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A NOTE ON CARATHEODORY AND
KOBAYASHI PSEUDODISTANCES

By KAZUO AZUKAWA

Introduction.

Recently, Jarnicki and Pflug [7], [8] presented an effective formula for the
Carathéodory pseudodistance from the origin on logarithmically coned, complete
Reinhardt domains in C”. The aim of this note is to establish the wasteless
formula for the pseudodistance from the origin on such domains (Theorem 2.2).
We also apply this formula to the case of dimension two and represent the
pseudodistance by means of the continued fraction expansion of real numbers
(Theorem 4.1).

1. Preliminary.
Let D be a domain in C*. For p, ¢g<D, let

cb(p, @=sup{l f(g)| ; f€H(D, U), f(p)=0},

k¥(p, ¢)=inf{t; 0<¢<1, there exists an f<Hol (U, D)
such that f(0)=p and f(¢)=q},
and
go(p, ¢)=sup{f(q); f is a negative plurisubharmonic function on D
such that limsup,.,(f(z)—log|z—p|)<+co},

where U is the unit disc in C and, for complex manifolds X and Y, Hol(X, Y)
denotes the set of all holomorphic mappings from X into Y. The function
cp=tanh~'c} (resp. the largest pseudodistance kp, on D dominated by kj:=
tanh™'%2%) is called the Carathéodory (resp. Kobayashi) pseudodistance on D, and
the function gy(p, -) is called the pluri-complex Green function on D with pole
at p (cf., e.g., [2], [3], [4], [5], [10], [11], [15]). These functions c¥, k3,
and gp have the decreasing property for holomorphic mappings and satisfy

(1.1) cp<exp gp<k}¥ on DxD

(see [107).
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We shall show the following lemma, part (ii) of which is well-known ([7],

[8D.

LEMMA 1.1. Let D be a balanced domain in C™ with the Minkowsk: func-
tional pp(z)=inf{r>0; zerD}, where rD={rz; z€D}.

(1) cH0, -)<exp gp0, -)=<k¥0, -)<pp on D.

(ii) D is convex if and only if ¢¥0, -)=pp on D.

(iii) D s pseudoconvex if and only if exp gn(0, -)=pp on D.

Proof. (i) In view of (1.1) we have to prove only the last inequality. Let
ze€D={z&C"; puy(z)<l}, and take r with py(z)<r<1l. Then the function f(2)
=Az/r, A<U belongs to Hol(U, D) and satisfies f(r)=z, so that 2%(0, z)<r.
Thus, &30, 2)<pp(2). (iii) Assume exp g0, -)=gp on D. Then, log pp=
g0, +) is plurisubharmonic on D, and so on C". Hence, the balanced domain
D is pseudoconvex. Conversely assume that D is pseudoconvex. Then, log up
is plurisubharmonic on D ([1]). Since pp is continuous at 0 it follows that
limsup,.o(log #p(z)—log|z|)<4oo, so that log #p=gp(0, -). The proof is com-
pleted.

As an application of Lemma 1.1 we obtain Kubota’s theorem on symmetric
bounded domains.

COROLLARY 1.2 (Kubota [13], [12]). Let D be a symmetric bounded domain
in C™ realized as a convex balanced domain. Then,

(1.2) ¥z, w)=inf{r; 0<r<1, there exists an FeAut (D)
such that F(w)=0 and F(z)erD}
for all z, weD, and

(1.3) {zeD; c¢¥0, z)<r}=rD
for all ¥>0 with r<1, where Aut (D) is the set of all holomorphic automorphisms
of D.

Proof. To prove the formula (1.2) we denote by d,(z) the right hand side
of (1.2). Since D is homogeneous, K, :={FAut(D); F(w)=0} is not empty.
It follows that

dw(z)=Inf Urex,i7; 0<r<1, F(z)erD}
=inf pex,, inf{r; 0<r<1, F(z)erD}
=ianeKw#D(F(2)) .

Since D is convex, by Lemma 1.1 (ii) and the biholomorphic invariance of ¢}
we see that for every FEK,,, un(F(2))=ck0, F(z))=cHw, z); therefore, upy(F(z))
does not depend on the choice of FEK, and (1.2) is established. The relation
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(L1.3) is a direct consequence of the equality gp=c}0, -). The proof is completed.

Under the hypothesis in Corollary 1.2 it is well-known ([117, [14]) that
¢p=rkp. Using only the homogeneity and the convex balancedness of D, we
can show this as follows: By Lemma 1.1 (i) and (ii) we have c¢}(0, -)=F%(0, -).
From the homogeneity of D and the biholomorphic invariance of ¢} and k% it
follows that ck=~F%; therefore, cp)=Fk} and k) is a pseudodistance, so that cp=

Llyzkp.

2. Logarithmically coned Reinhardt domains.

Let D be a Reinhardt domain in C™ with the real representative domain
IDI={(lz.1, "+, lzaDEWR™; (21, -+, 2,)ED}, where R,={x=R; x=0}. Assume
D is logarithmically coned, that is, the set log|D| :={x=(x,, -*-, x,)ER"; e :=
(e®1, .-+, e*n)e|D|} is a cone in R™ with vertex at the origin. Set Z,=ZNR.
and, for a subset S of R”, set Sx=S\{0}. For z=(z,, -, z,)€C™ and a=
(s, =+, an)E(ZL)", set 2%=2z,%1--- z,%%, Let Sp={as(Z,)%; |z*| <1 for all z& D},
and let Sp+Sp={a+B; a, B=Sp}. A typical example of logarithmically coned,
complete Reinhardt domains is {z€C™; |z%|<1 for all a=T}, where T is a
finite subset of (Z,)%.

Jarnicki and Pflug proved the following.

LEMMA 2.1 ([7; Theorem 27, [8; Theorem 2.1]). Let D be a logarithmically
coned, complete Reinhardt domain in C™ with Sp. It then holds that for zeD,

¢¥0, z2)=sup{|z*| ; a=Sp}
=sup{lz?|; a=SpNSp+Sp)}.

The aim of this section is to prove a precision of Lemma 2.1.

Let C be a closed subset of R®. A point x in C is called a vertex of C if
there exists a linear functional f on R™ and a number ¢c=R such that f(x)=c¢
and f(y)<c for all yeC\{x}, that is, x is a vertex of the convex hull Conv C
of C in the usual sense. By Vert C we denote the set of all vertices of C.

Our result is the following.

THEOREM 2.2. Let D be a logarithmically coned, complete Reinhardt domain
m C™ with Sp.  Then,

¢}0, z)=max{|z%| ; acsVert Sp}
for ze D,

It follows from the definition that
2.1) Sp={as(Z,)%; {a, y><0 for all y=log|D]}.

To prove Theorem 2.2, by virtue of Lemma 2.1 we must show that if
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(2.2) O(x)=sup{<x, a); a=Sp}
for x<log|D|, then

2.3) O (x)=max{<{x, ay; acVert Sp}.

We need a lemma.

LEMMA 2.3. Let x<log |D|. Let (x,); be a sequence in R"™ and (f8;); be a
sequence in Sp such that xj—x as j—co and the sequence ({x,, B,>); is bounded.
Then, (B,) is bounded.

Proof. Suppose (B,) is not bounded. We may assume that |f;|—-+o and
Bi/1Bil—& as j—oo for some §=R™ with |§]|=1. Since ({x,, B,>) is bounded,
it follows that <x, &=lim,..<{x,, B8,5/1B;1=0. Take an &£>0 so that x+efc
log|D|. We have '

lim,_Cx +€&, B,o=Ilim,..{x+e&, B;/B;1>-1im, | B;| =40}

therefore (x4¢§, B,>>0 for some j. This contradicts the facts x-+sé<log|D]|
and B,;=Sp, and completes the proof.

Proof of Theorem 2.2. To prove (2.3) fix any xclog|D|. We first note
that

(2.4) O(x)=max{<x, a>; asSp}.

Indeed, let (a,) be a sequence in Sp, such that @(x)=lim,..<{x, @,>. By Lemma
2.3, (a;) is bounded, so that we may assume that (a,) converges to a point
acsSy; therefore @(x)=<x, a). Then H:={yeR"; {x, y>=0(x)} is a support-
ing hyperplane of Conv S,. By Lemma 2.3 we see that Sp\H is bounded to the
effect that SpN\H is a finite set. Let a=Sp,N\H be a vertex of S;N\H in H.
We shall show that « is also a vertex of Sp. Take n=H, and c=R such that

(2.5) <y, p><c for all yeSpNH\{a} and <a, p=c.

Take an &,>0 such that x+enp<log|D| for all e>0 with e<e,. We note that
if 0<e<gy, then

(2.6) {x+en, ap=0(x)+ec.
In view of (2.6), to prove that a=Vert Sy, it is sufficient to show the following :
2.7) There exists an ¢ such that 0<e<e, and <{x4e7, B><D(x)+ec

for all =Sy {a}.

Now suppose the statement (2.7) does not hold, and take sequences (¢,) and (a,)
such that 0<¢;<eo, a;&€Sp\{a}, <x+¢&;m, a,)=0(x)+¢;c for all 7, and lim,_.¢,
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=0. Since <x-+¢;9, a,><0 for all j, by Lemma 2.3 («,) is bounded. We may
assume that «,—»r=Sp,\{a}. Then, <x, 7>=P(x), so that y=H; therefore (2.5)
implies that

(2.8) {n, H<c.

On the other hand, «;=y for sufficiently large j, and <x-+¢;9, r>=0(x)+¢5c,
or {7, ¥>=c¢, which contradicts (2.8). The proof is completed.

3. Half-regular continued fraction expansions.
Let (a,);z0 be a sequence of integers with
3.1 a;=2 j=zD.

Consider the mappings s (w)=a,—1/w,
1 1

s -os,_J(w)=a —L
0 J-1 — o Qy— o+ — a]-l_w
=: [am Ay, Ay, w:l (]gl)-
We say that

1 1

[aO) Ay, -, a]-l]:ao_a_l_ . _a]-l

is a half-regular continued fraction. For j=1, let p;/q,=[a., -+, a,_:] be the
natural representation, i.e., p, and ¢,>0 are relatively prime integers. For
convenience, let (go, po)=(0, 1). It is easily seen that (q,, p,)=(1, 0),

1 -1\[ @a
(3.2) (* )=(q’ v )( ) (i=1),
D1 b, bD,-i/\—1
451
(3.3) det (q’ ! ):1 Gz,
by Dy
3&10;1)1‘_1 F>
3.4) Lae, =+, Q-1 w1 P —— (=D

(cf., e.g., [9], [16]). It follows from (3.3) and (3.4) that

3.5) the function [a,, -, @,-;, x] is strictly increasing
in the interval 1<x<+4o and has the interval
Lao, -+, a;.i—11=y<[ao, -+, a,-,] as its image.

Let w be a real number. If w is rational (resp. irrational), then there-exists
a unique pair of finite (resp. infinite) sequences (a,)osj<ny and (@;)izj<y With N a
positive integer (resp. N=+o0) such that (3.1) holds,
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(3~6) (!)j>1, w:[aﬂy Tty a]-l) wj] (1§]<1V) ’

and wy-;=ay.; (resp. and there exist infinitely many ; with @,=23). The
argorithm w—(a,)s,<y, Symbolically written as

w=a0+[{15]<N(—1/a]):[a0$ a, ] ’

is called the half-regular continued fraction expansion of w; for every j, the
integer a, is called the j-th partial quotient, and the rational number [a,, -,
a,_,] the j-th approximant of the expansion. Representing [a,, -+, a,.11=p;/q,
naturally, we see that

b4 qi@;—4;-1 @y - W
and ¢,=j (y=1). It follows that the sequence (p;/q,), is decreasingly conver-
gent to w (cf., e.g., [16]). When N is finite it is convenient to set

(3'7) (ZN:+OO .

In this and subsequent sections, by grad (e, 8) we denote the gradient of
the segment determined by two distinct points @, 8 in RZ

LEMMA 3.1. Let @ be a positive real number and a,+K,<,«n(—1/a,) be its
half-regular continued fraction expansion with the natural representations p;/q,=
Lao, =+, a,-1] (A=7<NH1), as well as (o, po)=(0, 1). Let a=(0, 1), B=(1, w),
S=(Z")«N\(R+a+R.p), and a,=(q,, p;) O=Zj<N+1). It then holds that

Vert S={a,}\U{a,; 1<7<N+1, a,#2}
(see (3.7)).

Proof. Let 1<j<N+1. It follows from (3.3) that the pair {a,_,, @;} gen-
erates the lattice Z?, so that there is no elements of Z? in the open triangle
determined by a,.;, «,, and the origin. Furthermore, we see that g,:=
grad (@,_;, @,) is given by g,=[a., -+, a,.;—1]1=[a,, -+, a,-1, 1] (by (3.4)), so
that g;+;=g, and that the equality holds if and only if a,=2 (by (3.5)). It is
trivial that a,=Vert S and that ay=Vert S when N is finite. Thus, the asser-
tion follows.

Remark 3.2. Under the assumptions in Lemma 3.1 we see that S\(S+S)
={a,; 0<7<N+1}.

LEMMA 3.3. Let a,, b;=Z, a,=1, be=1, 6,22 (1<i<k—1),b,22(1<5<1-1).
If [aO’ ) ak—1]=[b0: Tty b1-1:|-1; then

(i) [ae, -+ @p_y—11=[be, -++, bi_21"" provided that a,_.,=2,

(ii) aot - +aro1—k=bo+ --- bi_1—I, and

(iil) ap_1=2 or b,_,=2 provided that a,_,=2.
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Proof. We first note that if p,/q,=[a,, -+, a,.,] (j/=k—1, k) are natural
representations, then

Pet(Pr—Pr-1)

Ao, "+, -1 2]= ’
Lo Ge-s 2] 9x+(ge—qs-1)

Drtbr-1
y -H’ — 1 :—————'—’
Lao ap-1+1] PR
Pe—Dr1
y -'-’ - —1 :———,
Las @s-1—1] Gr—qr-1
from which we see that
(38) if [(lo, ey, (lk_xj——[bo, ey b[-x]_l and I:(lo, e, (Zk_l—‘].]

=[bo, -+, bi-2]17" hold, then [a,, -+, ar_1, 2]
=[bOy Sty bl—l+1]_1 .

We shall prove the assertions (i), (ii), and (iii) by induction on the number
p=ao+ - +a,,—k. If p=1, then (&, ay)=(1, 2) or (&, a,, a)=(2, 1,2). We
then have [2]=[1, 277! or [1, 2]=[2]"?, respectively. In these cases the asser-
tions hold trivially. Assume that the assertions are true for the case when
ao+ -+ +a,_,—k is at most ¢ (=1), and let ao+ -+ ar.,—k=p+1 and [a,, -,
ar-11=[be, -+, bi_1]17'. First, assume a,_,=3, and let [¢,, -+, ¢;r_;] be the half-
regular continued fraction expansion of the number [a,, -+, a,_,—1]"*. By the
induction hypothesis we see that co+ - +crvov—0'=p¢ and [ao -, ars]=
Leos = 5 vy +117% By (3.8) we see [co, -+, €iroyy 21=[ay, =+, @;_;17'. By the
uniqueness of the expansion we have (co, =, i1, 2)=(bo, -+, bi_1), sO that
Lao, -+ 5 @ry—1]=[bq, -, bi_s] ' and b,_,=2. Furthermore, b+ -+ +b;_;—I=c,
+ o Fep 2= +1)=p+1. Thus, (i), (ii), and (iii) hold. Finally, assume
a,-1=2, and let [co, - ¢;r_;] be the half-regular continued fraction expansion of
[ao, =+, Gr_21"'. By the induction hypothesis we see that co+ -+ +cp_y—0'=
Qo+ - +apo—(m—1=p, [ao, -, @re—11=[co, =+, crr2]" and ¢, .o=2 even
if /=1 because of the fact u=1. It follows from (3.8) that [a,, ---, Gz_0, 2]=
Leo, =+ » croy+117*;  therefore (o, -, ¢y +1)=(bo, -+, bi_y) so that ['=l,
[ao, =+, Gr_s]=Lbo, ==+, by_;—1]"* and b,_,=2. Let s=b,_,—2. By the induction
hypothesis we have a,=2 (k—1=<j7<k—s), and [ao, -, @z_s_1]=[bo, =+, b1-2, 2]7".
Again Dby the induction hypothesis we get [ao, -+, Gps-1—11=[bo, -+, bi_2]17".
Since

I:aO) Tty ak—s-l_]-]:[a‘)} ety Qposoa, 1]
:[ao, ctty Qposeny 2: 2: ) 2: 1]
=[a()y tty Qpos—1y Qpesy "' 5 Qp-2) ak-l—l:‘ s

we have [ao, -+, apo1—11=[bo, ---, bi_2]"*. Furthermore, by+ -+ +bi_1—(=
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ot o e +1)—I'=p+1. We have obtained all the assertions (i), (ii), (iii)
and proved the lemma.

Remark 3.4. Let w=c,+Kig,<u(1/c;) be the regular continued fraction ex-
pansion of a real number w, where ¢, are integers with ¢,=1 (j=1) (cf., e.g.,
[6], [9]). Let 7;/s, be the natural representation of the rational number

1 1
c — —
0+C1 + 6
and set 7,=(s,, r,) (j=1), 70=(0, 1). To get the unique expansion for rational
numbers we place the following restriction: the length M of the expansion
must be even whenever M is finite. For example, if w=4/5 (resp. 16/9), we
expand it as

=co+ Kizuci(1/ct)

4 1 1 1 6 ., 1 1 1

570F T34 T (resp 9 TT4343)
not

4 11 6 .1 1 1 1

5041747 (reSp' 3—1+T+§+T+T)°

We then have the following relationship between the regular continued fraction
expansion c¢y+K,<j<u(1/c;) of any non-integral real number w and the half-
regular continued fraction expansion a,+K<,«y(—1/a,) of @ with the notation
in Lemma 3.1 as well as the convension a(j)=a,, a(j)=a,:

co=a(0)—1, c¢yy=alci+cs+ -+ +coy-1)—2 (j=1)

{ Cojm=max{k=1; alcitcs+ - Fcoyi+R)#2 (720),
To=a(0), 7To,=a(citest o +eoyon)  (FZ1)

{ Tejm=a(Citest - +eoytR)—alestest o e tk—1)

(J'Z—O, 1= k§02j+1) .
Conversely,

{ a(0)=co+1, a(ci4cs+ - +02;-1)=Czj+2 (=1
a(cyteet - +6'2;_1+k)=2 (1§k§c2j+1—1; f_Z_O),
a(eites+ - o1t R)=T2i+EY251 (0=Zk=cy541—1, 720).

In terms of the regular continued fraction expansion of w, the assertions in
Remark 3.2 and Lemma 3.1 are written as follows:

SNSHS)={7o} U{r2st+kT2js1; 0S7<M/2, 1S k< Coji1),
Vert S={7,,; 0<7<M/2+1}.
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4. Two dimensional case.

Let D be a logarithmically coned, complete Reinhardt domain in C%. Assume
D+#C? There then exist real numbers 7, 0 with (1/2)x<yr<r, (3/2)n<0<2n
such that

log|D|={(r cos @, r sin @)= R?; »>0, y<H<6}.
If 6>7-+mx, then
D={2&C?; |z,| 77|z | <1} U{z&€ C?; |z:| 720 2| <1},

and Sp=¢, so that ¢¥0, z2)=0. Since D is not pseudoconvex, by Lemma 1.1
we see that exp gp(0, z)<pp(z) for some z=D, with

p#p(z)=min{(|z,| 7|z, | ) O TRED (|2, "tand| z,| 1 -tand}
Next, assume 0=y+=z. Then, D={z=C?; |z,| "®"7|z,| <1}, and
exp gp(0, 2)=kH0, 2)=pp(2)=(|z,| 77|z, |/ Ot

If tany is an irrational number, then Sp,=¢ and c$(0, 2)=0; while if tan7 is a
rational number —¢/p with natural representation, then Sp=(Z.)«(q, p), and
SpN(Sp+Sp)=Vert Sp={(g, p)}, so that c}0, 2)=12z,]?2.|? for zeD, while
k30, z2)=(|z,%] 22| ?)"+P,

Finally we assume that d<y+=. Then,

D={zeC?; |z,| 87| z,| <1, |z;| 8" %] 2| <1}.

Setting r=—tany, w=—1/tand, we have

4.1 0=w<]l/tE 400,

and

4.2) D={zeC?; |z:| 12| <1, |z;|7|z.| <1}.
Setting

4.3) a.=1,0), B.=(, 1),

we have

(4.4) Sp=(Z")xN(Riau+ R (7).

By Lemma 1.1 (iii) we have
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exp gp(0, 2)=£¥0, 2)=pun(z)

=max{(|z] |z )", (|z1|7| 22| )/ P}
For the Carathéodory pseudodistance we have the following.

THEOREM 4.1. Let w and t be two real numbers satisfying (4.1), and let
0=00+Kicm<u(—1/an), T=bo+Kicn<n(—1/by) be the half-regular continued frac-
tion expansions. Let pm/qm=[ao, -**, Qm-11, Sz/Ta=L[bo, ---, bu_1] be the natural
representations, and set Am=(qm, Pm), Ba=(Sa, ra) with a,=(0, 1), B,=(1, 0).

(i) There exist unique integers mo=0, n,=0 such that an,=Bn,=:7.

(ii) If D is the domain defined by (4.2), and if Ep={r}U{an; m<m<M+1,
AnF 2} U{Br; no<n<N+1, b,#2}, then Vert Sp=FEp (see (3.7)); therefore
¢¥0, z)=max{|z%|; acEp} for all z€D.

Proof. To prove (i), assume 1/t=+o0, or r=0. Then, b,=0, and §,=(0, 1),
so that a,=f;. Next, assume 0<w<1/r<+co. Since the sequence ([@,, ***, Gm-1])m
is strictly decreasing and converges to w, there exists an integer m,=0 such
that [ao, -, @n J<1/t=[ay, -+, @my-i], OF [@0, -+, Gme-a] 7' ST<La0, -5 Gm ]
Let [¢o, -+, ¢;-1] be the half-regular continued fraction expansion of the number
Lao, =, am,]™". Then, by Lemma 3.2 we have [co, =+, ¢,.i—1]1=[ao, =, aGmo-217"
If [ao, =+ @mg-117'=7, then v=[co, =+, ¢;-1—11=[c0, -+, Cny-1—1], where n,=
max A if A:={le{l, -, j}; ci-1#2} #¢ and n,=1if A=¢. Thus, [b,, -, by_1]
=[co, =+, Cry-1—1] and ne=N; therefore an,,=Bn. Next, assume [a,, -, Gp,-1]"
<r. Since the interval [¢,, -+, ¢,.;—1]<t<[¢o, -+, ¢;-1] coincides with {[c°,---,
¢,_1, w]; w>1}, there exists a real number w>1 such that r=[c¢, -, ¢,_;, w].
Since v=[by, -:-, b;_1, ;] for some w;>1, we see that (¢, =, ¢;,_1)=(bo, -, b,_4),
so that [ao, =+, anel ' =[bo, *-, b;_1], OF an,=B,. We thus proved the asser-
tion (i).

To prove (ii), let a., B. be as in (4.3), and let S;=(Z*)sN\(R.a,+R;a.,),

2 =(Z®xN\R:Bo+R:B). It follows from (4.4) that Sp=S:NS,. By Lemma 3.1
we see that

{am; me<m<M+1, an+2}C(Vert S;)N\S,CVert Sp,
{Ba; ne<n<N+1, by#2}C(Vert S;)NS,CVert Sp.

Furthermore, since grad(?, am +1)S0<l/r=grad(r, B.,+1), we see that y&Vert Sp.
Thus, EpCVertSp. Conversely, let a=Vert Sp and a#y. Then grad(0, a)+
grad(0, 7). Assume grad(0, a)<grad(0, 7). There then exists a linear func-
tional f on R? and c= R such that f(a)=c, f(x)<c for all x&Sp\{a}. Let g
be the gradient of the line f7c). Then, grad(y, an,)=grad(y, a)=g=
grad(0, a.,)<grad(0, 7). It follows that the set S;\S, is contained in the cone
7+R(¥—am )+ R4y, and that f(x)<c for all x&S,\{a} ; therefore, acVert S,,
and a=a, for some m with m<m<M+1 and a,#2 (by Lemma 3.1). Simi-
larly, if grad(0, @)>grad(0, 7), then a=VertS,, and a=p, for some n with
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ny<n<N+1 and b,+#2. We thus have proved Vert Sp,CEp and the theorem.

Remark 4.2. Let w, v, D, and Ep be as in Theorem 4.1. Let w=
ay+Kigmen(l/an) and t=by+Kicn<x(1/b,) be the regular continued fraction
expansions of w and = (see Remark 3.4). Represent pm/qm=a¢+Kic,xm(l/a,)
and $,/7ra=bo+Ki<,<a(1/b;) naturally, and set @n=(¢m, Pm), Ba=(Sn, rs) With
a,=(0, 1), B,=(1,0). There then exist non-negative integers m,, n,, jo, and k,
such that asm,+7e@amg+1=P2n,+RoB2ony+1:=7, and it holds that Ep={r}\U{azm;
mo<m<M/2+1} U{B2n; ne<n<N/2+1}.

Finally we present some examples which are applicable to Theorem 4.1.

Example 1 ([7], [8]). Let D={z=C?; |z,| <1, |z;|*%|z,|'%¥<1}. In this
case we have w=0, t=345/128=[3, 4, 2, 2, 3, 6], and the following table:

bn 3 4 2 2 3 6 o0

Sn 1 3 11 19 27 62 345
Tn 0 1 4 7 10 23 128

It follows that Ep={(1, 0), (3, 1), (27, 10), (62, 23), (345, 128)}. Thus c}(0, z)=
max{|z?|; ac= Ep}.

Example 2. Let D={z=C?; |z,)?|z.|"<1, |z1]"Z|z,]<1}. Noting 0<1/v2<
7/2, we have w=1/v2=[1,4, 2, 4, 2, 4, ---], t=2/7=[1, 2, 2, 3], and the tables:

an | 1 4 2 4 2 4 - ba 1 2 2 3 4
gm | 01 4 7 24 41 - Sa 1111 2
pm| 1 1 3 5 17 290 - Tn 0123 7

It follows that a;=f;, and Ep={(1, D} U{aen+; m=1}U{{, 3), (2, 7)}, where
Aomi1=60m_1—Qom_s (M=2), a;=(1,1), a;,=(7,5). Thus c}0, z)=max{|z*|:
aEED}.
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