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INTEGRALS OF SOME TRIGONOMETRIC FUNCTIONS

BY SHUKICHI TANNO

1. Introduction

Let a and b be positive numbers, and u, v and m be positive integers such
that u+v=m, 2<m. We define /(ra) and I(u v} by

Tables of integrals give values of /(m) and I(u', v) only for some special cases.
For example, for 3<m<6, Gradshteyn and Ryzhik [4] (p. 449-p. 450) gives

/(3)=3α2ττ/8, /(4)=α3τr/3,

/(5)=dl5α4τr/384, /(β)-llα5;r/40.

As for I ( u \ υ ) with α<6, [4] (p. 451-p. 452) gives

7(3; l)=α3ττ/

1(1 3)=(962-α

In this note we give the general expressions of I(m) and I(u v). These are
special cases of Theorem A below. To state our Theorem A we need the follow-
ing definition. Let alf a2, ••• , am be positive numbers such that Q<a1<az< ••• <
tfm-i<#m. For a subset λ={kι, kz, ••• , km-r} of {1, 2, ••• , m— 1}, a polynomial

is said to be of r-type, if {αΛ l, α^2, ••• , βft m _!, am} = {alt a2, ••• , αm} as sets and

^!<^2< .- <km-r, km-r+l< - <*W-ι.

Note that αm appears with negative sign and r is the number of negative signs
contained in a polynomial of r-type. A polynomial of 1-tyρe is unique if it
exists.
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THEOREM A. For constants I<a1<az< ••• <am- i<am, 2<m, the following
holds :

Σ
r-type

9 f00 I / m \ TO-l 1 m-2
(1.1) - -π;-(Πsinα»Mdf=Πα»—- Σ (-I)1-

7Γ JO if \ f c = l / £ = 1 £ r = l r-

w;/i£r£ c'=(m—1)! 2m~2 and Pr(λ) denotes a polynomial of r-type.

If am>a1

Jraz+ ••• +am-ι, then there is no polynomial of r-type (r>l), and
so the above integral does not depend on am.

For proof of Theorem A we use the volume expression of cube-slicing by
Hensley [5] and Ball [1], and actually we give the volume of cube-slicing in
terms of numbers aτ (after normalization) using polynomials of r-type by ele-
mentary geometric method.

A special case of Theorem A for m=3 is given, for example, at p. 79 of
Erdelyi [3] and at p. 422 of Gradshteyn and Ryzhik [4]. A special case where
there is no polynomial of r-type (r>l) is given at p. 417 of [4].

Three special cases of Theorem A are given as Corollaries C, D and E in
§ 3. From these one can deduce many analogous formulas. Only several ex-
amples are given in Corollary F.

The author is grateful to Professor N. Kurokawa, Professor S. Saitoh and
Professor N. Suita for their kind informations.

2. The volume of cube-slicing

By {ej} l<j<m} we denote the standard base of the Euclidean w-space Em

at the origen 0, and by {xj} the standard coordinate system of Em. Let Km be
the unit cube in Em, which is expressed by {χ-> Q<xJ<l, l<j<m}. Let bίf bz,
... , bm be positive numbers such that

Let T be an m-simplex determined by {0, plf pz> ~ , Pm}> where pj is the end
point of the vector b3e3, l<j<m.

LEMMA. The volume V(KmΓ\T) of the intersection of Km and T is given
by

ml r=o

where Σ* denotes the sum over all positive terms (l — l/bkl— ••• —

Proof. ( i ) If £ι<l, then the m-simplex Tis contained in Km and V(KmΓ\T)

( i i ) If 6ι>l>&2, then only one vertex pl of T lies outside Km. The inter-
section Tr\(Km)c of T and the complement (Km}c of Km in Em defines an m-
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simplex 7Ί, which we call the outer simplex at plf V(KmΓ\T) is given by the
difference of the volume V(T) and the volume F(7i) of the outer simplex at plf

and

V(K*nT)=(bJ>t - bm/m !)[1-(1-1AΓ] .

(iii) If bs>l>bs+ι, for 2<s<m (putting &TO+1=0), then vertices/)!, p2, ••• , ps

of T lie outside Km. In this case the outer simplex Th at ph, l<h<s, is defined
by Th=Tr\{x;xh>l}.

(iii-1) If the outer simplexes at plf p2, ~ , ps are disjoint, then V(KmΓ\T)=
V(T)- F(TO- V(T2) ----- V(T.\ where 7(TΛ)=(&Λ - bm/m !)(1-1/&ΛΓ, l<h<s.

(iii-2) Two outer simplexes at />ι and p2 have a non trivial intersection Ti2,
if and only if 1— l/f^ — 1/&2>0, which is equivalent to the fact that the vertex
(1, 1,0, ••• , 0) of Km lies below the affine hyperplane determined by the face of
Toppositeto 0. The volume F(T12) of T12 is equal to (b,b2 — ftm/m!)(l— 1/ftι—
l/&2)

 w Let {Tia, Tie, T23, ••• , 7%} be the set of all non trivial intersections of
two outer simplexes. If three outer simplexes at plf p2, and pB do not have non
trivial intersecton T123 (or equivalently, 1— 1/ftι— 1/&8— l/*β^0), then V(KmΓΛT)
is given by V(T)- V(TJ- F(T2) ----- F(TS)+ V(T12)+ ... +V(TJh).

(iii-3) If T123 is non trivial, then we need the term — F(Tι23)— — (bιbz ••• ^m
/miχi-1/h-l/bι-l/bιΓ in the expression of F(tfmnT).

(iii-4) Generally, the intersection Ttltz...tu of Ttl, Tί2, ••• , Ttu is non trivial, if
and only if l — l/btl—l/btz— ••• — 1/^M>0, and its volume has sign (— 1)M in the
expression of V(KmΓ\T\ q.e.d.

Let Bm be the unit cube in Em centered at the origin: Bm—{x\ —l/2<xj

<l/2, l<j<m}. Let a—(aίf a2, ••• , am) be a unit vector in Em and //(α) be the
hyperplane passing through the origin and orthogonal to a. Since the case
where α^O reduces to the lower dimensional case, we assume that the com-
ponents of a satisfy

α2< ••• <am-ι<am.

Concerning the volume Vm(ά) of the slice BmΓ\H(ά) corresponding to a, Hensley

[5] and Ball [1] gave the best possible inequality; l<Vm(a)<V~2, which was
verified by using the following expression of Vm(a) :

(2.D rm(β)= π J-o

Since (1.1) is homothetically invariant with respect to (αt), to prove Theorem A
it suffices to give the value of the left hand side of (2.1). Namely we prove
the following.

PROPOSITION B. The volume Vm(a) of the slice corresponding to a is given by

(2.2) 7m(α)=— -- -sVl)7-1 Σ PrW)1*-1,
am C r = i r-type



TRIGONOMETRIC FUNCTIONS 207

where c—(m—l)\ 2m~2aίaz ••• am and Pr(λ) denotes a polynomial of r-type.

Proof. We define θ by cos#— <£m, α>— am. By p we denote the orthogonal
projection of Em onto Em~l defined by xm=Q. First we study the case where
am>a1+a2+ ••• +αm_ι. The condition am>a1+a2

Jτ ••• +αm-ι is equivalent to the
fact that H(ά) does not meet the upper face Fm~l of £m defined by *m = l/2.
Therefore, p(Bmr\H(a))=Bm~1. Hence, Fm (α)= I/cos 0 = l/flm.

Next we assume that αm<αι4-α2+ ••• H-flm-i holds. Then #(α) meets the
upper face Fw~*. We denote the part of Fm~l which lies below H(a) by K(ά).
Then the volume V(K(ά)) of /ί(α) is given by the preceding Lemma. The rela-
tion between (b k) and (ak) is given by ^^=(^1+02+ ••• Jτam-1—am)/2ak, l<k<
m—1. Consequently, we obtain the following:

a+ ••• άk •" +am-1—ak—am)/A,

(flι+β2+ ••• άk " άι '" +anL-l-ak—aι—am)/A,

etc., where A=a1

Jτa2-{- ••• +am-ι— am and άk means that ak is removed. Since
ym(α)=[l-2y(AΓ(α))]/cosβ, we obtain (2.2). q.e.d.

3. Corollaries

First we give three special cases of Theorem A.

COROLLARY C. For a positive number a and integer m>2, the following
holds .

(3-D

C C m - D / 2 ]-D/2] 1

Σ (-l)r-1

m-ιCr_1(w-2r)"-1 .
r=l J

COROLLARY D. For positive numbers a<b and positive integers u, v (u+v=
m), the following holds

sm"αίsin"άί m _ 2

* denotes the sum over all polynomials (u—2p)a+(v—2rJr2p)b>Q and p
runs from max{r—v, 0} to min{r— 1, u}.

COROLLARY E. For positive numbers α<b<c and positive integers u,v,w(u -\-
v+w—rri), the following holds:
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(3 3)

m-2 η
-Σ(-Dr-' Σ* uCp υCq w.1Cs P(p, q, s)— ' ,

r = i .p4.q,+s=r_ι J

, <?, s)=(w— 2£)β-h(z;— 2<?)£-f(iί;— 2s— 2)c, and Σ* denotes the sum over all
polynomials P(p, Q, s)>0 and 0</><min{r— 1, w}, 0<#<min{r— 1, t>}
r—l—p—q<w—L

Proof of Corollary C. The number of polynomials α+αH ----- \-a— a of 1-type
is one for m>3. The number of polynomials α-hα-f- ••• -\-a-a— a of 2-type is
m— 1 for m>5. Similarly, the number of polynomials α-hα-h ••• +α— α ---- —a— a
of r-type is m _ιC r -ι. The range of r is from 1 to [(m— 1)/2]. Therefore,
Corollary C follows from Theorem A.

<9/ Corollary D. The number of polynomials of 1-type is at most one
α-fα-f ••• -fα+b-ί- - +^— /? for m>3. Each of polynomials of 2-type is one of
the following

+b+b-a-b ((u-2)a+(v-2)b>G).

The numbers of such polynomials are MC0 ϋ-ιCι and ^Ci ^iCo. By /) we denote
the number of a with negative sign in the polynomial of r-type. Polynomials
of r-type for general r and the number of such polynomials are similarly studied.

Proof of Corollary E is similar.
Corollary C enables us to calculate /(m) for any m, for example, we obtain

/(7)=5887α6π/23040, /(8)=15L27τr/630,

7(9)=259723α8π/1146880, 7(10)-15619α9π/72576.

Also Corollary D enables us to calculate I(u v) for any u, v, for example, we
obtain

The formulas in Corollaries produce many analogous formulas. Here we
give some examples. For convenience sake we use the following notations :
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IΛ Γ0

, v α, fe)=l
Jo

Im(u, v, w ', a, b, c)=\ — dt.
Jo t

Then, for m>2, we obtain the following:

COROLLARY F.

500 cinm + 2rt / 1
„ f, dt=I*(m; α)-j/»(m-2, 2; a, 2α),

(3.5) , f < f f = / , ( m ; α)— /m(«-2, 2; α, β+ft)

, 2; α, ft)+ /m(m-2, 1, 1; α, 2α, 26),

ί
°° Qin771"*"*/? / 1

o ^ dt=Im(m+2; α)- j/TO(m, 2; α, 2α),

,Λ «x Γ°°sinmαί cos26ί . r , N r / o r x
(3.7) - iiϋ - dt=In(m;a)-Im(m,2;a,b),

Jo r

(3.8) m - ^ ^ / m ( m - l , 1; α, fl+6)-l/m(m_2, 1, 1; α, 2α, 6),

eίc.

In the above, (3.5) is somewhat complicated. If ra>4, then it has a simpler
expression : Im(m— 2, α, &)— (l/4)/TO(m-4, 2, 2 α, 2α, b).
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