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INTEGRALS OF SOME TRIGONOMETRIC FUNCTIONS
By SHUKICHI TANNO

1. Introduction

Let a and b be positive numbers, and u, v and m be positive integers such
that u+v=m, 2<m. We define I(m) and I(u;v) by
00 in% INY
dt, ](u;v):S wdt'
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I(m):S

Tables of integrals give values of I(m) and I(u; v) only for some special cases.
For example, for 3<m<6, Gradshteyn and Ryzhik [4] (p. 449-p. 450) gives

1(3)=3a%*r/8, I4)=a’n/3,
1(5)=115a*n/384, I(6)=11la’x/40.
As for I(u;v) with a<b, [4] (p. 451-p. 452) gives

1(2; 2)=(3b—a)a’r /6 (a<b),

I3; D=a’n/2 (0<3a<)h)
=[24a*—Ba—0b)*1x/48 (0<a<b<3a),

I(1; 3)=(9b*—a*ar/24 (a<b).

In this note we give the general expressions of I(m) and I(u;v). These are
special cases of Theorem A below. To state our Theorem A we need the follow-
ing definition. Let ay, a,, -, an be positive numbers such that 0<ag;<a, < -+ <

am-1<an. For a subset A={k,, ks, -+, kn_,} of {1, 2, -+, m—1}, a polynomial
P(A=ar,Fap,+ - +0r,_ ,—Crpy ;= " 0k~ Cn
is said to be of r-type, if {aw,, Gr, ) Qi py_ys an}=1ay, as, -+, an} as sets and

Pr(/z)>0; k1<kz< <km—ry km-r+1< <km—1-

Note that a, appears with negative sign and r is the number of negative signs
contained in a polynomial of r-type. A polynomial of 1-type is unique if it
exists.
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THEOREM A. For constants 1<a,:<a;< -+ <ap-1<an, 2<m, the following
holds :

an 2 L(fisma)a=Ta-5L S0 5 P
: T Jo tm <k=1 lnak - k=1ak Cl r=1( r—tzype T() ’

where ¢’=(m—1)!2™% and P,(A) denotes a polynomial of r-type.

If an>a,+a;+ -+ +an-,, then there is no polynomial of r-type (»>1), and
so the above integral does not depend on a,.

For proof of Theorem A we use the volume expression of cube-slicing by
Hensley [5] and Ball [1], and actually we give the volume of cube-slicing in
terms of numbers a, (after normalization) using polynomials of r-type by ele-
mentary geometric method.

A special case of Theorem A for m=3 is given, for example, at p. 79 of
Erdélyi [3] and at p. 422 of Gradshteyn and Ryzhik [4]. A special case where
there is no polynomial of »-type (r>1) is given at p. 417 of [4].

Three special cases of Theorem A are given as Corollaries C, D and E in
§3. From these one can deduce many analogous formulas. Only several ex-
amples are given in Corollary F.

The author is grateful to Professor N. Kurokawa, Professor S. Saitoh and
Professor N. Suita for their kind informations.

2. The volume of cube-slicing

By {e,, 1<j<m} we denote the standard base of the Euclidean m-space E™
at the origen O, and by {x’} the standard coordinate system of E™. Let K™ be
the unit cube in E™, which is expressed by {x;0<x’<1, 1<j<m}. Let by, b,,
.-+, bn be positive numbers such that

b12b22 me>0.

Let T be an m-simplex determined by {O, p, P2, -**, Pn}, Where p; is the end
point of the vector b,e,, 1< <m.

LEMMA. The volume V(K™NT) of the intersection of K™ and T is given
by

m —M < — 1) * _ 1 ... __1_ "
V(K mT)-— m! ’go( 1) k1<k22<"'<kr<l bk1 bkr ) ’
where 33* denotes the sum over all positive terms (1—1/by,— - —1/b, _>0).

Proof. (i) If b,<1, then the m-simplex T is contained in K™ and V(K™"N\T)
=W(T)=b,by - bp/m .

(ii) If b,>1>b,, then only one vertex p, of T lies outside K™ The inter-
section TN(K™)° of T and the complement (K™)¢ of K™ in E™ defines an m-
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simplex 7, which we call the outer simplex at p,. V(K™NT) is given by the
difference of the volume V(T) and the volume V(7)) of the outer simplex at p,,
and

VK™ T)=(bsbs -+ bm/mH[1—(1—1/b)™].

(iii) If by>1>bs,,, for 2<s<m (putting b,,,=0), then vertices py, P2, ***, Ds
of T lie outside K™, In this case the outer simplex T} at p,, 1<h<s, is defined
by Th=TN{x; x*>1}.

(iii-1) If the outer simplexes at p;, p., -*+, ps are disjoint, then V(K™"N\T)=
W(T)— WV(T)— V(T)— --- — V(Ty), where V(T3)=(b,by - by /m)(1—1/by)™, 1<h<s.

(iii-2) Two outer simplexes at p, and p, have a non trivial intersection Ti,,
if and only if 1—1/b,—1/b,>0, which is equivalent to the fact that the vertex
(1, 1,0, -+, 0) of K™ lies below the affine hyperplane determined by the face of
T opposite to 0. The volume V(T,) of T, is equal to (byby -+ by/m)(1—1/b,—
1/b,)™. Let {Tys, Tis, Tos, -, Tjn} be the set of all non trivial intersections of
two outer simplexes. If three outer simplexes at p,, p,, and p, do not have non
trivial intersecton Ty, (or equivalently, 1—1/b,—1/b,—1/b,<0), then V(K™NT)
is given by W(T)—WV(T)—WV(To)— -+ — V(To)+ V(Tw)+ - + V(Ta).

(iii-3) If T, is non trivial, then we need the term — V(Tig)=—(b1bs ++* by
/mWH)(1—1/b,—1/b,—1/b,)™ in the expression of V(K™NT).

(iii-4) Generally, the intersection Ti,.., of T;,, Ti,, -+, T;, is non trivial, if
and only if 1-1/b;,—1/b;,— --- —1/b,,>>0, and its volume has sign (—1)* in the
expression of V(K™NT). q.e.d.

Let B™ be the unit cube in E™ centered at the origin: B™={x; —1/2<x’
<1/2,1<j<m}. Let a=(a;, as, -+, an) be a unit vector in E™ and H(a) be the
hyperplane passing through the origin and orthogonal to a. Since the case
where a,=0 reduces to the lower dimensional case, we assume that the com-
ponents of a satisfy

0<a,<a,< -+ <ap-1<an.

Concerning the volume V,(a) of the slice BN\ H(a) corresponding to a, Hensley
[5] and Ball [1] gave the best possible inequality; 1< Va,(a)<+/2, which was

verified by using the following expression of V,(a):

2.1) Va(a)=— dt.

T J-wk=1 Q,t

ISN m Sinagt

Since (1.1) is homothetically invariant with respect to (a,), to prove Theorem A
it suffices to give the value of the left hand side of (2.1). Namely we prove
the following.

PROPOSITION B. The volume V,(a) of the slice corresponding to a is given by

2.2) Va@=———~F 0 5 R@,
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where c=(m—1)! 2™ %q,a, .-+ a,, and P.(R) denotes a polynomial of r-type.

Proof. We define @ by cos §=<en, a>=a,. By p we denote the orthogonal
projection of E™ onto E™~! defined by x,=0. First we study the case where
An>a,+as+ - +an-;. The condition a, >a,+as+ -+ +an-, is equivalent to the
fact that H(a) does not meet the upper face F™ ! of B™ defined by x,=1/2.
Therefore, p(B™NH(a))=B™"'. Hence, Vn(a)=1/cos §=1/a,.

Next we assume that a,<a,+a,+ - +an,-, holds. Then H(a) meets the
upper face F™ ', We denote the part of F™ ' which lies below H(a) by K(a).
Then the volume V(K(a)) of K(a) is given by the preceding Lemma. The rela-
tion between (b,) and (a,) is given by b,=(a;+a;+ -+ +aAm-1—0an)/2a,, 1<k
m—1. Consequently, we obtain the following :

l—l/bk:(a1+az+ élz +am-—1—ak_am)/A;
1--1/by—1/bi=(a1+ @+ - @p =+ Gy -+ +Amo1—ar—a@—an)/ A,

etc., where A=a,+a,+ - +an-,—a, and 4, means that ¢, is removed. Since
Vala)=[1—2V(K(a))]/cos 0, we obtain (2.2). q.e.d.

3. Corollaries

First we give three special cases of Theorem A.

CoROLLARY C. For a positive number a and wnteger m>2, the following
holds.

©sin™at a™ '
= —1)1 2m-2
3.1 |- a T [(m D12
[¢m-1)/2]
S (—1)"‘,,,_1C,_1(m——2r)"“1].

=1

COROLLARY D. For positive numbers a<b and positive integers u, v (u-+v=
m), the following holds -
= sin“at sin®bt

y
(3:2) So o T

[n—1)1 272t

— S (= B uC i Crps{(u—2p)a+ (0= 2220} " |

where >3* denotes the sum over all polynomials (u—2p)a+@w—2r+2p)6>0 and p
runs from max{r—v, 0} to min{r—1, u}.

COROLLARY E. For positive numbers a<b<c and positive integers u, v, w(u-+
v+w=m), the following holds:
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= sin“atsin®ht sin“ct T et WA m
@3 | = dt= g g [(m~1)!2 2qubvce -t

m-2
- Tgl <—1)T-1 2* ucp'ch'w—lcs'P<p: aq, S)m-‘] ’

pHgEs=r-1

where P(p, q, s)=u—2p)a+w—29)b+(w—2s—2)c, and 3* denotes the sum over all
polynomials P(p, g, s)>0 and 0<p<min{r—1, u}, 0<g<min{r—1, v} and 0<s=
r—1—p—qg<w—1.

Proof of Corollary C. The number of polynomials a+a+ - +a—a of 1-type
is one for m>3. The number of polynomials a+a+ -+ +a—a—a of 2-type is
m—1 for m>5. Similarly, the number of polynomials ¢+a+ :-- +a—a— --- —a—a
of r-type is »-1C,-;. The range of » is from 1 to [(m—1)/2]. Therefore,
Corollary C follows from Theorem A.

Proof of Corollary D. The number of polynomials of 1-type is at most one;
a+a+ -+ +a+b+ - +b—b for m>3. Each of polynomials of 2-type is one of

the following ;
a+a+ - +at+a+b+ - +b—b—b  (ua+@—4)b>0),
a+a+ -+ +a+b+ - +b+b—a—b (u—2)a+@w—2)b>0).

The numbers of such polynomials are ,Cy:,-;C; and ,C,-,.;C,. By p we denote
the number of a with negative sign in the polynomial of »-type. Polynomials
of r-type for general » and the number of such polynomials are similarly studied.

Proof of Corollary E is similar.
Corollary C enables us to calculate I(m) for any m, for example, we obtain

1(7)=5887a°r /23040, 1(8)=151a"% /630,
1(9)=259723a%r /1146880, 1(10)=15619a°x /72576 .
Also Corollary D enables us to calculate I(u; v) for any u, v, for example, we

obtain

I3; H)= 6—!22—6[6 12°0°b*—(3a+2b)°*+3(3a)°+3(a+2b)°

—3Ba—2b)—9%a°—3(—a+2b)°*]  (2b<3a<3b)

K
T 6128

—9a°—3(—a+2b)°*+(—3a+2b)"] (3a<2b).

[6!2°a°6*—(3a+20)°*+3(3a)'+3(a+2b)°

The formulas in Corollaries produce many analogous formulas. Here we
give some examples. For convenience sake we use the following notations:
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oos' u
Ia(u; a)=So 11;mat dt,

= gin“at sin®bt

I.(u,v;a, b)::So P dt,
= sin*at sin®ht sin®
I.(u,v,w;a,b, C):So na ?m Isinet dt.

Then, for m>2, we obtain the following :

COROLLARY F.

3.4) S?ﬂ@dt In(m; a)— —I,,,(m 2,2; a, 2a),
(3.5) S?Mt’;ﬁ—n%t—dt—; In(m; @)=~ In(m—2,2; a, a+b)

+ 9 Tnm=2,2; &, D+ Lu(m—=2, 1, 1; a, 2a, 2b),
36 | wdt Ln(m+2; a)— —[m(m 2; a, 20),
3.7) S?M]f;—oszlidtzlm(m; &)—In(m, 2; a, b),
3.8) Sfﬁn%’fﬂ’it—dtzfm(mq, 1:a, a+b)—~%—1m(m—2, 1,1;a,2a,b),
etc.

In the above, (3.5) is somewhat complicated. If m>4, then it has a simpler
expression: I,(m—2, ;a, b)—1/DHln(m—4,2,2; a, 2a, b).
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