ON Z_p -EXTENSIONS OF REAL ABELIAN FIELDS

By AKIRA INATOMI

In [1], Fukuda and Komatsu gave a sufficient condition for the λ invariants of real quadratic fields to vanish. In this note, we shall show that the results obtained in [1] can be extended in a real abelian case.

Let k be a finite real abelian extension of Q and p an odd prime number which splits completely in k. Let $\mathcal{P}_1\mathcal{P}_2\cdots\mathcal{P}_r$ be the prime factorization of (p) in k, where r=[k:Q]. A Z_p -extension

$$k = k_0 \subset k_1 \subset \cdots \subset k_n \subset \cdots \subset K$$

is the cyclotomic Z_p -extension, since k is a totally real field and Leopoldt's conjecture is valid for k. Let C_n be the ideal class group of k_n , A_n the p-primary part of C_n , σ a topological generator of $\operatorname{Gal}(K/k)$ and we denote also by σ the restriction of σ to k_n . Let

$$C_n' = \{c \in C_n : c^{\sigma} = c\}$$
 and $B_n = C_n' \cap A_n$.

We have the following result by Greenberg [2], since every \mathcal{L}_i is totally ramified in K.

LEMMA 1. There exists an integer n_0 such that $|B_0| \le |B_1| \le \cdots \le |B_{n_0}| = |B_{n_0+1}| = \cdots = |B_n| = \cdots$.

Let E be the unit group of k. Then

$$E = \{1, -1\} \oplus E'$$
.

where E' is a free abelian group of rank r-1. We denote by $N_{m,n}$ the norm mapping from k_m to k_n ($m \ge n$). Let $H=N_{n,0}(k_n) \cap E$, then there exists a base $\{\eta_1, \eta_2, \dots, \eta_{r-1}\}$ of E' and positive integers c_1, c_2, \dots, c_{r-1} such that

$$H = \{1, -1\} \oplus [\eta_1^{c_1}, \eta_2^{c_2}, \cdots, \eta_{r-1}^{c_{r-1}}]$$
 (1)

and $c_i | c_{i+1}$ for $i=1, \dots, r-2$. Since $[k_n : k] = p^n$,

$$H\supset \{1, -1\} \oplus [\eta_1^{p^n}, \eta_2^{p^n}, \dots, \eta_{r-1}^{p^n}].$$

Then we have

Received November 25, 1988.

$$c_1 = p^{n-s_1}, c_2 = p^{n-s_2}, \cdots, c_{r-1} = p^{n-s_{r-1}},$$

where s_1, s_2, \dots, s_{r-1} are integers such that $n \ge s_1 \ge s_2 \dots \ge s_{r-1} \ge 0$. Let $l_n = s_1 + s_2 + \dots + s_{r-1}$, then $[E: H] = p^{n(r-1)-l_n}$.

We denote by $e(\mathcal{P})$ the ramification index of a place \mathcal{P} of k with respect to k_n/k . Since k_n is a finite cyclic extension of k, by Yokoi [3] we have

$$|C'_n| = |C_0| \times \frac{\prod_{\mathcal{D}} e(\mathcal{D})}{[k_n : k][E : H]}$$

$$= \frac{|C_0| \times \widehat{p^n \times \cdots \times p^n}}{p^n \times p^{n(r-1)-l_n}}$$

$$= |C_0| p^{l_n}.$$

Hence $|B_n| = p^{c+l_n}$, where c is the integer such that p^c divides $|C_0|$ exactly. Then, by lemma 1

$$l_0 \le l_1 \le \cdots \le l_{n_0} = l_{n_0+1} = \cdots = l$$
.

Since $k_{\mathcal{Q}_i} \cong Q_p(1 \leq i \leq r)$, if ε is any element of E' which is not equal to 1, then there exists the positive integer $m_{\varepsilon,i}$ for \mathcal{Q}_i such that $\varepsilon^{p-1} \in 1 + p^{m_{\varepsilon,i}} Z_p$ and $\varepsilon^{p-1} \in 1 + p^{m_{\varepsilon,i}+1} Z_p$. Let $m_{\varepsilon} = \min\{m_{\varepsilon,i}; 1 \leq i \leq r\}$.

LEMMA 2. If $n \ge m_{\varepsilon}$, then $\varepsilon' = \varepsilon^{(p-1)p^{n-m_{\varepsilon}+1}}$ is contained in H.

Proof. $\varepsilon^{(p-1)p^{n-m_{\varepsilon}+1}} \in 1+p^{n+1+(m_{\varepsilon,i}-m_{\varepsilon})}Z_p \subset 1+p^{n+1}Z_p$. Hence, ε' is a \mathscr{L}_i -adic norm for k_n/k at every \mathscr{L}_i . By local class field theory, ε' is also a \mathscr{L} -adic norm at every prime \mathscr{L} of k_n prime to p. Then, by Hasse's norm theorem, ε' is a global norm for k_n/k . This implies $\varepsilon' \in E \cap N_{n,0}(k_n) = H$.

Remark. If $m_{\varepsilon}=m_{\varepsilon,j}$, then $\varepsilon^{(p-1)p^{n-m_{\varepsilon}+1}}\in 1+p^{n+1}Z_p$ and $\varepsilon 1+p^{n+2}Z_p$ in $k_{\mathcal{D}_j}$.

Let $\{\zeta_1, \zeta_2, \cdots, \zeta_{r-1}\}$ be any base of E' and $H' = [\zeta_1^{(p-1)p^{n-m}}\zeta_1^{+1}, \zeta_2^{(p-1)p^{n-m}}\zeta_2^{+1}, \cdots, \zeta_{r-1}^{(p-1)p^{n-m}}\zeta_{r-1}^{+1}]$ for $n \ge \max\{m_{\zeta_i}; 1 \le i \le r-1\}$. Then $H \supset \{1, -1\} \oplus H'$, since $\zeta_i^{(p-1)p^{n-m}}\zeta_i^{+1} \in H$. Let $m(\zeta) = m_{\zeta_1} + m_{\zeta_2} + \cdots + m_{\zeta_{r-1}}$.

Proposition 1. $m(\zeta) \leq l_n + (r-1)$.

Proof. $[E:H] = p^{n(r-1)-l_n}$ and $[E:\{1,-1\} \oplus H'] = (p-1)^{r-1} p^{n(r-1)-m(\zeta)+(r-1)}$. Here, $p^{n(r-1)-m(\zeta)+(r-1)} \ge p^{n(r-1)-l_n}$, since [E:H] divides $[E:\{1,-1\} \oplus H']$ and $(p-1)^{r-1}$ is prime to p. Then $m(\zeta) \le l_n + (r-1)$.

COROLLARY. $m(\zeta)$ remains bounded for all bases of E'.

Proof. $m(\zeta) \leq l_n + (r-1) \leq l + (r-1)$.

Let $m=\max\{m(\zeta); \text{ any base } \{\zeta_1, \dots, \zeta_{r-1}\} \text{ of } E'\} \text{ and, for } n\geq m, \text{ we take a}$

base $\{\eta_1, \eta_2, \dots, \eta_{r-1}\}$ of E' as in (1). Then $m(\eta) \leq m$, but we can show that $m(\eta) = m$.

PROPOSITION 2. $|B_n| = p^{c+m-(r-1)}$ for $n \ge m$.

Proof. We have $\eta_i^{(p-1)p^{n-m}\eta_i+1} \in H(1 \le i \le r-1)$. Then there exists an integer d_i such that $\eta_i^{(p-1)p^{n-m}\eta_i+1} = \eta_i^{d_ip^{n-s_i}}$, so $d_i = (p-1)p^{d_i}$ for a non negative integer d_i . On the other hand, $\eta_i^{(p-1)p^{n-s_i}} \in 1+p^{n+1}Z_p$ and $\eta_i^{(p-1)p^{n-m}\eta_i+1}$ is a topological generator of $1+p^{n+1}Z_p$ in $k_{\mathcal{L}_j}$, where $m_{\eta_i} = m_{\eta_i,j}$. Hence, $d_i' = 0$, so $n-m_{\eta_i}+1 = n-s_i$. Then we have $[E:H] = p^{n(r-1)-m(\eta)+(r-1)}$ and $l_n = m(\eta)-(r-1)$. By proposition 1, $m \le l_n + (r-1) = m(\eta)$. Hence, $m = m(\eta)$ and $|B_n| = p^{c+l_n} = p^{c+m-(r-1)}$.

This proposition was proved by Fukuda and Komatsu [1] in a real qudratic case. We can also prove the following result by the same way as in the theorem of Fukuda and Komatsu $\lceil 1 \rceil$.

THEOREM. If $N_{m-1,0}$ $(E_{m-1})=E$ and the class number of k is prime to p, then $\lambda_p(k)=0$, where E_n is the unit group of k_n and $\lambda_p(k)$ is the Iwasawa invariant of k for the p.

Let $\{\zeta_1, \zeta_2, \dots, \zeta_{r-1}\}$ be any base of E' and $n_{\zeta,i} = \max\{m_{\zeta,i}; 1 \le j \le r-1\}$ for \mathcal{L}_i . Then $n_{\zeta,i}$ does not remain bounded for all bases of E'.

Example. Let k be a real cubic field and $\{\varepsilon_1, \varepsilon_2\}$ a base of E'. Assume that

$$\varepsilon_1^{p-1}=1+xp^{a_1}+\cdots$$

and

$$\varepsilon_2^{p-1}=1+yp^{a_2}+\cdots$$

in $k_{\mathcal{D}_i}$, where $1 \le x$, $y \le p-1$ and $a_2 \ge a_1$. We take a non negative integer z such that

$$zx \equiv -y \pmod{p}$$
 and $1 \leq z \leq p-1$.

Let $\varepsilon_2' = \varepsilon_1^{z p^{a_2 - a_1}} \varepsilon_2$. Then $\{\varepsilon_1, \varepsilon_2'\}$ is a base of E' and $m_{\varepsilon_2', i} > a_2 = m_{\varepsilon_2, i} \ge a_1 = m_{\varepsilon_1, i}$.

REFERENCES

- [1] T. Fukuda and K. Komatsu, On the λ invariants of Z_p -extensions of real quadratic fields, J. Number Theory, 23 (1986), 238-242.
- [2] R. Greenberg, On the IWASAWA invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284.
- [3] H. Yokor, On the class number of relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND TECHNOLOGY MEIJI UNIVERSITY TAMA-KU, KAWASAKI KANAGAWA 214 JAPAN