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Abstract

In this paper it is proved that for n>5 there exists a constant §(n) with
1/4<d6(n)<1 such that any weakly stable Yang-Mills connection over a simple
connected compact Riemannian manifold M of dimension n with 6(n)-pinched
sectional curvatures is always flat. The pinching constants are possible to
compute by elementary functions. Moreover we give some remarks on stability
of Yang-Mills connections over certain symmetric spaces.

Introduction.

Let M be an n-dimensional compact Riemannian manifold with a metric g
and G be a compact Lie group with the Lie algebra g. Let E be a Riemannian
vector bundle over M with structure group G, and let Cz denote the space of
G-connections on E, which is an affine space modeled on the vector space 2'(gz)
of smooth 1-forms with values in the adjoint bundle gz of E. The Yang-Mills
functional Y M : Cx—R is

— 1 v
YHT)=5 | IF7dvol,

for each V=Cgz, where FY is the curvature form of the connection V. Note that
FV is a smooth section of £2%(gz). The Yang-Mills connection VECy is a critical
point of 44 M. A Yang-Mills connection V is called weakly stable if, for each
Viecy with V=Y,

(d*/dt* )Y H(V*)| 1= =0.

M is called Yang-Mills unstable (cf. [K-O-T]) if, for every vector bundle (E, G)
over M, any weakly stable Yang-Mills connection on E is always fiat. First
Simons proved that the Euclidean n-sphere S™ for n=5 is Yang-Mills unstable
([B-L]). Ever since several persons have investigated the instability of Yang-
Mills fields over various Riemannian manifolds ; convex hypersurfaces, submani-
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folds, compact symmetric spaces (cf. [Ka], [K-O-T], [Pal], [Sh], [Tal], [Wel).
In [K-O-T] it was shown that the Cayley projective plane P,(Cay) and the com-
pact symmetric space of exceptional type E;/F, are Yang-Mills unstable.

In this paper we first establish the instability theorem for Yang-Mills fields
over a simply connected compact Riemannian manifold with sufficiently pinched
sectional curvatures. Okayasu [Ok] used the construction and results of Ruh,
Grove and Karcher ([Rul, [G-K-R1], [G-K-R2]) to show the instability of har-
monic maps into a Riemannian manifold with sufficiently pinched sectional cur-
vatures. By using the same idea, the second named author [Pa2] showed an
instability theorem for harmonic maps from a Riemannian manifold with suffici-
ently pinched sectional curvatures to an arbitrary Riemannian manifold. We
will also use it. Next we shall prove some results on weakly stable Yang-Mills
fields over certain symmetric spaces. Some of them were stated in [K-O-T]
without proof. They supplement results of Laquer [La] which determined the
stablity of canonical connections over simply connected compact irreducible
spaces. Moreover we prove that a weakly stable Yang-Mills field satisfying a
certain condition over a quaternionic projective space P,(H) is a B,-connection
in a sense of [Ni], or equivalently a self-dual connection in a sense of [C-S],
and hence it minimizes the Yang-Mills functional.

1. Preliminaries on Yang-Mills fields.

Let VeCgz. For any B&Q2Ygg), set V'=V+tBeCg. The second variational
formula formula for the Yang-Mills functional is given as follows ([B-L]);

(L.1) (d*/dtHY M| =e=2Y(B, B)
:S (SU(B), B)dvol
M

={, ("), By~ @B, 57B)}dv,

where SY(B)=0Yd"B+9Y(B) and SY(B)=AV(B)+%Y(B). Here d” and 6" denote
the exterior covariant differentiation induced by the connection V&(Cz and its
adjoint differential operator, and " is a symmetric bundle endomorphism of
T*M®gg defined by (FY0O)NX)=Zi[F (e, X), ble,)] for beTiMQ(gE), and
XeT .M, where {e,} is an orthonormal basis of T .M.

Let {w’} be the dual frame of a local orthonormal frame field {e,} in M,
Throughout this paper we use the summation convention. Set B=B,w" and
F'=(1/2)F,;0* N\@’. Then we have

d"B=(N,B;—V;B)0' \e’ ,
87d"B=(Y,V,B;,—V,¥,B.)o* ,
FY(B)=[F,,, B.Jo’,



WEAKLY STABLE YANG-MILLS FIELDS 319

|FY|*=(F.,, F,;)/2.
And (1.1) becomes

(@At HT)] 1eg
=[ (@B, B)~(W,9,B,, B)+(F.,, B.], B,))dvol.

Let D be a Riemannian connection of M and let R denote the curvature
tensor field of D; R(e,, ¢,)er=R.jrie;. The Ricci tensor field Ric of M is de-
fined by R,,=R;wz,» The scalar curvature R of M is defined by R=R;;. The
Ricci identities are as follows:

DkDJXi'—DjDkX’L:Rkj“Xl for X=Xie1,,
Vlkatj_vkvlez_ijletj_Fszlkjm+[Flky Fz;] >

The curvature form FY always satisfies the Bianchi identity d"FY=0, or
equivalently

(1.2) Vkth—I-VIij—i-Vijt:O.
The Yang-Mills equation is 6"F"=0, namely
(13) ijlj——_O .

Let VeCg. Assume that ¢=(1/2)¢;0' A’ € 2% gg) is harmonic with respect
to V, that is, dp=0 and 8%9=0. Note that if V is a Yang-Mills connection,
we can take p=F". Let Ve C=(TM) with V=V'e,. Set B=iy¢=DB.w;=2'(gg).
Here B.=V’¢;;. Then by the harmonicity of ¢ and the Bochner-Weitzenbock
formula (cf. [B-L]) we compute

LY (STBNXO=pD*DV, X)=2 5 (Tl DeV, X)
+(V, Rie (X))—{p:RicA[-2R)}(V, X)

= SHIF%ew, V), ples, X+LF(er, X), gles, VI,

K3

where D*DV =—332,D*V (e,, ¢,), and R denotes the curvature operator of (M, g)
acting on A*TM. We define a quadratic form Q, on C*(TM) as

QU= WY IHT) 1e0=| g, (V)dvol,

where V¢=V+t(yp)=Cg. By straightforward computations we have
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(1.5) q,(V)=D;DV*V¥ @i,y 01.)—D;DV V@i, ¢10)
+D;V*ViN:08500)—2D;V* VIV 011, @10)
+VAVHLF S, 00,1+ LF, 00,5 ¢10)

+Vle{Rikmj((Pm;, ¢ll)_Rjikm(¢m;; ‘Plz)‘*’ka(gDim; gDn)}-

2. The constructionn of Ruh for a J-pinched manifold.

We recall the idea and construction of Ruh ([Ru], [G-K-R1], [G-K-R2]).
Let (M, g) be an n-dimensional simply connected compact Riemannian manifold
with d-pinched sectional curvature, namely d<K<1. We fix a normalized Rie-
mannian metric g,={(140)/2}g on M. Then we have 20/(1+0)<K,,=2/(1-+0).
Consider a vector bundle &=TM®e(M) with a fibre metric {, > over M. Here
e(M) is a trivial line bundle with a fiber metric and it is orthogonal to T M.
Let ¢ denote a smooth section of lengh 1 in ¢(M). Now we define a metric

ford

connection D” in & as follows;
DY =DxY —gy(X, Y)e,
Die=X

for X, YeC=(TM). It was proved that if 0 is sufficiently close to 1, there

exists a flat connection D’ in & close to D” ([G-K-R1]). Define
1D'=D"|| :=Max{|DzY —DxY | ; XETM, g(X, X)=1, Y €&, IY|=1}.
Note that it is a half of that one in [G-K-R2]. Set
k1(8)=(4/3)(1—0)6~*{1+(8"/* sin (1/2)md~"/*)71},
k2(0)={(1+0)/2}"k:(9),
ks(0)=Fky(0)[1+{1—(1/24)nk,(0)*} ~*]"/%.

[G-K-M2] proved that |[D’—D”||<k4d)/2. The curvature form R” of the con-
nection D” is

2.1) R"(X,Y)Z=R(X,Y)Z—-, Z)X+LX, Z2)Y,

(2.2) R”(X, Y)e=0
for X, Y, ZeT M.
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3. Trace formula for second variations of Yang-Mills
fields over a d-pinched manifold.

Assume that M is a simply connected compact Riemannian manifold with
J-pinched sectional curvatures. Let P={ve(C=(&); D'v=0}, which is linerly
isometric to R**'. For each v=P, we denote by V=vT the T M-component of
vin B. Set ¥={VeC(TM); V=vT for some v=P}, which has a natural
inner product so that it is linearly isometric to P. Choose an orthonormal basis
{Valazo,.n Of V. Set V,=(q)*. Then 2., V&V{=0*. In this section we
compute the trace TroQ,=33-0Q,(Vs) of Q, on <V relative to the inner
product.

A straightforward computation shows

LEMMA 3.1.

3.1) D,-V’*.—_-<ngv, er>—<v, )0, .

3.2) D;D;V*={(D"*v)(e,, e,;), ex>—0;:{Diw, e>—0:{Dip, ey—0::<v, e, .
LEMMA 3.2.

(3.3) [ DDV HVHgu, 1)+ DVHV i, guihdvol
={ (RimsV ™V iga,, 91)= DV DY (u, gu}dvol.
3.4) SM—ZD,-V’;V;(Vjtpm, 1)dvol

={ {—2DsD;VEV (ps,, 91)—2D, VDV (s, 011
—D:iD;VEV (@i, Sokl)_DJfoDszx(SDi;, o)
—“ZDszV’Z(fo(SDjk; SDU)'—ZDjV,(;Dszx((ij; Sth)}dUOL

Proof. (3.3) is due to the Ricci identity and the divergence theorem. We
show (3.4). By d"¢=0, we have

3.5) —2D;VEVE( 08, ¢12)
=2DjV'szfx<Vk§Di;, (,Du)+2DjV’Zvax<vi(ij, SDH),

By using the divergence theorem, we get

SMZDjvgva<vi¢fk, @1.)dvol
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={, (~2D:DVAV s, 91)—2D,VEDY s, pr)dvol.

We compute
ZDJV’f,fo(VkQDi;y ©12)
=2D,4{D,VVi(gi,, 9u)}—2DsD,VAV (g1, 012)
—=2D;VED,V i (@i;r 1) —2D;VEVE(@isr Veepra) .
Since
(3.6) DViVi=—ViD,V},
we have

D;V’fxvﬁr(%;, VkSDu):D;‘V’szfx(SDi;, Vl%k) .
Hence by Bianchi identity we get
_ZDJV}ZKVfX(SDi]) kaDlt):Dle;fo(SDi], ViSDkt) .

Thus by using the divergence theorem we obtain

Sszij;Vf,(vm. @r)dvol

=[, (-2DADVAV 41, @1)—2D,VEDLV bipuy 011
—DszV’fofx(SDi;, SDkl)'DjV'iDinx(SOiy, SDkz)}dUOl'
By (1.5), (3.3) and (3.4), we get

3.7 TrcVQq,:SM{—DjVﬁDlVﬂ,(gokJ, ©1)— DD VAV 4(nsr o12)
—2D DVEV . (@155 1) —2D;VED LV W (@iss Pr1a)
—D.D;VEV @iy @rt)—D;VEDV (@15, @r1)
—2D.D, VAV i (@jr, 012)—2D;VED,V o (@jr, P1a)
+R (s Cr)FRirmi(@Pmsr Pra)
—Rjien(@msy @e)FRen(@im, @ri)}dvol.

LEMMA 3.3.
(3.8) —2D:D;VEV L (@jr, 1)
=D;VED Vi (@i, ¢1.)+D:iVEDV i@z, Q1)
FRimeVEVI(@ir, 1),

q.e.d.
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(3.9 —DiDjV’Zszx(goip 90k1)="(1/2)RumkVZLfo(<Pm Sﬁkt) .

Proof. (3.9) is due to the Ricci identity. We show (3.8). Differentiating
covariantly (3.6), we have

(3.10) DD,V VL+VED,D;V.+D V4D, VL+D,VED;VL=0.
(3.8) follows from (3.10) and the Ricci identity. qg.ce.d.
LEMMA 3.4.
(3.11) —D;D;VEV o(@rrr P1)={D0a, DivpdVEV i @k, ¢12)
+{2{D¢va, &>+<Va, €2}V a(@rr, @12) -
Proof. From {v,, vg>=0,p, We have
(3.12) (D" v4) e, ), vg>+(D"*vp)e,, e;), Vo>
=—AD¢Wa, D{pp>—<Déa, Dvgy .
Using (3.2) and (3.12), we obtain (3.11). q.e.d.

LEmMMA 3.5.

3.13) SM—ZD,,DjV’;VQ(goi], @1)dvol

=(, D0, SVipu, o)

+2{D¢va, €XD{Va, €1)(@1;, P12
+2{@2—(n/2)XDva, e1><Va, e>—(1/4<XR"(e1, er)er, er>
—(U/4XD¢,ve, Dver<vg, ee)<{va, e1>
—(1/4X D7, va, Divs><vg, e1)<vq, €r>
—1/2XDYva, OVEi(/2XDYva, e:><{Diva, eD}o|?
—2{R"(es, es)er, ¢xX(Pi;y r)+2(n+1)1XDgva, XV ol@i;, @10
+2{va, eV a(@i;, ¢r)]dvol.
Proof. By (3.2), we have
(3.14) —2D,D;VEV @i, 012)
==2{K(D".)e,, er), ex>—(n+1)(D{va, &>
—Va, eV o(@isy Q1) -
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By using the Ricci identity we get
(3.15) (D" vaX e, 1), ex)V al@ey, ¢11)
={(D"v4)(er, ¢;), ex>+<{R"(er, €;)vn, x>}V (@5, Q1)
We compute
(3.16) D" a)ew, €5), exd>Val(pi;r ¢12)
=D;{KD¢va, exdV &l@is 1)} —<Da, eXViuli;, 011
—<DYv?, exd{Dva, eX(Pisy 1) —<DE Ve, €10<Va, X(Qi;, ©ij)
—LD¢va, eV ol@isy Vi) .

By the Bianchi identity we get

(3.17) — D ey DV e(@isr V1) =1/DD e, exdVED@l*.
We compute
(3.18) (D va, exdViDol?

=Di{{D{,va, exdV el @l’} —L(D"*va)er, 1), exdVillell?
+{D¢yva, VEIPI?—LDe,va, €:>XD¢ Ve, el
+ 1D Va, ex><Va, edlloll®.
By using (3.12) and the Ricci identity we get
(3.19) D" v4)er, 1), er>Vh
=—(1/2){<{R"(e1, er)er, e1>+<{Dva, DEvedViVe
+<DZvas DEpdVEVEL .

Hence, by the divergence theorem, (3.13) follows from (3.14), (3.15), (3.16), (3.17),
(3.16) and (3.19). q.e.d.

Therefore, by (2.1), (3.8), (3.11) and (3.13), (3.7) reduces to the following
trace formula.

3.20) TraQ,
={ 25—2n+(n(n—1)= R)/4H 9l + Rylpir 90

+<Dé’iva, Dé’y,g)V’};Vf,(gD“, §Dzz)—'2<ngva: ek><Dé/jva’ ez>(¢t1, §0u)
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+2{@2—(n/2)X Dl Va, € )<Va, &>

—(1/4X D7, va, Dive><ve, €x><va, €1>

—(1/4)X D4, va, Divp><vg, eid{va, €

—(1/2X DY va, e>Ve+(1/2XDYva, €2)<{D}va, e>}liol®
—2(n+1X{D¢va, eV al@i;, 0i)—8D¢pa, ex>Va, eX(@i5y Pir)
+2{D¢vq, ex)XD¢va; eX(@i;y Qi) —<Déa, ex><{D¢Vas e1X(@i;, Q1)
+{D}va, e,5{Da, rX(Ps;, ¢ri)]dvol.

4. Instability theorem for Yang-Millf fields
over a O-pinched Riemannian manifold.

Note that if =1, then D’'=D”, hence (3.20) becomes

Tre Q=204—m){ o,
Since the sectional curvatures of M are d-pinched, we have
2{5—2n+1/9)(n(n—1)— R} @lI*+ R ji(¢:;, Pur)
S2[5—2n+(1/Hn(n—1){1—20/(1+8)} +2(n—1)/1+06)1l¢l*,
We can make estimates for each other term of (3.20) as follows:
(D4wa, DivadV §V o @rs, o)< (n/2)k(8) )2,
—2DEva, ex)<Dea, e1)(@is, Pr)=n(n+1Dky(0)’lol*,
(2—(n/2)XD¢vas ex)<va, ey=n(n/4--1)ks(0),
—(1/4K D¢ va, Devgi<vg, exd<va, 1> <(n?/16)ky(d),
—(1/4)XD%,va, Divey<vg, e>Va, ex><(n?/16)k4(d)?,
—(1/2XD¢}va, eXVe=(n/4)ky(),
(1/2XD¢yva, ex>{D¢va, e1><(n"/8)k4(0)?,
—2(n-+1XDEwa, eV o(@s;; Qu)=2n+1kyd)lel*,
—8DYva; 1)<V, eX(@1;, i) S8yl
2D, ex>XDva, e)(@iy, Qu)Snkyd)lo|*,
D va, e)XD Ve, €1 (@i, Qr1)
—<Dpa, ex)XD¢va; e1)(Pi;s Pr1)=Fks0)]o]*.
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Hence we get

4.1 Tro Q,<2[5—2n41/4H)n(n—1){1—26/(14+0)} +2(n—1)/(14+0)

(14" 1+ 200k O+ +5n+ 2,07 Il

Therefore we obtain
THEOREM 4.1. If n=5 and

(4.2) 5=2n4+1/Hn(n—1){1—20/(1+0)} +2(n—1)/(1+0)

+(1/4)(n*+n+20)k4(9)+(1/49)(Bn*+5n+2)k4(8)*<0,
then M is Yang-Mills unstable.

COROLLARY 4.2. For n=5, there exists a constant d(n), which depends only
on n, with 1/4<d(n)<1 such that any n-dimensional simply connected compact Rie-
mannian manifold M with d(n)-pinched sectional curvatures is Yang-Mills unstable.

Remark. As n tends to the infinity, the right hand side of (4.2) divided
by (1/4)(3n%+5n+2) tends to (1/3){1—28/(140)}+(1/3)ks(8)+£4(0)>>0. In our
argument it is not possible to find a pinching constant J independent of the
dimension of the base manifold M such that M is Yang-Mills unstable.

5. Trace formula for second variations of Yang-Mills fields
over submanifolds in Euclidean space.

Assume that M is isometrically immersed in a Euclidean space RY. Let @
denote the immersion. We may assume that @(M) is not contained in any
hyperplane of R¥. Set U={UsC™(TM);U=grad f, for some ucR?}. Here
f. denotes the hight function on M defined by f,(u)=<(@(x), u>. Suppose that
V is a connection on a Riemannian vector bundle (E, G) over M and p=£2*gg)
is harmonic with respect to V. Then we recall

PRroOPOSITION 5.1 ([K-O-T]). For U=grad f,=YU,

B.1)  Sipe)X)=—{p:RicA[-2R)}(U, X)
+ng(A,U), X)+¢U, Ric (X))—¢(Ric 1), X)

— SHIF%(e,, U), ples, X1+LFe,, X), ples, U}

-2 ]27;1<B(e1, ey, u>(NVe,p)e,, X)—n iZZ‘.l {D*e;n, wole, X).
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(5.2) troy Q¢=2SM<¢0 {(n/2(A,AD—RicAI+2R}, ¢)dvol,

where R, B, A, 7 and D* denote the curvature operator of M acting on N*TM,
the second fundamental form, the shape operator, the mean curvature and the
normal connection of @, respectively.

Consider a compact Riemannian homogeneous space with irreducible iso-
tropy representation M.

LEMMA 5.2. If V is a weakly stable Yang-Mills connection, then we have
(5.3) ;1 {[F¥(e.,, V), (e, X)]4+[F (e, X), ¢les, Y)]}=0
for every X, YT M.

Proof. Let K be the group of isometries of M and let . be its Lie algebra
of Killing vector fields on M. Since M has irreducible isotropy representation,
we can fix a K-invariant inner product on % which induces the K-invariant
Riemannian metric of M. By [B-L, (10.4) Lemma], for each Vk

Sg(ivso)(X)=—L§n‘{ {[F7e., V), les, X)1+[F(es, X), gles, V)I}.

Hence tr,Q,=0. Since V is weakly stable, we have Z(iyp, ir¢)=0 for all
Vek. For any BE2Y(gg),

0=TGyp+tB, ivp+tB)=2Z iy, B)+t*TY(B, B),
hence TGy, B)=0. Thus SJ@re)=0 for all V<k. g.e.d.

Consider @ : M—S¥-Y(+/n/A,)CRY be the first standard minimal immersion
of M (cf. [K-O-T]). Since M is an Einstein manifold and @ is a minimal im-

mersion onto a sphere of radius v/n/4,, if ¢=F", then (5.1) becomes
(5.9) S"Gre)( X)=[p{(h—2c)[+2R}]U, X)
2,33 <Blew, ¢, w(Teyp)es, X),

where ¢ and 4, denote the Einstein constant of M and the first eigenvalue of
the Laplace-Beltrami operator of M acting on functions, respectively.
Assume that M is a compact irreducible symmetric space. Let

(5.5) AT M=hothyt - +hy

be the orthogonal decomposition into eigenspaces of R, where h, is the eigen-
space with eigenvalue 0 and h; is the eigenspace with eigenvalue p;>0. We
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decompose ¢=¢o+ ¢+ -+ +¢, along (5.5). Note that Ve=0 if and only if
Ves=0 for each s=0, ---, p. Assume that Vo=0. If V is weakly stable Yang-
Mills field, then by (5.3) we have

(5.6) SV(ivps)=(A—2¢ 42 pts )iy ps) for each s=0, ---, p.

6. Remarks on Yang-Mills fields over compact symmetric spaces.

First we remark on the stability of the canonical connections over compact
globally Riemannian symmetric spaces. Laquer [La] determined the indices and
nullities of the canonical connection on the standard principal bundle of each
simply connected compact irreducible symmetric spaces. We denote by #(V) and
n(V) the index and nullity of a Yang-Mills connection V (cf. [B-L] for their
definitions).

THEOREM 6.1 ([La]). Let M=K/H be a simply connected compact irreducible
symmetric space associated with a symmetric pair (K, H) and let N the canonical
connection of the principal bundle K—K/H.

(1) If M is a group manifold, then i(N)=1 and n(N¥)=0.

(2) If M=S" (n=5), P,(Cay), Es/F,, then iN)=n+1, 26, 54 and n(¥)=0,
respectively.

3) If M=P,(H) (m=1), then i{N)=0, n(N)=10 (m=1) or m(2m—+3) (m=2).

(4) If M is otherwise, then i(N)=n(V)=0.

We should note that the values (V) for M=S" (n=5), P,(Cay), E/F, and
n(N) for M=P,(H) (m=2) are equal to the dimension of the first eigenspace of
the Laplace-Beltrami operator of M acting on functions, and n(V) for M=P,(H)
=S* is equal to its twice. It is known that, in the cases of M=S", P,(H),
P,(Cay), the space of all gradient vector fields for the first eigenfunctions on M
coincides with the space of all proper infinitesimal conformal transformations
or projective transformations on M.

We observe the case when M is a non-simply connected, compact irreducible
symmetric space. From [La] we see that if M is a group manifold, then (V)
=1, n(V¥)=0. Suppose that M is not a group manifold. We easily check that
if the canonical connection of the universal covering M of M has i(N)=n(N)=0,
then the canonical connection of M also has #(V)=n(V)=0. When 1\7I=S", by
virtue of [B-L, (9.1) Theorem], we have z‘(V)~=n(V)=O. From the theory of
symrnetrNic spaces (cf. [He]) we know that if M=P,(H) or P,(Cay), then ]\7I=M,
and if M=E/F,, then M=E,/F,-Z,. We show that the canonical connection
of M=E./F,-Z, has i{(N)=n(N)=0. From Theorem 6.1 we see n(V)=0. First
we recall the realization of E,/F, and E,/F,-Z, (cf. [Yo]). Consider the Jordan
algebra T={usM(3, Cay); u*=u} of (real) dimension 27. Let R*=C*"=3IC be
the complexification of ¥ with a natural real inner product {,)>. Let S®*=
{usR%; {u, ud=3}, a hypersphere of T°. Set M:{ueS“; det (u)=1} and let
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@ denote the embedding M—S®C R,

PROPOSITION 6.2. (1) M is isometric to a simply connected compact irre-

ducible symmetric space E¢/F, (cf. [Yo]). N
(2) The embedding @ is the first standard minimal immersion of M=E/F,

(cf. [Oh]).

NBW we define a finite group I  acting freely and isometrically on R*—{0}
and M by
I'={1, g, e} =Z,,

g(u)=e®®=V=Ty  for each uc R™.

Then the quotient M=M/I" is isometric to the symmetric space E¢/F,-Z,.
Set K=E,, H=F, and N=54. Let R" be the curvature form of the cononical
connection V for (K, H). Then we have

AT Ki=so(T M)y=ho+h,,

Whese h, is isometric to the Lie algebra of F,, which is the holonomy algebra
of M. Since 4,—2c¢+2p,<0 by virtue of the result of [K-O-T], from (5.4) we
see that

O={iyRY; U=grad f, for some u=R"}

is an eigenspaces of SY of dimension 54 with a negative eigenvalue. From
Theorem 6.1 we see #(V)=dim ©. In order to show that the canonical connec-
tion of M has #(V)=0, it suffices to show that if /{yRY=6 is invariant by I
then U=0. It follows from the following two lemmas.

LEMMA 6.3. Let VeC(TM). If
7@y RY)=iyRY  for each y<1I',
then 1<V =V for eoch v<I.
Proof. For any XeT .M,
RV 4, X)=1GrRINX)=1(RV(V 10, T5' X))
=RV 12, X)),

hence Igv(r*Vy_l(I)——Vx, X)=0. If we let the canonical decomposition k=h-+m
at x&M and we use the identification m=T .M, then RY(X, Y)=—ad,[X, V]
(cf. [K-N]). Thus adm[r*Vrl(z)—V,, X1=0 for each X&m. Since h=[m, m]
and % is semisimple, r*VT_,m——Vx:O‘ q.e.d.

LEMMA 6.4. Let U=grad f,&CTM) for some ucR~. If yel'—{1} and
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r«U=U, then u=0.
Proof. For each x&M and XeT .M,
<7‘*U; X>:<Uy 7;1X>_—<T—1(X)7 u>=<Xr T(u)>:<U; X>:<Xy u> ’

hence <X, y(u)—u>=0. Thus <{x, y(u)—u) is constant in x=M. Since ¢(1\7I) is
not contained in any hyperplane of R¥, we have y(u)=u. Since I acts freely
on RY—{0}, we get u=0. q.e.d.

Next we remark on weakly stable Yang-Mills fields over a quaternionic
projective space M=P,(H). Generally let M be a quaternionic K&hler manifold.
The Sp(m)-Sp(1)-structure induces the orthogonal decomposition

AT*M=W -+ W, +W,,

where (Wo)., Wy).=sp(l), (W,).=sp(m) are irreducible Sp(m)-Sp(1)-modules. The
curvature form FY=F}J+FJ+F}] of a connection V on the vector bundle E
over M splits into components Fy to End(E)®W, at each point. A connection
YV with FY=FY (resp. F'=F7) is called a B,-connection (resp. Aj-connection)
as in [Ni], or a self-dual connection (resp. an anti-self-dual connection) as in [C-S].
They are Yang-Mills connections which minimizes the Yang-Mills functional

([C-S1, [Ni]).

PROPOSITION 6.5. Let E be a Riemannian vector bundle over P,(H). If N
is a weakly stable Yang-Mills connection on E satisfying FY=0, then V is a B,-
connection (self-dual).

Proof. We may suppose that g is an Sp(m-+1)-invariant Riemannian metric
on P,(H)=Sp(m-+1)/Sp(m)xSp(l) induced by the Killing form of the Lie alge-
bra of Sp(m-+1). From [K-O-T] we know

R=Ret+ R+ R,,
ROZO y
6.1)
Ri=(m/2(m+2)1,
Ry=(1/2(m+2))I .
Hence by virtue of (5.2), we get
Tch QFV

=2SM(FV0{291—(1/(m+2))I}, FYdvol

=2{—1/(m +2)SM(FX, FX)dvol—!—(m—1)/(m+2)SM(FY, FY)dvol} ,
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Proposition 6.5 follows from this equation. q.e.d.

From the proof of Proposition 6.5, we see that if V satisfies the assumption,
then

(6.2) , %1 (B(e,, e,), ud(N,F")e.,, X)=0,
for all uR” and all X=T .M. Using the properties of the second fundamental
form of @ and the curvature tensor field of P,(H), we can check that (6.2)
implies that the restriction of FY to every quaternionic projective line P,(H)C
P,(H) is always a Yang-Mills field. Hence by (5.6) and (6.1) we obtain that,
for any B,-connection V over P,(H) and any infinitesimal projective transforma-
tion U on Pn.(H), we have S'(iyF¥)=0. This means the existence of an in-
finitesimal action of the projective transformation group of P,(H) on the space
of all B,-connections over P,(H). In fact, it is known that the projective trans-
formation group of P,(H) acts on the moduli space of all B,-connections on E.
By (5.4), (5.6) and (6.1) we obtain that the indices (V) and the nullity n(V)
of the canonical connection of M=S" (n=5), P,(Cay) and E,/F, come from
spanp{iyRY; U= T}, and the nullities for M=P,(H)=S* and P,(H) (m=2) come
from spang{iyRY, iyRY; U U} and spang{iyR}; U<T}, respectively. We do
not know whether each weakly stable canonical connection over a compact
symmetric space minimizes the Yang-Mills functional. And it is interesting to
investigate relationships of Yang-Mills fields with holonomy groups and the
classification of vector bundles with Yang-Mills connections satisfying VFV=0
over compact symmetric spaces. From results of [B-L, p. 211] and [K-O-T]
we can find gap phenomena for Yang-Mills fields over every compact irreducible
symmetric space which is not locally Hermitian symmetric. The classification
of such Yang-Mills connections may also be useful to establish accurately isola-
tion theorems for Yang-Mills fields over compact symmetric spaces.
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