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A REMARK ABOUT THE TANIYAMA-WEIL CONJECTURE

FOR AN ELLIPTIC CURVE DEFINED BY

AN EQUATION y2=x*+D2x+Ds

BY TATSUO HISAMATSU

For an elliptic curve over Q the conjecture of Taniyama-Weil is stated as
follows. (As for notations and terminologies, see [1] or [2].)

CONJECTURE (Taniyama-Weil) Let E be an elliptic curve over Q. Let N be
its conductor, and let

L(E;s)= Σ a(n)n~s, (Re(s)>^-)
71 = 1 Z

be its L-function. Then the function

oo

fE(z)~ Σ a(ή)e{nz), {e{z)—e2πιz)
n=ί

of z in the upper half plane, is a cusp form of weight 2 for the congruence
subgroup Γ0(N) of the modular group SL(2, Z), which is an eigenfunction for the
Hecke operators T{p) (p prime number).

Let D be a nonzero integer and let E(D) be an elliptic curve defined by an
equation

In this paper, we give a remark about the Taniyama-Weil conjecture for
the elliptic curve E(D).

THEOREM. The following are equivalent.

(a) The conjecture is true for all E(D).
(b) The conjecture is true for E(—l).

We shall divide the proof in the four steps.

1. For a prime number p, we denote by E(D)w the reduction of E(D) at p
and put
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Notation. For an integer a and a non-zero integer b, we denote (—) the

"quadratic residue symbol" which is characterized by the following properties.

( i ) (j)=0 if (α, b)Φl or b is even.

(ii) If Z? is an odd prime, (—j coincides with the ordinary quadratic residue

symbol.

(iii) (—— Wsign(α) or 0 according as aφQ or a=0.

Then we have

(iv) If b>0, the map a>->(—) defines a character modulo b.
\b /

(v) If aΦO, the map b^(η-) defines a character.

PROPOSITION 1. For any prime number p, we have

(1)

Proof. First, assume that E(D) has good reduction at p, namely p does't
divide the discriminant ΔD of E(D), where AD=-2431D6=-i%D\ We denote
by AD(p) the coefficient of xv~ι in (%3+£>2*+£>3)cp-1)/2. Simple calculations show

AD{p)M

>-l-3n)! n!

Moreover, as in the proof of Theorem 4.1 in [2], we have aD(p)=—AD(p)
(mod/)). This result and the Riemann hypothesis for E(D)Cp^ saying \aD(p)\

£2Vp, imply aD(p)=(—)a1(p) for p>17.

We show that (1) is also true for p<17.
If />=3 and 3)(D, then i4D(3)=0, so that ^ ( 3 ) ^ - 3 , 0 or 3. Since a

congruence equation x*+D2x+Ds=0 (mod 3) has a solution x=D, Card E(D)
must be an even integer. Thus aD(3)=0.

If 0=5 and 5^ A then AD(5)=2D2. For £> such as (-^-)=1 (resp. (-^-

= -1), we have 2D2=2 (mod. 5) (resp. 2D2=-2 (mod 5)). Thus 0^(5)=-3 or
2 (resp. aD(5)=—2 or 3). Since the following three polynomials

- 2 (£>=2 (mod 5)),

D=3 (mod 5))
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have no roots modulo 5, Card E(D)^(F5) must be odd, thus aD(5)=(—\(—3).

If p=7 and 7 X D, then ΛD(7)=3D\ As above,

'x3+x+(-ψ) (DΞI, 6 (mod7)),

(£>Ξ2, 5 (mod7)),

^ - ) (D=3, 4 (mod 7))

have no roots modulo 7, Card E(D)^(F7) must be odd. Thus αz)(7)=(-y-V3.

If £=11 and 11 X D, we have Λ>(H)=20Z)5and I aD(ll)\ ^ 2 Λ / Π < 2 4 = 8 . Thus

Finally, if />=13 and 13 J Z>, we have i4Z)(13)=35JD
6 and | aD(l3)\ ^2VΪ3<8.

Thus fl2)(13)-(^-) (-4).

Therefore (1) is true for p<17.
Next, assume that E(D) has bad reduction at p, namely p\ΔD. If p\2 D,

then E(D) has additive reduction at p and aD(p)=Q. On the other hand, if
£=31 and 31X D, then £(D) has multiplicative reduction at 31 and aD(31)=l or

— 1 according as ί — J = — 1 or 1, respectively, (cf. [2; Prop. 5.1].)

Finally, we have (1) for all prime numbers.

2. Suppose ND is the conductor of E(D). This quantity can be explicitly
computed by using the algorithm of Tate ([4]). The result is as follows.

(2)

2XD
DΞ=1 (mod 4)

2XΌ
D=-l (mod4)

2\D

31 XD

2*3lDl

2331/)§

2A31Dl

31\D

2*Dl

2*Dl

2'Dl

where

( 3 ) D0=sign(D) Π p.
p prime number

ordp(Z»Ξ=i (mod 2)
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3. We define a function ΨD: Z->{1, 0, -1} by

(aΦO).

PROPOSITION 2.

( i ) If D = l (mod 4), then ΨD is a primitive character moά22DQ.
(ii) If D=—l (mod4), then ΨD is a primitive character mod2D0

(iii) // 21D, then ΨD is a primitive character mod 22DQ.

Proof, We have ΨD—ΨDQ by (3) and we can see the equivalence of DΞ=±1
(mod4) and J 9 0 = ± l (mod4). Therefore, it is enough to prove the proposition
in the case of D=D0, namely, square-free D.

Assume that a and 2Ώ are relatively prime. First we prove

( 4 )

By the definition of ΨD, we have

(5) ΨD=VnSnO» Π Ψ-p.
p prime number

p\D

For each factor in the right hand side of (5), we check (4) in the cases

i) α+4|Z>|>0 and α > 0 .

ii) α+4|D|>0 and α<0. { j j
iii) α + 4 | D | < 0 (so α<0).

Assume D is odd.
?Γsignαo(α+4|.D|); In the case 2), Ψslgn(.D^—Ψ-i is a trivial character, thus

is always true. In the case i)-l),

in the case ii)—1),

si8nCw(),

in the case iϋ)-l),

y.ι«nα»(β +41DI ) = F s l g n ( D ) ( - 1 ) Ψslgaίm(- a - 4 1 D |)
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So we have

for all cases.
Ψ-P(a+4\D\); In the case i),

by the quadratic reciprocity law. Similarly, in the case ii),

and in the case iii),

y. p (α+4|β |)=y-p(-i)y- p (-f l-4 |ΰi)=?r-p(-f l)=y- p (α).

By these results and by (5), we have (4) if D is odd. Similar computations show

(6)

If we put

ΨD(a+2\D\)=ίΨD{-D Π (
p prime number

t=Caτd{pI prime number, p\D and p = — 1 (mod 4)},

then whether t is even or odd is as follows.

(7)

By (6) and (7),

if and only if D= — 1 (mod4). Thus we have ( i ) and (ii).

Assume D is even. As for about Ψ-2, in the case ( i ) ,

D>0

D<0

D=l (mod 4)

even

odd

D=-l (mod4)

odd

even

in the case ii),

and in the case iii),

y.,(β +41Z) I )=?Γ-.(- o-41DI ) = y - , ( - α)=y.,(α).
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From these results, we know that

is also true for even D. The similar calculations show

ΨD(a+2\D\)=-ΨD(a).

Thus ΨD is a primitive character mod 22D0. Finally we have (iii).
This completes the proof.

By Proposition 1 and the definition of ΨD, for any positive integer n, we
have

(8) αi>(n)=y^n)fl-1(n).

4. Proof of Theorem. Assume that the Conjecture is true for £(—1). We
apply the following fact from [1].

THEOREM. Let N be a positive integer, s be a divisor of N and m be an
integer and we put

N'=l.c.m. (N,m2,ms).

Let Ψ, χ be a primitive Dirichret character mod m, mod s, respectively. For

(9) f(z)— Σ a(n)e(nz)<^Sk(N, χ) (Fourier expansion of f at too),
71 = 1

we define

Then fΨ(z)ϊΞSk(N', Ψ2χ).

[1 Prop. 3. 64].

If we put A^=Λ^_1=2331=248, Ψ=WD and χ = l (trivial character), then AT
coincides with ND. So fEa» belongs to Sk(Γ0(ND)).

For an positive integer m, denote by T(m) the ra-th Hecke operator. The
operation of T(m) on f(z) of (9) in the case χ—1 is

(T(m)/)(s)= Σ α(n, T(m)f)e(nz\ a(n, T(m)f= Σ dk-
n=l d\(m,n)

d>0

From the hypothesis for fEc-ih for each prime number p,

holds, so that
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a(n, T(p)fE(m)= Σ daΆ,fEW>)= Σ d

If ί I n, then
=ΨD(np)a-1(np)=aD(p)aD(n).

Otherwise, if £ |n , then by using the expression n—mpk ((/>, m)=l),

Therefore we have

This implies that the Conjecture is true for E(D) also.
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