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ON SELF-HOMOTOPY EQUIVALENCES

OF COVERING SPACES
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§ 0. Introduction.

Let X be a G-space and we denote by KX the space of continuous maps
from K into X endowed with Compact-Open topology. Since a G-action on the
space KX is naturally induced we may regard the path-connected components
of KX, π0(KX), as a G-set. Then we are interested in the isotropy subgroup
G</> at the homotopy class of a map / : K-+X. This relates to othor problems
as follows:

(1) When K is considered as a trivial G-space a map / is equivariant up
to homotopy if and only if G</>— G, namely / is a fixed element.

(2) Since the G -action on X is given by a continuous map Φ : G-^XX we
have an induced homomorphism Φ* : G-*ε(X\ the group of homotopy classes of
self-homotopy equivalences. Then G<lx> is just the kernel of Φ.

(3) Of course the determination of G</> for all / gives us some informa-
tions on the structure of the set πQ(KX).

As the first step of our program, in this paper we are mainly concerned
with the case of covering spaces and their deck transformation groups. Then
there are a few points of view about categories:

(1) The category of 0-connected CW-complexes and maps of base-point free.
(2) The sub-category of fibre-preserving maps.
(3) The sub-category of equivariant maps.

We work in these categories to investigate the kernel of Φ* : G-^ε(X). As
results, we obtain some exact sequences for a regular covering p : X-* Y with
its deck transformation group G as follows :

(1) {1}->ΓCY, Y;

(2) { l }

(3) {3}

(see the context about notations)
For example, let p : Rn-+ Y be a universal covering and G be the group
, *)> then we have an exact sequence
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{1} — > Z[G] — > G — > εF(Rn) — > Aut. G — > {1} .

§ 1. Kι(X, *)-action on the set [/ί, X~\Q

First we recall a notion from the homotopy theory [5], [8]. Let us denote
by [/£, Z]0 the set of homotopy classes of base-point preserving maps. Then,
for every loop ω of X at * and a base-point preserving map / : K-*X, there
exists a map φ : IxK-^X which is an extension of the map

Since the homotopy class of the restriction of φ on IxK depends on only
homotopy classes of ω and / this defines an action ω* of πλ(X, *) on the set
IK, X~]Q. On the other hand this action can be reformulated as follows :

Let p : KX-+X be the fibring defined by />(/)=/(*). Clearly the fibre over
* is the space of base-point preserving maps, {K, X}0, and we have the part of
the homotopy exact sequence

9 *) — -> π 0 ( { K , X } 0 ) — >
ί* 3/

Then it holds 3/(ω)=α>*(/).

Since it is clear that a loop ω is contained in the image of p* if and only
if there exists a map: SlxK-+X of type (ω, /) we have

LEMMA 1.1. ω*(f)=f holds if and only if there exists a map: S^K-^X of
type (ω, /),

Here we note a property of the ^-action above which easily follows from
the definition.

LEMMA 1.2. For two maps f : (X, *)->(7, *) and g:(Y, *)->(Z, *) we have

r*te/)=r*(£)/ ond 5r*(ω)*(5r/)=^(ω*(/))

where τ and ω are elements of π^(Yy *) and πι(Z, *) respectively.

For example we prove

PROPOSITION 1.3. If f : ( Y , *)-»(̂ , *) zs α homotopy equivalence then ω*(/)
is fl/s6> α homotopy equivalence for any ω of π^X, •*).

Proof. First it is shown that ω#(lχ) is a homotopy equivalence because we
have
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and similarly α>#(lz)(ω"1)*(ljr)=ljE . Secondly, let g be a homotopy inverse of /.
Then we have

and

and Thus it follows from the first case that ω*(/) has a right and left
inverse respectively and hence α>*(/) is a homotopy equivalence.

As an example we consider the case of K—X and f—lx in the based
category. Then the exact sequence Sl is turned into the sequence

S2 : π,(XX, lx) — > π,(X, *) — > ([*, *]0, lz) — > ([X, X], lz) — ̂  {!*} .

Now we define a multiplication in the set \_X, X~\ by the composite of maps,
which makes the set a semi-group with lx as unit. Since we have

ω*(r*(lτ))=^^^

the following lemma holds.

LEMMA 1.4. 9 is homomorphic in the sequence S2.

Since, for a class h of a homotopy equivalence: (X, *)— KX, *)> ω*(/ι) is also
a homotopy equivalence the sequence S2 is transformed by Proposition 1.3 into
an exact sequence in the category of groups and homomorphisms

S3 : πι(XX, lx) —> π,(Xf *) — > ε0(Z) — ̂  ε(X) —+ {lx}

where εQ(X) denotes the group consisting of invertible elements of \_X, X~]Q.
Now we define a (normal) subgroup of π^(X9 *) by

Γ(X)={ω \ there exists a map: S^X-tX of type (α>, lx)} .

LEMMA 1.5. AX) is contained in the centre of π^X, *) (see £αge 843 of [2]).

. For r of π^X, *) and ω of Γ(Z) a map: S'XSWX of type (ω, τ) is
given by the composite SίXSί-^S1XX-^X. Hence Whitehead product [τ, ω] is
trivial, i.e. τω—ωτ.

Since we know 9"1(ljr)=/T(A') from lemma 1.2 we have

THEOREM 1.6. There exists an exact sequence

{1} — ̂  πι(X, *)/Γ(X) -̂  ε0(X) — ̂  e(X) — ̂  {1} .

Thus Theorem 1.6 and lemma 1.5 give

COROLLARY 1.7. // the centre of πι(X, *) is trivial we have an exact sequence
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{1} — > π,(X9 *) — > εQ(X) — > s(X) — -> {1} .

As another example, let Pm be the pseud-projective plane SlUme2. Since it
follows from a cohomological considration that Γ(Pn) is trivial we have a short
exact sequence ([1], [4])

{1} — > Zm — -> βoCY) — * e(X) — > {1} .

§2. Regular Covering spaces.

In this section our argumrnt is related to the paper [7]. Let p: X-*Y be a
regular covering, i.e. p^π^X, *)) is a normal subgroup of ττι(Γ, *) and Let G
be the deck transformation group of p. Then for any locally compact and locally
path-connected Hausdorff space K we have

LEMMA 2.1. The naturally induces map pκ : KX-+KY is a fibre space whose
fibre over pf is Gf for any map f : K-+X where the action of G on KX is given
by GxKX-+KX:(g, h)^gh.

Consider a part of the homotopy exact sequence of pκ

St : πι(KX, f) — ̂  πι(KY, pf) — > (G, *) — * π*(KX, f) — > πQ(KY, pf)

for a map / : K-+X where we identify Gf with G. Then a standard argument
gives

LEMMA 2.2. The boundary π^KY, pf)-+(G, *) is homomorphic, and the cor-
respondence (G, *)-*π0(KX, f) is naturally induced by the action of G on KX.

Now consider the following commutative diagram obtained from fibrings

{1} — > π,\KX9 /) — > π,(KY9 pf} — > (G, *) — •

I I 1 1
{1} — > πι(X, *) — > ^(F, ί/) — >(G, *)

and use the following notation for a map h : (A, *)->(£, *)
{ω|ωe7Γι(jB, *) and there exists a map S^A-^Z? of type (ω, A)}.

Then, using lemma 2.2, we can easily obtain

PROPOSITION 2.3. Let p : X-*Y be a regular covering whose deck transforma-
tion group is G. Then G</> is isomorphic to Γ(K, Y:pf)/Γ(K, X: f)

For a regular covering p: X-*Y we have as applications of PROP. 2.3
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COLLORARY 2.4. There exists an exact sequence

{1} — Γ(K, Y: pf}/Γ(K, *:/)--» π\Y, *) —> π,(X9 *) — > {[#, *], /}

Since Γ(X, X: lχ)=Γ(X) (see § 1), as a special case, we have

COLLORARY 2.5. There exists an exact sequence

{1} -̂  TO F : />)/Γ(*) — > G — e(*) — > {[*, F], />} .

As another application we have

COLLORARY 2.6. Λ raα£ / : Sn->X(nl^2) is G-equivariant up to homotopy if
and only if all Whitehead products [π^Y, *), pf~\ vanish.

Let p: X-*Y be a covering space which is not necessarly regular. Then,
noting p(k)~\pf)=Gf, the sequence S4 turns out the sequence,

/) — -> (G/,

which relates to other sequences as follows:

{1} — > iTiGffX, /) —^ πι(KY, pf)

{1}—^ ffΛ*,*) — -* ^(F, *)

I I
{1} — > {[#, Z]0 7} —> {

Let denote by Ntf^X, *)) the normalizer of TT^^, *) in π^Y, *) and
Γ, F: /) be the intersection Γ(/Γ, YipfinNfrάX, *)). Since G is isomorphic

to N(πι(X, *))/πι(X, *), using the above diagram and argument similar to the
case of regular coverings we can obtain the following

PROPOSITION 2.7. Let p : X-+Ybe a covering space with its deck transforma-
tion group G and f be a map (X, *)-»(F, *)• Then G</> is isomorphic to
Γ(K, Y : p f ) / Γ ( K , X : f ) .

§ 3. Orbits (fibre)-preserving maps.

For a regular covering p:X-*Y we denote by F(X) the space of orbits
preserving maps, i.e. /: X-+X satisfying p f ( g x ) = p f ( x ) for all x,g. Then we
have the pull-buck diagram of fibrings derived from the covering
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F(X) — > XX

YY — >XY

where YY-+XY is given by composite X-+Y-+Y. Since we may consider G as
the fibre q~l(lγ) we have the commutative diagram of a part of homotopy exact
sequences

π,(XX, 1*) — > πι(XY, p) — > (G, *)

t t t
γ] — > (G, *) —

Then, as the same as the case of the upper sequqnce, we can know that
the lower sequence is an exact sequence of semi-groups and homomorphisms,
We denote by εF(X) the group consisting of invertible elements of πQ(F(X), lχ\
and obtain the following diagram from the above one

π^XY, p) —> (G, *) — > ε(X)

t ί i
r) — > (G, *) — > εF(X).

We define subgroup of π^X, *) by

ΓF(X}—{τ I there exist an orbits-preserving map S1xX-^X of type (τ,

PROPOSITION 3.1. The image of the boundary π^YY, 1Y)-*(G, *) in the lower
sequence is isomorphic to Γ(Y)/ΓF(X}.

Proof. The proof follows from the argument analogus to PROP. 2.3 and
the diagram,

{!}—>*!(*,*)—> π,(Y9 *) — >(G, *)—>{!}

I t 1
y) — ̂  (G, *) .

COROLLARY 3.2. The image: π^YY, 1F)->(G, *) is contained in the center
of G.

Proof. For ω of π^Y, *), assume that there exists a map: S'XΓ-^F of
type (ω, lr). Then for any a of π^Y, *), a map: S^S1-^^ of type (α>, <;) is
given by composite S1XS1->S1X F->F. Hence Whitehead procuct [α>, <r] is
trivial, i.e. ωσ—σω. Since π ι(F, *)->G is onto the proof is completed.

Example 3.3. Let X-*Y be the universal covering. If the centre of

πι(Yf *)=rG is trivial (e. g. G : simple) then εF(X) contains π^Y, *) as a subgroup.
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Next we consider the homomorphism q. : π0(F(X\ lx)->π0(YY, ly) induced
by the projection q. Let us denote by L(Y) the image of q. and by εL(Y) the
group consisting of invertible elements of L(Y).

LEMMA 3.4. The homomorphism εF(X)->εL(Y) is surjective.

Proof. Consider the commutative diagarm

f:X— >X

and let g be a homotopy inverse of /. Since we may assume teat / and g are
base-point preserving maps the following equalities hold for a loop ω at *

Thus we have g*p*πι(X, *)~p*πι(X, *) from the normality of p^π^X, *)
in πι(Y, *), and this means that g is lif table, i.e. there exists a map g: X~->X
such that gp~pg. Then, from q^(fg)~ lγ and exactness of the sequence, we
can know that / is invertible in πϋ(F(X), l χ )

Now combining PROP. 3.1 with lemma 3.4 we have

THEOREM 3.5. For a regular covering p: X-^Y there exists an exact sequence

Example 3.6. For the universal covering jf> : X-+Y we have an exact sequence :

Example 3.7. Let /> : βn->y be the universal covering and let G be πι(F, *).
Since it can be easily shown that the center of G, Z[G], is isomorphic to A 30
and that eL(F) is also isomorphic to AUT. G we have an exact sequence

{1} — > Z[G] — > G — > eXΛn) — > AUT. G — > {1} .

Especially if G is abelian we have an isomorphism εF(Rn)^A\JΎ. G.

§4. Equivariant maps.

Since equivariant maps are a kind of typical orbits-preserving maps we shall
study the space of those maps, which is denoted by Eq(X}.

First by James's result (Theorem (2.1) of [2]) we have a commutative
diagram of fibrings
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Z[G] — > Eq(X) — > YY

I I 1
G — > F(X) — > rr.

Remark. This diagram contains an easy proof of Corollary 3.2.
Define a subgroup of πι(X, *) by

/T

G(^')='{r I there exists an equivariant map: S1xX-+X of type (r, Ij )}

Then using the diagram above and argument analogus to the preceeding sec-
tion we have

PROPOSITION 4.1. There exists an exact sequence

{1} —

where εG(X) denotes the subgroup of π0(Eq(X)) consisting of invertible elements,
i. e. homotopy classes of self-homotopy equivalences in the equivariant category.

Now we prove

PROPOSITION 4.2. The homomorphism : εG(X)->εF(X) is injective.

For the proof we note

LEMMA 4.4. Let Xk be a properly discontinuous free G-space (k — 1, 2} and f
be a map- X^Xz such that pzf(gx)=p2fto where pk : Xk-*Yk is the projection
onto the space of orbits. Clearly f defines a correspondence p / : GxXl-^G by
f(gx)—pf(g, x)f(x). Then pf is continuous.

Proof of Proposition 4.2. Let / be an equivariant map: X— *X and H be a
homotopy between / and lx in the space F(X), i.e. H: IxX-^X satisfies

H(0,x)=fW, H(l,x)=x and pH(l, gx)=pH(t, x).

Applying lemma 4.3 to the case of Xi—IxX, XZ=X, //defines a continuous
map p : IxXxG-*G satisfying

H(g(t, Λ))=H(ί, gx)=p(t, x, g)H(t, x).

Since G is discreate we know p ( t y x, g)=p(Q, *, g) for all t and x. On the
other hand, from equalities:

XO, *, £)/(*)=p(0, *, g ) , H(Q, *)=ff(0, £*)=/(**)=*/(*)

it follows p(Q,*,g)=g. Thus we have H(t,gx)=gH(t,x), which means H is an
equivariant homotopy between / and lx. This completes the proof.



SELF-HOMOTOPY EQUIVALENCES 239

Now let /: X-+X be a map satisfying pf(x)= p(f(gx)\ i.e. f^F(X). By
lemma 4.3 there exists a continuous map pf : GχX-*G with f ( g x ) — p f ( g t x ) f ( x ) .
Again, since G is discrete this turns out a correspoudence

pf*:G—>G with f ( g x ) = p s * ( g ) f ( x ) .

LEMMA 4.4. pf* is an endmorphism of G, and pfl*=pf2* if fl is homotopic
to /2 in the space F(X).

Proof. The first follows from

and the second is easily shown by an argument anaolgus to the proof of
Proposition 4.2

Thus pf* gives another correspondence

l p - ] : π Q ( F ( X ) } — > End. G

defined by [/0](/)=/o/*.

LEMMA 4.5. [/o] is homomorphic, and hence this induces a homomorphism :
. G, whose kernel is isomorphic to εG(X).

Proof. Let fk : X-^X (k—l,2) be maps in the space F ( X ) . Then equalities

^/ΛsX/iAX*)^

gives the proof.

Thus, from lemma 4.5 and Proposition 4.2, we obtain

PROPOSITION 4.6. There exists an exact sequence:

{1} — ̂  ε0(X) —> εF(X} — >Act. G .

In general it seems to be difficult to obtain some characterization of the
image : εF(X)->Aut. G.

Remark. There is another interpretation of the homomorphism [p] above,
namely consider two covering spaces with base point as follows:

G* — ̂  (*,*) — ̂  (F,*)

G/(*)— >(X, /(*))— >(K, /(*)).

Then we have a commutative diagram :
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Pf*

Example 4.7. If /2n-»Γ is a regular covering and π^Y, *) is abelian then
eCR") is trivial (G=^(r,*)) (Example 3.1 of [6]).
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