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Introduction. In [C-L-N], they dealt systematically the stability of totally
geodesic submanifolds of a compact Riemannian symmetric space as minimal
submanifolds. Using the method, Takeuchi [Tak] and Ohnita [O] studied the
stability of some kinds of totally geodesic submanifolds. The class of closed
subgroups in compact Lie groups with bi-invariant Riemannian metrics is one of
the most typical totally geodesic submanifolds. On their stability, there are
some results by Fomenko [F], Thi [Th] and Brothers [Br].

In [D], the index of a (complex) simple Lie subalgebra in a (complex) simple
Lie algebra was defined and it played an important role. The results men-
tioned above and a result by the second named author (Theorem A) made us get
interested in the problem to find some relationship between the index of a Lie
subgroup and the stability of it as a totally geodesic submanifold.

Let U be a compact connected simple Lie group whose rank is greater than
1 and Uι be an analytic subgroup of U associated with the highest root of U.
It is known that Ul is isomorphic to SU(2) ([W]). The second named author
[Tasl] proved the following: f/Ί is homo logically volume minimizing (especially
it is a stable minimal submanifold) with respect to a bi-invariant Riemaenian
metric on U. By the definition, Uι is a subgroup of index 1. On the other
hand, a 3-dimensional connected simple closed subgroup of index 1 in U is con-
jugate to Uι. Thus we can restate the above Theorem as follows:

THEOREM A. Let U be a compact connected simple Lie group whose rank is
greater than 1. A connected 3-dimensional simple closed subgroup of index I in U
is a stable minimal submanifold with respect to a bi-invariant Riemannian metric
on U.

In this paper we generalize the above Theorem. Precisely speaking, we will
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prove the following:

THEOREM B. Let U be a compact connected simple Lie group with a bi-
mυariant Riemannian metric. A connected simple closed Lie subgroup G of index
I in U is a stable minimal submanifold.

For the case that G is isomorphic to Sί/(2) the converse to Theorem B is
true. Namely we will prove the following:

THEOREM C. Let G be a a simple Lie subgroup which is isomorphic to SU(2)
in a compact connected simple Lie group U. Then, G is stable if and only if G
is of index 1.

In general, the converse to Theorem B is not true. For the case that G is
isomorphic to S0(3) a necessary and sufficient condition that G is stable in U
will be given in section 4 (Theorem D). Moreover we will determine all stable
3-dimensιonal connected simple Lie subgroups in each compact connected simple
Lie group (Theorem E). And we get some examples which is stable but not of
index 1.

The authors wish to thank the referee for his useful advice.

1. Stability of totally geodesic submanifolds.

In this section, we give a brief review on basic results on the stability of
totally geodesic submanifolds in compact symmetric spaces after [0].

Let G be a compact connected Lie group with Lie algebra g and M be a
homogeneous space of G. Let o be a point in M and K be the isotropy subgroup
of G at o. Let E be a G-homogeneous complex vector bundle on M. Then the
fiber EO over o is a K-module. The space of smooth sections of E on M is
denoted by Γ(E). Let C°°(G EQ) be the space of smooth E0-valued functions
on G and C°°(G E0)κ={f^C°°(G £0): f(uk)=k~lf(u\ for u^G and k^K}.
Then G acts on Γ(E) and C°°(G E0)κ in a natural manner. Define a mapping

s : C~(G E0)κ —> Γ(E) ;/_>[£.<,_> gf(gy] .

Then s is a G-isomorphism. Each element of the Lie algebra g of left invariant
vector fields on G acts on C°°(G E0) as a left invariant (linear) differential
operator. Let £7(g) be the universal enveloping algebra of g. Then the action
of g on C°°(G E0) is extended to that of ί/(g) in a natural manner. An element
L®X of Hom(E0, £0)(g)£/(g) acts, as a linear differential operator, on C°°(G E0)
by

( L ® X } ( f } = L ( X f ) , /eC-(G; EO).

Define an action of K on Hom(£0, E0)<g)ί7(g) by k(L®X)=(kLk~l}®M(k}X for
Then a AΓ-invariant element D of Hom(£0, E0)®£7(g) leaves the subspace
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C°°(G E0)κ invariant. Thus D induces a G-invariant linear differential operator
of Γ(E). Converesely every G-invariant linear differential operators of Γ(E)
can be obtained in the above manner.

Let P be a compact Riemannian symmetric space and U be the identity com-
ponent of the group of isometries of P. We denote by Rp the curvature tensor
of P. Let M be a compact totally geodesic submanif old of P. Take an analytic
subgroup G of U which leaves M invariant and is locally isomorphic to the
group of isometries of M. Then the normal bundle N(M) of M in P is a G-
homogeneous vector bundle. Let {Mt\ be a smooth variation of M in P and V
be its variational vector field. We denote by VN the normal component of V.
Define a section S of End(7V(M)) by

> eX, V> for

taking an orthonormal basis { e l } of TP(M). We denote by Δ^CΛO the rough
Laplacian of the normal connection on N(M). Then the second variational
formula is given by the following :

), VN>dvolM,
M

where S is defined by

and is called the Jacobi differential operator. It is easily verified that / is a G-
invariant linear differential operator of Γ(N(M)).

We denote by L the isotropy subgroup of U at o^MdP and put K=G^L.
Let u, ϊ and f be the Lie algebras of U, L and /ί respectively. Take an Ad(£/)-invariant
inner product < , > on u which induces the Riemannian metric on P. Take the
orthogonal complement m [resp. p] of f [resp. ϊ] in g [resp. u]. Let m1 [resp.
ϊ1] be the orthogonal complement of m [resp. ϊ] in $ [resp. ϊ]. Let g1 be the
orthogonal complement of g in u. Then g1— Fφm-1-. The action of g on g1 is
extended to that of £/(g) on g^. Let G be the Casimir element of £/(g) with
respect to the inner product <,>| g x s . Since adu(G) leaves m invariant, it is con-
sidered as an element of HomCm 1-, m1). Then the Jacobi differential operator g
is identified with a linear differential operator on G°°(G N0(M))K.

THEOREM 1.1.

/=adu(C)®/-/®C.

Proof. We refer to [0].
Since the Jacobi differential operator 3 is a strongly elliptic linear differential

operator, it has discrete eigenvalues

and all eigenspaces are of finite dimension. We put Eλ = {V^Γ(N(M)):
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λV}. We call the number i(M)= Σ dimE* the index of M in P, and n(M)=άmE0

the nullity of M in P. When the index /(M)=0, the submanifold M is said to
be sfα&/0 in P. We call the dimension of the subspace {XN : X is a Killing vector
field on P} of E0 the Killing nullity of M in P and denote it by nκ(M).

We denote by 3)(G) the set of all equivalence classes of the complex ir-
reducible representations of G. Let V(λ) be a representation space of an element
λ of <D(G\ Then λ(C) is a scalar operator aj on F(Λ). Let θ be the involutive
automorphism of u defining the symmetric structure of P^U/L. We can take
a direct sum decomposition g1=gi10 ••• Sg*1, where each g/ is 0-stable G-invariant
and has no nontrivial 0-stable, G-invariant subspace. By Schur's lemma and Θ(C}~
C, we have adu(C)=α t/ on each QI

± for some scalar aτ. Put ϊt^ϊ^Πgz-1 and mτ

λ

:=m1

)Ogl

 L. Then we have g l

l r :=ϊ ΐ

J ©mt-
L and each πtt1 is ^-invariant.

THEOREM 1.2. The index, nullity and Killing nullity are given as follows:

k
( i ) i(M)— Σ Σ dim

Λ<Ξ3)(ά

( i i ) τz(M)=Σ Σ dim
1 = 1

k
(iii) nκ(M)= Σ dimg ϊ

1 .

. We refer to [0].

2. Lie subgroups.

In this section we consider the case that P is a compact connected semisimple
Lie group U with a bi-invariant Riemannian metric < , > and M is a connected
closed semisimple subgroup G. We denote by u and g the Lie algebras of U
and G respectively. The bi-invariant Riemannian metric < , > on U induces an
Ad(ί/)-invariant inner product on u, which we also denote by < , >. Let g1 be
the orthogonal complement of g in u. Take the identity element as the point o.
We use the following notation :
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We take the direct sum of < , > as an inner product on the Lie algebra u0ιt of U*.
Take a G-irreducible decomposition of g1 :

g^g/θ Θβ*1.

Then it induces a G*-invariant decomposition :

Each (g?)1 is ^-stable and G*-invariant, where θ is the involutive automorphism
θ : uφu-ntφu; (X, F)->(F, X\ We have a decomposition (g*)1=ϊl

10mΐ

±, where

If dimg i

1=l, then both of ft 1 and ntt1 are ^-stable and G*-irreducible. It is
well-known that 3)(G*)={(V(λ), ΛMF(μ), μ ) : λ, jue^(G)}, where K means the
outer tensor product. Let C* be the Casimir element of £/(g*) and let C be the
Casimir element of £7(g). Let α j be the eigenvalue of λ(C) on V(λ) for each
^e^(G). Since (^^XC*)=^(C)®/+/(g)^(C), we have WKj"XC*)=(fl^ + a/,)/.
We simply denote by β t the eigenvalue of adu(C) on Ql

±

> then adu*(C*)— atl
on each (gt)-1. Since πΐϊ 1- is a /Γ-irreducible module, we must decompose each
G*-irreducible module into a direct sum of Tf-irreducible modules. Since K is
the diagonal subgroup of G*, the problem is to decompose the (inner) tensor
product V(λ)®V(μ) into a direct sum of G-irreducible modules. We can reagard
each Tf-module wl

λ as a G-module g/. Applying the Theorem 1.2 to our case,
we have the following :

THEOREM 2.1. The index, nullity and Killing nullity are given as follows:

( i ) ι(G)=Σ Σ dim HomG(V(λ)®V(μ), (g/

( i i ) n(G)=Σ Σ dim Homβ(V(λ)®V(μ), (βSϊc)dim(V(λ)®V(μ))
ι=ίaχ+aμ=al

λ,μ^3)(G)

(iii) 72^(G)=#{2:dimg ΐ

1=l}+2 Σ dim(g l

1)

In order to count dim HomG(V(λ)<S)V(μ), (gl

1)c) we must remember that there
are two possibilities for (gl

±)c :

(i) (g/)c is G-irreducible,
(ϋ) (δi1)07 is decomposed into a direct sum of G-irreducible modules V and

F, the conjugate module of V.
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Let T be a maximal torus of G and ί be its Lie algebra. Let (V, p ) be a
complex representation of G. For each element λ in i, put

: p(H)(X)=V'-ί<λ) HyX, for any

If Vt^{Q}, then λ is called a weight and V ι is called a weight space. Espe-
cially, if (V, /O)~(GC, ad), then a weight is called a root of G and a weight
space is called a root space. We denote by Σ(G) the set of all non-zero roots
of G. Fix a lexicographic ordering on ί.

THEOREM 2.2 (Freudenthal). Let (V, p) be a complex irreducible representa-
tion of G with highest weight λ. Then the eigenvalue a^ of the Casimir operator
p(C) with respect to < ,> | g x β is given by the following

(2.1) aλ =

where d is half the sum of positive roots of G.

If we assume that U is a compact simple Lie group, then an Ad(U)-
invariant inner product on it is unique up to a constant. As a normalizing
condition, we assume that the square of the length of the longest root is equal
to 2. We call such an inner product the canonical inner product. We assume
that both of U and G are simple. Let < , >u and < , >g be the canonical inner pro-
ducts on ii and g respectively. Since < , >u is also an Ad(G)-invariant inner pro-
duct on g, there exists a real number j such that

<*, r>«=/<*, Y\ for any X, Feg,

which we call the index of g in it or the index of G in U. In fact it is known
that the index is a positive integer ([A-H-S], [D], [Y]).

THEOREM 2.3 (Dynkin, [D, p. 133]). Let U be a compact connected simple
Lie group and G be a closed connected simple Lie subgroup. If the index of G
in U is equal to 1, then roots of maximal length, and the corresponding root
vectors in gc are roots and root vectors in uc respectively with respect to a maximal
torus of U containing T.

A complex subalgebra g of a complex semisimple Lie algebra ΰ is said to be
a regular subalgebra, if there exists a basis of g consisting of elements of some

Cartan subalgebra §" of ϋ and root vectors of the Lie algebra ΰ with respect to

ϊ). In our compact case, if gc is a regular subalgebra of uc, g is said to be a
regular subalgebra of it. Theorem 2.3 asserts that if every roots of G is of the
same length and G is of index 1, then g is a regular subalgebra of it.

We denote by { a ί f ••• , ar} a fundamental root system of Σ(G) and by aQ

the highest root of Σ(G). Let #0— Σ w/α,. Throughout this paper the funda-



STABILITY OF CLOSED LIE SUBGROUPS 187

mental roots are numbered as in the Table 1 at the end of this section. The
fundamental weights ωj are numbered correspondingly.

Let 7" be a maximal torus of U which contains T and Σ(U} be the set of
non-zero roots of U with respect to T'. We denote by [ β ί t ••• , βr>\ a funda-
mental root system of Σ(U) and by /30 the highest root of Σ(U\

Table 1. Numbering of the simple roots

Ar
r-1

Cr

E8

r-1 r

—o< o
r-1 r

1 2 3 r-2 r

3. Stability of Lie subgroups of index 1.

Let U be a compact connected simple Lie group with a bi-invariant Rieman-
nian metric and G be a simple connected closed Lie subgroup. In this section
we assume that G is a subgroup of index 1 and study the stability of G in U
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as a totally geodesic submanifold. The purpose of this section is to prove the
following :

THEOREM B. Let U be a compact connected simple Lie group with a bi-
invariant Riemannian metric. A simple connected closed Lie subgroup G of index
I in U is a stable minimal submanifold.

We will employ the same notation as in section 2. By our assumption,
there are no need to distinguish the canonical inner product on g and 11. Thus
we denote them by < , >, which will be used to define a bi-invariant Riemannian
metric.

3.1 First we determine the structure of the normal space of g in u. Since
the index of G in U is 1, we may assume that α0— βo, by Theorem 2.3. Let λ
be the highest weight of an irreducible component V of the G-module (uc, ad).
Let π : t'->t be the orthogonal projection. Take β^Σ(U) such that π(β)=λ.
Then by Schwarz' inequality, we have <ττ(/3), β0>=</3, βo>^2, where the equality
holds if and only if β=β0. If β=βo, then the component V must coincide with
gc. Thus if V is an irreducible componenet of the G-module ((g1)0, ad), then
we have <ττ(/3), /90><2. Since λ is a dominant integral weight, we have <Λ, α0>=

r r

, «o>=0, 1. We put λ— Σ n^ajj. Then we have<Λ, aQy= Σ n^m^aj, #,>/2

0, 1. Since ra/α,, ajy/2^mj^ajί ω/>= 2<α0> ω/>/<α0, #o> is a positive integer,
Λ, α0> is equal to

(1) 0, if and only if all of the n/s are 0,
(2) 1, if and only if there exists k such that

n<7=o if

For each simple Lie algebra, we can calculate the number mk(akf α&>/2 (cf. [B]),
and we can pick up all possible &'s with the above property.

PROPOSITION 3.1. Let λ be the highest weight of an irreducible component
.of the G-module ((g1)^, ad). Then λ is one in the following table 2.

Now we inspect the possibility of λ more carefully.

Case 1. 0=§u(r+l), r^l. Let V be an irreducible component of the G-
module ((g1)0, ad) and λ be the highest weight of V. The highest weight vector
Y is expressed as follows

Y= Σ
βGΣ(
π(β)

where Xβ is a root vector of uc corresponding to j8. Since λ is the highest



weight, we have

(3.1)
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Type of gc

Λr (r^l)
Br (r^2)
Cr (r^3)
Or (r^4)

Λ

0, <y1; ••• , ωr

0, ΰ5ι, ωr

0, α^!, ••• , ωr

0, ω!, ω r _ι, ωr

rp i n — — '

E7 0, ωΊ

Es \ 0
Λ

G2

0, ω4

0, ω,

0=lXttt,Yl= CplXβi,XPl,

for each ι. Take and fix β with c^O. By Theorem 2.3, al^Σ(U) and
;uS<+j8. Thus by (3.1), [Xβι, ^1=0, cii+β<£Σ(U). Put

Then T7 satisfies the following property:

(CO γ-dφΣ(U) holds for any r,

If a subset of J?(£7) with the property (d) is linearly independent, then it cor-
responds uniquely to a Dynkin diagram [He, p. 470]. However even if a subset
of Σ(U) is linearly dependent, we associate with it a diagram in an analogous
fashion to the construction of the Dynkin diagram. The subsets of Σ(U) with
the property (Ci) are classified in [He, p. 503]. In our case, the set Γ has two
restrictive conditions:

(i) #ι, ••• , ar forms a fundamental root system of §u(r-fl),
(ii) — β is joined to only one vertex in {alf ••• , ar}, if 2^0 (by Proposition

3.1).

From the classification given in [He], we pick up diagrams which is possible
for our Γ. And we get the following:

PROPOSITION 3.2. // g—δu(r+l), r^l, then the highest weight λ of an ir-
reducible component of the G-module ((g1)0", ad) is one of the following:

(1) 0, <δι, ώz, ωr-ι, ΰ>r> if rS^9,
(2) 0, α>ι, ωz, ω3) ω6, ώ7, ώ8, if r=8,
(3) 0, c5ι, ω2, •" , ωr, if l^r<7.
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Case 2. g=§o(2r), r^4. Since each root is long, we can discuss similarly
to the case 1. We get the following :

PROPOSITION 3.3. // g=§o(2r), r^4, then the highest weight λ of an ir-
reducible component of the G-module ((g1)0, ad) is one of the following:

(1) 0, ωl9 if r^9,
(2) 0, ωlf ωr.lf ωr, if 4^r^8.

Case. 3. g=§o(2r+l), r^2. A Lie algebra I which is isomorphic to §o(2r)
is canonically embedded in g. If r^3, ϊ is also a simple subalgebra of it of
index 1. We denote by V(ω) the complex irreducible g-module with highest
weight ω and by W(p) the complex irreducible I-module with highest weight p.
Let pi, -" , pr penote the fundamental weights of I. It is easily verified that

If ((g1)*7, ad) contains a g-irreducible component V(ωr), then ((1L)C ', ad) contains
an ϊ-irreducible component W(ρr). Thus by Propositions 3.2 and 3.3, r must be
smaller than or equal to 8 and we get the following :

PROPOSITION 3.4. // g=§o(2r+l), r^2, then the highest weight λ of an
irreducible component of the G-module ((g1)07, ad) is one of the following:

(1) 0, άli, if r^9,
(2) 0, ωlt ωr, if 2^r^8.

Case 4. g=§:p(r), r^3. In this case we have the following:

PROPOSITION 3.5. // g=Sp(r),r^3, then the highest weight λ of an irreducible
component of the G-module ((g1)c, ad) is one of the following:

(1) 0, ωlf α>2, if r^5,
(2) 0,0?!, -,αl r, ι/r=3,4.

Proof. If u is of exceptional type, then §})(r), r^5, cannot be realized as a
subalgebra of index 1 ([D]). So we assume that u is of classical type. If g is
a regular subalgebra of u, then we can argue similarly to the case 1. And we
have one possibility that λ=ω^. Tasaki classified complex simple Lie subalgebra
of index 1 in classical complex simple Lie algebras (see Remark 3.9(1)). By his
classification, if g is not a regular subalgebra, then there exists a Lie subalgebra
ϊ of u which satisfies

( i ) ϊ is isomorphic to §u(2r),
( i i ) ϊ is a regular subalgebra of u of index 1,
(iii) g is a canonically embedded Lie subalgebra of ϊ.

The orthogonal complement g1 is decomposed as g1~g0

1Θί1

ί where go1 is the
orthogonal complement of g in ϊ and Γ is the orthogonal complement of ϊ in u.
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We can easily see that (Go1)0 is V(ωz). Let plf ••• , p2r denote the fundamental
weights of ϊ. We denote by W(p) the complex irreducible ϊ-module with highest
weight p. Now we decompose (1L}C as a g-module. Take an irreducible com-
ponent W(p) of (I1)0 as an ϊ-module. We know the possibility of p by Proposition
3.2. For each possible p, we decompose W(p) as a g-module. We have only to
consider the case p — pi, p2, pzr-2, pzr-i For the other cases r must be less
than or equal to 4. We can easily see

Thus we have the Proposition. Q. E. D.

3.2 Proof of Theorem B.

Case 1. g = Su(r+l), r^l.
By Theorem 2.2, we can calculate the eigenvalues of the Casimir operator

with respect to the canonical inner product in g,

Remember that aΈ}l=aΈir>aW2—a7Dr_1> ••• . By examining the eigenvalues, we
determine the set of pairs (ω, ω') such that

(3.2) aw+av>aWj

for each ω} given in Proposition 3.2. If /=3 (r^8), r—2 (r<3) or 4 (r— 7),
then the set of pairs (ω, ω') are

(cδi, ωi), (άJi, ωr), (ώr, ωO, (ωr, ω r),

otherwise such a pair does not exist. On the other hand we have

Thus by Theorem 2.1, G is stable as a totally geodesic submanifold in U.

For the other cases we can argue in a similar fashion. So we list

( i ) the eigenvalues of the Casimir operator,
(i i) the set of pairs with (3.2),
(iii) the decomposition of the tensor product V(ω)®V(ω'), for the pair

(ω, ω'} given in (ii).
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Case 2. g=

( i ) α S =
flSr = -r(2r+l)/4,

( i i ) if y=r=8, then the set of pairs (ω, άJ') are (ωlf ωO,

otherwise such a pair does not exist.

(iϋ) V(ωJ®V(ω1)=V(2ω1)®V(ωJ@V(0) .

Thus by Theorem 2.1, G is stable as a totally geodesic submanifold in U.

Case 3. g=8}>(r), r^3.

(i) fl δ t = -ι(2r+2-0
(i i ) if (/, r)=(3, 3), (3,4) or (4,4), then the set of pairs (ω, ωr) are (ωl9ωι\

otherwise such a pair does not exist.

(ϋi) y(ώ1)®vr(ώ1)=vr(2ώ1)0y (0^)07(0) .
Thus by Theorem 2.1, G is stable as a totally geodesic submanifold in U

Case 4. g^

( i ) αSί=
αSr.1

( i i ) such a pair does not exist.

Thus by Theorem 2.1, G is stable as a totally geodesic submanifold in U.

Case 5. g zs 0/ exceptional type.
If g is of exceptional type, then the eigenvalue of the Casimir operator for

λ given in Proposition 3.1 is the largest except zero. Thus by Theorem 2.1, G
is stable as a totally geodesic submanifold in U.

3.3 Examples and remarks.
Now we give some examples of simple connected closed Lie subgroups G of

index 1 in compact connected simple Lie groups and give the decomposition of

Example 3.6. (1) Let U be the special unitary group SU(r+s+l) and G —
{Diagonal 04, /,) : AtΞSU(r+l)}. Then the index of G in U is equal to 1. If
r^2, the G-irreducible decomposition of (g1)0" is as follows :

- 07(0) .

(2) Let U be the special orthogonal group SO(2r+2) and embed G=St/(r+l)
as a subgroup in a standard way. Then the index of G in U is equal to 1. If
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^4, the G-irreducible decomposition of (g1)*7 is as follows :

(3) Let U be the compact connected simple exceptional Lie group E8. Then
U has G=SU(q)/Zs as a subgroup of index 1. The G-irreducible decomposition
of (g1)'7 is as follows (see [M-P, p. 305]) :

Remark 3.7. For each dominant integral weight λ appeared in Proposition
3.2, there exist a compact connected simple Lie group U and its closed connected
subgroup G with the following:

( i ) the index of G in U is equal to 1.
( i i ) G is locally isomorphic to SU(r+ϊ),
(in) V(λ) is a G-irreducible component of (g1)*7.

We give further examples of pairs of compact connected simple Lie groups
U and their closed connected subgroups G of index 1. We omit the G-irreducible
decompositions of (g1)c.

Example 3.8. (1) SO(N)"DSO(n).
(2) Sp(N)l)Sp(r).
(3)
(4) SO(8)Z)S/>m(7).
(5)
(6)

Remark 3.9. (1) Complex simple Lie subalgebras of index 1 in classical
complex simple Lie algebras were classified in [Tas2]. By the classification,
such a subalgebra corresponds to one of the subgroups given in Example 3.6 (1),
(2) and Example 3.8 (l)-(5).

(2) Let λ be a dominant integral weight appeared in Proposition 3.3, 3.4 or
3.5 except the cases that λ=ω8 for g— §o(17) and λ=ωs for g=§})(4). There exist
a compact connected simple Lie group U and its closed connected subgroup G
with the following :

( i ) the index of G in U is equal to 1,
(i i) the Lie algebra of G is isomorphic to g,
(iii) V(λ) is a G-irreducible component of (g1)0".

It is easily seen that the assumption on G in Theorem B is weakened as
follows :

THEOREM B'. Let U be a compact connected simple Lie group with a bi
invariant Riemannian metric. Λ connected semisimple closed Lie subgroup G all
of whose simple factors are of index 1 is a stable minimal submanifold.
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By Theorem B', we conclude that the subgroup G— {Diagonal(A, B): At
S0(p], B^SO(q)} of S0(pjrq}) p, g^4, is a stable minimal submanifold.

4. Stability of 3-dimensional simple subgroups.

We shall give a necessary and sufficient condition that a connected 3-dimen-
sional simple Lie subgroup in a compact connected simple Lie group is stable.

A compact connected 3-dimensional simple Lie group is isomorphic to one
of 5/7(2) and 50(3) and its Lie algebra is always isomorphic to So(3). We state
our results separately for SU(2) and 50(3).

THEOREM C. Let G be a simple Lie subgroup which is isomorphic to SU(2)
in a compact connected simple Lie group U with a bi-invariant Riemannian metric.
Then, G is stable if and only if G is of index 1. If G is stable, then n(G)=nκ(G).

In order to state Theorem for G which is isomorphic to 50(3), we fix some
notation. We choose a basis {H, E, F} for a 3-dimensional compact simple Lie
algebra g with

[ff,E]=2F, [ff, F] = -2JS, [£, F]=ff.

With respect to the canonical inner product <, >0 on g, {H/V2, E, F} is an
orthonormal basis of g.

Let G be a 3-dimensional connected simple Lie subgroup in a compact con-
nected simple Lie group U of rank r. Then the Lie algebra g of G is isomorphic
to §o(3), hence we can take a basis {H, E, F} for the Lie algebra g of G as
above. Let <, > denote the canonical inner product on the Lie algebra u of U.
Let 1 be a maximal Abelian subalgebra in u such that H&. With respect to a
suitable ordering, we may assume <&, #>^0 for the fundamental root system
{]8ι, ••• , βr} of Σ(U). The Dynkin diagram of [ β l 9 ••• , βr} marked with the
non-negative integer ( β j f #> at the -th vertex is called the characteristic diagram
of G. The characteristic diagram determines the conjugacy class of G (see [D,

Theorem 8.2] and [Tas2, Proposition 3.3]). Let j80=Σ! njβj be the highest root

of Σ(U).

THEOREM D. Let G be a simple Lie subgroup which is isomorphic to 50(3)
in a compact connected simple Lie group U with a bi-invariant Riemannian metric.
Then, G is stable if and only if there exists k, l^k^r, such that

nk=l, <βJfHy=2δjk, l^j^r.

If G ^s stable, then n(G)=n*(G)

Let λ be a weight of a (complex) G-module. Since g is of rank 1, λ is
determined by its (integral) value <Λ, //>0. On the other hand an integer n
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determines an integral weight nH/2 of G. For the sake of brevity, we simply
denote the weight nH/2 by n. Let V(n) be the irreducible (complex) G-module
with the highest weight n^O. Then the weight space decomposition of V(n)
is as follows:

(4.1) VXn)=Σ o 7(n)n-2*, dim7(n)n-2*=l

By (4.1) and counting the multiplicities of weights, we have the well-known
theorem of Clebsh-Gordan.

M i n C n . r a )
(4.2) 7(n)<8)V(m)= Σ V(\n-m\+2j).

j-o

Let j be the index of G in U. By the definition of the index,

(4.3) <X, Y>=j<X, r>0, for X,

Let Xβ be a root vector of uc corresponding to a root β^Σ(U). Then by its

definition [//, Xβ] = ̂ /— l</3, H^Xβ. Thus ^ is a weight vector of the G-
module vf corresponding to the weight </3, H>=(jβf #>0. Therefore the set of
weights of G-module uc is given as follows :

(4.4) W(nc)={<β, //>: β

For an integer k, we put

Then the weight space of uc corresponding to the weight k is given by the
following :

(uc)*= Σ nc

β.

Since QC=V(2) is an irreducible component of uc ', we have 2<=W(uc) and </30, //>
^2, for </30, Hy is the highest weight in W(uc). Define a basis {#, Z+, Z_} of
9C by

Then Z+e(uc)2, Z_e(uc)_2 and we can put

X+= Σ X/,,
βeΓ2

X-= Σ X-^8, X-
βεΓ2

Since /ί=[ί:, F]--2VI=I[Z+, Λ_], we have

(4.5) ffe Σ Λj8.

By (2.1), the eigenvalue α^ of the Casimir operator on V(n) of g with respect
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to < , >o is given as follows :

(4.6) fln=-n(n+2)/2.

Since U is a simple Lie group, we have only to show the Theorem C and D
with respect to the invariant Riemannian metric on U induced by < , >//. By
(4.3), the induced Riemannian metric on G coincides with the invariant Rieman-
nian metric induced by < , >0. We remember that

3)(SU(2))={V(n):

3)(SO(3))={V(2n):

Proof of Theorem C. First we prove that if Σ #CΓ, )^2, then G is unstable.
-

In fact, under the assumption there exists an n (n^2), such that F(n)C(g L)c.
By (4.2) and (4.6),

Thus by (i) of Theorem 2.1, we conclude that G is unstable. We can easily
see that the converse is also true.

We consider the case that G is stable. As we remarked before, #(Γ2)^l.
Thus if G is stable, then #(Γ2)=1, #(Γ3)=#(Γ4)= ••• =0, and Γ2 consists of βϋ.
By Schwarz' inequality and the definition of index, we have

The equality holds, since /30 and // are proportional by (4.5). Namely we have
/=!. Thus, combined with Theorem A, the former half of Theorem C is
proved.

Now we prove the latter half. As we have proved, G is stable if and only
if each irreducible component of (g1)*7 is equivalent to F(l) or F(0). Let m
[resp. n} be the multiplicity of F(l) [resp. 7(0)] in (gx)c '. Note that m is even :
m—2m'. Then, by (ii) of Theorem 2.1, we have

n(G)=m Σ dim Hom0(V(X)<g)V(μ), F(l)) dim (V(λ)®V(μ))
=-

+ n Σ dim HomG(V(λ)®V(μ), F(0)) dim (V(λ)®V(μ))
o< «=

On the other hand, by (iii) of Theorem 2.1, we also have

Q.E.D.
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The Proof of Theorem D. Remember that each weight of a G-module is an
even integer. By a similar manner to that of the proof of Theorem C, we can

prove that G is unstable if and only if 23 #lΓι)=l-
.7=4

We consider the case that G is stable. In this case we have </30, Hy~2.

Since a weight <&, #> is equal to 0 or 2, 2=</30, //>— Σ n j f <β3Hy implies that

there exists an integer k such that n*=l, and <£,, Hy~2djk. Conversely, if
the condition is satisfied we have </3, //">=0, 2 or --2 for any β^Σ(U). Thus
the former half of Theorem D is proved.

The latter half is proved by a similar manner to the latter half of Theorem
C. Q.E.D.

5. Classification of stable 3-dimensional simple subgroups.

Now we determine all stable 3-dimensional simple subgroups which satisfy
the condition in Theorem D in each compact simple Lie group.

In the case that the ambient group U is of classical type we imbedd uc in
§Ϊ(ΛΓ, C). We denote by ετ the complex ΛfX N-matrix of which (i, ^-component
is equal to V--T and all of the other components are equal to 0. Put

Case 1. u=§u(n4-l), n^l. In this case case ΐ)c is a Cartan subalgebra of
§ϊ(w + l, C). Let g be a 3-dimensional simple subalgebra in §ιι(n-f 1).

We may assume

Note that {£!, ίa, ••• , in+J is the set of all weights of G acting on Cn+1. Since

βj=εj— ε j +ι, l^ ^n,

is a system of fundamental roots, the characteristic diagram of g is as follows :

By (4.1) tτ = — tn+<ί-l, hence the characteristic diagram of 9 is symmetrical. Since
β0=β1+ ••• + βn, the diagram for n=2p+l, p^l:

0
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is a unique one satisfying the condition in Theorem D. Thus we get tl— ••• =
ίp+ι=l and tp+2= -" =i2p+2= — 1. The corresponding subgroup G in SU(2p+2) is

G= {Diagonal 04, - , A); Λ^SU(2)} .
* P + l

Since G is isomorphic to SU(2) and its index is p+1, G is unstable by Theorem
C.

Each Lie group which is locally isomorphic to SU(2p+2) is of the form
SU(2p+2)/D for some subgroup D of the center of SU(2p+2'). If a subgroup
Dof the center of SU(2p+2) contains -1, G=G/{±1} =50(3) is stable in U=
SU(2p+2)/D.

Case 2. u=δo(2w-hl),
§ϊ(2n-ι-l, C) as follows:

We imbedd , C) in

+ l, C)=

0 a b

-lb X Y

£ r? t Λ7

Ύ=-Y, 1Z=-Z,

In this case HjcΓ\8o(2n+l, C) is a Cartan subalgebra of 8o(2n+l, C). Let g
be a 3-dimensional simple subalgebra in §o(2n + l). We may assume

#=Σ ίt(e t+ι-e l+n+1), t^t^ - ̂ tn^Q.
1=1

Then {0, t l f ••• , ίΛ, — ίi, ••• , — ίn} is the set of all weights of g acting on C2n+1.

is a system of fundamental roots, the characteristic diagram of g is as follows :

Since ^

is a unique one satisfying the condition in Theorem D. Thus we get ίι=2 and
£2= ... = tn~ 0. The corresponding subgroup G in SO(2n-\-l) is

G= {Diagonal^, /2n-2);
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Since G is isomorphic to 50(3), it is stable in S0(2n + l). The index of G is
equal to 2.

The corresponding subgroup in Spιn(2n+ϊ) is isomorphic to SU(2). Thus, by
Theorem C, it is not stable.

Case 3. u=8}>(n), n^3. We imbedd §])(n)c^§ί)(n, C) in 3l(2?z, C) as follows :

rrz r i
δtfn, C)=\\ : Ύ=Y, *Z=Z, X, Y, Z<=Mn(C)

\[z -<x\
In this case ΐjcn§})(n, C) is a Cartan subalgebra of §Xn, C). Let g be a 3-

dimensional simple subalgebra in §p(n). We may assume

Note that {t^ ••• , ίΛ, — ίj, ••• , — tn} is the set of all weights of g acting on C2n.
Since

is a system of fundamental roots, the characteristic diagram of g is as follows :

Since βQ^2βl-{

is a unique one satisfying the condition in Theorem D. Thus we get ^— ••• —
tn=l. The corresponding subgroup G in Sp(n) is

G= {Diagonal (A, ••• , A): 4e=S/>(l)} .
n

Since G is isomorphic to 5/7(2) and its index is n, G is unstable by Theorem C.
The center of Sp(n) is {±1}. The corresponding subgroup G = G/{±1} in

U=Sp(ή)/{±l}, which is isonorphic to 50(3), is stable.

Case 4. u=δo(2n), n^4. We imbedd §o(2n)c=§o(2n, C) in §I(2n, C) as
follows :
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\x γ

[z -*
: Ύ = -Y, '£=-£, X, Y,

In this case ϊ)cn§o(2n, C) is a Cartan subalgebra of §o(2n, C). Let g be a
3-dimensional simple subalgebra in §o(2n). We may assume

Then {ί!, ••• , ίn, — tlt "' , —ίn} is the set of all weights of g acting on C2n.
Since

βj — (εj— ^+ι-ε;+n+εJ+ι+n)/V2Γ,

/3n— (STI-I + SW — £271-1 — ε 2τι)/V2 .

is a system of fundamental roots, the characteristic diagram of g is as follows :

Since /30=/31+2/32+
in Theorem D are

βι βn-2 βn

n-2+βn-ι + βn, the diagrams satisfying the condition

Thus ί!=2, U= — ̂ ίn^
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(i) If tι=2, tz= •" ~tn=Q, then the corresponding subgroup in S0(2n) is

{Diagonal 04, /2n-8):

and its index is 2. Since the corresponding subgroup G in Spin(2n) is isomorphic
to 5/7(2), G is unstable. Let Z be the center of Spιn(2n\ Then GnZ={±l}.

If n is odd, Z is isomorphic to Z± and the groups which is locally isomorphic
to Spzn(2n) are Spin(2n\ S0(2n) and Spin(2ri)/Z. Since the corresponding sub-
groups in SO(2n) and Spin(2n)/Z are isomorphic to 5O(3), they are stable.

If n is even: n=2m, Z is isomorphic to Z2XZ2. The subgroups of Z are
{(0, 0)}, {(0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 1)} and Z. The element (1, 1)
eZ corresponds to — leS/>m(4m). Let U be a Lie group locally isomorphic to
Spin(4m) and Z) be the subgroup of Z such that U is isomorphic to Spin(^m)/D.
If Z) is {(0, 0), (1, 1)} or Z, then the subgroup corresponding to G in U is iso-
morphic to 50(3) and is stable. Otherwise, the subgroup corresponding to G in
U is isomorphic to SU(2) and is unstable.

(ii) If ίι= ••• =ίn_!=l, ίn— ±1 then n must be even: n=2m and the cor-
responding subgroup in 50(4ra) is

{Diagonal (A^- , 4): Λ^Sp(l)\ ,
m

where we regard Sp(l) as a subgroup of 50(4). The index of it is m. Let G
be the corresponding subgroup in Spin(4m) and Z be the center of 5/>m(4m).
Let £7 be a Lie group which is locally isomorphic to Spin(km) and^ D^ be the
subgroup of Z such that £7 is isomorphic to Spin(4m)/D. Since G/(GΓ\Z) is
isomorphic to 50(3), if D is (GnZ) or Z, then the subgroup corresponding to
G in £7 is isomorphic to 50(3) and is stable. Otherwise, the subgroup cor-
responding to G in U is isomorphic to SU(2) and is unstable.

Case 5. u~ e6, e7, e8. Due to Table 18 in [D], there is no subgroup in E6

which satisfies the condition in Theorem D.
Due to Table 19 in [D], there is a subgroup G in EΊ corresponding to the

following characteristic diagram.

(5.1)

It is isomorphic to SU(2) and its index is 3. Thus G is not stable in E7. The
center Z of E7 is isomorphic to Z2. Therefore G — G/Z is isomorphic to 50(3)
and stable in E7/Z---=Ad(E7).

There is no coefficient of the highest root of E8 which is equal to 1.
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Case β. ιι=f4. There is no coefficient of the highest root of F4 which is
equal to 1.

Case 7. u=g2. There is no coefficient of the highest root of G2 which is
equal to 1.

Now we summarize the above argument.

THEOREM E. All stable ^-dimensional simple subgroups G isomorphic to S0(3)
in compact connected simple Lie groups with bi-invariant Riemannian metrscs are
as follows.

(1) Let G= {Diagonal (4, - , A): A<=SU(2)}c:SU(2n) and D be a subgroups of

the center of SU(2n) containing {±1}. Then G = G/D is stable in SU(2n)/D.
Its index is equal to n.

(2) Let G = {Diagonal(A, •», A): A^Sp(l)}(ZSp(n). Then G=G/{±1\ is
n

stable in Ad(Sp(n))=Sp(n)/{±.l}. Its index is equal to n.
(3) G= {Diagonal(A, / n _ 8 ): AeSO(3)} is stable in SO(n). If n is even:

n=2m, then Ad(G) is also stable in Ad(SO(2m)=PSO(2m). Their indices are
equal to 2.

/v

(4) Let Z be the center of Spin(kn) and G be the subgroup of Spin(kri)
obtained by pulling back {Diagonal(A, •••, A): A^Sp(Y)} in S0(4n), where we

n *, „

regard Sp(l) as a subgroup of S0(4) in a natural manner. Then G = G/GΓ\Z is
stable in §pin(^ri)IGΓ\Z and Spin(^ή)/Z=PSO(^n}. Their indices are equal to n.

(5) Let G be a subgroup of Ad(EΊ) corresponding to the characteristic diagram
(5.1). Then it is stable. Its index is equal to 3.

REFERENCES

[A-H-S] M.F. ATIYAH, N. J. HITHIN AND I.M. SINGER, Self-duality in four dimensional
Riemannian manifolds, Proc. Roy. Soc. London A. 362 (1978), 425-461.

[B] N. BOURBAKI, Groupes et algebres de Lie, Hermann, Paris, 1975.
[Br] J.E. BROTHERS, Stability of minimal orbits, Trans. Amer. Math. Soc. 294 (1986),

537-552.
[C-L-N] B.Y. CHEN, P.P. LEUNG AND T. NAGANO, Totally geodesic submanifolds of

symmetric spaces III, preprint.
[D] E.B. DYNKIN, Semisίmple subalgebras of semisimple Lie algebras, Mat. Sb. 30

(1952), 349-462.= Amer. Math. Soc. Tlanslations Ser. 2, 6 (1960), 111-244.
[F] A.T. FOMENKO, Minimal compacta in Riemannian manifolds and Reifenberg's

conjecture, Math. USSR-Izv. 6 (1972), 1037-1066.
[He] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure

and Appl. Math. 80, Academic Press, New York, 1978.
[M-P] W.G. McKAY AND J. PATERA, Tables of Dimensions, indices and branching

rules for representations of simple Lie algebras, Lect. Notes in Pure and Appl.
Math. 69, Marcel-Dekker, New York and Basel, 1981.

[0] Y. OHNITA, On stability of minimal submanifolds in compact symmetirc spaces,



STABILITY OF CLOSED LIE SUBGROUPS 203

Compositio Math. 64 (1987), 157-189.
[Tak] M. TAKEUCHI, Stability of certain minimal submanifolds of compact Hermitian

symmetric spaces, Tohoku Math. J. 36 (1984), 293-314.
[Tasl] H. TASAKI, Certain minimal or homologically volume minimizing submanifolds

in compact symmetric spaces, Tsukuba J. Math. 9 (1985), 117-131.
[Tas2] H. TASAKI, Quaternionic submanifolds in quaternionic symmetric spaces,

Tohoku Math. J. 38 (1986), 513-538.
[Th] D.C. THI, Minimal real currents on compact Riemannian manifolds, Math. USSR-

Izv. 11 (1977), 807-820.
[W] J. A. WOLF, Complex homogeneous contact manifolds and quaternionic symmetric

spaces, J. Math. Mech. 14 (1965), 1033-1047.
[Y] 0. YASUKURA, On subalgebras of type ΛI in semisimple Lie algebras, Algebras,

Groups and Geometries 5 (1988), 359-367.

KATSUYA MASHIMO HIROYUKI TASAKI
DEPARTMENT OF MATHEMATICS INSTITUTE OF MATHEMATICS
TOKYO UNIVERSITY OF UNIVERSITY OF TSUKUBA
AGRICULTURE AND TECHNOLOGY IBARAKI, 305
FUCHU, TOKYO 183 JAPAN
JAPAN




