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ENTIRE FUNCTIONS WITH RADIALLY

DISTRIBUTED ZEROS

BY SHIGERU KIMURA

1. In our previous paper [1], we considered the entire functions of positive
integral order and obtained the following characterization of the exponential
function.

THEOREM A. Suppose that f(z) is an entire function of positive integral
order p, and that f(z) has no zeros in a sector {z\ \argz\<π—π/2p + η} ()?>0)
and <5(0, /)=!. // there exists a Jordan curve I joining z=Q to z—°° such that

f(z)f(ωz) - /(ω2^)=0(l) (*e/)

where ω=exp(πi/p\ then /(z)=0p<0 where P(z] is a polynomial of degree p, or
else

,. I log I/(r) 1 1 ,lim = + oo .
r-»oo rp

In this paper, we show that we can remove the condition on the deficiency.
But we confine the distribution of zeros in a sector with half opening and prove
the following.

THEOREM 1. Suppose that f(z) is an entire function of positive integral order
p, and that f(z) has only zeros in a sector { z ; \arg z—π\^π/4:p — η=a\ (η>0).
If there exists a Jordan curve I joining z=Q to z=°o such that

(1) JW(αw) - /(α>^-^)-0(l) (*€=/)

where β)=exp(τr£//0, then f(z)=£P(2) where P(z) is a polynomial of degree p, or
else

(2) lim
r-»oo

In our previous paper [1], we also considered the entire function of order
q=2p+l having only negative zeros and obtained the following characterization
of the exponential function.
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THEOREM B. Suppose that f(z) is an entire function of order q—2p+l where
p is a non-negative integer, having only negative zeros and 6(0, /)=!. Further
setting φ(z2}—f(z)f(—z), g(z)=φ(—z)/φ(0)=eQ<i^g1(z) where Q(z) is a polynomial
and gι(z) is a canonical product, we assume that there is an arbitrarily small /3>0
such that

I log I g(re^)g(re-^) \ -2(cos βq/2) log | g(r] \ \ < ε(r) | log | g(r) \ I

for all sufficiently large r where 0^ε(r)=O(l/rε°), ε0>0 unless g(z) is in case
deg(ReQ(r))=0 and gι(r)=l. Then f(z}—ep^ where P(z) is a polynomial of
degree q, or else

In our previous paper [2], we considered the entire functions with zeros
distributed in a sector. But we obtained only an incomplete result there.

In this paper, we show that we can remove the condition on the deficiency
and that the zeros can be distributed in a sector and prove the followings.

LEMMA. Suppose that g(z)=eQ^gl(z) is an entire function of finite order
having only zeros in a sector (z', |arg2— π\ ^2a<π/2(k + l ) } , where Q(z) is a
polynomial, g^z) is a canonical product and k is the genus of gι(z). Then the
sign of log I g(r) \ is definite for r^r0 where r0 is a positive number, unless

(3) deg(Re<?(r))=0 and gfc^l.

TEEOREM 2. Suppose that f(z) is an entire function of order q—2p-\-l where
p is a non-negative integer, having only zeros in a sector [z] |arg2— π\^a}.
Further setting φ(z*}—f(z)f(—z}, g(z)=φ(—z)/φ(ΰ\ we assume that there exists
a positive number β such that

(4) ε log I g(re^)g(re-^) \ ̂ 2ε(cos βq/2) log | g(r) \ +ε)?(r) log | g(r) \ ,

for all sufficiently large r where 2aJ

Γβ<π/(qJrl), ε = ±l, ε log|^(r)| >0 and 0<
oy(r)^0(l/r570), ηQ>Q for all sufficiently large r. Then f(z)=ep<*> where P(z) is
a polynomial of degree q, or else

(5) l im-logl/(r)l ^
r-»oo r3

Our method of proof depends heavily upon the following formula.

OZAWA FORMULA [3, ρ-507]. Let

j=ι j
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Then
dώ(x, v) (— i)*+ιv*+ι

a 1 . 0 . 23* l+2;ycos;c + ;y

We remark that ψ(x, y)=log\E(—yelx, fe)|, where J5 is the Weierstrass pri-
mary factor.

2. Pr00/ 0/ Theorem 1. Let /(z) be an entire function satisfying the
hypotheses in Theorem 1. We can write

where P(z) is a polynomial of degree at most p and /Ί(z) is a canonical product
with zeros {av}. Then we suppose that f$(z) is a canonical product with zeros
{— I fly |}. If the genus of /ΊO) is p, then we have from Ozawa's formula,

^

^(r'-cos (/>+!)«) 5"^

and we have (2). Therefore, by the assumption that (2) is false, we see that
the genus of /ι(z) is at most p — 1. Hence we have

logM(r, /0=e(r').
Putting

we have logM(r2p, φ)<2p logM(r, f^0(rp\ Therefore it follows that

On the other hand, by the assumption (1) we have

m(ρ, φ)^

and it follows that φ satisfies hypothesis in Kjellberg's Lemma [1, p-19] with
λ=l/2 unless φ(z) is constant. Thus we have

which is a contradiction.
If φ is constant, then we see that f(z)— 0PC2), where P(z) is a polynomial

of degree p.

3. Proof of Lemma. If gλ(z) has zeros {bv}, then we suppose that gt(z) is
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a canonical product with zeros {— \ b v \ } . From Ozawa's formula, we have

(-1)* log I ̂ (r) I ̂ (-1)* log|£Ϊ(r*"β)|

Since 2α(£+l)<τr/2, it follows that

o xκ

unless case (3). Hence, if fe^/=deg(ReQ(r)), then sign (log | g(r) \ =sign (log \gl(r)\)
and the sign of log|g(r)| is definite for r^r0 where r0 is a positive number.

If k<l, then we have from Ozawa's formula,

(x) dx
k+1 x+r

Hence sign(log|g(r)|)=sign(Re Q(r)) and the sign of log|g(r)| is definite for
r^r0 where r0 is a positive number.

4. /V00/ of Theorem 2. Let /(z) be an entire function satisfying the
hypotheses in Theorem 2. We can write

where P(z) is a polynomial of degree at most q and /Ί(z) is a canonical product.
We suppose that (5) is false. Then, proceeding as in § 2 we see that the genus
of /jO) is at most q—l—2p. Hence we have

(6)

Now we can write

where Q(z) is a polynomial of degree at most p and the genus of the canonical
product gάz) is not greater than p.

We can easily deal with case (3). In this case we have

where a3 (/=!, ••• , fe') are all real. Hence we have /(z)=exp(P(z)) where P(z)
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is a polynomial of degree q, which is the desired result.
Now we consider the other cases than (3).
Case (1). log|£(r)|>0 and

log I g(re^)g(re~^} \ -2(cos βq/Z) log | g(r} \ < η(r] log | g(r) \

for all sufficiently large r.
We set

Q(z)=ak'Z
kt+-a1z9 deg(Re(?(r))=/ ( £ k r )

and

We define a harmonic function H(reίθ) in D= {z; 0<|z| </?, 0<arg 2</3} as follows,

H(rei$)=\° log\g(re**)\dφ
-

2
= — \ a i \ r 1 s'mlθ cos θt+ ••• +2 |α 1 | r s in0 cos ^!

Furthermore we consider the subcases, denoting the genus of gλ(z) by k.
Case (1-1). k^l. In this case the sign of log\g(r)\ coincides with the one

of log|gι(r)| for all sufficiently large r.
Setting /!=[0, τr/2)W(3τr/2, 2π], Iz=(π/2, 3ττ/2) we define

#1(7 '̂)= Σ — l

(7) ^

where

H3(reίθ)~I log | gι(relφ) \ άφ— I log | gί(re^)gί(re~

If ^1(2) has zeros {&»}, then we have from Ozawa's formula

., _ 3
dθ* '

Hence we have
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for all sufficiently large r and therefore we have from the harmonicity of H(relθ),

3(log r)2 V 9r2 r dr >

with #=/3, for all sufficiently large r. From Ozawa's formula again we have

and H(reϊβ) is unbounded. Thus we see that H(relβ) is an increasing convex
function of logr for all sufficiently large r.

Proceeding as in [1, p-2β, 27], from (4) and (6), we find a sequence of r=
{rn} tending to infinity with n such that

where Ci, C2 and C are positive constants which do not depend on r and s
(>r). For each fixed r, if s tends to °°, then we arrive at an impossible in-
equality from )?o>0.

Case (1-2). />&. In this case, since Re(Q(r)} is positive for all sufficiently
large r, θl lies in /!=[0, τr/2)U(3τr/2, 2ττ].

Firstly we assume that k is even. In this case, we use the functions H,
Hlf H2 and H3 defind by (7). H^re1^ is a nondecreasing convex function of
logr on (0, oo) and Jϊ1(0)=Jffl(0+)=0. Since the degree of Hάre^-H&e1?) is
higher than one of H2(relβ), H(relβ) is a nondecreasing convex function of log r
for all sufficiently large r. Hence arguments similar to those in case (1-1) lead
to a contradiction.

Secondly we assume that k is odd. In this case we define

H2(reiθ)= Σ ~ | f l , | r> sin/0 cos 0
0; e/2 7

where

#,(rO= f ' log i gάre**)gl(re-*
Jo

Then we have
It is trivial that Hi(reiβ) is a nondecreasing convex function of log r on

(0, oo) with firι(0)=ff1(0+)=0.
Now we show that H(reiβ) is a nondecreasing convex function of log r for

all sufficiently large r.
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We have from Ozawa's formula

dx = o(rl) (r—»oo).

Hence \Hι(re*β)\/rl-*Q as r->+°° and H(relβ) is unbounded.
If gi(z) has zeros {bv}, then we have from Ozawa's formula again,

1 + τrι3Θ2

+1 l+r/t

^cos(j8+^7jof^<"+:

Hence (32H/dθ2)θ=β is negative and (32H/d(\og r)2)θ==β is positive for all sufficiently
large r. Therefore H(relβ) is a nondecreasing convex function of log r for all
sufficiently large r. Thus arguments similar to those in case (1-1) lead to a con-
tradiction.

Case (2). log|g(r)|<0 and \og\g(re*β)g(re-ίβ)\-2(cos βq/2)log\g(r)\^
f](r}\Qg\g(r)\ for all sufficiently large r.

Put Q(z)= — Q(z\ gι(z)=gι(zΓl and g(z}=eξίwgl(z}. Then (4) is equivalent
to

log I g(relβ)g(re~τβ) \ -2(cos βq/2) log | g(r) \ < η(r) log | g(r) \.

Thus our case is handled in a fashion almost similar to case (1).
We only show how to handle the inequality corresponding to (8). Proceed-

ing as in case (1-1), we have

, x log|g(r)| logMχ2s, g) log|g(r)|

where Mβ(2s, g)— sup \g(2seiθ)\. In this inequality we must show that
\0\<β

Since logM^(r, |)^ supRe(Q(reiθV+logMβ(r, gjand lim{
l ^ l < ^ 3 r-*oo

—0, it is sufficient to show that

(10) li
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in the case that the genus of gι(z) is not smaller than the degree of Re(Q(r)).
Since (6) implies lim{log M(r, gl)}/rq/2=0) we have mβ(r, gι)/r3/2-»0 as r->oo,

where

mβ(r, gj=~log^gί(reiθ)\dθ=

Now in this case, we have from Ozawa's formula for θ ( \ θ \ < β ) ,

x*+r*+2xrca&(β+2a)

Hence we obtain (10).
Proceeding as in case (1), we have a contradiction from (9).
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