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A NOTE ON CARATHEODORY AND
KOBAYASHI PSEUDODISTANCES

BY KAZUO AZUKAWA

Introduction.

Recently, Jarnicki and Pflug [7], [8] presented an effective formula for the
Caratheodory pseudodistance from the origin on logarithmically coned, complete
Reinhardt domains in Cn. The aim of this note is to establish the wasteless
formula for the pseudodistance from the origin on such domains (Theorem 2.2).
We also apply this formula to the case of dimension two and represent the
pseudodistance by means of the continued fraction expansion of real numbers
(Theorem 4.1).

1. Preliminary.

Let D b e a domain in Cn. For p, q^D, let

c%p, q)=sup{\f(q)\ /eHolOD, U), f(p)=O],

k%(p, tf)=inf {f 0 ^ f < l , there exists an /eHol(£7, D)

such that f(O)=p and f(t)=q},

and
#)=sup {/(#); / is a negative plurisubharmonic function on D

such that limsupz_»p(/(z)—\og\z—

where U is the unit disc in C and, for complex manifolds X and Y, Hol(X, Y)
denotes the set of all holomorphic mappings from X into Y. The function
cD=tarui~1c% (resp. the largest pseudodistance kD on D dominated by &£:=
tanh"1^^) is called the Caratheodory (resp. Kobayashi) pseudodistance on D, and
the function gD(p, •) is called the pluri-complex Green function on D with pole
at p (cf., e.g., [2], [3], [4], [5], [10], [11], [15]). These functions c% k%
and gD have the decreasing property for holomorphic mappings and satisfy

(1.1) c%<expgD^k% on DxD

(see [10]).
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We shall show the following lemma, part (ii) of which is well-known ([7],
E8]).

LEMMA 1.1. Let D be a balanced domain in Cn with the Minkowski func-
tional μD{z)—mί{r>Q) z<^rD}, where rD={rz; z^D}.

( i) c£(0, )^exp^(0, .)^*K0, )£μD on D.
( i i ) D is convex if and only if c$(0, -)=μD on D.
(iii) D is pseudoconvex if and only if expgD(0, •)—μD on D.

Proof, (i) In view of (1.1) we have to prove only the last inequality. Let
zζΞD={ztΞCn; μD(z)<l}> and take r with μD{z)<r<l. Then the function f(λ)
=λz/r, λ^U belongs to Hol(£7, D) and satisfies f(r)=z, so that k%(0, z)£r.
Thus, k%(0, z)£μD(z). (iii) Assume exp gD(0, -)=μD on D. Then, log μD=
gD(Q, •) is plurisubharmonic on D, and so on Cn. Hence, the balanced domain
D is pseudoconvex. Conversely assume that D is pseudoconvex. Then, log μD

is plurisubharmonic on D ([1]). Since μD is continuous at 0 it follows that
limsup^o(logjUpOz)—log|z|)< + oo, so that logμD^gD(0, •). The proof is com-
pleted.

As an application of Lemma 1.1 we obtain Kubota's theorem on symmetric
bounded domains.

COROLLARY 1.2 (Kubota [13], [12]). Let D be a symmetric bounded domain
in Cn realized as a convex balanced domain. Then,

<1.2) c$(z, u/)=inf{r;0<r<l, there exists an F^Aut(D)

such that F(w)=0 and F(z)(ΞrD\

for all z, w^D, and

(1.3) {z(=D;c%0,z)<r}=rD

for all r > 0 with r < l , where Aut(D) is the set of all holomorphic automorphisms
of D.

Proof. To prove the formula (1.2) we denote by dw(z) the right hand side

of (1.2). Since D is homogeneous, J ί t 0 : = { F e A u t ( D ) ; F(w)=o\ is not empty.

It follows that

dw(z)=int\JFeKwlr;O<r<l,F(z)GrD}

Since D is convex, by Lemma 1.1 (ii) and the biholomorphic invariance of c%
we see that for every FeKw, μD(F(z))=c%fdf F(z))=c&w, z); therefore, μD(F(z))
does not depend on the choice of F(=KW and (1.2) is established. The relation



CARATHEODORY AND KOBAYASHI PSEUDODISTANCES 3

(1.3) is a direct consequence of the equality μD—ct{0, •)• The proof is completed.

Under the hypothesis in Corollary 1.2 it is well-known ([11], [14]) that
cD—kD. Using only the homogeneity and the convex balancedness of D, we
can show this as follows: By Lemma 1.1 (i) and (ii) we have cj>(0, -)=k$(Q, •)•
From the homogeneity of D and the biholomorphic invariance of c% and k% it
follows that c%—k%] therefore, cD=k}) and kl is a pseudodistance, so that cD=
kh=kD.

2. Logarithmically coned Reinhardt domains.

Let D be a Reinhardt domain in Cn with the real representative domain
l£M = {(|2il, , \zn\)(Ξ{R+)n (zu ••-,zn)£ΞD}, where R+={XSΞR x^Q}. Assume

D is logarithmically coned, that is, the set log|-D| :={x=(xu ••• , xn)^Rn) ex : =
(0*1, ••• , ex")^\D\} is a cone in Rn with vertex at the origin. Set Z+=ZΓ\R+
and, for a subset S of # n , set S*=S\{0}. For z=(zu ••• , zn)^Cn and α =
(«!, - , an)^(Z+)n

f set za=z1

a^ - zn

an. Let SD={a(=(Z+)i; \za\<l for all ZΪΞD},

and let Szj+Szj^ία+^j a, β^SD}. A typical example of logarithmically coned,
complete Reinhardt domains is {z^Cn; | * α | < l for all a^T}, where T is a
finite subset of (Z+)J.

Jarnicki and Pflug proved the following.

LEMMA 2.1 ([7; Theorem 2], [8; Theorem 2.1]). Let D be a logarithmically
coned, complete Reinhardt domain in Cn with SD. It then holds that for z^D,

c&O,z)=sup{\za\;a<=SD}

=sup{ |z β | azΞSD\(SD+SD)}.

The aim of this section is to prove a precision of Lemma 2.1.
Let C be a closed subset of Rn. A point x in C is called a vertex of C if

there exists a linear functional / on Rn and a number c e β such that f(x)=c
and f(y)<c for all y^C\{x}, that is, x is a vertex of the convex hull Conv C
of C in the usual sense. By Vert C we denote the set of all vertices of C.

Our result is the following.

THEOREM 2.2. Let D be a logarithmically coned, complete Reinhardt domain
in Cn with SD. Then,

c$(0, z)=max{\za\ a<=VertSD}

for z^D.

It follows from the definition that

(2.1) SΛ={α€=(Z+)ϊ; <a, y}<0 for all y(Ξ\og\D\}.

To prove Theorem 2.2, by virtue of Lemma 2.1 we must show that if
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(2.2) Φ(x)=sup{<x, α> a<=SD}

for x^\og\D\, then

(2.3) Φ(*)=max{<x, α> tf^Vert S^}.

We need a lemma.

L E M M A 2.3. Let x^log \D\. Let (x3)j be a sequence in Rn and (βj)j be a

sequence in SD such that xd—*x as j—>°° and the sequence ((xj, βj})j is bounded.

Then, (βj) is bounded.

Proof. Suppose (βj) is not bounded. We may assume that \βj\^+°° and
βj/\βj\-*ξ a s J-*°° f o r s ° m e ξ(ΞRn with | £ | = 1 . Since {(x3, βj» is bounded,
it follows that <x, £>=lim^oo<;c,, βj>/1]8^|=0. Take an ε>0 so that x + εξ(Ξ
log IẐ  I. We have

lim,_oo<x+e£, j8,>=lim^00<x + ef, βj/βj \ > l i m ^ | βj \ = + oo

therefore < x + ε | , βj»O for some /. This contradicts the facts x+eξζΞ\og\D\
and βj<^SD, and completes the proof.

Proof of Theorem 2.2. To prove (2.3) fix any x^\og\D\. We first note
that

(2.4) Φ(x)-ma^{<x, a>;a(ΞSD}.

Indeed, let (a3) be a sequence in SD such that Φ(x)=lim^o0<x, <*,>. By Lemma
2.3, (a3) is bounded, so that we may assume that (a3) converges to a point
a(ΞSD; therefore Φ{x)—{x, a}. Then H:={y<^Rn; (xy y}—φ(x)} is a support-
ing hyperplane of Conv SD. By Lemma 2.3 we see that SDΓ\H is bounded to the
effect that SDΓΛH is a finite set. Let a^SDΓ\H be a vertex of SDΓ\H in //.
We shall show that a is also a vertex of SD. Take η<^H* and c^R such that

(2.5) (y, η><c for all y^SDΓ\H\{a} and <α, ̂ > = c .

Take an εo>O such that x + ε^(Ξlog|i)| for all ε>0 with ε<ε 0 . Ŵ e note that
if 0 < ε < ε 0 , then

(2.6) <x + ετ], a} = Φ(x)+εc.

In view of (2.6), to prove that a^VertSD, it is sufficient to show the following:

(2.7) There exists an ε such that 0 < ε < ε 0 and <x+ετy, β}<Φ(x)+εc

for all βs=SD\{a}.

Now suppose the statement (2.7) does not hold, and take sequences (ε,) and {a3)
such that 0<ε J <ε 0 , aj<^SD\{a}, (x-\-εjη, ajy^Φ{x)Jrεjc for all /, and l i m ^ ^ j
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=0. Since <x + s^, α ;><0 for all /, by Lemma 2.3 (a3) is bounded. We may-
assume that aJ->γ^SD\{a}. Then, <%, γ}^Φ(x), so that γ<=H; therefore (2.5)
implies that

(2.8) <η,ϊ><c.

On the other hand, aj=γ for sufficiently large /, and <,x+stf
or (η, 7>^c, which contradicts (2.8). The proof is completed.

3, Half-regular continued fraction expansions.

Let (aj)j>0 be a sequence of integers with

(3.1) 0^2 0 > l ) .

Consider the mappings Sj(w)=aj—l/w,

_1_ _ 1 _ _1_

= [flo, o-u "' > a>j-ι> ^ ]
We say that

is a half-regular continued fraction. For j>l, let pj/gj=ίaQf •••, α ^ ] be the
natural representation, i.e., pj and q3>§ are relatively prime integers. For
convenience, let (q0, po)=(Q, 1). It is easily seen that (qly ρx)={χy 0),

(3.2, (*")_('' ''-)("'

(3.3) det = 1

\ P,J

(3.4) lat,-,at.uw1

(cf., e.g., [9], [16]). It follows from (3.3) and (3.4) that

(3.5) the function [α0, •••, β -i, x] is strictly increasing

in the interval 1 ^ J C < + OO and has the interval

, •••, a}_{] as its image.

Let ω be a real number. If ω is rational (resp. irrational), then there exists
a unique pair of finite (resp. infinite) sequences (aj)Q^j<N and (a>;)i<r/<2v with N a
positive integer (resp. JV= + oo) such that (3.1) holds,
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(3.6) o)3^>\, a)—\_ao, ••• , G ; _ I , o)3~\

and <I)N-I— βjv-i (resp. and there exist infinitely many / with α ; ^3). The
argorithm ω^{a3\ύ3<N, symbolically written as

ω=α o +^i<Ξ.7<iv(-~-l/<2. ; )—[#<)> &i> ' " ] >

is called the half-regular continued fraction expansion of ω; for every /, the
integer a3 is called the /-th partial quotient, and the rational number [α0, ••• ,
βj_i] the /-th approximant of the expansion. Representing [α0,
naturally, we see that

1 1

and <7^7 (/^l) . It follows that the sequence {p3/q3)3 is decreasingly conver-
gent to ω (cf., e.g., [16]). When N is finite it is convenient to set

(3.7) aN= + oo.

In this and subsequent sections, by grad (a, β) we denote the gradient of
the segment determined by two distinct points a, β in R2.

LEMMA 3.1. Let ω be a positive real number and αo+^i^κiv(—1/fl^) be its
half-regular continued fraction expansion with the natural representations pj/qj=
[α0, ••• , α,-i] (1^/<ΛH-1), as well as (q0, po)=(O, 1). Let α=(0, 1), β=(l, ω),
S=(Z2)*ΓΛ(R+a+R+β), and a3=(qJf p3) (0<j<N+l). It then holds that

Vert S={ao}VJ {a,; l^j<N+l, a3φ2)
{see (3.7)).

Proof. Let 1^/<ΛH-1. It follows from (3.3) that the pair {α;_i, a3\ gen-
erates the lattice Z 2 , so that there is no elements of Z2 in the open triangle
determined by a3_ly a3, and the origin. Furthermore, we see that g3 :—
grad(α ; . i, OLJ) is given by £ , = [ α 0 , — , flj-i—l] = [flo, ••• , α ;-i, 1] (by (3.4)), so
that gj+1>g3 and that the equality holds if and only if a3=2 (by (3.5)). It is
trivial that α o ^VertS and that α^ e V e r t S when N is finite. Thus, the asser-
tion follows.

Remark 3.2. Under the assumptions in Lemma 3.1 we see that S\(S+S)

LEMMA 3.3. Let aι,b3^Z, αo^l, bo^l, aι^2 (l<i<k-l), b3^2(l^jSJ-l).
If [α0, ••• , α*-i]=[6 0, ••• , &i-i]"S ίΛen

( i ) [α0, ••• , flft-i—l]=[fto, •- > ̂ z-2]"1 provided that α f c . i^2,
(ii) flo+ ••* + 0 * - i — ^ = ^ o H — bι-i—1, and
(iii) α*_i=2 or Z?i_i=2 provided that ak-{^2.
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Proof. We first note that if pj/Qj=[.aof ••• , α,_i] (j—k — 1, ft) are natural

representations, then

[βo, ••• , β*

[flo, •• ,fl*-i-l] = i ^ Γ

i ^ i ,

from which we see that

( 3 . 8 ) i f [ f l 0 , ••• , β f e - i ] = [ & o , ••• , ^ i - i ] " 1 a n d [ α 0 , ••• ,

= ίb0, "- , fei-s]"1 hold, then [α0, — , α*-i, 2]

We shall prove the assertions (i), (ii), and (iii) by induction on the number

μ = α o + ••• + α f e _ 1 -ft . If μ=l, then (ft, α o ) = ( l , 2) or (ft, α 0, αi)=(2, 1, 2). We

then have [2] — [1, 2 ] " 1 or [1, 2 ] = [ 2 ] ~ 1 , respectively. In these cases the asser-

tions hold trivially. Assume that the assertions are true for the case when

α o + ••• +flft-i—ft is at most μ ( j^l), and let α o + ••• fl*.i-k—μ-\-\ and [α 0 , ••• r

fl*-i]=[fto, ••*, ^ - I ] " 1 . First, assume G & _ I ^ 3 , and let [c0, •••, ̂ z'-i] be the half-

regular continued fraction expansion of the number [ α 0 , •••, α * - i — I ] " 1 . By the

induction hypothesis we see that co+ ~- +Cι>.ι—l'=μ and [ α 0 , ••• , β*-2] =

[co, — , c r - i + 1 ] " 1 . By (3.8) we see [c0, ••• , c ^ . ! , 2 ] = [ α 0 , — , αz-i]" 1 . By the

uniqueness of the expansion we have (c0, ••• , cv^u 2)=(ft0, ••• > *i-0> so that

[α 0 , •••, CLk-ι—l] = [*o, •*• , ^i-2]" 1 and 6ί_i=2. Furthermore, Z?0H— + * z - i — / = c 0

+ ••• + c i ' _ i + 2 — ( / ' + 1 ) = ^ £ + 1 . Thus, (i), (ii), and (iii) hold. Finally, assume

ak_i=.2y and let [c 0, * ^ ' - i ] be the half-regular continued fraction expansion of

[ α 0 , ••• , Oft-a]"1. By the induction hypothesis we see that co-\— +Ci'.1—Γ=

α 0 H — + α * _ 2 — ( m — 1 ) = ^ , [ α 0 , ••• , β * - 2 — l ] = [ c 0 , •••, Cv^Y1 and cv.{^H even

if / ' = 1 because of the fact μ^λ. It follows from (3.8) that [ α 0 , ••• , α*_2, 2] =

[co, ••• , c z ' - i + l ] " 1 ; therefore (c0, •••, c ί » . ι + l ) = ( f t 0 , — , ^ - 0 so that / ' = / ,

[ α 0 , ••• , β*-2]=C^o, •••, &i_i—I]" 1 and bι.^2. Let s = ^ _ ! — 2 . By the induction

hypothesis we have a,j—2 (k — l^j^k—s), and [α 0 , •••, α*-«-i] = C ô, * , ^ - 2 , 2 ] " 1 .

Again by the induction hypothesis we get [ α 0 , •••, c^-s- i-1] — [δo, ••*, bι_2γ\

Since

[fl 0, ••• , α * - « - i — l ] = [flo, •••, flik-β-i, 1]

= [αo> •*• , α*-β-i , 2, 2, ••• , 2, 1]

we have [α 0 , ••• , α*-i—l] = [fto, ••• > frt-a]"1. Furthermore, 6 0 +
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co-\— + ( C Ϊ ' - I + 1 ) — l ' = μ + l . We have obtained all the assertions (i), (ii), (iii)
and proved the lemma.

Remark 3.4. Let U)—CO+KIZ3<M(1/C3) be the regular continued fraction ex-
pansion of a real number ω, where c3 are integers with c3>λ (/^l) (cf., e.g.,
[6], [9]). Let Vj/Sj be the natural representation of the rational number

— . .
C\ -f- "' -r Cj-ι

and set Y3—(s3, r3) (/2^1), Γo=(O, 1). To get the unique expansion for rational
numbers we place the following restriction: the length M of the expansion
must be even whenever M is finite. For example, if ω=4/5 (resp. 16/9), we
expand it as

4 _ n , 1 1 1 / 1 6 _ 1 , 1

5" + T + 3 " + T VeSp ~9 + T
1 1 1

T = υ+T" i T i T iresp. -Q=1 +
D l - j - o - f - i N y

not

4 Λ , 1 1 / 16 , , 1 1 1 1 \

y = o + τ + τ (resp τ = 1 + τ+3-+τ+τ)
We then have the following relationship between the regular continued fraction
expansion co+Klύ3<M{l/c3) of any non-integral real number ω and the half-
regular continued fraction expansion ao+KisJ<N(—l/a3) of ω with the notation
in Lemma 3.1 as well as the convension a{j)—a3y a{j)—a3\

-i)—2 UtX)

Conversely,

In terms of the regular continued fraction expansion of ω, the assertions in
Remark 3.2 and Lemma 3.1 are written as follows:

YevtS={γ23; 0^;
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4. Two dimensional case.

Let D be a logarithmically coned, complete Reinhardt domain in C2. Assume
DψC2. There then exist real numbers γ, δ with (l/2)π^γ<π,
such that

\og\D\ = {(r cos θ, r sinθ)<=ΞR2 r>0, γ<θ<δ}.

If δ>γ+π, then

and SD—φ, so that c$(0, z)=0. Since D is not pseudoconvex, by Lemma 1.1
we see that expgD(0, z)<μD(z) for some z<=D, with

Next, assume δ=γ+π. Then, D={ZΪΞC2; \zί\-χanr\zt\<l}, and

If tan;' is an irrational number, then SD=φ and c$(0, z)=0; while if tanf is a
rational number —q/p with natural representation, then SD=(Z + )*(#, /)), and

D = {(̂ , />)}, so that cJ(0,2r)=|z1|«Ua|
p for Z E D , while

Finally we assume that δ<7'+π. Then,

Setting τ——tan^, ω= —1/tanδ, we have

(4.1) 0^ω<l/τ^ + co,

and

(4.2) Z3=UeC»; k i l l z . l ^ l , I ^ Π ^

Setting

(4.3) αoo=(l,ω), j8oo=(r, 1),

we have

(4.4) SD=(Z

By Lemma 1.1 (iii) we have
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expgD(0f z)=k%(0, z)=μD(z)

For the Caratheodory pseudodistance we have the following.

THEOREM 4.1. Let ω and τ be two real numbers satisfying (4.1), and let
ω=ao+Klsm<M(--1/flm), r=6o-|-J^i<;n<i\r(—l/ftn) fe fAe half-regular continued frac-
tion expansions. Let pm/qm=[a0, •••, α m -i] , s n / r n = [ 6 0 , ••• , bn-ί] be the natural
representations, and set am-—(qm, pm), βn=(sn, rn) with a0—(0, 1), j80=(l, 0).

(i) There exist unique integers mo^O, no^O such that amQ=βno=:γ.
(ii) // D is the domain defined by (4.2), and if ED— {ϊ} U{am m o < m < M + l ,

flm^2}U{j3n; n o <n<JV+l, 6»^2}, ίAen V e r t S D = £ D (see (3.7)); therefore
c$(Q, z)=TDBx{\za\

Proof. To prove (i), assume l / r = + oo, or r = 0 . Then, ί>0=0, and j8i=(0,1),
so that αo=j8i. Next, assume 0<^ω<l/r< + oo. Since the sequence ([α0, •••> «m-i])m
is strictly decreasing and converges to ω, there exists an integer rao^O such
that [α0, •••, αi» 0 ]<l/r^[α 0 , — , fl«0-i], or [α0, •••, α T O o - i ] ' 1 ^ r < [ α o , — , amQ]~\
Let [a, •••, C -i] be the half-regular continued fraction expansion of the number
[α0, •••, flmo]"1. Then, by Lemma 3.2 we have [c0, — , ^-i—l] = [fl0, — , «mo-i]- 1.
If [α0, — , flmo.i]"1=r, then r = [ c 0 , ••• , c, . !—l]=[c 0 , ••• , cn o_i--l], where 72O=
maxΔ if Δ:={/e{l , •••, /} ^ . ^ 2 } ^ ^ and w0—1 if A=φ. Thus, [ 0̂, —, δjr-i]
= [̂ 0, ••• ,^ 0 -i—l] and nϋ—N\ therefore amo=βN. Next, assume [α0, —, flmo-J"1

< τ . Since the interval [έr0, •••, ̂ - i — l ] < ί < [ c 0 , •••, ̂ _i] coincides with {[c°, •••,
^-i> ^ ] ί w^>l}, there exists a real number w>l such that r = [ c 0 , •••, c3.u w"].
Since τ—[bOf •••, ̂  _i, α>y] for some ωj>l, we see that (c0, ••• , Cj_i)=(ft0, ••*, b^x),
so that [α0> ••• , CLm^\'ι—[bot •••, ̂ - i ] , or amo=βj. We thus proved the asser-
tion (i).

To prove (ii), let ««,, £«, be as in (4.3), and let Si=(Z8)*Π(Λ+α0+Λ+αoo),
Sa=(Z8)*n(Λ+j8o+Λ+i8co). It follows from (4.4) that Sp^SiΠSa. By Lemma 3.1
we see that

k m ; m o < m < M + l , α

{jS«; n o < n < i V + l , 67l

Furthermore, since grad(r,«mo+i)^ω<l/τ^grad(r, j8no+i), we see that γ<ΞVeτtSD.
Thus, EDaYertSD. Conversely, let αeVer tSp and aφy. Then grad(0, α ) ^
grad(0, γ). Assume grad(0, α)<grad(0, γ). There then exists a linear func-
tional / on R2 and c e β such that f(a)=c, f(x)<c for all x^SD\{a}. Let g
be the gradient of the line f\c). Then, grad(r, «mo+i)^grad(r, α ) ^ g ^
grad(0, ^oo)^grad(0, ^). It follows that the set Si\S 2 is contained in the cone
γ+R+(γ-amo+1)+R+γ, and that f(x)<c for all x^S1\{a} therefore, αeVert Si,
and a—am for some m with mo<m<M-\-l and amφ2 (by Lemma 3.1). Simi-
larly, if grad(0, α)>grad(0, γ), then a<=VertS2, and a=βn for some n with
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no<n<N-\-l and bnφ2. We thus have proved V e r t S D a E D and the theorem.

Remark 4.2. Let ω, τ, D, and ED be as in Theorem 4.1. Let ω—
ao+Kιzm<M(l/am) and τ=bo+K1^n<N(l/bn) be the regular continued fraction
expansions of ω and τ (see Remark 3.4). Represent pm/qrn=cio+Kιύj<m(l/(ij)
and sn/rn=b0+Kί^<n(l/bj) naturally, and set am=(qm, pm), βn=(sn, rn) with
θίo=φ, 1), j80=(l, 0). There then exist non-negative integers m0, n0, j 0 , and k0

such that oίϊm0+j*oL2mύ+ι=β2n0+kφ2no+ι\=γ, and it holds that ED={γ}\J{a2m;
mo<m<M/2+l}U{β2n; no<n<N/2+l\.

Finally we present some examples which are applicable to Theorem 4.1.

Example 1 ([7], [8]). Let D={z^C2; \zx\<l9 k i l 3 4 5 U 2 | 1 2 8 < l } . In this
case we have ω=0, τ=345/128=[3, 4, 2, 2, 3, 6], and the following table:

b
n

S
n

r
n

3

1

0

4

3

1

2

11

4

2

19

7

3

27

10

6

62

23

-f-oo

345

128

It follows that Ep={(l, 0), (3, 1), (27, 10), (62, 23), (345, 128)}. Thus c£(0, z)=
max{|z°Ί a<=ED}.

Example 2. Let D={Z(ΞC2; \ZX\
2\Z2\

Ί<1, k i | ' * | s 2 | < l } . Noting 0<l/V2"<

7/2, we have α)=l/V"2"=[l, 4, 2, 4, 2, 4, •••], r = 2 / 7 = [ l , 2, 2, 3], and the tables:

Pm

1

0

1

4

1

1

2

4

3

4

7

5

2

24

17

4 ...

41 •••

29 •••

b
n

S
n

r
n

1

1

0

2

1

1

2

1

2

3

1

3

-}-oo

2

7

It follows that ax=βu and ED={(1, l)}W{α2m+1; τn^l}U{(l, 3), (2, 7)}, where
«2m+i=6a2m-i—«2m-3 (wi^2), « i=( l , 1), α 8=(7, 5). Thus c£(0, ̂ )=
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