. Then we have

Th=—Au—Abd:,

Th=—An;,



Note that A8+ AL=0, Ai,=— A%, A,=0. Then (3.4) implies

(5.5)
(5.6)
6.7
(5.8)

(5.9)

(5.10)
(5.11)
(5.12)
(5.13)

(5.14)
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T9,=— A4k},
h=—Au—ALS},
T4a=A3— Al +A%05— AL},
Tin= A+ 43505~ ALY,
Tha=0;A%— At} ,
T5u=A403— AL0:,
Tie=— At + Als03— ALy},
L= Al — A+ Alp0— Al .

0=2T4=At+ Al —(n—1) Ay, <> S Ali—(n—2)A3,=0

0=T1,=Al,—(n—1)Al, < A}, =0

0=T4h= A%+ AY—(n—1) A}, <> S A%+ Al—(n—1)A3,=0

0=T%=Al—(n—1) A}, <> Ali—(n—1)Al,=
—4 A% — Al— Al

=T3Pt B T
343~ Aty — Al

0=2T%=(n—1)A%— A3, <> (n—1)AY;— A, =0
0=T%=— A, +(n—1)ALj— AL, <> — S A4 +(n—1) Al — AL,=0

0=2T=(n—1)A%,— A} <> A%=0

=T =—SAu+(n—DAlj— Al; <> — 2 Ay +(n—2)A}=0

k. - -
—4 A= A~ Aty

=T T, H(TE-Ti)=
0=T4— T4+ T 5—T5) {_SA%_A%_A{E

G+#j#k+1)

(i j#k*i)

33

From (5.5) and (5.11), we have —(n—3)A$;4+(n—1)A3;=0, and so with (5.8), we
get Aj,=A5;=0, if n>3. Then from (5.7) and (5.13), we get —(n—3)A};—(n—1)A},

=0, and so with (5.10), we have AJ;=A%,=0, if n>3. From the upper formula

in (5.6) and /—j there, we know that A%, is skew in any two indices, and so

again from (5.6) we get A%,=0, i#j+k+i.
we get AL=0 (i#k).

AL=0, i+£Ek.
Now, for (3.5), we have

From the lower formula in (5.6),
Similarly from (5.11), we have A%;=0, i#j+#k+i, and
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—Ti=d =1+ INV—RNAY;
=—d(ALE)+XINYG— X1+ ALEHAQ S+ ALY
=—dAANG+AASTAT— AN ANV INALE
Noting that XJ+2Xi=%'3+2'1=0, we have similarly,
W’S’——@'&’=—dA‘h/\C‘+A‘1’1§C‘/\Ci—ZAﬁxC‘/\X'?—ZA‘l’IX’ﬁl\C‘ )
Vi—Ti=—d ALNT+ALDO NG 245 AV T+ 2450 NE
?.l/";—qf"jz—a,'A;,/\Z;‘—I—A}@Ci/\cI~ EXEING— AL AXE.
Since we have from (5.3) and (5.4),
ST=—(n-14%, T-Ti+Ta—Th=—240+245=440 G+,
ST=—m—DAL, SThi=—(n-DAY STh=—(n-1A4},

(3.5) is written by

(5.15) ST -T=—2—-1) A4,
(5.16) ST —T)=—2n—1) AL,
(5.17) STL-Ti=—20n—14k,
(5.18) T4=Tut Thi—Th— 2 Tia=— (14345

Thus we have A=A%=A}=A%4L=0 and X=X,
Existence: For any Cartan connection X’ of type H/H, on @ such that {=
XL,+X.,, we construct a new Cartan connection X” by setting X”,+X”,={ and

Vg=N§+AgL

where A%, are given by, using the curvature T’ of X',

1
0=— ——ET'ji, AY= n—2 ZTI%J- ’
1 - -
0 . 1y L T — i
Aoj'— (n—2)(n+l)( ;(T Ji 1 T 1,])+(n 1);7‘ jz.)’
=ST5—(n—-DA,,
1

A= (—S(T5+TH+n—DIT"),

(n—2)(n+1)
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AY=(n—-1AG—-T";.

1 .
Ap= 5 (=T AT =T+ A%+ Aly),

1 .
A= AT =T~ T + AL+ AS}
To obtain A%, tgke a cyclic sum of the upper formula in (5.9), noting that
Th=Th+T5H—TH=0,
@i_l,ksi§:_6s )

where Sk=T"%—T"%,+T'%—T"%, and S= A%+ A%+ A],. Since St =—34%,—S,
we get

1 1
Af]:—§<5§i—€@i,;,k5§i) .
Similarly from (5.14), we get
1 1
= Lo,

Let ¢"=(1/2)T"{A{ be the curvature form of X”. Define a connection X by
X_o=X"y, X_,=X", and

Xﬁz ”,‘§+A§1Cl s

where A%, is given by (5.15)~(5.18), in which T is replaced by T”. Then we
can see easily that the obtained X satisfies T '=0*T°=0*T*(e;)=0. Since there
always exists a Cartan connection X’ of type H/H, with basic form { by the
local triviality of the bundle, we get X actually by above procedure. q.e.d.

Proof of Proposition 5.3. Let (@, {) be an H,-reduction of (P, 8) satisfying
1
(5.1) d8s+ 5 [C £11=0,

and let X be the Cartan connection of type H/H, constructed in Proposition 5.2.
Now, let @’ be a connection on P naturally i.e. flattly extended from X. Then
o’ restricted to Q satisfies

(5.19) (@, 0" 0", o H=, T, C, 29,

where i=1, -, n, (&, 8)=(0,0), 0, 1), (1, 0), (z, ), 2=<i#j<n. Using this o’,
we construct a unique normal Cartan connection w of type G/G’ such that

(5.20) (@, o', 0", 03)=(0", 0", 0%, v'}),

where (a, B)=(0, 0), (0, 1), (1, 0), (7, 7), 2=i#j<n. We denote the basic form
on P by =0 ,+w ,=w_,+w_,, *0=C.
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Uniqueness: Let w and o’ be two normal Cartan connections of type G/G’,
satisfying (5.20). Since w—w’=0 on each fibre and by (5.20). We can write

Now, from

wi—o't=A},07,
wi—wé——“A,rﬁr N
wi—w;=A;07",

wl—‘wi: Alrﬁr :

Q= ALOTAG,

we get Al,=AL;=0, 2<j<n. Then from

Q= Q=A5, 07N,

Q7 —Q=— A, 07 NG +6°NALG*,

~

we have, denoting K=K'—K, Ki,=—A4;,, Ki,=A,,, Ki;=—A;;, Ki;=A,;— AL,
and other K§,=0. From

Q- Q=—0'NA0T—0'NA, 07,

Q99— Q=—0* N\ A3, 07,

Qi Q=—0"NA, 07,

Q- N=—d(ALO)— O N A, 0T — ' NALOT,

Q= Qi=— A 0" NG — A 0T NG — O N A, 07— 0 N\ A;, 67,

we have by (3.5),

(1) 0=3(K1—Ki)=3—Ar+44),

@) 0=S(Ki— K=~ An+47),

@ 0=32&i—Ki)=3(Au—Aw),

@) 0=3(Kfi—

K1a)=—2(n—DAL+3(Au—4z),

() 0=Rt—Kii+ K~ K~ SR fur=— Auy+ Ajit Ay— A— A+ Aigt A= Aje

From (1) and (4), we get A}1=~0. Note that (2)’~(3)’ (5) holdNtriVially. Then
(3.6) is written from Ki,=A,,, K},=—A,;+A;;, Ki;,=—A,,, Kbor,=— A0+
Azjai"—Amj(si"{‘Amﬁf,
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(6) 0=As—nAy—3 Ausd}
from Ki,=—A;, Kb=—Ai+Az, Kiy=—A4i, Khs=—AisdhtAs0+ Anid}
— A0},
(7 0=—(n+1DAs;+Ay;— 2 Ari05+ Aji
from Ki;=A,;, Kl;=—-A,; Khi=—A;+A5z, Ki=A,00 —A;0h— Ao+

@) 0=—(n+1)A,j+A;;— 2 A5+ Az,

and from Kij=—A;, Kij=—As, Kly=—Aij+Au, Khi=—Audh+Aijop—
Aﬁj"alt_!_AﬁEa%}

9 0=A;;—nA;;— 2 Az:0% .

By (6) and :<J in (6), when i+, we get A,,=0. Similarly from (9), we have
A;;=0 7% ;. Putting =7 in (6) and in (7), we get A;;=A5=0. Now, from (7),
8) and 5 in (7), (8), we get A;;=A,;=0 (#j). Putting i=; in (7) and in
(8), we get A;=A;=0. Note that (1) and (4) are satisfied. Therefore we can
write

0;—w;=A4;,0", wi—w;=A;0", and w,—0i1=A,;0".
and
Q- N=—0"NALO'—0'NA,LO, Q99— N=—0"N A0,
Q=0 NAL0',  QI—Qi=—0"NA; 0 —0'NALT,
Q13— Qi=—An0'NO— A5, 0' NGO — 6" NA;,0'— 0 N A 61,
Q' 2=—d(Au0")— A0 N§— A7.0' N+ 03N Ajn0'— 0° N Ay, 607,
Q' —2;=—d(Anb")— A0 Noi— As O’ N0 +@I N Aj 0 0" N AL 07 .
Noting that df'=—316*A0* (mod '), we have
Ris=Audi+ A,  Kijp=AnditAidi.
Thus togather with
Ryu=—Au+An, Rin=—Au, Kin=A4,01—A4,0,
we obtain for (3.7)
(10) 0=—Q2z—1A .
Similarly from K%,=— Az, Ki=—An+ Az, Kig=And— A;0 it follows

(11) 0=—@2n—1)A4;.
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On other hand, for (3.8), we have from 1?81]=A,-1—A1], Kl,=—Ay,, K=
Aua}—Au‘a}u szk=—A115i—A1k5§

(12) 0=—@2n—1A4,,,
and from K{;=—A;, Khj=A;—A4y;, Kij=Au0l+A08 Kipj=—A;04+ A1:08,
(13) 0=—02n—1A;;.

Finally, from
,Q{—-Ql.:—— d(Auﬁl)'f‘(wg'l‘w})/\Aual ,

we get K;;=A;, and (3.9) is given by
(14) 0:—3(71_1)1411.

Thus we obtain o' =w.

Existence: Let o’ be any Cartan connection of type G/G on P, satisfying
(5.19). We make the desired normal connection w satisfying (5.20) by

oi=0'1+ AL, w;=0+A,0", w;=0it+A4;0", o=0+A4,07,

where Al,, A,, and A;, are chosen as follows: Since we put R=K'—K in
above calculation, in order that the new w is normal, we have for (3.5).

@y Z:I(K,%i_’K’gii)Z;(’—fiii‘l‘Aii) )
@ %‘,(K’iz—K'iﬁ)=—Z(n—l)Ah+;(Aﬁ—-Aiz) )
for (3.6),
6y —K'L+K+KG—3SK b,=Au—nA,—3A00%,
@ K4+ Kb+ K= 2K =—+ 1) A+ A+ A+ ALSi— 2 A 563,
@) —K'GHK '8+ K bi5— DK b j=—(n+ 1A+ A+ An— ALdi— S A0,
O K'y+K+K— 2K =An—nAi— 2 Assd} .
From (6)’, and i<~j in (6) where i#j, we get

Auy= = K Kt K = S )= KAk K+ K b= S
Summing over /=j in (6)', we get

—Z(n—l);Aii=%’J(—-K'irl-lf’é;i— E Kl s

thus put
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— 1 K. . % 1. )
Aw= s K e K = SR bk g 5= =K ) -
Similarly from (9), we obtain
Aii 2{"(K +K, ‘L]+K1‘LJ EK kk])‘*‘K'{z'l_K ]1,+K1]l ZkKﬁﬁi};

for i#7, and

1
Ap== _“{ "t K Ya— EKlkki
—n

i S i+ K = DK s b

1
2(1—71) 7
Now, when i#j, (7), (8), i—j in (7)’, (8) are the equations among four vari-
ables A;,, Ay, A, Aj. Denoting by L,, and M,, the left hand sides of (7)
anp (8)’, respectively, we solve the equations and get

o 1 [ar 2—(n+1)* 2 3
A= g (M Ty Loty Mok L}
1 _2-(nt1y 2 |
Az]‘— 4_(n+1)2{ j n+1 M1j+ n+1 Lji‘l‘M]t}.

When /=7, from (1)’ and (4)' we get

1 2 0 . K. 1.
A= 5t SR = K = K+ K.

Now, putting S=3}A,; and T=31A;,, we obtain
2(Lii+Mi)=—2(n—1)(S+T).
Since S—T is given by (1)’, we have

S=5 (g (Lut M+ K /4K ).
T=5 3~ gorgs Lot M=Kt K3}

Finally from (7)" and (8),

nLi+My=1—n*)A;;—nS—T+(n—1)AL,
and we get

A= (n Lut Myt nS+T—(n—1)A),
and similarly,

Ag= ﬁ(nMu"r Ly+nT+S+(n—1)AL).
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Now, let ®” be a connection on (P, §) such that (0", 0", 0", 0"§)=
(0", 0", 0", 0'}), (a, B) as in (5.20), and

o"i=0'1+AL0", 0" =0+ A,;07+ A0,
0";=0'i+A4;,0°+ A;;0°, 0o} =0';,

where AlL, A.;, A.;, Ai,, Ai; are obtained above, using the curvature of o’ and
A. Then & given by

&)izw”i-l-Auﬂl, t?)izw”i‘l'Ahol: 031=J)’1+A1j0]+A1505

satisfies K '=0*K°=0*K'=0, where K is the curvature of &. Moreover, it
satisfies (0*K?)(e,)=0, if

(10y "bat K i =2 (Kt K )= —Cn—DAa,
11y K"+ K =S (Kt K ) =—@n—1Au,
and (0*K*)(g.,)=0, if

(12y (K"K ") — 2 (K "5y— K" ))=—@2n—1) Ay, ,
asy (K85 K"115) = 2 (K 55— K )= —@2n—1)A4;;.

Determine A;;, Az, Ay, and A,; by these formulas. Finally, let w be such that
w=a except for
0,=d,+A,,0" s

where A, is given by, using the curvature K of &,

A?J(_Kiil+Kiil'—KIii)=_3(n—1)A11 .

Since
Qi—Q,,l=d(A1101)+A|j05/\0] »
2i— Q7 =—A,;0°' N0,
'—Q”x:d(Anoi) ’
we get
14y Zl,_‘ (—K"u+K"3:1+0;Au— K" 153+0; Ar)=—3(n—1) Ay, .

Then by above construction, starting from «’ satisfying (5.19) which exists by
the local triviality of the bundle, we get a normal Cartan connection w of type
G/G" on P. q.e.d.
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