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Abstract

In this paper it is proved that for w>5 there exists a constant δ(n) with
l/4<<5(n)<l such that any weakly stable Yang-Mills connection over a simple
connected compact Riemannian manifold M of dimension n with δ(n) -pinched
sectional curvatures is always flat. The pinching constants are possible to
compute by elementary functions. Moreover we give some remarks on stability
of Yang-Mills connections over certain symmetric spaces.

Introduction.

Let M be an w-dimensional compact Riemannian manifold with a metric g
and G be a compact Lie group with the Lie algebra g. Let E be a Riemannian
vector bundle over M with structure group G, and let CE denote the space of
G-connections on E, which is an affine space modeled on the vector space Ω\gE)
of smooth 1-forms with values in the adjoint bundle gE of E. The Yang-Mills
functional ^31: CE->R is

for each 1^CE, where F1 is the curvature form of the connection 7. Note that
F v is a smooth section of Ω\gE). The Yang-Mills connection 1^CE is a critical
point of y<3ί. A Yang-Mills connection 7 is called weakly stable if, for each
ΨEΞCS with 7=7°,

M is called Yang-Mills unstable (cf. [K-O-T]) if, for every vector bundle (E, G)
over My any weakly stable Yang-Mills connection on E is always fiat. First
Simons proved that the Euclidean w-sphere Sn for n ^ 5 is Yang-Mills unstable
([B-L]). Ever since several persons have investigated the instability of Yang-
Mills fields over various Riemannian manifolds convex hypersurfaces, submani-
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folds, compact symmetric spaces (cf. [Ka], [K-O-T], [Pal], [Sh], [Ta], [We]).
In [K-O-T] it was shown that the Cayley projective plane P2(Cay) and the com-
pact symmetric space of exceptional type EJF^ are Yang-Mills unstable.

In this paper we first establish the instability theorem for Yang-Mills fields
over a simply connected compact Riemannian manifold with sufficiently pinched
sectional curvatures. Okayasu [Ok] used the construction and results of Ruh,
Grove and Karcher ([Ru], [G-K-Rl], [G-K-R2]) to show the instability of har-
monic maps into a Riemannian manifold with sufficiently pinched sectional cur-
vatures. By using the same idea, the second named author [Pa2] showed an
instability theorem for harmonic maps from a Riemannian manifold with suffici-
ently pinched sectional curvatures to an arbitrary Riemannian manifold. We
will also use it. Next we shall prove some results on weakly stable Yang-Mills
fields over certain symmetric spaces. Some of them were stated in [K-O-T]
without proof. They supplement results of Laquer [La] which determined the
stablity of canonical connections over simply connected compact irreducible
spaces. Moreover we prove that a weakly stable Yang-Mills field satisfying a
certain condition over a quaternionic projective space Pm{H) is a Z?2-connection
in a sense of [Ni], or equivalent ly a self-dual connection in a sense of [C-S],
and hence it minimizes the Yang-Mills functional.

1. Preliminaries on Yang-Mills fields.

Let 1^CE. For any B<E.Ω\gE), §ztΨ=l+tB<=CE. The second variational
formula formula for the Yang-Mills functional is given as follows ([B-L])

SRB), B)dvol

= f {(S7(B), B)-(δ*B, δ7B)}dvol,
J M

where S1,(B)^d1B + $1{B) and <Sv(5)=ΔV(β)-f £FV(£). Here dΊ and δ1 denote
the exterior covariant differentiation induced by the connection 1^CE and its
adjoint differential operator, and £F7 is a symmetric bundle endomorphism of
T*M®gE defined by (ff7(6)XZ)=Σ?-i[ί l 7(βt, X), b(ety] for 6 e T * M ® f c ) , and
X(ΞTXM, where {et} is an orthonormal basis of TXM.

Let {ω1} be the dual frame of a local orthonormal frame field {ev} in M,
Throughout this paper we use the summation convention. Set B=B^1 and
F1={l/2)Fιjώ

t/\ω3. Then we have
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lim2=(F t,, Fti)/2.
And (1.1) becomes

ι)-φ}7jBι, Bι)+(ZFt), B,-], B,)}dvol.

Let D be a Riemannian connection of M and let R denote the curvature
tensor field of D; R(et, ej)ek=RιJkιeι. The Ricci tensor field Ric of M is de-
fined by RtJ=RikkJ. The scalar curvature R of M is defined by R=RU. The
Ricci identities are as follows:

D.DjX'-DjDkX^RkjnX1 for X=X%,

k, FlJ'],

The curvature form F1 always satisfies the Bianchi identity d^F1—^, or
equivalently

(1.2) VkFιj+lιFjk+VjFkt=Q.

The Yang-Mills equation is δ^F^^O, namely

(1.3) ΊjFtJ=0.

Let VeΞCE. Assume that φ=(l/2)φijωι/\ωJ<=Ω\gE) is harmonic with respect
to 7, that is, d*φ=Q and δ^φ—0. Note that if 7 is a Yang-Mills connection,
we can take φ=F7. Let F < Ξ C ° ° ( 7 M ) with V=Viet. Set B=ivφ=Biωi<EΞΩ\gE).
Here Bι=VJφJi. Then by the harmonicity of φ and the Bochner-Weitzenbδck
formula (cf. [B-L]) we compute

(1.4) (S*(B))(X)=φ(D*DV, I ) - 2 Σ (leiφ){De.V, X)

+φ(V, Ric(Z))-{^o(RicΛ/-2^)}(F, X)

- Σ {[.F1{elί V), φ(et, Z)] + [ F V ( ^ , X),Σ

where D*DV= — ̂ Σι?=1D
2V(eι, et), and .& denotes the curvature operator of (M, g)

acting on Λ2TM. We define a quadratic form Qφ on C~(TM) as

Ψ) I t-o= ( qφ(V)dυol,
JM

where lt=l~\-t(ivφ)^CE. By straightforward computations we have
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(1.5) qφίV^DjDiV'VKψkj, ψn)-DjDjVkVι(φklf φlt)

+DjV
kV\liφkjφlι)-2DjV

kVι{ljφkl)φlι)

+VkVι(lF]k,φiJ-] + lF]i,φkJl, φlx)

+VkVι{Rikmj(φmj, φιx)—Rjikm(φm,, <pu)+Rkm(<Pim, φι%)}.

2. The constructionn of Ruh for a d-pinched manifold.

We recall the idea and construction of Ruh ([Ru], [G-K-Rl], [G-K-R2]).
Let (Λf, g) be an n-dimensional simply connected compact Riemannian manifold
with <5-pinched sectional curvature, namely δ<K<Ll. We fix a normalized Rie-
mannian metric go={(l+δ)/2}g on M. Then we have 2δ/(l+δ)<KgQ£2/(l+δ).
Consider a vector bundle Ξ~TMQ)ε(M) with a fibre metric <, > over M. Here
ε(M) is a trivial line bundle with a fiber metric and it is orthogonal to TM.
Let e denote a smooth section of lengh 1 in ε(M). Now we define a metric
connection D" in Ξ as follows;

D'ϊY=DχY-g*{X9Y)e,

D'ίe=X

for X, Y^C°°(TM). It was proved that if δ is sufficiently close to 1, there
exists a flat connection Ώ' in 8 close to D" ([G-K-Rl]). Define

\Ό'-D'\ :=Max{\\D'xY-DZY\\ XELTXM, gJtX,

Note that it is a half of that one in [G-K-R2]. Set

sin

[G-K-M2] proved that \\Df-D"\\<kz(δ)/2. The curvature form R" of the con-
nection Ώ" is

(2.1) R"(X, Y)Z=R(X, Y)Z-<Y, Z>X+(X, Z>Y,

(2.2) R*(X, Y)e=:0

for X, Y, Z<=TXM.
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3. Trace formula for second variations of Yang-Mills
fields over a d-pinched manifold.

Assume that M is a simply connected compact Riemannian manifold with
^-pinched sectional curvatures. Let P={v^C°°(Ξ); Dfv=0}, which is linerly
isometric to Rn+1. For each V G F , we denote by V=vτ the TM-component of
v in 8. Set q^={yc=Cβo(TAf); V=vτ for some v^P}, which has a natural
inner product so that it is linearly isometric to P. Choose an orthonormal basis
{Va}a=o... .n of cι/. Set Va=(va)

τ. Then ^Z=*Vk

aV
l

a=dkl. In this section we
compute the trace Tr<yQφ=Σ>1Z=oQΨ(Va) of Qφ on <V relative to the inner
product.

A straightforward computation shows

-<v, e>δJk.

Xeι> βj), e^-δj^D^v, e>-δik<D'e'.v, ey-δik

LEMMA

(3.1) L

(3.2) L

LEMMA

(3.3)

(3.4)

3.1.

Ψ'=<

3.2.

( U
JM

L-

kJ, φlt)}dvol

ψlι)-DsV
kD%V\{φhl, Ψlι)}dvol.

, ψu)dvol

= \ {-2DkDjViVι

a(ψtj, φ,t)-2DjVlDtV'a(φi,, φlx)

J M

-DtDjVk

aV
ι

a(φtί, φki)-DJViDtV
ι

β(φi), <pH)

φlι)-2DjViDιV
ι

a(φJk, ψH)}dvol.
Proof. (3.3) is due to the Ricci identity and the divergence theorem. We

show (3.4). By d^φ—0, we have

(3.5) -2DjV*aV
ι

a{ljψkι, φ[t)

=2DjViVι

a{lkψiJ, ψlι)+2DjVk

aV
ί

a^iψJk, φlx),

By using the divergence theorem, we get

f 2DjV jxV
ι

a{lιψjk, Ψlι)dvol
JM
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= [ {^DiDjViV^ψj,, φlι)-2Ώ1V\DiV
ι

a{φji, ψlι)}dvol.
J M

We compute

2DjV»aV
ι

a(lkψt], φlt)

lVι

a(Ψυ, ψlt)}-2DkDjVk

aV
ι

a(φiJ, ψlι)

Since

(3.6) DjV>aV
ι

a=-Vk

aDjVι

a,

we have

D3V»aV
ι

a(ψiJ, lkψlι)=DjV
k

aV
ι

a{ψil,

Hence by Bianchi identity we get

-2D,ViVi(φtJ, Ίkφlι)=DiViVι

a(φt,, lιψkι) .

Thus by using the divergence theorem we obtain

2DjV*aV
ι

a(lkφt], ψu)dvol

= [ {-2DkDjViVl

a(VtJ, φ,t)-2D,ViDkV
ι

a{φtl, ψu)
J M

-DιDjVk

aV
t

a(ψi}, φtύ-DjVlDtV'aiφi,, φ*ι)}dvol.
q. e. d.

By (1.5), (3.3) and (3.4), we get

(3.7) ΎtcQ9=\ {-DjV
k

aDιV
ι

a(φil,φlι)-DjDjV
k

aV
ι

a(.φkuφlι)

-2DtDjViVι

a(φi}, ψι,)-2DjVk

aDkV
ι

a(ψij, ψu)

-D.DfViV'aiφ,,, φkύ-DjVlDtVXφi,, φkι)

-2DιDJV
k

aV
ί

a(φjk, φlι)-2DjV«aDtV
ί

a{φjk, Ψlι)

+ Rjilk(ψki, ψlι) + Rikm.j(ψmj, ψki)

— RjlkΛψmi, ψkι) + Rkm(ψim, ψkt)}dvθl.

LEMMA 3.3.

(3.8) ^DiDjVίVUψ u, φu)

ώ+DiViDjV^ψj,, Ψlι)

k, ψu),
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(3.9) -DtDjVlVXφt,, φkι)=-{l/2)RιmkV^V'a{φiJy φkl).

Proof. (3.9) is due to the Ricci identity. We show (3.8). Differentiating
covariantly (3.6), we have

(3.10)

(3.8) follows from (3.10) and the Ricci identity. q.e. d.

LEMMA 3.4.

(3.11) -DjDjVk

aV
ι

a(φkι> φi^iD'ljϋa, DΊ.v^V^V^ψ^ φlx)

+ {2<D»kva, e> + <va, eky}VL

a{φkι, φlt).

Proof. From (va, Vβ}=δaβ, we have

(3.12) <{D»υaXe%, βj), vβ>+<{D"*vβXetf ej), va>

Using (3.2) and (3.12), we obtain (3.11). q.e.d.

LEMMA 3.5.

(3.13) ( -2DkDjVk

aV
L

a(9iJ> φlτ)dvol

= ( l2<D"va, e>VΪ(φt,, ψu)

+2<DStva, etχDSjVa, eCAψu, φlt)

+2{(2-(.n/2)KD!tva, e,Xva, β>-(l/4)</?*(β,, ek)ek,

-Q./4)<D»kva, D&βXυβ, etXυa, e,>

-a/4KD?kva, DfyβXvβ, βtXva, ek>

-(\/2)W'kva, e>V>a+a/2KD'e'kva, ekχD»tιυ

-2<R"(ek, φ u eky{ψi}, φlι)+2(n+lKD'e'jva, e>V'a(φtJ, ψtt)

+2<υα, e}Wa(<Pi), ψn)ldvol.

Proof. By (3.2), we have

(3.14) -2DkDjVk

aV'a(ψi}, φH)

= -2{{{D"2va){e1, ek), ek}-(n+l)(D^va, e>

— <Va, ej}}Vl

a(<pij, ψιt).
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By using the Ricci identity we get

(3.15) <(D"2va)(e}, β»), ekyVι

a(ψi}, ψlι)

= {<(D"*va)(ek> ej), eky+<R"(ek, ej)vΰ, eky}Vι

a(ψlJ, φtt).

We compute

(3.16) <(D"*va)(eh, e}), ek>V'a(φi3, ψu)

=D,{<DStvβ, ekWaiψi}, φώ)-Φty«, eyVι

a{ψiJ, ψH)

-Φ'ίkv», eky<D'Jtva, ediψi,, ψlι)-<D'e'hva, eky<va, ey{ψiJ, ψiJ)

-Φ"kva, ekyVι

a(ψi

By the Bianchi identity we get

(3.17) -<DSkva, ekyVι

a{ψlJ, 7 ^ , , ) = (

We compute

(3.18) Φ''kva,

=Dι{φ'e'kva, ekyVί

a\\ψf}-<(D"2va)(ek, β,), ekyV'a\\ψf

'^va, eky<va, ey\\ψ\\\

By using (3.12) and the Ricci identity we get

(3.19) <φ''*va)(ek, βι), ekyV'a

β,, ek)ek,

Hence, by the divergence theorem, (3.13) follows from (3.14), (3.15), (3.16), (3.17),
(3.16) and (3.19). q.e.d.

Therefore, by (2.1), (3.8), (3.11) and (3.13), (3.7) reduces to the following
trace formula.

(3.20) Trq; Qψ

2n+(n(n-l)-i?)/4} |M| 2 +i^(^, ψtι)

+φ'e'iva, D'iιVβyVβV
ι

a{ψk%, ψu)-2φ'ikva, ekyφ'>fva, etXφt,, φu)
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+2{(2-(rt/2)XZ>,Vβ, e>Xva, e>

-a/4KDStva, D&βXvβ, eky<va, e,>

-d/4)<£>» 4vβ, DζtVβ

-il/2)φ'lkva,

t,)-8W2j>a, etXva, e}{ψiJ, ψik)

}, ψ(ι)-<D'^va, eι,XD'e'tva, eCXφi}, <pH)

+ <D'e'ιva, e}XD'J(va, eky(ψlJ, φkl)~\dvol.

4. Instability theorem for Yang-Millf fields
over a d-pinched Riemannian manifold.

Note that if 3=1, then D'=D", hence (3.20) becomes

Since the sectional curvatures of M are δ-pinched, we have

2{5-2n+(l/4Xn(n-l)-Λ)}WψV+Rdψi,,

We can make estimates for each other term of (3.20) as follows:

-2<D'Jtva, ekXD'ίjVa,

(2-(n/2)KD'>kva,

-a/2XD'Jkva,

(l/2)W:kva,

-8<D'e'jVa, βtXva, eXφi}, ψu^S

2<D'ljva, etXD2tvβ, ei>(.φt,, ψu)<nks(δ)\\ψ\\\

Φ'^Va, e,XD'lj)a> ekXψu, ψtΐ)
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Hence we get

(4.1) Tr< v<? f >^2[5

Therefore we obtain

THEOREM 4.1. If n^5 and

(4.2) 5

then M is Yang-Mills unstable.

COROLLARY 4.2. For n^5, there exists a constant δ(ή), which depends only
on n, with l/4<δ(n)<l such that any n-dimensional simply connected compact Rie-
mannian manifold M with δ{n)-pinched sectional curvatures is Yang-Mills unstable.

Remark. As n tends to the infinity, the right hand side of (4.2) divided
by (l/4)(3n2+5n+2) tends to (l/3){l-25/(l+5)}+(l/3)^3(5)+^3(δ)2>0. In our
argument it is not possible to find a pinching constant δ independent of the
dimension of the base manifold M such that M is Yang-Mills unstable.

5. Trace formula for second variations of Yang-Mills fields
over submanif olds in Euclidean space.

Assume that M is isometrically immersed in a Euclidean space RN. Let Φ
denote the immersion. We may assume that Φ(M) is not contained in any
hyperplane of RN. Set <Z7={ί7eCoβ(TM); ί/=grad/ l t for some u<=RN\. Here
fu denotes the hight function on M defined by fu(u)—(Φ(x), uy. Suppose that
7 is a connection on a Riemannian vector bundle (E, G) over M and
is harmonic with respect to 7. Then we recall

PROPOSITION 5.1 ([K-O-T]). For £/=

(5.1) cS7(^)(Z)--{^o(RicΛ/-2i?)}(/7, X)

+ nφ(Av(U), X)+φ{U, Rιz{X))-φ{Rιc{U)y X)

Σ \lF\ely U), φ(el} Z)] + [F7(* t, X), φ{elyΣ

7, μ>φ(elf X).
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(5.2) trvQφ=2\ (φo{(n/2)(AηΛl)-RicΛl+23l}, φ)dvol,

where <R} B, A, η and D1 denote the curvature operator of M acting on Λ2TM,
the second fundamental form, the shape operator, the mean curvature and the
normal connection of Φ, respectively.

Consider a compact Riemannian homogeneous space with irreducible iso-
tropy representation M.

LEMMA 5.2. // 7 is a weakly stable Yang-Mills connection, then we have

(5.3) i j | [ F V , Y), ψ(et, ΛΓ)] + [F7(* f, X\ ψ{eιy 7)]}=0

for every X, Y(=TXM.

Proof. Let K be the group of isometries of M and let k be its Lie algebra
of Killing vector fields on M. Since M has irreducible isotropy representation,
we can fix a /^-invariant inner product on k which induces the /^-invariant
Riemannian metric of M. By [B-L, (10.4) Lemma], for each

=- Σ {[F7(e t, V), ψ{ex, Z)] + [ F v ( 6 i , X), ψ{et,
1 = 1

Hence ^ ^ ^ ^ = 0 . Since 7 is weakly stable, we have %1{ivψ> ivψ)—^ for all
For any B^Ω\gE),

?(B, B),

hence %Ί(ivφ, fi)=0. Thus Sΐ(ivφ)=θ for all FGΞ&. q.e.d.

Consider Φ: M->SN~1{\/n/λι)c:RN be the first standard minimal immersion

of M (cf. [K-O-T]). Since M is an Einstein manifold and Φ is a minimal im-

mersion onto a sphere of radius Vn/λίf if ψ—F1, then (5.1) becomes

(5.4) S1{iuψ)(X)=lψo{{λι-2c)I^2Sl}W", X)

- ^ Σ ^ β f e , ej), uWβJφXe» X),

where c and λx denote the Einstein constant of M and the first eigenvalue of
the Laplace-Beltrami operator of M acting on functions, respectively.

Assume that M i s a compact irreducible symmetric space. Let

(5.5) ΛT,M-/zo+/zi+ - +hp

be the orthogonal decomposition into eigenspaces of 3ί, where h0 is the eigen-
space with eigenvalue 0 and hs is the eigenspace with eigenvalue μs>0. We
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decompose φ^φo+ψi-r ••• +φP along (5.5). Note that Ίφ—0 if and only if
Vφs=0 for each s=0, •••, p. Assume that 7 ^ = 0 . If 7 is weakly stable Yang-
Mills field, then by (5.3) we have

(5.6) ST7(ivφs)=(λί-2c+2μs)(ivφs) for each s=0, - , p .

6. Remarks on Yang-Mills fields over compact symmetric spaces.

First we remark on the stability of the canonical connections over compact
globally Riemannian symmetric spaces. Laquer [La] determined the indices and
nullities of the canonical connection on the standard principal bundle of each
simply connected compact irreducible symmetric spaces. We denote by ι(7) and
n(7) the index and nullity of a Yang-Mills connection 7 (cf. [B-L] for their
definitions).

THEOREM 6.1 ([La]). Let M—K/H be a simply connected compact irreducible
symmetric space associated with a symmetric pair {K, H) and let 7 the canonical
connection of the principal bundle K-*K/H.

(1) // M is a group manifold, then *(7)=1 and n(7)=0.
(2) // M=Sn (n^5), P2(Cay), E6/F4, then ί (7)=n+l, 26, 54 and n(7)=0,

respectively.
(3) // M=Pm(H) (m^l), then *(7)=0, n(7)=10 (m=l) or m(2m+3) (m>2).
(4) // M is otherwise, then /(7)=n(7)=0.

We should note that the values *(7) for M=Sn (n^5), P2(Cay), EJF4 and
n(7) for M—Pm{H) (m^2) are equal to the dimension of the first eigenspace of
the Laplace-Beltrami operator of M acting on functions, and n(7) for M=PX(H)
= S 4 is equal to its twice. It is known that, in the cases of M=Sn, Pm(H),
P2(Cay), the space of all gradient vector fields for the first eigenfunctions on M
coincides with the space of all proper infinitesimal conformal transformations
or projective transformations on M.

We observe the case when M is a non-simply connected, compact irreducible
symmetric space. From [La] we see that if M is a group manifold, then z(7)
= 1, n(7)=0. Suppose that M is not a group manifold. We easily check that
if the canonical connection of the universal covering M of M has /(7)=n(7)=0,
then the canonical connection of M also has /(7)=n(7)=0. When M—Sn, by
virtue of [B-L, (9.1) Theorem], we have /(7)=n(7)=0. From the theory of
symmetric spaces (cf. [He]) we know that if M=Pn(H) or P2(Cay), then M—M,
and if M~EJF4, then M=Eβ/F4 Z8. We show that the canonical connection
of M=E6/Fά Z3 has ί(7)=n(7)=0. From Theorem 6.1 we see n(7)=0. First
we recall the realization of Ee/F4 and EG/Fά-Zs (cf. [Yo]). Consider the Jordan
algebra %={u^M(3, Cay); u*=u} of (real) dimension 27. Let R5*=C21=%C be
the complexification of % with a natural real inner product <, >. Let 5 5 3 =

54; <U, U>=3}, a hypersphere of %c. Set M={weS 5 3 det(tt)=l} and let
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Φ denote the embedding M-*S5*czR54.

PROPOSITION 6.2. (1) M is isometric to a simply connected compact irre-
ducible symmetric space E6/F4 (cf. [Yo]).

(2) The embedding Φ is the first standard minimal immersion of M=E6/F4

(cf. [Oh]).

Now we define a finite group Γ acting freely and isometrically on R54— {0}
and M by

σ(w)=2 (2/3)rVZTw for each MG/2 5 4 .

Then the quotient M—M/Γ is isometric to the symmetric space EJFA-ZZ.
Set K=E6, H~F4 and iV=54. Let R* be the curvature form of the cononical

connection 7 for (K, H). Then we have

ΛTxM=so(TxM)=h0+h1,

where hi is isometric to the Lie algebra of F4, which is the holonomy algebra
of M. Since λ1-2c-^r2μ1<0 by virtue of the result of [K-O-T], from (5.4) we
see that

θ^tiuR"; U=grzdfu for some U<ΞRN}

is an eigenspaces of £ 7 of dimension 54 with a negative eigenvalue. From
Theorem 6.1 we see z'(V)=dim θ. In order to show that the canonical connec-
tion of M has f(V)=O, it suffices to show that if iuR7(Ξθ is invariant by Γ,
then U=0. It follows from the following two lemmas.

LEMMA 6.3. Let V<ΞC~(TM). If

r^vR^ivR7 for each γ^Γ,

then γ^V—V for eoch γ^Γ.

Proof. For any XSΞTXM,

r(/?7(^ricχ), nιx))

hence R1{y*V -ux ) — Vx, X)=0. If we let the canonical decomposition k = h+m
at Λ G M and we use the identification m=TxM, then # V (Z, F ) = - a d m [ Z , F ]
(cf. [K-N]). Thus adm[r*Vrκχ)-Vx, X]=0 for each Xera. Since A = [m, m]
and & is semisimple, ^ F ^ - K ^ ) — V X = 0 . q.e. d.

LEMMA 6.4. L ί̂ U=gmά fu&C°°(TM) for some u<=RN. If γ^Γ-{l) and
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γ*U=U, then M = 0 .

Proof. For each xeM and X^TXM,

>=<*, r(u)>=<u, x>=<x,

hence <X, γ(u)—u}=0. Thus <x, γ(u)—u> is constant in X<ΞΞM. Since Φ(M) is
not contained in any hyperplane of RN, we have γ{u)~u. Since Z7 acts freely
on RN— {0}, we get M = 0 . q.e.d.

Next we remark on weakly stable Yang-Mills fields over a quaternionic
projective space M=Pm(H). Generally let M be a quaternionic Kahler manifold.
The Sί(m) S/>(l)-structure induces the orthogonal decomposition

β\T*M=W0+W1+W2,

where (W0)x, (Wί)x^sp(l)> (W2)x^sp(m) are irreducible S/>(m) S£(l)-modules. The
curvature form F7=FV

O + FX+FJ of a connection 7 on the vector bundle E
over M splits into components F? to End(E)(g)Wt at each point. A connection
7 with F 7 = F ^ (resp. F7=FJ) is called a Z?2-connection (resp. ^-connection)
as in [Ni], or a self-dual connection (resp. an anti-self-dual connection) as in [C-S].
They are Yang-Mills connections which minimizes the Yang-Mills functional
(CCS], [Ni]).

PROPOSITION 6.5. Let E be a Riemannian vector bundle over Pm(H). If 7
is a weakly stable Yang-Mills connection on E satisfying FY=0, then 7 is a B2-
connection {self-dual).

Proof. We may suppose that g is an S/>(ra+l)-invariant Riemannian metric
on Pm(H)=Sp(m+l)/Sp(m)XSp(l) induced by the Killing form of the Lie alge-
bra of S/<m+l). From [K-O-T] we know

(6.1)

Hence by virtue of (5.2), we get

F7)dvol

=2{-l/(m-h2)( (F?, F?)dw/+(m-l)/(m+2){ {F\y F\)dvol),
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Proposition 6.5 follows from this equation. q. e. d.

From the proof of Proposition 6.5, we see that if 7 satisfies the assumption,
then

(6.2) 2 <B(et, e,\ w>(Ve.F
7)(^, X)=Q,

for all u^RN and all X^TXM. Using the properties of the second fundamental
form of Φ and the curvature tensor field of PJJH), we can check that (6.2)
implies that the restriction of F1 to every quaternionic projective line Px{H)c
Pm(H) is always a Yang-Mills field. Hence by (5.6) and (6.1) we obtain that,
for any Z22-connection 7 over Pm(H) and any infinitesimal projective transforma-
tion U on Pm(H)y we have *sv(ιVF7)=0. This means the existence of an in-
finitesimal action of the projective transformation group of Pm(H) on the space
of all 52-connections over Pm{H). In fact, it is known that the projective trans-
formation group of Pm(H) acts on the moduli space of all ^-connections on E.

By (5.4), (5.6) and (6.1) we obtain that the indices /(7) and the nullity 72 (7)
of the canonical connection of M=Sn (n^5), P2(Cay) and EJF^ come from
spa.nR{iuR";Ut=cO}, and the nullities for Af=P1(JBΓ)=S4 and PJJS) (m^2) come
from sρanΛ{*V#Y, iuRΊ ', U^V} and span^zViv?7 t / e Ό ί , respectively. We do
not know whether each weakly stable canonical connection over a compact
symmetric space minimizes the Yang-Mills functional. And it is interesting to
investigate relationships of Yang-Mills fields with holonomy groups and the
classification of vector bundles with Yang-Mills connections satisfying 7 F 7 = 0
over compact symmetric spaces. From results of [B-L, p. 211] and [K-O-T]
we can find gap phenomena for Yang-Mills fields over every compact irreducible
symmetric space which is not locally Hermitian symmetric. The classification
of such Yang-Mills connections may also be useful to establish accurately isola-
tion theorems for Yang-Mills fields over compact symmetric spaces.
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