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A CLASSIFICATION OF 3-DIMENSIONAL CONTACT
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1. Introduction

The assumption that (M 2 m + 1 , φ, ξ, η, g) is a contact metric manifold is very
weak, since the set of metrics associated to the contact form η is huge. Even
if the structure is ^-Einstein we do not have a complete classification. Also
for m = l , we know very little about the geometry of these manifolds [8]. On
the other hand if the structure is Sasakian, the Ricci operator Q commutes with
ψ ([!]> P 76), but in general QφΦφQ and the problem of the characterization
of contact metric manifolds with Qφ—φQ is open. In £13] Tanno defined a
special family of contact metric manifolds by the requirement that ξ belong to
the ^-nullity distribution of g. We also know very little about these manifolds
(see [13] and [9]). In § 3 of this paper we first prove that on a 3-dimensional
contact metric manifold the conditions, i) the structure is ^-Einstein, ii) Qφ—φQ
and iii) ξ belongs to the ^-nullity distribution of g are equivalent. We then
show that a 3-dimensional contact metric manifold on which Qφ—φQ is either
Sasakian, flat or of constant ξ-sectional curvature k and constant ^-sectional
curvature —k. Finally we give some auxiliary results on locally ^-symmetric
contact metric 3-manifolds and on contact metric 3-manifolds immersed in a 4-
dimensional manifold of contant curvature + 1 .

2. Preliminaries

A C°° manifold M 2 m M is said to be a contact manifold, if it carries a global
1-form 7] such that ηΛ(dη)mφ0 everywhere. We assume throughout that all
manifolds are connected. Given a contact form η, it is well known that there
exists a unique vector field ξ, called the characteristic vector field of η, satisfy-
ing η(ξ)=l and dη(ξ, X)=0 for all vector fields X. A Riemannian metric g is
said to be an associated metric if there exists a tensor field φ of type (1, 1) such
that

(2.1) dη(X, Y)^g{X, φY\ η(X)-^g{X, ξ), φ2 = -
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From these conditions one can easily obtain

(2.2) φξ=O, η*φ=0, g(φX} φY)=g(X, Y)-η(X)η(Y).

The structure (φ, ξ, η> g) is called a contact metric structure, and a manifold
M2m+1 with a contact metric structure (φ, ξ, η, g) is said to be a contact metric
manifold.

Denoting by X and R Lie differentiation and the curvature tensor respec-
tively, we define the operators / and h by

(2.3) lX=R(X,ξ)ξ9 h = ~Xξφ.

The (1, l)-type tensors h and / are symmetric and satisfy

(2.4) hζ=O, ίξ=Of Trh^O, Trhφ=0 and hφ~-φh.

We also have the following formulas for a contact metric manifold:

(2.5) Ίxξ--^-φX-ψhX (and hence 7 ^ = 0 )

(2.6) 7#>=0

(2.7) Trl=g{Qξ, ξ)^2m-Trh2

(2.8) φlφ-l=2(φ2+h2)

(2.9) lξh^φ-φl-φh2

where Q is the Ricci operator and 7 the Riemannian connection of g. Formulas
(2.5M2.8) occur in [1] and (2.9) in [3].

A contact metric manifold for which ξ is Killing is called a K-contact
manifold. A contact structure on M2m+1 naturally gives rise to an almost com-
plex structure on the product M2 m + 1XJβ. If this almost complex structure is
integrable, the given contact metric manifold is said to be Sasakian. Equi-
valently, (see [1, p. 75] or [3, pp. 534-535]) a contact metric manifold is Sasa-
kian if and only if

(2.10) R(X, Y)ξ= η(Y)X~ η{X)Y

for all vector fields X and Y.
It is easy to see that a 3-dimensional contact metric manifold is Sasakian

if and only if /ι=0. For details we refer the reader to [1],
A contact metric structure is said to be η-Einstein if

(2.11) Q=al+bη®ξ

where a, b are smooth functions on M2m+1. We also recall that the ̂ -nullity
distribution (see Tanno [13]) of a Riemannian manifold (M, g), for a real num-
ber k, is a distribution
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N(k): p-+Np(k)={Zf=TpM: R(X, Y)Z=k(g(Y, Z)X-g(X, Z)Y)

for any X,YΪΞTPM} .

Finally the sectional curvature K(ξ, X) of a plane section spanned by ξ and a
vector X orthogonal to ζ is called a ξ-sectional curvature and the sectional cur-
vature K(X, φX) of a plane section spanned by vectors X and φX with X
orthogonal to ξ is called a φ-sectional curvature.

We close this paragraph with two examples of 3-dimensional ^-Einstein
contact metric manifolds:

1) Rz(xx, x2, xs) with the contact form η—l/2{dxz—x'ίdxι) and associated
metric gτ=l/±(η(&η+{d x^+idx*)*), is an ^-Einstein Sasakian manifold
(see [1] or [6] for more details).

2) R* or T 3 (torus) with ??=l/2(cos j t ' d ^ + s i n x2dx2) and ̂ = ( 1 / 4 ) 3 ^ , is
an ^-Einstein (non-Sasakian) contact metric manifold.

3. Main results

Before we state our first result we need the following lemma which was
proved in [4], but we include its proof here for completeness and because we
will use many of the formulas which will appear in the proof.

LEMMA 3.1. Let M 3 be a contact metric manifold with a contact metric
structure (φ, ξ, η, g) such that φQ=Qφ. Then the function Trl is constant every-
where on M3.

Before we give the proof of the Lemma we recall that the curvature tensor
of a 3-dimensional Riemannian manifold is given by

(3.1) R(X, Y)Z=g{Y, Z)QX-g(X, Z)QY+g{QY, Z)X

-g{QX, Z ) r ~ | t e ( 7 , Z)X-g(X, Z)Y)

where S is the scalar curvature of the manifold.

Proof of the Lemma 3.1. Using ψQ—Qψ, (2.7) and φξ=Q we have that

(3.2) Qξ={Trl)ξ.

From (3.1), using (2.3) and (3.2) we have for any X,

(3.3) lX

and hence Qφ=φQ and ψξ—0 give



394 DAVID E. BLAIR, THEMIS KOUFOGIORGOS AND RAMESH SHARMA

(3.4) φl-lφ.

By virtue of (3.4), (2.8) and (2.9) we obtain

(3.5) -I=φ2+h2

and ^ξh—O. Differentiating (3.5) along ξ and using (2.6) and Ί$h=0 we find
that 7 fZ=0 and therefore ξTrl=0. If at a point P e M 3 there exists XΪΞTPM\
Xφξ such that LY=0, then /=0 at P. In fact if Y is the projection of X on
the contact subbundle, η=0, we have IY=O, since /£=0. Using (3.4) we have
/y>r=0. So /=0 at P (and thus Trl=0 at P). We now suppose that iφO on a
neighborhood £/ of a point P. Using (3.4) and that ψ is antisymmetric we get
g(φX, IX)=O. So IX is parallel to Z for any X orthogonal to ξ. It is not hard
to see that IX=l/2(Trl)X for any X orthogonal to ξ. Thus for any X, we have

(3.6) lX=-j(Trl)φ2X.

Substituting (3.6) in (3.3) we get

(3.7) QX=aX+bη(X)ξ

where a=-y(S—TV/) and b=—(3Trί-S). Differentiating (3.7) with respect to

Y and using (3.7) and V$£=0 we find

(3.8) (1YQ)X=(Ya)X+ ((Yb)η(X)+bg(X,

So using ξTrί=0 and Ve£=0 we have from (3.8) with X=Y=ξ, (7fQ)f-=0. Also
using hφ=—φh, (2.5) and (2.2) we get from (3.8) with Y~X orthogonal to ξ

But it is well known that

( 7 x 0 ) X + ( 7 ^ 0 ) i > X + ( 7 e 0 ) 5 = y grad S

for any unit X orthogonal to $. Hence we easily get from the last two equa-
tions that £S=0, and thus 7^0=0, since S—TrQ. Therefore differentiating
(3.1) with respect to ξ and using 7^Q—0 we have7 fi?—0. So from the second
identity of Bianchi we get

(3.9) (7χ/?)(7, ξ, Z)=φrRχX9 ξ, Z)

Now, substituting (3.7) in (3.1) we obtain

(3.10) R{X, Y)Z = {rg(Y, Z)+bη(Y)η{Z)}X

-{rg(X,Z)+bη(X)η{Z)}Y

+b{η(X)g(Y, Z)-η(Y)g(X, Z)\ξ.
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where γ=S/2-Trl. For Z-^ξ, (3.10) gives

Trl
(3.11) R(X, Y)ξ=^γ-(η(Y)X-η(X)Y)

Using (3.11) we obtain (1XR)(Y, ξ, ξ)=-^(XTrl)Y, for X, Y orthogonal to ξ.

From this and (3.9) for Z=ξ we get (XTrl)Y=(YTrl)X. Therefore XTrl^O
for X orthogonal to ξ, but ξTrl=0, so the function Trl is constant and this
completes the proof of the Lemma.

Remark 3.1. When /=0 everywhere, then using (3.1), (3.2) and (3.3) we get
R(X, y)£=0. So by Theorem B of [2], M3 is flat.

PROPOSITION 3.2. Let M 3 be a contact metric manifold with contact metric
structure (φ, ξ, η, g). Then the following conditions are equivalent :

i) M 3 is η-Einstein
ii) Qφ-φQ

iii) ξ belongs to the k-nullity distribution

Proof. i->ii. This follows immediately from (2.11) and φξ=0.
ii->iii. This follows from (3.11) and Trl—const.
iii->i. By the assumption we have

(3.12) R{X, Y)ξ=k{η{Y)X-η{X)Y)

where k is a constant^ 1 [13]. From (3.12) we have Q$=2kξ and so from (3.1)
we find

(3.13) R(X, Y)ξ= η{Y)QY- η{X)QX-V(lk- | ) (^(Γ)X- η(X)Y)

Comparing (3.12) and (3.13) we get

Taking Y orthogonal to ξ and X=ξ we have QY=((S/2)—k)Y and so for any Z

This completes the proof.

Remark 3.2. Because a-hb=Trί (see formula (3.7)), using Lemma 3.1 and
Proposition 3.2 we have the following. On any Ty-Einstein (Q=αI-\-bη<g)ξ) con-
tact metric manifold M3, α+b=const. (=7V/). It is known that for any η-
Einstein Zf-contact manifold M2m+1 (m>l) we have α~const., b—const.

THEOREM 3.3. Let M3 be α contact metric manifold on which Qφ=φQ.
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Then M3 is either Sasakian, flat or of constant ξ-sectional curvature k<l and
constant φ-sectional curvature —k.

Proof. We can easily see from the proof of Lemma 3.1 and Remark 3.1
that if 7V/=0, /=0 and in turn that M3 is flat. If Trl=2, (2.7) gives 7>A2=0
and hence, since A is symmetric, h=0; thus M3 is Sasakian.

If TrlΦQ and 2 then from Proposition 3.2 and (3.12) we have

(3.14) R(X, Y)ξ=k(η(Y)X-η(X)Y)

where k=Trl/2 is now<l. This implies that

(3.15) C7xφ)Y=g(X+hX, Y)ξ-η(Y)(X+hX)

as was pointed out by Tanno ([13] pp. 446-447, cf. Olszak [7] p. 251); in fact
this is true for any 3-dimensional contact metric manifold (Tanno [14] p. 353.).
Computing R(X, Y)ξ from (2.5) we have

+(lγφ)hX+φ{lγh)X.

Then using (3.14) and (3.15) we have

k(η(Y)X-η(X)Y)=- η(XχY+kY)+η(YχX+hX)

-φ{{lxh)Y~{lγh)X)
or

(3.16) η{Y)hX—η(X)hY-φ{(lxh)Y-{lγh)X)

={k-l){ηY)X-rj{X)Y)

Now let X be a unit eigenvector of A, say hX=λX, X±ξ. Since Trh2=2(l-k),

λ—±Vl—k and hence is a constant. Setting Y=φX, (3.16) yields

from which

(3.17) φ{-λlχφX-hlχφX-λlφφ

Taking the inner product of (3.17) with X and recalling that >̂A + A^=0, we
have

λgQJφχX,φX)=O.

Since λΦO (kφl) and X is unit, lψXX is orthogonal to both X and ψX and
hence collinear with ζ. Now
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g(yφχX, ξ) = -g&φχξ, X)=g(-X+hX, X)=λ-1 .

Therefore

lψXX={λ-l)ξ.

Similarly taking the inner product of (3.17) with ψX yields

lχφX=(λ+l)ξ

and in turn 1XX=O and

Now from the form of the curvature tensor (3.10), we have

R(X, φX)X=-(j-Trl)φX

and by direct computation using Vxξ=—(l+λ)φX,

R(X,

Thus

and hence

Now computing R(ζ, X)ξ by (3.14) and by direct computation we have

from which

S=2(l-is)=2ife.

From (3.14) and (3.10) we see that

K(X,ξ)=k and K(X,φX)=-k

as desired.

Remark 3.3. We also note for kφO and 1 that from (3.7) the Ricci operator
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is given by QX—2kη(X)ζ and that the scalar curvature is constant, viz., 2k.

DEFINITION. A contact metric stracture (φ, ξ, η, g) is said to be locally φ-
symmetric if φ\lwR){Xy Y, Z)=0, for all vector fields W, X, Y, Z orthogonal

t o e

This notion was introduced for Sasakian manifolds by Takahashi [11]. The
next theorem generalizes Theorem 4.1 of Watanabe [15].

THEOREM 3.4. Let M3 be a contact metric manifold with Qφ=φQ. Then
M3 is locally φ-symmetric if and only if the scalar curvature S of M 3 is constant.

Proof. From the proof of Lemma 3.1 we see that either 1=0 everywhere
(and hence by Remark 3.1, that M3 is flat) or Trl—const. ΦO and in this case
all the formulas in Lemma 3.1 are valid. Differentiating (3.10) with respect to
W and using Lemma 3.1 we obtain

(3.18) 2{lwRχX,Y,Z)=g(Y)Z){-(WS)η{X)ζ+2b(g{X,lwξ)ζ+η{X)lwζ)}

-g{X,Z){-{WS)η{Y)ζ+2b{g{Y)lwξ)ζ+η(y)lwξ)}

- {(WS)g(φΎ, Z)-2bg(g(Yf Vwξ)ξ+η(Y)Vwξ, Z))X

+ {(WS)g(φ2X, Z)-2bg{g(X,lwξ)ξ+η{X)!wξ, Z)}Y.

Taking W, X, Y, Z orthogonal to ξ and using (2.1) and φξ=Q we get from (3.18)

2φ\lwR){Xf Y, Z)={WS)(g(X, Z)Y~g(Yf Z)X)

The rest of the proof follows immediately from this and ξS=Q (again see the
proof of Lemma 3.1).

Remark 3.4. Using (3.8) with Trl=const.t (2.5), (3.5) and (3.6) we obtain
the following formula

(3.19) 2\!Q\2^\gradS\2+$Trl-S)XA-Trl)

which is valid on any contact metric manifold M 3 with Qφ=φQ.
Furthermore Blair and Sharma [5] recently proved that a locally symmetric

contact metric manifold M 3 has constant curvature 0 or 1. Thus using (3.19),
Trl^2 and the result of [5] we easily obtain the following. A locally ^-sym-
metric contact metric manifold M3 with Qφ=φQ is a space form (with curva-
ture 0 or 1) if and only if S=37V/.

Before we state our next Theorem we need the following Lemma.

LEMMA 3.5. Let M3 be a contact metric manifold with Qφ=φQ, isometrically
immersed in a Riemannian manifold M 4 of constant curvature 1. If ξ is not an
eigenvector of the Weingarten map A at a point p of M3, then Trl=2.
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The proof of Lemma 3.5 is similar to the proof of Lemma 2.1 of Takahashi
and Tanno [10].

THEOREM 3.6. Let M 3 be a contact metric manifold with Qφ—φQ, If M 3

is isometrically immersed in a Riemannian manifold M4 of constant sectional cur-
vature 1, then M3 is Sakakian.

Proof. Because M 3 is isometrically immersed in a space of constant sec-
tional curvaturel 1 the following equations of Gauss and Codazzi are valid, for
any vector fields X, Y, Z on M 3 :

(3.20) R(X, Y)Z=g(Y, Z)X-g{X, Z)Y+g(AY, Z)AX-g{AX, Z)AY

(3.21) (1XA)Y={1YA)X

Combining (3.11) and (3.20) for Z=ξ we get

(3.22) {l-^-){η{Y)X-η{X)Y)Λ-g{Aξf Y)AX-g(Aξ, X)AY=0

For M3 to be Sasakian it is sufficient to prove, by (2.10) and (3.11), that 7V/=2.
Suppose TrlΦl and hence Trl<2. According to the Lemma 3.5, ξ must be an
eigenvector of A everywhere on M3. Let

(3.23) Aξ=vξ

where v is a smooth function on M3. From (3.22) with Y—ξ and (3.23) we
have

with vφQ for any X orthogonal to ξ. So

(3.24) AX=pX, p=»-ι(lZί-iy

Using (3.21) with Y=ξ and X orthogonal to ξ the equation (3.24) and the fact
that ΊξX and Vxξ are also orthogonal to ξ, we find

izAξ- AVxξ=

or

or using (2.5)

(Xv)ξ+(v-p){-φX-φhX)={ζp)X.

From this we get Xv=0 and so

(3.25) (v-p)(-φX-φhX)=(ξp)X.



400 DAVID E. BLAIR, THEMIS KOUFOGIORGOS AND RAMESH SHARMA

Applying ψ to (3.25) and using (2.1) and φζ=hξ=O we obtain (v—p)(X+hX)=

(ζp)φX. Now replacing X by φX in (3.25) and using φh — — hφ we have
(v—ρ)(X—hX)=(ξp)φX. Adding the last two equations we get v—p, i.e.
(Trl/2)—l=v2^0, which is a contradiction. This completes the proof.

Our last Theorem generalizes the Theorems (3.6) and (3.8) of Tanno [12]
for 3-dimensional manifolds.

THEOREM 3.7. Let M 3 be a contact metric manifold with Qφ=φQ. If Mz

is isometrically immersed in a Riemannian manifold M 4 of constant curvature 1,

then M 3 is of constant curvature 1 if and only if the scalar curvature of Mz is

equal to 6.

Proof. By the assumption and Theorem 3.6 we have Trl—2. Supposing
M 3 is of constant curvature 1 and using (3.10) with Z—Y orthogonal to X, \X\

= I F | = 1 and X, Y orthogonal to ξ, we have l=g(R(X, Y)Y, X)=γ=(S/2)-2,

i.e. S=6. Now if 5=6 then &=(l/2)(3Tr/-S)=0 and γ=(S/2)-7W=1 and
hence from (3.10) we get R(X, Y)Z=g(Y, Z)X-g(X, Z)Y completing the proof
of the theorem.
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