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§0. Introduction.

Let X be a G-space and we denote by KX the space of continuous maps
from K into X endowed with Compact-Open topology. Since a G-action on the
space KX is naturally induced we may regard the path-connected components
of KX, mo(KX), as a G-set. Then we are interested in the isotropy subgroup
G{f) at the homotopy class of a map f: K—X. This relates to othor problems
as follows:

(1) When K is considered as a trivial G-space a map f is equivariant up
to homotopy if and only if G{f)>=G, namely f is a fixed element.

(2) Since the G -action on X is given by a continuous map @ : G—XX we
have an induced homomorphism @, : G—¢(X), the group of homotopy classes of
self-homotopy equivalences. Then G(1,) is just the kernel of @.

(3) Of course the determination of G{f) for all f gives us some informa-
tions on the structure of the set m (K X).

As the first step of our program, in this paper we are mainly concerned
with the case of covering spaces and their deck transformation groups. Then
there are a few points of view about categories:

(1) The category of 0-connected CW-complexes and maps of base-point free.

(2) The sub-category of fibre-preserving maps.

(3) The sub-category of equivariant maps.

We work in these categories to investigate the kernel of @y:G—e(X). As
results, we obtain some exact sequences for a regular covering p: X—Y with
its deck transformation group G as follows:

) =X, Y5 p)/T(X)—G—e(X)
@) AU}=T (/I X)>G—ep(X)—er(YV)—{1}
B B1=I'(V)/I'e(X)>Z[GI>ea(X)

(see the context about notations)
For example, let p: R®—Y be a universal covering and G be the grour
x,(Y, *), then we have an exact sequence
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{1} — Z[G] —> G —> ex(R™) —> Aut.G —> {1}.

§1. =m,(X, *)-action on the set [K, X],

First we recall a notion from the homotopy theory [5],[8]. Let us denote
by [K, X1, the set of homotopy classes of base-point preserving maps. Then,
for every loop w of X at x and a base-point preserving map f: K—JX, there
exists a map ¢ : IXK—X which is an extension of the map

o JUf IXxUOXK — X.

Since the homotopy class of the restriction of ¢ on 1XK depends on only
homotopy classes of @w and f this defines an action w* of =;(X, %) on the set
[K, X1,. On the other hand this action can be reformulated as follows:

Let p: KX—X be the fibring defined by p(f)=f(x). Clearly the fibre over
* is the space of base-point preserving maps, {K, X}, and we have the part of
the homotopy exact sequence

Si: (KX, f) —> (X, *) —> n({K, X},) —> (KX, f) —> {f}.
Dx 05

Then it holds 0/(w)=w*(f).

Since it is clear that a loop w is contained in the image of p4 if and only
if there exists a map: S'X K—X of type (w, f) we have

LEmMA 1.1. w*(f)=f holds if and only if there exists a map: S'XK—X of
type (@, f),

Here we note a property of the m;-action above which easily follows from
the definition.

LEMMA 1.2. For two maps f:(X, x)—=(Y, %) and g: (Y, x)—(Z, *) we have
t™*(gf)=1*(g)f ond g« *(gf)=g(w*(f))

where © and w are elements of w (Y, *) and =w(Z, *) respectively.
For example we prove

PROPOSITION 1.3. If f: (Y, *)—=(X, ) 1s a homotopy equivalence then w*(f)
is also a homotopy equivalence for any w of m(X, *).

Proof. First it is shown that w#(lx) is a homotopy equivalence because we
have

(@) (lre*(ln)=(0 ) (1xe*(lx))=(0)*e*(lx)=1x
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and similarly w*(1x)@ ')*(1x)=1x. Secondly, let g be a homotopy inverse of f.
Then we have

gl{o* (=g« 0)(gf)={gx(w)}*(1x) and *(flg=0*(fg)=0*(1x).

and Thus it follows from the first case that w*#(f) has a right and left
inverse respectively and hence w*(f) is a homotopy equivalence.

As an example we consider the case of K=X and f=1y in the based
category. Then the exact sequence S, is turned into the sequence

Sp: m(XX, Ly) — m(X, ) —> ([X, Xy, 1x) — ([X, X], 1x) —> {lx}.

Now we define a multiplication in the set [ X, X] by the composite of maps,
which makes the set a semi-group with 1y as unit. Since we have

0w -t)=(wr)*(lx)=w*(t*(1x)=w*(1xt*(1x))=w*(1x)r*(1x)=(0w)@r)
the following lemma holds.

LEMMA 1.4. 0 is homomorphic in the sequence S,.

Since, for a class k& of a homotopy equivalence: (X, %)—(X, %), w*(h) is also
a homotopy equivalence the sequence S, 1s transformed by Proposition 1.3 into
an exact sequence in the category of groups and homomorphisms

Sy m(XX, 1x) —> m(X, #) —> eo(X) —> e(X) —> {1x}

where &,(X) denotes the group consisting of invertible elements of [X, X],.
Now we define a (normal) subgroup of z,(X, ) by

I'(X)={w | there exists a map: S'X X—X of type (0, 1x)}.
LEMMA 1.5. I'(X) is contained in the centre of m(X, *) (see page 843 of [2]).

Proof. For 7 of ny(X, *) and @ of I'(X) a map: S'XS'-»X of type (w, 7) is
given by the composite S*XS'—»S'X X—X. Hence Whitehead product [z, o] is
trivial, i.e. tw=wr.

Since we know 0" (1x)=I1"(X) from lemma 1.2 we have

THEOREM 1.6. There exists an exact sequence
{1} —> m(X, #)/I'(X) —> &o(X) —> e(X) —> {1}.
Thus Theorem 1.6 and lemma 1.5 give

COROLLARY 1.7. If the centre of m(X, ) is trivial we have an exact sequence
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{1} — m(X, %) —> &o(X) —> &(X) —> {1}.
As another example, let P, be the pseud-projective plane S'Une®. Since it

follows from a cohomological considration that I'(P,) is trivial we have a short
exact sequence ([1], [4])

{I} — Zn —> eo(X) —> &(X) —> {1}.

§2. Regular Covering spaces.

In this section our argumrnt is related to the paper [7]. Let p: X—Y be a
regular covering, i.e. px(m (X, %)) is a normal subgroup of =,(Y, *) and Let G
be the deck transformation group of . Then for any locally compact and locally
path-connected Hausdorff space K we have

LEMMA 2.1. The naturally induces map p¥ : KX—KY is a fibre space whose
Jfibre over pf is Gf for any map f: K—X where the action of G on KX is given
by GXKX—KX: (g, h)—gh.

Consider a part of the homotopy exact sequence of p¥
Sii (KX, f) —> n(KY, pf) —> (G, ) —> n(KX, f) —> n(KY, pf)

for a map f: K—X where we identify Gf with G. Then a standard argument
gives

LEMMA 2.2. The boundary =, (KY, pf)—(G, *) is homomorphic, and the cor-
respondence (G, *)—n (KX, f) is naturally induced by the action of G on KX.

Now consider the following commutative diagram obtained from fibrings

{l} _> EIKKX’ f) e ﬂl(KY; pf) —— (G’ *) —— ﬂO(KX’ f)

| l l l

{1} —> zl(Xy *) —— ﬂl(Y’ pf) —>(G; *)

l l l

{f} — K, X1, f} — {[K, Yo, pf}

and use the following notation for a map h:(A, *)=(B, *) ['(A4, B: h)=
{wlwer,(B, *) and there exists a map S*'X A—B of type (w, h)}.
Then, using lemma 2.2, we can easily obtain

PROPOSITION 2.3. Let p: X—Y be a regular covering whose deck transforma-
tion group is G. Then G{f) is isomorphic to I'(K, Y:pf)/['(K, X: f)

For a regular covering p: X—Y we have as applications of PROP. 2.3
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COLLORARY 2.4. There exists an exact sequence
{I} —I'(K, Y:pf)/I'(K, X: ) —> z(Y, x) —> m(X, ») —> {[K, X], f}
Since I'(X, X: 1x)=I'(X) (see §1), as a special case, we have
COLLORARY 2.5. There exists an exact sequence
{I} —I'(X, Y:p)/I'(X) —> G —> (X) — {[X, Y], p}.
As another application we have

COLLORARY 2.6. A map f:S"—X(n=2) is G-equivariant up to homotopy if
and only if all Whitehead products [m,(Y, %), pf] vanish.

Let p: X—Y be a covering space which is not necessarly regular. Then,
noting p(k)"Y(pf)=GS, the sequence S, turns out the sequence,

(KX, f) —> n(KY, pf) —> (Gf, eof) —> n(KX, [) —> mo(KY, pf)
which relates to other sequences as follows:

{1} — m(KX, f) —> m(KY, pf) —> (Gf, eof) —> wo(KX, f)

i l l l

{1} —_—> n‘l(X; *) —_— ﬂl(Y, *) —> (p—l(*)’ *)

l l l

{1} —{[K, X1, ‘f} — {K, Y10, pf1}.

Let denote by Nz (X, %)) the normalizer of =,(X, ) in (Y, %) and
I'(K, Y: f) be the intersection I"(K, Y: p/)NNz (X, *)). Since G is isomorphic
to N(m,(X, *))/7(X, %), using the above diagram and argument similar to the
case of regular coverings we can obtain the following

PROPOSITION 2.7. Let p: X—Ybe a covering space with its deck transforma-
tion group G and f be a map (X, *)=(Y, ¥). Then G{f) is isomorphic to
I'K, Y:pf)/[(K, X: [).

§3. Orbits (fibre)-preserving maps.

For a regular covering p: X—Y we denote by F(X) the space of orbits
preserving maps, i.e. f: X—X satisfying pf(gx)=pf(x) for all x,g. Then we
have the pull-buck diagram of fibrings derived from the covering
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FX)— XX

ql lp"

YY — XY

where YY—XY is given by composite X—Y—Y. Since we may consider G as
the fibre ¢7'(1y) we have the commutative diagram of a part of homotopy exact
sequences ;

(XX, 1z) —> m(XY, p) —> (G, *) —> m(XX, 1x)

! T T T

T(F(X), 1x) —> m(YY, 1y) —> (G, #) —> mo(F(X), 1x).

Then, as the same as the case of the upper sequgnce, we can know that
the lower sequence is an exact sequence of semi-groups and homomorphisms,
We denote by ¢-(X) the group consisting of invertible elements of m,(F(X), 1x),
and obtain the following diagram from the above one

(XY, p) —> (G, ») —> &(X)

T [

7 (YY, Iy) — (G, *) —> ep(X).
We define subgroup of z,(X, *) by

I'w(X)={r | there exist an orbits-preserving map S'XX—X of type (r, lx)}

PROPOSITION 3.1. The image of the boundary n,(Y'Y, 1y)—(G, *) in the lower
sequence is isomorphic to I'(Y)/[ (X).

Proof. The proof follows from the argument analogus to PROP. 2.3 and
the diagram,

{1} - ﬂl(X’ *) - 71-'1(Y, *) —> (Gr *) — {1}

T T T

T (F(X), 1x) — w(YY, 1y) —> (G, *).

COROLLARY 3.2. The image: =, (Y'Y, 1y)—(G, %) is contained in the center
of G.

Proof. For w of m,(Y, *), assume that there exists a map: S'XY-Y of
type (w, 1y). Then for any ¢ of m(Y, %), a map: S*XS'=Y of type (@, o) is
given by composite S'XS!'—S'XY—Y. Hence Whitehead procuct [w, o] is
trivial, i.e. wo=0w. Since m,(Y, *)—G is onto the proof is completed.

Example 3.3. Let X—Y be the universal covering. If the centre of
7Y, ¥)=G is trivial (e.g. G: simple) then ex(X) contains (Y, %) as a subgroup.
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Next we consider the homomorphism g.: m(F(X), 1x)—m(YY, 1) induced
by the projection ¢. Let us denote by L(Y) the image of g. and by &,(Y) the
group consisting of invertible elements of L(Y).

LEMMA 3.4. The homomorphism ep(X)—e (Y) is surjective.

Proof. Consider the commutative diagarm
f: X—X
pl e
FiY—Y

and let § be a homotopy inverse of 7. Since we may assume teat f and g are
base-point preserving maps the following equalities hold for a loop w at *

w—lp*ﬂ:l(X’ *)a):w#p*fcl(X; *):g*f*ﬁ*nl(xy *):g*ﬁ*ﬂx(x> *)

Thus we have Fypemi(X, x)=psm,(X, *) from the normality of pym,(X, )
in m,(Y, %), and this means that g is liftable, i.e. there exists a map g: X—X
such that gp=pg. Then, from g« fg)=1y and exactness of the sequence, we
can know that f is invertible in 7(F(X), 1x)

Now combining PROP. 3.1 with lemma 3.4 we have

THEOREM 3.5. For a regular covering p: X—Y there exists an exact sequence
{1} —> I(YV)/T'§(X) —> ep(X) —> e(V) —> {1}.

Example 3.6. For the universal covering p: X— Y we have an exact sequence:
{1} =I'(Y)—r (Y, x)—en(X)—er(Y)—{1}.

Example 3.7. Let p: R"—Y be the universal covering and let G be =,(Y, ).
Since it can be easily shown that the center of G, Z[G], is isomorphic to I'(Y)
and that &,(Y) is also isomorphic to AUT. G we have an exact sequence

{1} — Z[G] —> G —> ex(R™) —> AUT. G —> {1}.

Especially if G is abelian we have an isomorphism em(R")=AUT. G.

§4. Equivariant maps.

Since equivariant maps are a kind of typical orbits-preserving maps we shall
study the space of those maps, which is denoted by Eg(X).

First by James’s result (Theorem (2.1) of [2]) we have a commutative
diagram of fibrings
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ZIG] — E¢X) — YY

oo

¢ — F(X) —YY.

Remark. This diagram contains an easy proof of Corollary 3.2.
Define a subgroup of =,(X, %) by

I'¢(X)={r | there exists an equivariant map: S'X X—X of type (r, 1x)}

Then using the diagram above and argument analogus to the preceeding sec-
tion we have

PROPOSITION 4.1. There exists an exact sequence
{1} — I'()/I'e(X) —> Z[G] —> &(X).
where eg(X) denotes the subgroup of m(Eq(X)) consisting of invertible elements,

i.e. homotopy classes of self-homotopy equivalences in the equivariant category.

Now we prove
PROPOSITION 4.2. The homomorphism: eg(X)—ep(X) is injective.
For the proof we note

LEMMA 4.4. Let X, be a properly discontinuous free G-space (k=1,2)and f
be a map - X,—X, such that p,f(gx)=p.f(x) where p,: X,—Y, is the projection
onto the space of orbits. Clearly f defines a correspondence py: GXX,—G by
flgx)=ps(g, x)f(x). Then p; is continuous.

Proof of Proposition 4.2. Let f be an equivariant map: X—X and H be a
homotopy between f and 1y in the space F(X), i.e. H: IX X—X satisfies

HQO, x)=f(x), H(Q, x)=x and pH(, gx)=pH(t, x).

Applying lemma 4.3 to the case of X,=IXX, X,=X, H defines a continuous
map p: IXXXG—G satisfying

Hig(t, x))=H(t, gx)=p(t, x, g)H(t, x).

Since G is discreate we know p(¢, x, g)=p(0, *, g) for all ¢ and x. On the
other hand, from equalities:

e, *, 2)f(x)=p(0, %, g),  H(O, »=H(0, gx)=[(gx)=gf(*

it follows p(0,*, g)=g. Thus we have H(f, gx)=gH(t, x), which means H is an
equivariant homotopy between f and lx. This completes the proof.
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Now let f: X—X be a map satisfying pf(x)=p(f(gx)), i.e. feF(X). By
lemma 4.3 there exists a continuous map p;: GXX—G with f(gx)=p(g, x)f(x).
Again, since G is discrete this turns out a correspoudence

ps*:G—> G  with f(gx)=ps*g)f(x).

LEMMA 4.4. ps* is an endmorphism of G, and p;*=ps,* if f1is homotopic
to f, in the space F(X).

Proof. The first follows from

07%(g1, g)f(F)=F(g1g%)=p (g f(ge¥)=ps*(g1) 0 *(g2) f(*)

and the second is easily shown by an argument anaolgus to the proof of
Proposition 4.2

Thus p,* gives another correspondence
[p]: mo(F(X) —> End. G
defined by [p1(f)=p,*.

LEMMA 4.5. [p] is homomorphic, and hence this induces a homomorphism :
ep(X)—Aut. G, whose kernel is isomorphic to ee(X).

Proof. Let f,: X—X (k=1,2) be maps in the space F(X). Then equalities
01510, (@1 f)F)=(f1f X g0 )=f1(f L g¥))=F1(p s, (@) o(*)=p s *(0 s, (@) 1] (%))

gives the proof.
Thus, from lemma 4.5 and Proposition 4.2, we obtain
PROPOSITION 4.6. There exists an exact sequence:
{1} —> ea(X) —> ep(X) —>Act. G.

In general it seems to be difficult to obtain some characterization of the
image: ex(X)—Aut.G.

Remark. There is another interpretation of the homomorphism [p] above,
namely consider two covering spaces with base point as follows:

G* —_—> (X)*) —— (Y; *)

| l l

Gf(x) —> (X, f(x)) —> (Y, J(x)).

Then we have a commutative diagram:
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m(Y, ) — G — {1}

l l os*

(Y, f(x) — G —> {1}.

Example 4.7. If R*—Y is a regular covering and =,(Y,*) is abelian then
eq(R™) is trivial (G=r,(Y, *)) (Example 3.1 of [6]).
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