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A FORMULA FOR ANALYTIC SEPARATION CAPACITY

BY TAKAFUMI MURAI

1. Introduction.

For a compact set E in the complex plane C, f/°°(Ec) denotes the Banach
space of bounded analytic functions in E c =CW{oo} -E with supremum norm
\\ \\H°° The analytic capacity of E is defined by

where f'(^)=\\mz^z{f(oo)—f(z)} [5, p. 6]. The analytic capacity of E at
a^C—E is defined by

c*(α)=sup{|/'(α)| f^H^(Ec\ \\f\\H^l] [10, Chap III].

These set-functions play various important roles in the study of bounded
analytic functions. As a general set-function, we define the analytic separation
capacity of E at α, b^Ec, aφb by

δ(E, a, W=sup{|/(ft)-/(α)| /€=#%£<), l l/llπ-^1} [6, 7].

We easily see that

lim\b\δ(E, oo, *)=

and that δ(E, a, 6)>0 if and only if r(£)>0. Hence 3(£, α, ti) is applicable to
study δ(E) and Cjs(α), and this set-function is important to investigate bounded
analytic functions which separate a and b. The purpose of this note is to show
a formula for δ(E, a, b). Let Jί denote the totality of finite unions of mutually
disjoint analytic arcs. Here an arc is analytic, if it is a portion of an analytic
Jordan curve. For E<=Jl, L\E) denotes the L2 space of functions on E with
respect to the length element \ d z \ . For a bounded function g on E, Mg

denotes the multiplier f^L2(E)->gf£ΞL2(E), and IdE denotes the identity
operator. The operator HE from L\E) to itself is defined by

Jlζ-2|>ε,ζe^ ζ — Z
\dζ\ (h(=L\Ey),
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266 TAKAFUMI MURAI

and the operator HE is defined by HEh—HEh. For the computation of δ(E, a, b\
we may assume that E^J.. (See Proposition 9.) Since δ(E, a, V) is conformally
invariant, we may assume that α, bφ°o. In this note, we shall establish

THEOREM. For E^J( and α, b^C—E, aφb,

δ(E, a, fr)= a (a23a31-a2ίaBS),
det/lo

where A0 is a (3,3)-matrix defined by

flu=l+-[ -^-UJ
7ί J E Z — Ci

• gt\dz\-\,

As application of our theorem, we shall deduce

COROLLARY 1. For Ec.R and a^C—E, Imα^O,

where Imζ is the imaginary part of ζ and R is the real line.

COROLLARY 2. For EC.R and a, b^R—E contained in a component of
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COROLLARARY 3. // E is a compact set on the unit circle T, then
δ(E, 0, oo)=2tan(|E|/8), where \ \ is the 1-dimensionaί Lebesgue measure.

Pommerenke [11] shows that

(i) r(£)=|E|/4 (£c/i).

The method given in [9] shows that

(2)

(See [2], also.) Our corollaries correspond to (1) and (2). In the section 2, we
shall give the proof of our theorem. In the section 3, we shall show a propo-
sition concerning the Hubert transform, which plays an important role in the
computation of capacities induced from the Hubert transform. In the section
4, we shall deduce Corollary 1 from our theorem. Our method is not short,
however, this shows a method to construct the extremum pair (/0, ψQ) (cf.
Lemmas 4 and 6) and this is applicable to compute various capacities. We shall
give another proof of Corollary 1 also; once the extremum pair (/0, ψQ) is
found, a short proof is possible. The proof of Corollaries 2 and 3 will be given
in this section. In the last section, we shall show some applications of our
method. The author expresses his thanks to Professors Suita, Shiba, Yamada
and Masumoto for their variable comments about δ(E, a, b).

2. Proof of Theorem.

In this section, we give the proof of our theorem. Evidently, δ(E, a, b) is
conformally invariant: δ(E, a, b)—δ(F, f(a\ /(&)) if / conformally maps Ec onto
Fc. If a and b belong to different components of E°, then δ(E, a, /?)— 2. Hence
it is essential to study the case where a and b are contained in a component
of Ec. We may assume that this component contains oo. Since δ(E, a, b)—
δ(dE, a, b), we assume, throughout this note, that Ec is connected. Let 2"
denote the totality of finite unions of mutually disjoint analytic arcs and
mutually disjoint compact sets bounded by analytic Jordan curves. For E^<Ξ
and ί^l, HP(EC) denotes the totality of analytic functions / in Ec such that
\ f \ p is integrable on the boundary dE of E with respect to the length element
\dz\. If a component / of E is an arc, then its boundary has two sides. Here
are some lemmas necessary for the proof; Lemmas 4 and 5 are applications of
the Ahlfors-Garabedian method [1], [4] to δ(E, a, b).

LEMMA 4 (Garabedian [4], Lax [7]). Let E<=<3 and a, b^C-E, aφb.
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Then there exists a pair (/0, φ0) of functions such that

in Ec-{a, b}, \ \φQ\\dz\<oof
J dE

*), φQ is analytic

(3)

φQ(z)=—l/(z—ά)+ ---in a neighborhood of α,
φ0(z)=l/(z—b)+ ~ in a neighborhood of b,

|— 1 almost everywhere (a.e.) on dE,

a. e. on dE,

(4) l/o

(5) —
ϊ

where the orientation of dz is chosen so that Ec lies to the left. Moreover, this
pair (/o, φo) satisfies

(6) δ(E, a, b)=f0(b)-

Garabeidan [4] shows an analogous lemma by using the Green's functions
and harmonic measures, and Lax [7] shows this lemma by using the Hahn-
Banach theorem. In this note, we give a sketch of a simplified proof which
shows a relation between /0 and φQ. Without loss of generality, we may
assume that E is bounded by analytic Jordan curves. Let

p\gQ\dz

where g0(z)=l/\(z-a)(z—b)\. There exists p^Hl(Ec\ pQ(a)=pQ(b)=^l which
attains δ*(E, a, b). A variational method shows that

\ I °. pg»\dz\=Q

for all p<^Hl(Ec} satisfying p(a)=p(b)—0. Choosing a point zc in the interior
of E, we put

i—a) }oE\2π(b-a}

Then (7) shows that

.(z-a)(z-b) \dz\
a. e. on dE,j **>-' ( f t_α) ^Γ °̂̂ 7

which yields (3)-(5). Equality (6) is immediately deduced from (3)-(5).
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LEMMA 5. Let E, a, b, gQ and δ*(E, a, ft) be the same as above and let

3**(£, α, fc)=inf{ lb~Jl \ds\φ\*gt\dz\ 0€=#e(E«), φ(a)=φ(bγ=l}.

Then
δ(E, a, b)=δ*(E, a, b)=δ**(E, α, b).

This lemma is deduced from Garabedian's method [4]. In fact, we have
easily δ(E, α, b)=δ*(E, a, b)<δ**(E, a, b). To prove δ*(E, a, b)^δ**(E, α, ft),
we may assume that E is bounded by analytic Jordan curves. Let p0 be the

function attaining δ*(E, α, b). Then (3)-(5) yield that Vp~0 is single-valued,

where a branch is chosen so that V/00(fl)— 1 Putting φo=Vp0> we obtain

δ*(E, α, ft)= | f tΓ f l f |0ol 2 £o d*|^3**(£, α, ft).
Z7Γ J3JE

Consequently, δ*(E, a, b)=δ**(E, a, b\

LEMMA 6. For E^<S, the pair (/0, φo) satisfying (3)-(5) is unique.

Proof. Let (/0*, ^0*) also satisfy (3)-(5). Since

δ(E, a, ft)=

we have —f^ψ0dz=\ψQ\\dz\=—fΌφ0dz a. e. on dE, and hence /0*— /0 a. e. on

3J5, which shows that /0*=/o Let

(8) ^ε**(£, α, fr)=i

Then, by Fatou's lemma and the Pappos median line theorem, there uniquely
exists φε^H2(Ec) which attains δε**(E, a} b) (ε=±). Since

δ(E, α, b)-—δ**(E, α, ft)=min{^+**(£:, α, ft), <L**(E, α, ft)},

the following four cases are possible for the pair (φQ, ψϋ*) :

2+gθ*), (φ-gθ*> φ-gθ*)> (φ+gθ*> φ-gQ*)> (φ-gθ*> Φ\g**},

where g**(z)=-f - ̂ - — . In the first two cases, we have φo—φ0*. Suppose
(z a)(z ft)

that (ψQ, ^o*) equals either the third pair or the last pair. Since
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a pair (/<>, (^0+^o*)/2) also satisfies (3)-(5). Thus V(ψo+ψQ*)/(2gQ*) (—φ*, say)
is single-valued and "either φ*=φ+ or φ*—φJ\ Hence either (ψo+ψo*)/2=ψ0

or (0o+^o*)/2=^o*. Consequently, ψQ=ψQ*. This completes the proof.

LEMMA 7. L0ί E, α, ft ft£ ίΛe sαm£ as in Lemma 4. T/z^n δ(E, a, ft)=
£+**(£, a, b), where δ+**(E, a, b) is the quantity defined by (8).

Proof. Fixing atΞC-E, we put We={b<=C -E\J{a] ;δ(E,a,b}=δs**(E,a,b}}
(e = ±). Then Lemma β shows that ^+UW- = C-£U{a} and W+Γ\W. = 0.
We show that Wε(ε=±) are closed in C— E\J{a}. Let (ftJϊ=ι be a convergent
sequence in W+ such that limn_ooftn (=ft«,, say) belongs to C—E\J{a}. Note that
d(E, a, bao)=\\mn^JS(E> a, bn}. There exists a sequence (φn)n=ι in H\EC} such
that 0n(&n)=l and ^5n attains δ(E, a, bn} (n^l). By an argument of a normal
family and Fatou's lemma, there exists φ^H^E0), φj^b^—l such that

Iiminf3(£, α, M^
n^oo £π JdE

This shows that φ* attains δ(E, a, bo»). Thus b00^W+. In the same manner,
we see that W- is closed. This shows that either W+= C— E\J{a} or W+=0.
If φQ^H2(Ec) attains δ(E, a, b\ we have, by Schwarz's inequality and δ(E, a, b)

This shows that φQ(a)=φ0(b) if ft is sufficiently near to a, which implies
Thus W+=C-E\J{a}, i.e., d(E, α, b)=δ+**(E, a, ft) for all fteC-£U{α}. This
completes the proof.

For h<ΞLz(E), we write

For a pair (c, Λ), ce<7, h<=L\E) and α, b<=C—E, aφb, we write

ιi(c, /oιι..t=( 6~a | t { c + ^ Λ r + i Λ i n g o i
\ 7Γ J^

Using Lemma 7, we show

LEMMA 8. For E^Jl and a, b<=C—E, aφb,

δ(E} a, ft)=inf ||(c, h)\\2

a,b,
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where the infimum is taken over all pairs (c, h), c^C, h<=L\E} such that
c+CEh(a)=c+CEh(b)=l. Moreover, the pair (CQ, /ι0) which attains δ(E, a, b) is
unique.

Proof. For any pair (c, h), c^C, h^L\E\ we have c+CEhςΞH\Ec\
Conversely, for any φ^H2(Ec\ there uniquely exists a pair (c, λ), c^C, h<=L\E)
such that φ—c^-CEh. We see that

c+CEh(z)=c+H'Eh(z)+ih(z) a. e. on dE
az

and dz——dzf if z, z'^dE, zφz' and the projections of z and zf to E are
identical. Hence a simple calculation shows that

— (
jo2π

Thus Lemma 7 yields the required equality. The unicity of the pair (c0, hQ)
is also an immediate consequence of Lemma 7. This completes the proof.

We now give the proof of our theorem. Let (c0, Λ0) be the pair in Lemma
8. A variational method shows that

(9) - {
π JE

for all pairs (c} h), ceC, h^L\E) satisfying

(10) c+CEh(a)=c+CEh(b)=0.

Condition (10) is rewritten as

ϊΛπ}E(z—a}(z—b)

Let

(11) ίo=- (co+HEhQ)go\dz\.
7ΐ JE

Then (9) shows that

-\7Γ J

-\ \h,-gτl

TC JE (.

— a
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J A
r; rr \dz\=Q, we

E(z—a)(z—b)
obtain

(12)
z — a

for some constant q0. Since

-{(Ml/gQHEMgoHEh)hgQ\dz\=\ \HEJE J E

(IdE—Mί/goHEMg0HE) is invertible, i.e., UQ exists. Hence (12) shows that

(13) Ao=c

Substituing the conditions

(13), we obtain

1 Γ 1
)=l, (11) and — \ - - - - rτ-Λ0 |d-2r|=0 by

π JE(Z— a)(z— b)

(14) ^23

where A0 is the matrix in the assertion of our theorem. The matrix AQ is
invertible. In fact, if \c<>*, po*, #0*) satisfies (14), we define /z0* by (13) with
respect to ^CQ*, ίo*, ^o*) Then (c0*, Λ0*) satisfies (9) for all pairs (c, /z),

satisfying (10), which yields that

for all pairs (c, A) satisfying (10). This shows that (cfl*, A0*) attains δ(E, α, ft).
Thus the unicity gives that (c0*, A0*)=(c0, A0). We have

z—a

and hence (pQ—p**)(z— £)+(tf0—qo*)=Q on E, which shows that pQ=p0* and
^o—^o*. Thus ^CQ*, ίo*, ^o*)=ί(^o, ίo, ^o). Since the solution of (14) is unique.
AO is invertible.

Since a pair (c0—1, A0) satisfies (10), we have

(15)
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Hence Cramer's formula yields that

flu, 1, a

273

δ(E, a, b}— \b-a\pQ—
detA> 2ι, 0,

8ι> 0,

(#23031—

Thus the required equality holds. This completes the proof.
Last, we note

PROPOSITION 9. For a compact set E in C and a, b^C—E, aφb, there exists
a sequence (En)^=ί in Jί such that

δ(E, α, b)=ϊιmδ(En> α, V).
n-*o

Proof. There exists a decreasing sequence (Fm)m=ι of compact sets bounded
by mutually disjoint analytic Jordan curves such that E—Γ}m=ιFm. Then an
argument on a normal family shows that δ(E, a, b)=limm^(Fm, a, b). Hence,
from the beginning, we may assume that E is bounded by mutually disjoint
analytic Jordan curves. We express dE as a union of Jordan curves : 9E—
U?Lι/*. Choosing a point zk on each ί k (l^k^m), we define

En=

Since (£«)«=! is increasing and EnCLE, we see that limn^ooδ(EΛ, α, /?) (=β0, say)
exists and δQ<δ(E, a, b). There exists φn^H\Ec

n\ φn(a) =φn(b)=l such that

Let λn=dE\dEn (n^l). Since

we have

for some constant C0 independent of n, and hence

\b-a\
2π
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i.e., (φn)n=ι is bounded in the L2 space of functions on dE with respect to
g o \ d z \ . Let φoo be a weak star cluster point of (φn)n=ι Then φ^ζΞH^E0) and
φ00(a)=φ00(b)^=1. For any compact set K in dE—\J{zk l^ &^m}, we have

—9 \ \φn\2go\dz\ ^δQ as long as KddEn. Letting n tend to infinity, we
Lilt J -fif

obtain —^ \ \φ00\
2go\dz\ <δQ. Since ΛΓ is arbitrary, this inequality holds

with K replaced by dE. Thus δ(E, a, b)^δ0. This completes the proof.

3. A proposition for HE (EdR).

Throughout this section, we assume that E^Jl, EdR. In this case, HE is
called the Hubert transform on LZ(E). Let X(=L2(E) denote the constant
function taking only 1. We inductively define a sequence (#2)£=o of operators
from L\E) to itself by HE=IdE, H%=HEH>%-1 (n^l). Note that the norm of
HE is less than or equal to 1 (n^O). For t^R, \t\<l and h^L\E\ we define
a function ht^L\E) by

00

ht= Σ
n=o

We write

The following proposition plays an important role in the computation of
capacities induced from the Hubert transform.

PROPOSITION 10. Let TE be the inverse operator of IdE—H2

E. Then, for any

(16) Tsh=-J-A+1

(17) H T A——-{

Here are two lemmas necessary for the proof.

LEMMA 11 ([9]). *t=^. ^eχp|(^^τ^)^χ} ( U K D

LEMMA 12. A t= ,2 h+tItHE(hI-t) (h^L2(E\ |ί |<l).

Proof. Note a formula

(18) HE(uHEv+HEu v)=HEu HEv-uv (u, v^
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In fact, HE(uHEv-\-HEu v)-\-i(uHEv-\-HEu v) and (HEu+iu)(HEv+iv) have analytic
extensions to the upper half plane, and hence g—HE(uHEv-}-Hf

Eu v)—(HEu HEv—uv)
has an analytic extension to the upper half plane. Analogously, g has an
analytic extension to the lower half plane. Thus g— 0.

Let At* denote the function in the right-hand side of the required equality.
We have (IdE-tHE)ht-h and

(19) (IdE-tHE}h^

Lemma 11 shows that Xt%-t=l/(l+t2). By (18) and Xt-tHEIt=I} we have

(20) -f8#*MK/α-0}^

1 i ,2 •*•*£,'" <"« ί, * -* /i \' «"* - t / i

Substituting ~tzHE{ItHE(hI-t}} by the last quantity in (20), we have, from (19),
(IdE—tHE}ht*=h. Thus (IdE—tHE)(ht — ht*)=Q. Since the norm of tHE is less
than 1, IdE—tHE is invertible, and hence ht=ht*. This completes the proof.

We now give the proof of Proposition 10. Since the adjoint operator of
HE equals —HE, TE exists. Let TEιt be the inverse operator of IdE—tzH2

E

(0<ί<l). Then

_ 1

Lemma 12 shows that

Letting t tend to 1, we obtain (16). Lemma 12 shows that

Letting ΐ tend to 1, we obtain (17). This completes the proof.

In this position, we show two lemmas used in the proof of our corollaries.

LEMMA 13.

(21) f«,=/(*,-JO 0'=±D,

(22) CElj(z)
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where ΦE(z)— expi-r-l - r
14 JE x—z J

Proof. Since lt-tHElt=l (|ί |<l), we have (21). Since cos^ =sin4
_ Λ Λ

1/Λ/T, we have

=HEZ1(x)±iXl(x)=\imCEX1(x±iε) a. e. on E.
£ 4 - 0

Since both ΦE(z)—l and CE^\(z) vanish at infinity, we have ΦE(z}—l~CElίl(z).
In the same manner, we see that (22) holds for /=— 1. This completes the
proof.

LEMMA 14. We write

—(Zi—%_!), X+^—^

For dϊΞR, dφQ, we put

σ _lf dx

d~πJE xz+d

Then

(23) CEX-(di)=Ad-l,

(24) CEX+(di)—Bd,

I f 1f)c(\ \ _____ y Aγ
(Z5) π}ε x*+d* Λ'dX

(26) ^^—^X^dx

(27) ^ j_ _,^t ^̂ -

(28) -(

. By (22), we have (23) and (24). Since

1 =-14.1, — i I ,
x2+d2 2dz \.x — dι x + dΐ)

(23) and (24) yield (25) and (26), respectively. By (21), we have
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and HEX+=X.. Thus (25) and (26) yield (28) and (27), respectively. This
completes the proof.

4. Proof of corollaries.

We now give the proof of Corollary 1. Our method shows a method of
the construction of (/0, ψo). Let E be a compact set on R and let a^C—E,
Imα^O. Translating and rotating the coordinate axes if necessary, we may
assume that a is purely imaginary and Imα>0. Put a^di. Then the required
equality is rewritten as

(29) δ(E, di, -di)-

There exists a decreasing sequence (En)%=1 of compact sets on R such that
En^JL (n>l\ E=Γ\n=ιBn. Then we have δ(E, di, -di)-=ϊιmn^d(En, di, ~di\
Hence it is sufficient to prove (29) for En. From the beginning, we assume
that £ejϊ. For the proof of (29), it is_better to start from (12) than to use
the formula in Theorem directly. Since HE—HEy (12) is rewritten as

(30) h0-(

Since

rr
H*

- 9, γ i.Λ P.v\ I—1 -- -rr^2.dι(x + dι)π JE( t—x tΛ-di

2di(x-di) l E

1
2di(x+di)

°A ' 2di(x-di)

1
2di(x+di)

we have

-CE(cQ+HM(~di),
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and hence

(31) fto=CoTEHJ

where

Since H2

E

n+l is an anti-symmetric operator, we have \ H2

E

n+1%dx=Q (nΐ>0). Hence
J E

I f I f
(32) —\ I1dx=—\ X.ίdx (=tϋ, say).

By (16), (21) and (32), we have

+ώXι)-χ.1f«(.+ίίi)χ1)}

t-x

^

Analogously,

T^.-di
Note that

Q— — \ — 2 (c0+HMdx — \ - -j-:(
πjE x,2jrd2 2d^π jsx — di

Thus (31) yields that

(33) hQ=c0X--r0

ciX+, say).
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We determine c0 and c'0. By (23) and (24), the condition c0+CEhQ(di)=l yields
that

(34) c0+(Ad-l)c0+Bdc'0=l.

Condition cQ+CEhQ(-di)=l implies { h0/(x2+d2)dx=Q, and hence, bv (25) and (26),
JE

Solving (34) and (35), we obtain

/o/?\ •*-* d •*-* d f *~* d •**• d
( } CQ~~~AdBd-ΆdBd'

 CQ~~ AdBd-'ΆjBd~'

Recall (11) and (15). By (27), (28) and (36), we obtain

δ(E, di, -di)=2dpQ= f
7ϋ JE

β)-
dx

Since

we have (29). This completes the proof.

From now we determine (/0, φQ). A simple calculation yields that

(37) φQ(z}= 2?*'dt φ«(zY

di {rϊ

where rd—\ΦE(dϊ)\ and βd——\ d/(x2+dz)dx. Condition (5) shows that
4 JE

-rfQφodz—φ0\dz\ a.e. on dE. Hence we have
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which shows that

for some constant u0. We can compute

determine u0. Then
2π JOE ζ—z

- φ 0 \ d ζ \ . Using (4), we

Once (/o, ψo) is found, the proof of Corollary 1 is simplified. In fact, we
have

2ττ
(by (3))

(by (4))

(by (5))

which gives (6). Computing f0(di)—f0(—di\ we obtain the required equality.
Next we prove Corollary 2. Without loss of generality, we may assume that

and b>a. We put

, ( v rgψjλz,
JQ\Z)—£Q r-\(h (-\

\dz—fQ(b)—/0(α)

where

E

(b-a)dx

(c=a, V),

Note that rbφra. We easily see that (/0, ^0) satisfies (3)-(5). Thus (β) shows
that

l 1
IKE, a, ft)=/i(W-/o(β)=..{^=l - 1=
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κ l/2

281

f\

=2 tanh- ' α , δ =2tanh115 (b-a)dx

This completes the proof of Corollary 2.

Remark 15. In the case where Imα^— Imb, the computation of
is complicated. An estimate from below is given by

*(F n ΛW-™ 2r{ΦE(VΦE(aY^ΦE(bY*ΦE(a}}
O\J2f, α, 0)^,

α,

r^o

To see this, we take

Then /reΞ/f°°(Ec) and H/rll^^l. Hence

δ(E, a, &)kmax|/ r(fe)-/ r(α)|,
rέO

which yields the required inequality.

We now deduce Corollary 3 from Corollary 1. Let EC.T. We neglect
the case where E=T. (Evidently, δ(T, 0, oo)=2=2tan(| Γ|/4).) Hence, rotat-
ing the coordinate axes if necessary, we may assume that Eφ — l. Let g(z)=

, then £(0)= —1/2 and g(<χ>)=i/2. We have, with F-{g(z}].

ω(—i/2, F)—ω*(0, E)=-^~\E\,

where ω(— i/2, F) is the harmonic measure at —i/2 of F with respect to the
lower half plane and ω*(0, E) is the harmonic measure at 0 of E with respect
to the unit disk. Thus Corollary 1 and the conformal invariance show that

δ(E, 0, oo)= ί/2f //2)^

=2tan|jω(-ί/2, F)}=2tan(|£|/8).

This completes the proof of Corollary 3.

5. Application.

In this section, we show some applications of our method. The Ahlfors-
Garabedian method yields that, for EdR and z^C—E,
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r(£)=inf{!( (\i+Hsh\'+\h\*)dx;

CE(z)=mf{-(
(πjE x—z

For αeC, a compact set E on R and a measure p supported in C—E, we de-
fine a capacity by

, α, y)=iι

where Cv(x)=—(-^—dv(z). Notice that γ(E)=γ(E, 1, 0) and c^(z)=r(EfOfπδ,\
π J z — x

where δz is the Dirac measure supported at z. We show

PROPOSITION 16.

r(£,α,ιO=l α l

+ J.ff 1 sinh{|( ^ZΪM
π2JJz— ζ 14 J^(Λ;— z)(x— ζ

ί/ze integrand in the last term means -r-\ (%— z)'2^ ι/ 2r=ζ.
4 j£

Proof. There exists k^L\E} which attains /*(£, α, v). A variational
method shows that, for any

If {(a+Cv+HEko)HEh+kQh}dx=0,
π JE

and hence (IdE-H2E)k^HE(a+Cv\ i.e., k,= TEHE(a+Cv\ Thus

H --
7Γ

= — f
π J^

π JE ( π JE ί π JE

/ι+Λ+/8, say.



ANALYTIC SEPARATION CAPACITY 283

1 Γ
(Here Reζ is the real part of ζ.) Since — \ TEΊLάx— E|/4, we have /ι=

π JE

|α | 2 | £ | /4 (cf. [9]). Equality (16) and Lemma 13 show that, for z^C-E,

(39)

1 - + -2(x-z} 2 ,=±ij x-z

2(x-z] 2,=±!J x-z

E

2 x-z 2 x-z '

Using (22) and (39), we have, with ΛΓ=(the support of v),

(40) '*=

=Re{ Σ -(
lj=±ι π JA:

=Re{^( sinh(l(
1 7Γ JΛ: \ 4 J

Equalities (16), (22) and (39) show that, for z,

=^2J

= 2(z-ζ").

_ 1

~ 2(?-ζ).

E(x—z)(x—

— ς;

^— ζ

Since the first quantity in (41) is continuous in C— E as a function of z, we
have
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x — z)2

Thus

(42) ^=
I

Consequently, by /!— ] α | 2 ] E|/4, (40) and (42), we obtain the required equality.
This completes the proof.

For E^Ή, &E(z, 0 denotes the Szegό kernel function with respect to
H\EC), i.e.,

/(*) = ( KE(z,Qf\dζ\

The Szegδ kernel function is closely related to γ(E) and CE(Z). We here note
the following proposition (cf. [2]).

PROPOSITION 17. Let Ec.R. Then

Uz, 0 = ^ cosh !

Proof. We begin by showing that

(43) KE(z,z)^~\φE(z}\+~cE(z) (z(ΞC-E),

-where ψE is the Garabedian function with respect to γ(E), i.e., the function in

.H\EC) satisfying ^oo)=l and γ(E)=-^-[ \φ,\ \dz\ [5, p. 19].
Δ7ΐ JdE

It is known the *JψE (=φε> say) is single-valued and

(44) φE(z)=2πγ(E)R(z,™), Jfcoo, 55)= \ [5, p. 22] .

For any z^C—E, there exists a pair (fz, φz) of functions such that

(45) I
{ φz(°°)—0, lim (ζ—z)φ g (ζ)=l ,

ζ-**

(46) |/, =1, i/,#,dζ=#,|dζ| a.e. on 3^ ([3, Chap. VII]).
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Then we have

(47) cE(z)=f'z(z) -

For any f^H\Ec\ we have, by (45) and (46),

— 1 — ̂ — -I φzdζ.where c2— 1 — ̂ — -I φzdζ. Hence

(48) (̂z, ζ)=£:A(oo, 0+ ~fz(ζ)φz(ζ).

Letting ζ tend to infinity in (48), we have, by (44),

Letting ζ tend to z in (48), we have, by (47),

KE(z, 5)=c,£jϊ(o

z9 ~)|J

Thus (43) holds. It is known that

(49) φE(z)

Let

1

Since
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(43) shows that F(z, *)=0 (ztΞC-E), which yields F(z, ζ)=0 (z, ζeC-£), by
the theorem of identity. Thus (41), (49) and γ(E) =|E|/4 yield the required
equality. This completes the proof.

The following extremum problem is the special case of the Pick-Nevanlinna
interpolation problem :

η(E, z ) = s u p { \ f ( z ) \ ; f ί Ξ H \ E c ) , U/U^l, /(oo)=0}

Evidently, \fskz)\< η(E, z) and the equality does not hold in general, where fE

is the Ahlfors function with respect to γ(E\ i.e., fE^H°°(Ec\ \\fE\\H°°^l, T(E)=
fΈ(°°) [5, p. 18]. If EdR, then the Ahlfors-Garabedian method shows that

7Γ J E I X — Z

Thus our method enable us to compute η(E, z) in the case of EC.R. A calcula-
tion shows that

(50) ?(£,*)=-( k0dx
TC JE

with the solution k0^L\E) of

(51) (IdE-M0HEA4-Q

lHE)k0=τ0 \x—z\

In fact, by a variational method, we obtain

η(E9 z)=-
π JE

with the solution &0* of (M0—HEM0HE)k0*=HEτ0. Let k0=(l^HEk0*)τo. Then
y^o satisfies (51), which gives (50). If z<=R satisfies z<min{;*; x<^E}, then (50)
and (51) yield that

The extremum pair with respect to η(E, z) is given by

Our method works for more general extremum problems. As an example,
we study

S(E,A9 W0-s

where EcC, A={ak}ϊ=ίdEc (akφa3, kφj) and W={wk}^ldC. In the special
case, we can compute δ(E, A, W). We show
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PROPOSITION 18. For EdR ana d>0, let (/0, ψ0) be the pair defined by (37)
and (38). Suppose that A={ak}

2

k^c:C-E and W={wh}l»l (n^2) satisfy a,=az

=di, a2j-1=ά2j (2^/^w), Σί=ι^*=0 and wk equals the residue of φA at ak

l^k^2n, where

Then

δ(E, A, W)=

Proof. Let

Then the pair (fAί φA) satisfies

Since

we have

έ—0, li

a.e. on

)= sup
f 2ri i/;,

Σ -=^
jSEk=ίz—

= Σw*/Λα*)= Σ wkf,(ak)

which gives the required equality. This completes the proof.

REFERENCES

[1] L. AHLFORS, Bounded analytic functions, Duke Math. J. 14 (1947), 1-11.
[ 2 ] W. BAKER II, Kernel functions on domains with hyperelliptic double, Trans. Amer.

Math. Soc. 231 (1977), 339-347.
[ 3 ] S. BERGMAN, The kernel function and conformal mapping, Amer. Math. Soc.

Colloq. PubL, New York, 1950.



288 TAKAFUMI MURAI

[ 4 ] P. GARABEDIAN, Schwarz's lemma and the Szego kernel function, Trans. Amer.
Math. Soc. 143 (1949), 187-200.

[ 5 ] J. GARNETT, Analytic capacity and measure, Lecture Notes in Math. 297, Springer-
Verlag, Berlin, 1972.

[ 6 ] D. A. HEJHAL, Linear extremal problems for analytic functions with interior'side
conditions, Ann. Acad. Sci. Fenn. 586 (1974), 5-36.

[7] P.D. LAX, Reciprocal extremal problems in function theory, Comm. Pure Appl.
Math. 13 (1955), 437-453.

[ 8 ] T. MURAI, A real variable method for the Cauchy transform, and analytic capa-
city, Lecture Notes in Math. 1307, Springer-Verlag, Berlin, 1988.

[ 9 ] T. MURAI, The power 3/2 appearing in the estimate of analytic capacity, Pacific
J. Math. 143 (1990), 313-340.

[10] L. SARIO AND K. OIKAWA, Capacity functions, Springer-Verlag, Berlin, 1969.
[11] Ch. POMMERENKE, Uber die analytische Kapazitat, Arch. Math. 11 (1960), 270-277.

DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCE
NAGOYA UNIVERSITY
NAGOYA, 464
JAPAN




