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REMARKS ON EFFECTIVE CURVATURE

BY KAZUMI TANUMA

1. Introduction

Let Ω be a domain in RlιV with a reflecting smooth boundary/1. Suppose
that Ω is a media through which wave propagates with a speed c(x, y). Let s be
the arc length of Γ measured along the curve from a fixed point on Γ, and n be
the normal distance from Γ to the point in Ω such that internal points of Ω
correspond to n>0. Now we suppose the center of curvature is in Ω. Let
K0(s) be the curvature of Γ at s. Let the speed of wave propagation be constant.
Then along a concave part of Γ (/f0(s)>0), a high frequency wave well known
by the name of whispering gallery wave can propagate. When the speed is
variable, the role of the boundary curvature K0(s) should be replaced by the
effective curvature K(s).

Babich and Kirpichnikova [1] defined the effective curvature K(s) by

(1.1) K(s)=K0(s)+c-l(s, ή)dnc(s, n) | n _o.

Let ω be the frequency of wave and Lε be the boundary layer given by

Lε={(s, n)

where n is sufficiently small.
They constructed a solution U which satisfies the following Helmholtz equa-

tion asymptotically as ω— »-{-oo

(1.2) (Δx,y+ω2c-\x,y)}U=ΰ in Lε

with the Dirichlet boundary condition

(1.3) £7|r=0

such that the solution is concentrated near Γ in the sense that

(1.4) U — >0 exponentially as n— >+ oo .

Let

Received June 14, 1989.

155



156 KAZUMI TANUMA

be one of the Airy functions which is rapidly decreasing as jt-»+oo together
with all of its derivatives and has the zeros only on the negative real axis and
let — v<0 be one of zeros ofAi(x). Then U is given in the following form

where

and
with K(sQ)>ε.

Uk (k^l) can be obtained successively by solving a certain recursive equation,
(see pp. 37~47 in [1])

Let us assume all the rays of waves are tangent to Γ. Then in this paper
we shall prove the effective curvature in (1.1) is simply given by the curvature
of Γ minus the ray curvature at the point of tangency, and also give the trans-
formation invariant formula for the ray curvature in the two dimensional
Riemannian space.

2. Lemma and Main Theorem

The eikonal equation for (1.2) is given by

(2.1) H(xy pqτ)=(l/2){c2(p2+q2)—1}=0 (p—dxτ, q—dyτ}

where τ(x, y) is the phase function of the wave. Also the system of differential
equations for the characteristics (i.e., rays) of (2.1) has the form

(2.2) x

where ' denotes a derivative with respect to a parameter of the ray.

LEMMA. Assume all the rays are tangent to Γ and let Kr(s) be the curvature
of the ray at s the point of tangency. Then the effective curvature (1.1) is given
by

K(s)=Kt(s)-Kr(s).
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Proof. It is enough to show

(2.3) #r(s)=-3»c(

Let the generic points of Γ be (M(S), v(s)) parametrized by the arc length s, and
let each point (x, y)<=Ω near Γ have the representation:

(2.4) x=u(s)—nv'(s), y=v(s)+nu'(s).

Then the boundary curvature is given by

(2.5)

Let the ray parameter in (2.2) increase with s. Then taking the center of cur-
vature in Ω, we have the ray curvature

From (2.2)

i>=2c*{(d^^^

=2c*{(dxc^

Hence substituting them into Kr, we obtain

^-{^3(9^-c

3(3,φ}{^/)2+^)}-^2-(9^-(3,φ.

From (2.4) it can be easily seen that

(2.6) 3s=(w/(s)-nι;//(s))9x+(z;/(s)+nz///(s))91/

=uf(s)(l-nK0(Sy)dx+vf(s)(l-nK0(Sy)dy

dn=-Vf(s)dx+u'(s)dy.

Here we have used the relations

u"(s)= -K0(s)v'(s), zΛs)-#0(s)w'(s),

which can be derived from (2.5) and w//(s)w/(s)+^//(s)ι;/(s)^0. From (2.6) it
follows immediately

(2.7) 3χ=(l

dy=(l

Therefore we obtain

+(l-n/fβ(s))-M(M/(s))2+(t;/(s))2K3.cX3nτ)
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On the other hand, since the ray is tangent to Γ, it holds that — v'(s)dxτ+

u'(s)dyτ=Q at the point of tangency, that is, from (2.6)

dnτ=0 at n=0.

By (2.7) the eikonal equation (2.1) becomes

which implies

c-2=(3,r)2 at tt^O.

Since τ =1 and s increases with ray parameter, so does the phase τ along s.
Thus we have 3sτ>0 and dsτ—c~l at n=0, which give Kr(s)=— dnc(s, n)/

c(s, tt)|n=o> and the proof is completed. Q. E. D.

Next we consider the problem (1.2), (1.3), (1.4) in the domain Ω in two
dimensional Riemannian space, so the Laplacian Δ in (1.2) should be replaced by
the Laplace-Beltrami operator.

Let the fundamental tensor be gljt i, /=!, 2 (symmetric and positive definite),
and the coordinate system be if, ι = l, 2, and let g—άet(glj) and (g*0=(^t/)"1

In the following calculus, we follow Einstein's summation convention.
Now we put

where (x1, x2) is the orthogonal coordinate and {βι, e2}, defined by

is taken as the natural base for the curvilinear coordinate system (ul).
Now making the substitution of Λ=g-1/2d(gl/zgτjd/duj)/dul into (1.2) gives

the equation

(2.8)

Here we assume that the leading term in the asymptotic solution U is given in
the form

{expiωτ(ul uz)}φ(u1 uz).

So substituting this into (2.8) and collecting powers of ω2, we obtain

In this case the eikonal equation is defined as

(2.9) H(ul uz pλ p2 r)=(l/2)(cVJίi^-l)=0

where pt—dτ/du1 i=l, 2. Thus the rays are obtained by solving



REMARKS ON EFFECTIVE CURVATURE 159

(2.10) ύl

where ' is a derivativation with respect to the ray parameter t.
Let / be the arc length of the ray. Then from (2.10) and the eikonal equa-

tion (2.9) it follows immediately

that is,

(2.11) dί/dt=c.

PROPOSITION. Assume all the rays are tangent to Γ. Let I be the arc length
along the ray measured from the point of tangency on Γ and n be the normal
distance from the point on the ray to Γ. Then we have another formula for the
effective curvature (1.1):

K(s)=-d2n/dl2\n=Q(s).

Proof. Put (u1, M2)=(s, n). Then from (2.4) and (2.5) it can be easily seen
that

gn={l-nK0(s)}2, gίZ=g2i=Q, £22=1.

In this case the eikonal equation (2.9) becomes

So it follows from (2.10) that along the rays

(2.12) s=c2{l-nKQ(s)}-2pl ή=c2p2

Recalling that p2—dnτ=Q at n=Q (the point of tangency) we have

p2=—dnc/c-K0(s) at n^O.

Hence it is enough to show

(2.13) Idzn/dlz=p2 at n=0.

From (2.11) and (2.12) it follows
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dn/dl=ή/ί=cp2

and

which proves (2.13). Q. E. D.

Remark. The effective curvature here corresponnds to the minus of the
generalized curvature for creeping waves, (see Lewis, Bleistein and Ludwig
[2], p318 (A2.3)) In [2], an asymptotic solution to the Helmholtz equation is
constructed under the convexity condition K<0, which is called the creeping
wave, while an asymptotic formula in [1] constructed under the concavity con-
dition K>0 is called the whispering gallery wave.

Next we shall give the transformation invariant formula for the ray curva-
ture at the point of tangency in the two dimensional Riemannian space.

THEOREM. Suppose that the boundary Γ is given by φ(ul u2)=0 where φ is
a smooth function such that VφΦΰ is the normal vector to Γ pointing toward the
domain Ω. Assume all the rays are tangent Γ. Then the ray curvature at the
point of tangency is given by

(2.14) Kr = -c-\dc/dul)(dφ/duj)glj {gmn(dφ/dum)(dφ/dun)} "1/2.

Proof. Let / be the arc length of the ray. Then the unit tangent vector
of the ray dx/dl in (ul) coordinate is given by

dx/dl=(dul/dl, du2/dl)

which follows from the chain rule:

(dxl/dl, dx2/dl)=(dul/dl)eί+(du2/dl)ez.

Now we shall prove that the first derivative of the unit tangent vector of the
ray d2x/dl2 in (ul) coordinate is given by

(2.15) d2x/dl2=(Γik(dul/dl)(duk/dl)+d2ul/dl2

} Γ2

ik(duτ/dl)(duk/dl)+d2u2/dl2)

where Γ}k=ghJΓtjk and ΓtJk=(l/2)(dgtj/duk+dgjk/dul-dgk*/duJ). Now we
observe

(2.16) d2xa/dl2=(dzxa/duiduj)(dul/dl)(duj/dl)+(dxa/dui)d2ul/dl2. (α=l, 2)

Since

Γljk=Σ>(dxm/duj)(d2xm/dukduί) and gh>= Σ (duh/dxn)(duj/dxn)
771 = 1 Λ = l

we have
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Σ (duh/dxn}(du>/dxn) Σ (
n=l m=ι

which leads to

Hence (2.16) is turned to

d2*V^/2=(9*V3^)Λ^ (α = l, 2)

which proves (2.15).
In the second step we show

(2.17)

cΰc/du

From (2.10) and (2.11) it follows

du*/dl=(duτ/dt)(dt/dl)=cgl3p3

and

d2ui/dΐί={d(cg%3p3)/dt}(dt/dl)

Substituting them into the ^tith component (jM=l, 2) in (2.15), we have

kmprf

Let (^m/l) be the inverse matrix of (gtj). Then differentiating the both sides
of gmhghj=δf with respect to uk we have

Multiplying the both sides by gιm implies

dgtj/duk = -gimg

Hence we have

Γh=-2-l{g>n(dg*r/duk)+ghk(dgrh/δu')-g"g>^^

and
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£2Γ^ V m^ίm = -2- V^^

Therefore we conclude

Γ*k(dul/dl)(duk/dl}+(d2uv/dl*}=c(dc/du^^

This proves (2.17).
Since the covariant form of the normal vector to the boundary is (dφ/du1,

dφ/du2), the contravariant form of the normal vector is given by

(2.18) (gVdφ/du>, gzjdφ/3uj) .

The length of this vector is

te*«g*'(fy/3ttθ£β*(fy/3M^

= {gaβ(dφ/dua)(dφ/du^} ^ .

Therefore the contravariant form of the unit normal vector pointing toward the
domain Ω is given by

(2.19) (

Now taking the inner product of the vectors (2.17) and (2.19) gives

(2.20) Kr=g

= {c(dc/duk)gkmpmpj-c-\dc/du>)}

^}-^2

^^
X {gaβ(dφ/dua)(dφ/du^} -1/2 .

Also, according to (2.10), the contravariant form of the tangent vector of the
ray is given by

(2.21) (g1JP

Therefore from the orthogonality of (2.18) and (2.21) at the point of tangency,
it follows that



REMARKS ON EFFECTIVE CURVATURE 163

Substituting this into the last equality in (2.20) we obtain the result. Q. E. D.

Since the transformation invariance of glj(dc/duτ)(dφ/duj) and gmn(dφ/dum)
(dφ/dun) in the right hand side of (2.14) follows from the property of contrac-
tion, we immediately obtain the following result.

PROPOSITION. Kr is an invariant under the coordinate transformation.
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