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ON THE ZERO-ONE-POLE SET OF A
MEROMORPHIC FUNCTION, II

By HIDEHARU UEDA

0. Let {a,}, {bs} and {p,} be three disjoint sequences with no finite limit
points. If it is possible to construct a meromorphic function f in the plane C
whose zeros, d-points and poles are exactly {a,}, {b,} and {p,} respectively,
where their multiplicities are taken into consideration, then the given triad
({aa}, {ba}, {pa}) is called a zero-d-pole set. Here of course d is a nonzero
complex number. Further if there exists only one meromorphic function f
whose zero-d-pole set is just the given triad, then the triad is called unique. It
is well known that unicity in this sense does not hold in general.

In Sections 1 and 2, the letter E will denote sets of finite linear measure
which will not necessarily be the same at each occurrence.

1. Let f and g be meromorphic functions in the plane C. If f and g
assume the value a=C\U{} at the same points with the same multiplicities,
we denote this by f=a&g=a. With this notation, our first result of this note
is stated as follows.

THEOREM 1. Let f and g be nonconstant meromorphic functions satisfying
f=02g=0, f=leog=1 and f=weg=cw, If

(1.1 K(f)=liglqsup{N(r, 0, N+N(@, o, N/T(r, H<1/2,
then f=g or fg=1.
From this we immediately deduce the following

COROLLARY 1. Let f b_g a nonconstant meromorphic function satisfying
n(r, 0, f)+n(r, oo, /)0 and K(f)<1/2. Then the zero-one-pole set of f is uni-
que.

The estimate (1.1) is sharp. For example, let us consider f=e%(l1—e®) and
g=e *(l1—e*) with a nonconstant entire function . Then we easily see that
f=02g=0, f=leog=1 and f=cog=c. Also, f%£g and fg=*l are evident.
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To determine the value K(f), we may note that T(r, f)~T(r, f—1/4)=
2m(r, e*—1/2)~2m(r, ¢*) (r—c0), N(r, 0, /)=N(r, 1, e*)<m(r, e*)+0(1) (r—0),
and N(r, 1, e*)~m(r, e¢*) (r&E, r—co). The combination of these estimates gives
K(f)=1/2, and thus (1.1) is actually sharp. Also we remark that Theorem 1 is
an improvement of [4, Theorem 2].

Before proceeding to the proof of Theorem 1, we state two lemmas.

LemMmA 1. If a is a nonconstant entire function, then
(1.2) m(r, a’)=o{m(r, e} (ré&E, r—o0),
and for any nonzero constant ¢
(1.3) N@, ¢, e)~N, ¢, e¥)~m(r, e*)  (r&E, r—w).

(1.2) is immediately deduced from the fact that a’=(e*)’/e* and [1, Theorem
2.3.]. (1.3) is easily obtained from the first and the second fundamental theo-
rems.

LEMMA 2. If f is meromorphic and not constant in the plane C, then we
have

(1.4 Nir, o, 2f'/ f=f"/ FYS2N(r, 0, N)+N(r, oo, /)+Ny(r, o, f).

This estimate is easily verified from the computation which was done in
[4, p. 28].

Proof of Theorem 1. We make use of notations and argument in the proof
of [4, Theorem 2]. Our assumptions of this theorem imply

(1.5) f=e'g, f-l=ef(g-1)

with two entire functions e« and 8. If ef or ¢#-¢ is identically equal to one,
we deduce f=g from (1.5) at once. We divide our argument into the following
three cases.

Case 1. ef is a constant ¢(%0, 1),

Case 2. ¢f~% is a constant ¢(s0, 1),

Case 3. neither ¢f nor ¢f~* are constants.
In Cases 1, 2, and 3 with 4=0 and C+0, the argument in [4, pp. 29-30] and
(1.3) are combined to show that K(f)=1. This is inconsistent with (1.1). In
Case 3 with 4=0 and C=0, the argument in [4, p. 30] gives fg=1. Consider
Case 3 with 4%0. The argument in [4, p. 30] yields

(1.6) m(r, IS0{log T(r, f)+logr}+N(r, o, 4) (r&EE, r—oo),
and

m(r, e*)
.7 }§{4+0(1)}T(r, ) (rEE, r—oo).

m(r, ef)
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Since f=(1—ef)/(1—ef~*), we readily obtain from (1.2) and (1.7)
(1.8) Ny(r, o, HSNy(r, o, HISN(r, 0, B'—a")<m(r, f'—a’)+0(1)
<O{log T(r, f)+logr} (r&E, r—oo).
By the definition of 4 and (1.4)
(1.9 N(r, o0, HH<2N(r, 0, /)+N(r, oo, [)+Ni(r, o, f).
Combining (1.6), (1.8) and (1.9), we have
(1.10) T(r, H=m(r, H+N(r, o, +N(r, o, f)
<2{N(, 0, /)+N(r, o, /)}+0{log T(r, f)+log r}
(r&E, r—o0).

The nonconstancy of B and (1.7) imply that f is transcendental, and thus (1.10)
gives K(f)=1/2. This is also inconsistent with (1.1). This completes the proof
of Theorem 1.

2. Suppose that f is a nonconstant meromorphic function in the plane C.
We denote the zero-one-pole set of f by ({a.}, {b.}, {P=}). Let {ca}, {d.} and
{g.} be subsequences of {a.}, {b,} and {p,} respectively such that {c,}U{d,}
Ulgn}#@. Then for shortening we write {a,}\U{p.}={s.} and {c,}\U{g.}=
{t»}. Further we define a subsequence {u,} of {s,} as follows: u,={u,} if
and only if u, occurs in {s,} only once but never in {¢,}.

In this section we prove

THEOREM 2. Let f, ({as}, {ba}, {Pn}), {ca}, {dr}, {gn}, {Sn}, {ta} and {u,}
be given as above. If {s,}+ @ and

(2.1) lir?_}iup4N(r, {Sn}U{dn})_i_N(r:I‘é:n}f?)'*_N(ry {tn})_N<r: {un}) <2’

then ({an}N{cn}, {b23Ndr}, {Pa}N{ga}) is not a zero-one-pole set of any noncon-
stant meromorphic function.

In view of Corollary 1 the zero-one-pole set of f in Theorem 2 is unique.
Also, the estimate (2.1) is sharp. In fact, let P and Q be canonical products
with no common zeros, let L be a transcendental entire function, and consider
g=(P/Q)e" and f=g® Then simple computations show that the left hand side
of (2.1)=2. Further we notice that Theorem 2 improves [5, Theorem 4] in some
sense.

The proof of Theorem 2 needs the following estimate of Weierstrass pro-
ducts.

LEMMA 3. ([3, Lemma 4]) Let {a,,} be n sequences (1<p<n) of complex
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numbers satisfying 1a,,| <1as,1 < -+, lim la,,|=-oc0 for each p. Then we can

construct the Weierstrass products P, of {a,,} (1=sp<n) with the property that

31 log m(r, P,)
#;1 — >0
> N(r, 0, P,)

4=1

holds as r—oo inside a certain set 2 of infinite linear measure.

Proof of Theorem 2. We shall seek a contradiction from the assumption
that ({a.}\{ca}, {b}N{dn}, {Pn} {gn}) is the zero-one-pole set of a nonconstant
meromorphic function g. First, we construct entire functions P, R and Q whose
zeros are {c,}, {d.} and {¢,} respectively as follows:

@) If {c.}=¢, then P=1. It is the same with R and Q.

(1) If 1<#{c,}<+oo, then P is the polynomial JI(z—c¢,). It is the same
with R and Q. !

log m(r, P)+log m(r, R)+log m(r, Q)
N, 0, P)+N(r, 0, R)+N(r, 0, Q)

(iii) 50
holds as r—oo inside a suitable set £ of infinite linear measure.

The condition (iii) is possible by means of (ii) and Lemma 3. From the
first fundamental theorem it follows that N(r, 0, P)+N(», 0, R)+N(r, 0, Q)<
N, 0, )+N(@, 1, )+N(r, o, H=3T(r, f)+0(1), and hence by (iii)

log m(r, P)+logm(r, R)tlogm(r, Q)
T(r, f)
Now, under our assumptions there are two entire functions « and 8 such
that

(2.2) 0 (ref, r—o).

2.3) gP/Q=fe", (g—DR/Q=(f—1)e".
Eliminating g from (2.3), we have
(2.4) f—fSet+Te f=1, or 1/f—Te#/f+Se'=1,

where S=R/P, T=R/Q and y=a—f§. For simplicity’s sake, we write ¢, =,
¢o=—1Se’, ¢s=Te P, $p,=1/f, po=—Te ?/f and ¢,=Se’. With these ¢, (j=1,
2, 3) define 4 and 4’ by

1 1
A=\1/¢: ¢/¢: Gi/ds|, A=
/P 5/ P G5/ s
and further with ¢, replaced by ¢, we define 4, and 4] similarly.

33/ s ¢g/¢3’
BU/ by B/ bsl
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(A) First we consider the case 4=0. By (2.4)

(2.5) —fSe'=¢,=C¢,+D=Cf+D,

(2.6) Tef=¢;=1—¢,—¢,=1—D—(C+1)f

with two constants C and D. Eliminating f from (2.5) and (2.6), we get
2.7 R{CPe P+ Re'P+(D—1)Qe’} =(C+D)PQ .

(A) If {d,}# @, then (2.7) implies C+D=0 and (C+1)Qef+*'—Re’=CP.
It is easily verified that C+#0, —1. Hence from (2.5) and (2.6) we deduce that
{ca.}={a.}, {d.}={b.} and {g.}={p.}. This is contradictory to the assump-
tion that g is nonconstant.

(A;) Now, we proceed to the case {d,}=@, i.e. R=1. If D=0, (2.5) im-
plies P=1, so that @ has at least one zero. Hence by (2.6) C#—1 and f=
(1—1/Qe?)/(C+1), from which we have K(f)=1. (Here we remark that (2.1)
implies K(f)<1/2. This is an immediate consequence of the fact that {u,} is
a subsequence of {s,}.) If D=1, (2.7) implies P=1 and C=+0. Hence in view
of (2.5) f=—(C+e)™', from which we have K(f)=1. It remains to consider
the case D#0, 1. If C=—1, (2.6) implies ¢#=(1—D)". From this and (2.5) it
follows that f=DP/{P+(D—1)e%}, so that K(f)=1. If C+—1, (2.6) gives f=
(1—D—1/Qef)/(C+1), which also yields K(f)=1.

(B) The case 4,=0 can be handled in all the same way as the case 4=0,
and after all 4,=0 leads us to imcompatible results with our assumptions.

(C) Next we suppose that neither 4 nor 4, are identically zero. From
(2.4) it follows that f=4’/4. Using the same reasoning as in Case 3 in the
proof of Theorem 1, we obtain the following estimates:

(2.8) m(r, fl=m(r, 4)+m(r, H)+Nr, o, H+0(1),
2.9 m(r, 4)+m(r, 4y=0{log T(r, f)+log r+log m(r, P)
+logm(r, R)+logm(r, @)} (r&E, r—o),
(2.10) N(r, oo, H<2N(r, 0, /)+N(r, o, ))+N(r, 0, P)+N(r, 0, Q)+2N(r, 0, R)
+Ni(r, 0, fQ)—N(r, {Q=0IN{ multiple poles of Q}),

(2.11) N(r, o0, )=N(r, o, /)+Ny(7,0, Q)+ Ni(r, o0, fQ)+N(r,{Q=0}N{fQ=00}).
In particular, if f is a rational function, (2.9) can be replaced by

2.9 m(r, 4)+m(r, H=0(1).

Indeed, we may use the first and the second fundamental theorems to find that
g is rational, and next note from (ii) that all of P, R and Q are polynomials,
so that e* and e? are constants. Hence ¢, ¢, and ¢, are all rational functions,
and thus (2.9)’ holds.
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After (2.2), (2.9) ((2.9)" in case that f is a rational function) and (2.10) are
taken into account, (2.8) and (2.11) yield

(2.12) {1—oW}T(r, HNZ2{N(, 0, /)+N(r, o, /)+N(z, 0, R)}
+N(r, 0, P)+N(r, 0, Q)+(N,+N))(r, o, fQ)
+N(r, {Q=0}N\{simple poles of fQ}) (FrEQ\E, r—oo).
In the same way, starting from 1/f=4{/4, we deduce
(2.13) {1—o(}T(r, 1/ /)L2{N(r, 0, f)+N(r, 0, f)+N(r, 0, R)}
+N(r, 0, Q)+ N(r, 0, P)+(N,+N))r, 0, f/P)
+N(r, {P=0}N\{simple zeros of f/P}) (r&Q\E, r—oo),

where 2 and E are the same as in (2.12). Summing up (2.12) and (2.13), we
have

{2—oW}T(r, H=4N(, 0, /)+N(r, o, [)+N(r, 0, R)}+(N+N)r, 0, P)
+(N+N)7, 0, Q)+ (N, +N\)7, 0, f/P)+HNi+N,)r, o, fQ)
+N(r, {P=0}\{simple zeros of f/P})
+N@r, {Q=0}N\{simple poles of fQ})) (rEQNE, r—co),

which is also inconsistent with (2.1).
Thus ({a.}N{ca}, {ba}N{dn}, {Pn} {ga}) is not a zero-one-pole set of any
nonconstant meromorphic function.

3. Suppose that f is a nonconstant meromorphic function in the plane C
whose zero-d-pole set is not unique, where d(#0, 1) is a constant. Let ({a,},
{ba}, {pn}) be the zero-one-pole set of f, and let {c,}, {d.} and {g.} be sub-
sequences of {a,}, {b,} and {p,} respectively such that {c,}\U{d.}\U{g.}#D
and such that

(31) 2 len] 7 2 1dal 7 2 gnl T <Hoo .
cp#0 dn#0 an#0
Under these assumptions we prove the following result.

THEOREM 3. Let f, d, ({aa}, {ba}, {Pa}), {ca}, {da} and {g.} be given as
above. Then ({an}N{cn}, {ba}N{dn}, {Pa}N{qn}) ts not a zero-one-pole set of any
nonconstant meromorphic function.

We have already showed the corresponding result for the case d=1 in [5,
Theorem 1]. Also, Ozawa [2, Section 4] has proved this result for {p,.}={q.}
={c,}=0@ and 1<#{d,}<+o. The assumption (3.1) cannot be omitted. For
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example, let us consider f=d(e*—1)/(e*—d), N=df and g=e?/(e*—d) with a
constant d(s0, 1). Then we easily see that f and N have the same zero-d-
pole set, say ({a.}, @, {p.}), and therefore the zero-d-pole set of f is not uni-
que. On the other hand, the zero-one-pole sets of f and g are ({a.}, @, {Pz})

and (@, ¢, {p.}) respectively, and X [anl“lzn"g‘,k‘1=+oo. Further we
an#0 k=1

remark that this result does not hold in general in the case that the zero-d-pole
set of f is unique for any d+#0. In fact, let g be a nonconstant meromorphic
function of order less than one, and consider f=g2. See [1, p. 25, Lemma 1.4.].

In the proof of Theorem 3, we frequently use the following form of the
impossibility of Borel’s identity.

LemMA 4. (cf. [5]) Let P, Py, -+, P, (P,£0,0<7<n, n=1) be entire func-
tions satisfying m(r, Pj)=o(r) (r—o0), and let gi, 8, -+ , & be nonconstant entire

Sfunctions.  Then an identity of the following form is impossible : Zn) Pet'=P,.
J=1

Proof of Theorem 3. We suppose that ({a,}\{c.}, {b.} {da}, {Pa} {gn}) is
the zero-one-pole set of a nonconstant meromorphic function g, To begin with,
we construct entire functions P, R and @ whose zeros are {c,}, {d,} and {g,}
respectively in the following manner.

(i) If {c,} is empty, then P=1. It is the same with R and Q.

(ii) All of P, R and Q have genus zero, so that m(r, P)+m(r, R)+m(r, Q)
=o(r) (r—o0).

The condition (ii) is possible from (3.1). Let N(/f) be the meromorphic func-
tion whose zero-d-pole set is the same as the one of f.

According to our assumptions, there are four entire functions a, 8, ¥ and ¢

such that

3.2) N=fe®, N—d=(f—d)e?, gP/Q=fe’, (g—DR/Q=(f—1)’.

We note that each of ¢%, ef and e*~# is not identically equal to one, otherwise
we immediately deduce from (3.2) f=N. The elimination of N, g and f from
(3.2) gives

(3.3)  PRe*—PRef—dQRe"+dQReP*+dPQe’—PQe**+(1—d)PQef+=0.

Suppose that e% is a constant ¢(+0, 1). Then ¢ is not a constant because
of the nonconstancy of f, and by (3.3)

(3.4 PRef+dQRe"+(c—d)PQe’—dQReP+T4(d—1)PQef+=cPR .

We first consider the case ¢c=d. Recall that P, R and @ satisfy the condition
(ii). Then applying Lemma 4 to (3.4), we find that at least one of e, ¢#*7 and
¢f+% is a constant, say x. If ¢’=x, (3.4) becomes (P—dxQ)Ref-+(d—1)PQef+
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=d(P—x@Q)R. It is easily seen that R=1, P—dxQ=0 and P—xQ=0, so that
¢#*9 is a constant, say y, and hence (P—dxQ)ef=d(P—xQ)—y(d—1)PQ. This
is impossible. If ef*’=x, then PRef+dxQRe #4(d—1)PQef=d(P+xQ)R,
which implies that R=1 and P+xQ=0. Hence ¢’*’ must be a constant, say y,
and thus Pef+dxQe f=d(P+xQ)—y(d —1)PQ=0, which is absurd. If ef*'=x
but neither " nor ef*’ are constants, then PRef+dQRe’—dQRe’+ =
{dR—x(d—1)Q}P by (3.4), so that dR—=x(d—1)Q=0. Hence R=@Q=1 and
def—Pe7=d. This is also untenable. We can discuss the case c¢#d in much
the same way as the case ¢=d, and in each subcase we make an appeal to
Lemma 4 to obtain an absurd result. Thus we see that ¢* is not a constant.
Similarly, we can make sure that ¢?, ¢’ and ¢’ are not constants.
Suppose next that ¢f-% is a constant ¢(#0, 1). From (3.3) it follows that

(3.5 cdQRe"+{c(1—d)—1}PQe’—dQRe"“+dPQe’ “=(c—1)PR,

which 1mplies that at least one of ¢"~“ and ¢’ “ is a constant, say x. First
assume that ¢’"*=x. In view of (3.5)

3.6) cdxQRe“+{c(1—d)—1}PQe’+dPQe’ *={(c—1)P+dxQ}R .

If (¢—=1)P+dxQ=0, then P=Q=1 and c¢—1+dx=0. Substituting these into
(3.6), we have cxRe*°+e*=c+x. Since R has at least one zero, ¢+x+0, and
S0 ¢%~® must be a constant, say y. Thus e""=c+x—cxyR. This is untenable.
If (¢c—1)P+dxQ=0, then (3.6) yields that ¢°-“ is a constant, say y, and that
[edxR+y{c(1—d)—1}P]Qe*={(c—1)P+dxQ}R—dyPQ=0. Thisis also impos-
sible. Next assume that ¢°~*=x. By means of (3.5) cdQRe"+{c(1—d)—1}PQ¢°
—dQRe" *={(c—1)R—dxQ}P, from which we have (c—1)R—dxQ=0. Hence
Q=R=1, c—1=dx, and so (c—x)Pe’"+e “=¢. This is absurd. Thus we may
assume that ef-% is not a constant. In the similar manner, we can ascertain
the fact that e7~%, ¢f*7-% ¢~ and ¢f*9-% are not constants.

It remains to consider the case that none of %, ¢f, ef, &%, ¢#~%, o', ef*1-2,
e®~* and ¢f*9-% are constants. Using (3.3) once more, we have PQe’+ PRe?~«
+dQRe" *—dQRef* " *—dPQe* 4 (d —1)PQef+-*=PR. This is also impossible
because of Lemma 4.

All the above arguments are combined to show that ({a,} {ca}, {b} {dx},
{p21 {ga}) is not a zero-one-pole set of any nonconstant meromorphic function.
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