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ON THE STRATIFICATION OF THE
DISCRIMINANT VARIETIES

By Mutsuo OkaA

Abstract

In this paper, we study the canonical stratification of the discriminant
varieties of A;, B; and D,. We prove that this stratification enjoys strong
geometric properties including the regularity.

§1. Introduction.

Let R be a reduced irreducible root system in R'. Let 4={H,}(asA) be
the corresponding arrangement of the hyperplanes. The Weyl group W is the
group generated by the reflections along {H,; ac4}. It acts on C' so that
the quotient space C!/W is isomorphic to the affine space C' whose affine
coordinate ring is the ring of the invariant polynomial C[&,, ---, &J% (Chapter
6, [11). Let |H|=\UaseaH,. The action on the complement C'— || is free
and |&| is W-invariant. We call the quotient space |%|/W the discriminant
variety of the root system and we denote it by 9. The discriminant variety
is a hypersurface in the quotient space C'!/W. There are many interesting
results by many authors about the topology of the arrangement |4 | or C'*'—
|4]. See Orlik [6] and its references. The complement C'—9 is known to
be a K(m, 1)-space by [2] and [3]. Let S be a stratification of | 4| which is
compatible with the W-action. For instance, we can take the minimal strati-
fication Sp,n={H}%; ECA} where H¥=N\acsHs—\UsesH,.. For a given S, 9
inherits a canonical stratification § which is defined by the images of the strata
of S. The purpose of this paper is to show that the discriminant variety for
the arrangements of type A;, B, and D, has canonical regular stratifications
which are constructed in the above way. Here the regularity means the b-
regularity in the sense of Whitney [7]. It is known that the b-regularity
implies the a-regularity ([5]). For A;4+; and B;:;, we simply take S=Snin.
As the stratification S for D;.,, we take the restriction of Sn;, for B4, to
Dy

Let 9 be an analytic stratification of an analytic variety V is an open set
U of C™. Let (M, N) be a pair of strata of ¢ with MDN and let g&N. Let
pu) (0£u<1) be a real analytic curve such that p(0)=¢ and p(u)eM for u>0.
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DISCRIMINANT VARIETIES 211

Let T=lim,.,TpwyM. We say that the pair (M, N) has a unique tangential
limit at ¢ if this limit 7 depends only on ¢ and M. If g enjoys this property
at any point ¢ of N for any pair (M, N), we say that g has the unique tangential
limits property. Of course, the existence of a stratification with the unique
tangential limits property poses a strong geometric restriction on V.

We will show that the stratifications S for A;., and B;,;-discriminants have
the unique tangential limits property. For D;,,-discriminant variety, this does
not hold for certain pair of strata. However we will show that the limit of
tangent spaces is at most one dimensional. The author would like to thank
Professor P. Orlik and Professor K. Saito for the valuable informations and
discussions.

§2. A;-arrangement.

We first consider the A;-arrangement. As a root system, A, is the restric-
tion of B;,, to the following hyperplane

2.1 L:&+ - 4+64,=0.

The corresponding arrangement 4 consists of (HZ_I) hyperplanes {&—§&,=0}

(#<J) and the Weyl group W is the symmetric group S;4;. The invariant ring
is generated by
2.2 ;= 23 & €ey @=1, -, [+1).
TES 41
We refer to Chapter 6 of [1] for the basic results about the irreducible root

systems. We use the following symmetric polynomials for the calculation’s
sake.

2.3) =6+ -+l @=1, -, [+1).

Note that {z,, ---, 7141} is also a basis of the ring of invariant polynomials and
that s;=7,=0 on L. We define the mapping @: C**'—-C'** by @&, -, &14+)=
(ty, -+, T141). Let L be the hyperplane in the quotient space defined by 7,=0.
Let ¢.: L—I and ¢: | H|—9D be the respective restriction of @ to L and |4].
We have the following commutative diagrams.

CH+ DL D4
@2.4) lo o o

C+ . DL.> 9
Here the horizontal maps are the respective inclusion maps. It is well-known
that 9@ is defined by Tl.<j(&—§&;?=0 which can be written in a weighted

homogeneous polynomial of {s;, ---, s;+1} or equivalently of {z, ---, 7;41}. This
is equal to the discriminant polynomial of x!*'—s,x'+ --- +(—1)"*'s;4,=0 in the
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usual sense ([47).

Now we consider the stratification S=Sn.. of |4|. Let C, be the set of
the non-maximal subdivisions of the set {1, -+, /4+1}. Namely an element &
of C, can be written as {[;, ---, I;}w here I;N\[;=0 for i#j and \J:,[,={1, ---,
{4+1}. The maximal element M={{1}, ---, {{+1}} is excluded as M(H)=
C'*'—|4]. Note that the Weyl group W acts canonically on C,. Let C, be
the set of the non-maximal partitions of the integer /4+1. An element X of
C. is written as {m,, ---, m;} such that 3% ,m;=[+1 with m,>0. For a subset
I of {1, ---, 41}, we denote its cardinality by |I|. Then there is a canonical
surjection from €, to C; by F—|g9| where |F|={|[,], -, |I:]}. For each
F={I,, -, I,} of C,, we define

M(F)={=(E)<C"*"; &=¢, & Fa; {i, jICLL}.

It is clear that {M(%F)}gec, is equal to S=Sn,, Which is a regular stratification
of |4|. Let g={I,, ---, I,} and ¢={];, ---, Jn} be elements of C;. & is called
a subdivision of ¢ if for each 7, there exists a j such that [;CJ,, We definea
partial ordering in €, (respectively in C;) by F>>¢ if and only if & is a sub-
division of ¢. (Respectively |F|>|¢|=|F| is a subpartition of |2|.) The
canonical map —|%| is obviously order-preserving.

PROPOSITION (2.5). Let F, F'<C,. The following conditions are equivalent.
(1) M@EP)2M(F"). () ME)NMG)+0. (i) F>IF'.

PROPOSITION (2.6). Let F, F'eC,. (1) The following conditions are equi-
valent.

(1) $M(F)=¢M(F"). () GM(EFNNG(M(F"))=0.

(ili) There exists an element g=W such that g(M(F)=M(F").
@iv) |F|=|9'| in C,.

aD  ¢M(F)2¢(M(F") if and only if |F|>|F']|.

Proof. Proposition (2.5) is immediate from the definition of M(F). We
prove Proposition (2.6). The equivalence (iii)&(iv) is obvious. The implications
(iii)=(i)=(ii) are also trivial. Assume that @(&)=¢(&’) for some §=M(F) and
&eM(g’). This implies that there exists a gW such that g(&)=¢&'. As 4 is
invariant by the action of W, we can write g(M(F))=M(g) for some Z&C..

As {M(9)}gec, are disjoint, this implies F'=¢. Thus (i)=(ii). As o(M(F))=
d(M(F)), the assertion (II) is an immediate consequence of (I) and Proposition
(2.5).

DEFINITION (2.7). For X&C,, we define V(KX)=¢(M(F)) where |F|=X.
We define an important vector-valued function X(x) by

(2'8) X(x):(x) xZ, ) xl+l>-
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Let X'(x)=(, 2x, -+, (I4+1)x") be the derivative of X(x). Then ®E)=3t1X(E,)

and the tangential map d@;: T:C'*'—>T g, C'** satisfies dd)f(a ) Syt 9 .
& or,

We identify the tangent space Ty C'*' with C'*' in a canonical way. Then
the above equality says

2.9) d@&%):X’(&g, i=1, -, I+1.

For any subset [ of {1, ---, [4+1}, we define

0 1 0

I A T |1| Z &

Let F={I,, -+, I} and let £ M(F). As &, does not depend on j<I, for i being
fixed, we have £,=§;, for any j&l..

(2.10)

PROPOSITION (2.11). Let F={I,, ---, I} and let £ M(F).
(i) TeM(F) is the (k-l)-dimensional vector space which is equal to

k
TeM@={ 2 dge— a& ) 2 A=0}.
(ii) The restriction ¢: M(F)—>V(|F|) is a finite covering.
(iii) V(F|) is non-singular and

k k
TooV(FD)={Z2X"€); 52=0}.
Proof. (i) is obvious by the definition of M(Z). Thus
k k
ADLTME)={Z 2 XE1); B 4=0}.

By the Vandermonde determinant formula, this image has dimension (k—1).
Thus the restriction ¢|M(F) is a submersion and the local image by ¢ is
smooth. Now assume that ¢(&)=d¢(n) for & neM(F) with £&#5. Then there
exists a permutation g&S;;, so that g(&)=w. Then g(M(F)=M(F). Thus
the local images near & and 7 by ¢ coincide. This proves that V(| Z]) is
smooth and the assertions (ii) and (iii) follow immediately.

Let us examine the order of the covering ¢: M(F)—V (| F|) more explicitly.
Let {ay, -+, an}={n: 34, n=|I,|}. Clearly we have m<Fk and {a,} are mutu-
ally distinct. Let p; be the number of j’s such that |[;|=a. G=1, -, k).
We consider the subgroups

W(H)={geW; gM@EN=M(F)}, I(H={gsW; g|M(F)=id}.

Then I(F) is a normal subgroup of W(Z) and the quotient group W(¥)/I(¥)
acts freely on M(%) with the quotient space V(|%|). More precisely let
ZeW(F)/I(F). Then for each s=1,--,m, g induces a permutation of



214 MUTSUO OKA

{€1,; |1;]=as}. Thus we have

PROPOSITION (2.12). There is a canonical isomorphism W(F)/I(F)=S, X -

XS Thus the order of the above covering is p,! - pn!.

om*

Let f(x) be a vector valued rational function of one variable. We define
the rational functions f.(x,, ---, x3) (=1, .-+, [4+1) inductively by f,(x,)=f(x1)
and

(2.13)  fuxy, =+, x2)
={fo-1(x1, ) Xpopy Xp-D)—fr1(X1, =) Xpooy X (Xp-1— %)
We call f.(x,, -+, xz) the k-fold derived function of f(x).

PROPOSITION (2.14). We have the following formulae.
(i) fo=fe+ 3 (T wa—w)f (s 5)

J=2 \ h=1
() ferr(x1, o) Xsy Xsrn)

k 7-1
=foe1(Xy, -+, Xer)+ 22( '}—[1 (xs+k—xs+h>fs+j(x1; ) xs+j)-
7= =

Proof. As (i) is a special case of (ii), we prove (ii) by the induction on
k. The assertion on k=1 is trivial. We assume the assertion for 2—1. By
the definition of the derived function, we have

fsar(xy, ) Xsy Xoxp)— Foar(X1, =+, X, Xor1)=(Xssr—XseD) Fs42(X1, =) Xsp1, Xsr)

:(xs+k"‘xs+1)fs+2(x1, o, Xste)

E o, o2-1
+(xs+k—xs+1)]22( ’}:[1 (xs+k_xs+1+h))fs+l+j(x1, Tty xs+l+j)

k -1
=;§z ;}]1 (xs+k*‘xs+h)>fs+j(x1y e, Kstg)

This completes the proof.

Now we consider the derived functions X,(x,, .-+, x,) and Xi(x,, -, x2)
of X(x) and X'’(x) respectively. The following Lemma plays an important role
throughout this paper.

LEMMA (2.15). Let a,,, and by, , be the j-th coordinate of Xp(xy, -+, Xz)
and Xi(xy, -+, xp) respectively. Then as,,, by, are symmetric polynomials of
X1, =+, X defined by

(1) @ppe,= Y Xyt xgk, br, e, =(k+7) > xit--xpk

v1

vid e FVp=j+1 V=)

(i) Xi(x, -+, 0)=X*D(@)/(k=D),  Xi(x, -, x)=X®(x)/(k—1)!
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) d
where X(J)(JC):-(W) X(x)

Proof. (i) is immediate from the inductive calculation and the equality:
(x*=y%)/(x—y)=x2"14x%2y+ .- 4 y2~'. The assertion (ii) follows immediately
from (i).

LEMMA (2.16). Let é€M(F) and let F={I,, ---, I,}. Then

Xi(flmyw»510<¢>)ET¢<5)V(|51) for any t=2, ---, k and ¢<S,.

Proof. By Proposition (2.11), we have that
X'(Er)—X"C1)=E1,—61) X561, E1)ET s VIF]) (G#7).

This implies that X;(&;,, &; AET sV F]) for i#j. Now the assertion follows
by an easy inductive argument.

The following is a generalization of the Vandermonde determinant formula
and it plays a key role to show the linear independence of certain vectors in
the later arguments.

LEMMA (2.17). (Generalized Vandermonde formula) Let A, ---, A, be mutually
distinct complex numbers and let J1={v,, -, v} be an element of C.. Then we
have the formula:

det ((X'(Ry), -+, LX¥DQY), -, X (), -, ‘X‘”k’(lk))=(1+l)!j1>—{ (A=),
In particular, {XPA)}(G=1, ---, v;, i=1, -+, k) are linearly independent.

Proof. Let ¥(xy, -, x14)=det(X'(xy), -+, *X’(x141)). Then it is easy to
see that

(2.18) U(xy, -, x1+1)=(1+1)!]g (x—x,)

by the Vandermonde determinant formula. We consider the differential operators:

Di=( 0 )1 ( axuf... o )Vi—1 and D=D,---D,.

ax»l+--- +yjog+2

Let E={(j, h); vi+ - +viaH1Sh<j<vi+ - +u, 0=1, -+, k} and let € be

the ideal generated by {x;—x,; (j, h)eE}. As Z;L}‘jz( ;’ ), it is easy to see
that

(2.19) DU=(+1)! TI (x;—xx)moduloé&.
2, OEE

Thus the assertion follows immediately from
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det (*X"(A), -+, LX PP, =+, ' X (Ap), =+, "X B(2,))
=D¥) Ay, -+, Ay, -+, Agy 0, Zk)z(l+1)!jI>Il(Zj—21)"i“f.

Yy Vi

Here the last equality is due to (2.19).

§3. Regularity and the limit of the tangent space.

Now we are ready to show the regularity of the stratification S of the
discriminant variety of A;.;-arrangement and the unique tangential limits
property. Let M(&F) and M(g) be stratum of S such that M(F)DM(G). Let ¢
be an arbitrary point of the stratum V(|¢|) and let p(u) and §(u) be real
analytic curves defined on the interval [0, 1] such that (i) p(0)=g(0)=¢ and
gu)eV(el) for any u<[0,1]. (i) puw)eV(<F|) for u>0. We also assume
that

(3.1) lim T V(IFN=T,  lim[F@), §aw)I=T

Here [p(u), g(u)] is the line spanned by p(u)—q(u). Changing the parameter
u by u'™ for some integer m if necessary, we may assume that there are
lifting real analytic curves p(ux) and ¢(x) in M(F) and M(Q) respectively so that
Pw)=¢(p(u)) and Gu)=¢(g(u)) respectively. We may assume that p»(0)=g¢(0)
and let p=p0)=M(@). Let ¢={], -, Jn}. By Proposition (2.5), we can write
F={/].,;i=1, -+, m,i=1, ---, v;} where J, ;CJ, for j=1, -, v,

THEOREM (3.2). S is a regular stratification with the unique tangential
limits property. Namely (i) T is generated by

{B2x0s); Za=00UIX2(,,), 1Si=m, 227w},
(ii) (Regularity) reT.

Proof. By Proposition (2.11), the vectors X’ (p(u)s, )+ -+ +An X' (p(W)s . )
with 237%,4,=0 are contained in T;,V(|F]). Thus by taking the limit as
u—0, we see that X7,4,X'(n,)T. This gives only a subspace of T of
dimension m—1. We still need v;+ - +v,—m independent vectors to generate
T. For this purpose, we apply Lemma (2.15). We know that X;(p(u)s, ,, =,
P, JET V(I F)2ZLk<y;, 1<i<m). We take the limits of these vectors
as u—0 and we apply Lemma (2.15) to obtain that XP(5,)eT@2Zj<y,,
1<i<m). Now we apply Lemma (2.17) to see that the vectors {X(5;,);
1=<7/<m, 1<j<y;} are linearly independent. This completes the proof of (i).

Now we consider the regularity (ii). Using the equality X¥i|/.;|=I/Ll,
we have
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(3.3) Faw—aw= 2 3 17.,1(X(p00s, )— Xy

Using Proposition (2.14), we can write

B4 X(pw)s, )—Xlgw), )= hé 5 (W) Xnaalg@)syy P,y - Py, )
where a,,, »(u) is defined by

(35 s n W=, ,—@s) T (W, ,—p@s, ), =1, .
Substituting (3.4) in (3.3), we obtain

GO FW-qw=3 B @ Xnnlgs, P, <, D).
where a,, ,(u)=2%t4] /i ;1 @, ;2 (u). In particular, we have

@3.7) @)= 3 1| (@), , =40

We define a non-negative integer §8 by

(3.8) B=min{order(a,, »(¥)); =1, -, m, h=1, -, y;}

and let a, ,(u)=a,, ,uf+(higher terms). Then (3.6) and Lemma (2.15) imply that
3.9 ﬁ(u)—q(u)=<§]_l ;%1 at,nX‘”’(mi)/h!)uﬁ+(higher terms).

By the Generalized Vandermonde formula (Lemma (2.17)), we can see easily that

3

(3.10) S @ n XP(y,)/h1£0 and r=[§ 5 a,,,,X‘”’(r;,i)/h!].
1 h=1 =1 h=1

~
)

Here [v] denotes the line generated by the vector v. Thus the assertion (ii)
of Theorem (3.2) follows immediately from (i) and (3.10) and the following.

ASSERTION (3.11). %xam:o.
=
Proof. By (3.7) we have

S anw)= 5 a.,th+higher terms)= 33 31 /116w, ,— 5 | L), =0.

The last equality is derived from the fact that p(u) and ¢(u) are in the hyper-
plane L. Now the assertion is immediate from the above equality.
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§4. B;,-arrangement.

Let R be the root system of type B;,; in R**'. The corresponding arrange-
ment 4 consists of 2( l—|2—1 )-H-}-l hyperplanes: {§;+&;=0} and {£;=0}. The
Weyl group W is isomorphic to a semi-direct product of the symmetric group
S;+1 and the abelian group (Z/2Z)'** (Chapter 6, [1]). The invariant polynomial
ring is generated by
4.1) = 2 &w - &w, =1, -, I1+1.

TES|41

We will use the following generators.
4.2) =&+ - +68 =1, -, I+

Let @: C'*'-C'*'/W=C'"* be the map defined by &—(,(&), ---, {1+:1(8). We
take S=S&m... The stratification S can be described as follows. Let &, be the
set of the subdivisions of the non-empty subsets of {1, ---, /4+1}. Namely an
element €&, can be written as F={I,, -+, I} where each I, is non-empty
and I;N\I;=0 for i#j. Let S(F)=\ioil; and F°={l, ---, I+1}—S(F). Let &
be the set of the partitions of the integer m for m=1, ---, [4+1. There is a
canonical surjective mapping from &, to &, by F—|F|={|1i], -, |1]}. Let

M(@)={geC*; (i) &=0ic g, (i) §i=&eli, j3L}

We omit H=1{{1}, -, {{+1}} and | M| from &, and &, respectively as M(H)
and V(|<#|) are nothing but the complement C'*'—|4| and C'*'—9. Let
a=>¥%_,|I;|—k. Then M(F) is a disjoint union of 2% connected components
corresponding th sign of &;==+¢, in the definition of M(&). But they are in
the same W-orbit. (Recall that the reflection along {&;=0} is the multiplication
by —1 in the i-th coordinate.) Thus each connected component is mapped by
¢ onto the same stratum of §. We define partial orderings in &, and &, as
follows. Let F={I[,, ---, I} and &¢={J,, -+, J}. F>G if and only if (i)
g°=g°, (ii) $>& in C,. Here & is defined by {Z¢ I,, ---, I;}=cC,. Similarly
we define |F|>|¢| if and only if (i) |F°|<]|g°|, (i) |F|>|4] in C;. Now
the following propositions are completely parallel to Proposition (2.5) and Propo-
sition (2.6).

PROPOSITION (4.3). Let &, G=&,. The following conditions are equivalent.
(i) M(F)=2M(9). (i) M(F)NM(@)=#0. (i) F>4.

PROPOSITION (4.4). Let F, G=&,. The following conditions are equivalent.
(1) (M(F))=¢(M(2)). (i) There exists a geW such that g(M(F))=M(9). (iii)
|F|=14].
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Thus for a K=&, we can define V(X)=¢(M(F)) for any F=&, such that
|F|=H. Now we study the tangential map. Note that

4.5) dQ)( 2E) =2 ED.

For each Ic{1, ---, [+1}, we define m(I)=min{s;iI}. Let ={I,, -, [, } €&,
and let £=F. We define e M(F) by
N (S if jel,
4.6) §i=
0 if jege°,.

It is easy to see that & is in the W-orbit of & We also define
31 F)
%, 10 jE (Ej/ém(l,»_a‘g;~

N €Iy

Note that &;/éncrp==1 and &2=8%;,,=£}, for each j&I,. It is easy to see that

-a—eTeM(SF) and d¢e(—a—)=2§ ;X ’(ffi). Now Proposition (2.11) and Lemma
351; ae!i

(2.15) can be translated into the following form.

PROPOSITION (4.7). Let $={I,, -+, I;}=&:.. Then -
(i) The dimension of T¢M(F)is k and it is generated by {6:2 yi=1, -, k}.
I,

(ii) The restriction ¢: M(F)—>V(|F|) is a finite covering.
(iii) V(<ZF|) is non-singular and T4 V(| F|) is generated by {X’(é%i);
=1, -, k}.

LEMMA (4.8). Let F be as in Proposition (4.7). Then
X;(é%y oy g%t)ETqﬁ(e)V(Ig]) f01’ s:l’ TN k.

Let ¥>¢ and let g¢={J;, -+, Ju}. We can write F={J,,,;i=0, -, m,
7=1, -+, v;} so that [, ,CJ, where J,=¢° by definition. Let p(u), q(u), ¢, p(u),
g(u), 9, T and I be as §3 We consider the equality p(u)—g(u)=

PP 1|ful(X(,1J(u)J1 PE X(q(u), ). Then using Lemma (4.8), we do the
same argument as for the A;,,-discriminant to obtain

THEOREM (4.9). & is a regular stratification with the unique tangential limits
property. Namely (i) T is generated by {XP(3%);i=0, -, m, j=1, -, v;}.
(ii) (Regularity) yeT.

§5. D;.,-arrangement.

Let & be the arrangement corresponding to the root system of type Di4,
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in R'*'. 4 has 2( l-|2-1 ) hyperplanes {&;+&,=0}. The D,,,-arrangement is a

sub-arrangement of B;.,-arrangement. The Weyl group W is a semi-direct
product of the symmetric group S;4+; and (Z/2Z)" and it is a subgroup of the
Weyl group of B;,,. We denote the B,,,-arrangement by %(B), the Weyl
group of B;,; by W(B) and the stratification of B, by S(B) to distinguish
with those of D;.,. A basis of the invariant polynomial rings is given by
{t;, -+, t;, t} where ¢, is defined by (4.1) and t=§, --- &4, (Chapter 6, [1]). We
use the basis 8={(,, -, {;, t} where

6.1 =&+ - +6t (=1, -, D).

The existence of ¢+ makes the situation more difficult than the cases of A4, or
B;.,-arrangements. In fact, the unique tangential limits property does not hold
in general for D,,-arrangement. We define @: C*'—-C'"/W=C'*' by &—
&8, -, &u(®, t(&) and let ¢ be the restriction to |4 |. In this case, the
tangential map does not split into one variable functions. We have

.2) 103 ) =2 XD, HO/EI=E.2X"ED, K08

under the canonical identification T C'*'=C'**. In this section, we assume
that X(x)=(x, -, x)eC'. Let &, beasin §4and let e;={F={I,, ---, [,}E&;;
M(F) |4}, Let & be the image of &f in €,. Let M(F) be as in §4 for
Fe&;. Let S={M(F); F=¢&i}. Then S gives a regular stratification of | 4| which
is the restriction of the stratification of | 4(B)| to |4 |. Here is a difference
from the stratification of B,.,: Let & &=M(F) such that &=¢&;® for i=1, .-,
[+1. Then & and &’ are in the same W-orbit if and only if #&)=#(&’). (See
§4.8 of Chapter 6, [1].) Thus if F°=0, M(F) has two W-orbits of strata.
(These strata are in the same W(B)-orbit.) In particular, V(| &|) is the disjoint
union of two strata if F°=0. Understanding this difference, we use the same
notations as §4 for the convenience’s sake. Note that this stratification is
finer than the stratification Sn,, which is defined in §1. The reason that we
consider the stratification S rather than S,,, is technical. & is compatible
with the W-action as W is a subgroup of W(B) and |%| is W(B)-invariant.
We use the same partial ordering>>in &; as in &, for /=1, 2. Proposition (4.3)
and Proposition (4.4) are still true. Now we consider the situation of Proposition
(4.7) and Proposition (4.8). We first prepare a lemma. Let Y(x)=xX'(x),
Z(x)=X(x)/x={, x, -+, x"Y) and W(x)=(Z(x), t/x). We consider their derived
functions Y ,(xy, -+, x2), Zp(xy, -+, xz) and Wi(xy, -+, xz). See (2.13) for the
definition.

LEMMA (5.3). We have the following recursive formulae.
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Yi(xy ) x0)=Xiea(xy, o0y 2p-)+xe Xilx, o, %4)
(i) Xe(xy, oy x0)=Zp-1(x1, -, Xp-1)FxeZp(xy, -+, Xp)
Wilxy, 5 2)=(Z (x4, -+, x2), (1)) %1 x4).
(ii) (Xa(xs, ooy x2), O=Wii(xy, =, X2 Welxy, -+, x0).
YVilx, -, )=X*D(x)/(k—=2)14+x X ®(x)/(k—1)!
i {Z,,-,(O, e, 0)0=X,(0, -, 0)=XE-D0)/(k—=1)!.

Proof. The assertions in (i) are immediate by the definition and the in-
ductive argument. The assertion (ii) follows from (i). The assertion (iii) is a
corollary of (i) and Lemma (2.15).

PROPOSITION (5.4). Let F={I,, -, I,}=&} and let EcM(F). Let & be as
in (4.6). Then

(0) The restriction ¢: M(F)—V(|F|) is a finite covering.

(i) TgesVUFI) has dimension k and it is generated by

{(2511)(,(5%1); t(&)/éll); lélék}.

(i) (Vi@ -, &), 0T V(F]) for s=2, -, b
(iii) (ZXQ(E%IV tty e?x); (_1)8-1’}(&)/5?1 Tt g%s>ET¢(€)V(I (_'_fl), Szlr ) k.

Proof. The assertions (0) and (i) are immediate from (5.2). For (ii), we
consider the equality

(281, X"(83), &) — Q81X &), 1E)=(2Y (&3, 1E)— (@Y (E1), 1&))
=265,—8)V 4, &), 0Ty V(IF1).

As £3,#&} for i#j, this implies our assertion for the case s=2. The rest of
the calculation is completely parallel to the case of B;,. For the assertion
(iii) we note that (2X'(§3,), #8)/&3,)ET 3 V(|F|) by (i). Then we consider the
derived functions of this expression. As the s-fold derived function of #&)/x
is (—=1)*'(&)/x, -+ x5 by (i) of Lemma (5.3), the assertion follows immediately.

Now we consider the limit of the tangent spaces and the regularity problem.
Let p(u), g(u), p(w), §u), F, 2, 7, v and T be as in §3. Let $={]..,;0</<m,
175y} and G={J,, -+, Jn}(F, ¢=&)). We assume, as in §4, J, ;,CJ, for
0</<m where J,=g°

Case A. Assume that F°#0. This implies that t(p(u))/m‘,wzo for any
Ogi% and 1<7<y;,. Thus the tangent space T,V (|F|) is generated by
(X' (pw)%,,,), 0) for =0, -+, m and j=1;\-:, y;. By tlle\game argument as for
the Bi..-arrangement, we see that (Xj(p(w), ,, -, pw)3, ), OET 5>V F1)
for 1<7<y;, 0<i<m. Taking the limit as »—0 and applying Lemma (2.15),
we see that (X(5%), 0)eT for 0<i<m, 1<7<y;,. As dimM(F)=3" </
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and these vectors are linearly independent by the Generalized Vandermonde
formula (Lemma (2.17)), T is generated by {(X“(5,,), 0);0<i<m, 1<j<v;}.
Thus T depends only on ¢ and V(| F|). By the expression

Fa—qa= 3 3 11, /(X GG, )= Xq@sh), 0),

the regularity also reduces to the case of Bji;.
Case B. Assume that g°=(. We divide this case into two subcases.
Case B-1. Assume that ¢°#0 and F°=0.

This case is most complicated. Note that #(p(u))==IL.,,pw)5: 7. We define
ceCU{x} by

(=D '(pw))

(5.5) c=lim—== — .
w0 D@y, D@,

We claim that T is generated by the following basis:

o)
6.6) B=(X2(73), 0, 05ism, 15] 50, G, D=0, V{2250 o)}
Recall that 73 =n} for any j<I,. In the case of ¢=co, the last vector in B,
is ¢;4:,=(0, ---, 0, 1) by definition. If c¢+#co, the assertion is easily obtained by
(iii) of Proposition (5.4) by taking the limit as ©—0. Assume that ¢=c. By
(iii) of Proposition (5.4), we can see that T contains e;4; and (X9(3%), 0)
0<i<m, 1<7<y;). On the other hand, we apply (ii) of Proposition (5.4) and
(iii) of Lemma (5.3) to get (X(0), 0)eT for j=1, ---, yo—1. As these vectors
are linearly independent by the Generalized Vandermonde formula and dim M(&)
=3",y;, B, is a basis of T. Note that the last vector in B, depends on the
choice of p(u) in general. See Remark (5.22) for detail. Now we consider the
regularity. We start from the expression

6D Bw—gw=5 3L (XRES, )~ X, 0

+ 3% o s D30, (2 P13, KD/ 1Tl PSS, ,).

Using Lemma (5.3) and Proposition (2.14), we can rewrite (5.7) as

6:8) Fu—q= 5 3 @ X g)3 DS, 0+, P, ), O+

3 o (20, P )y (~ Do)/ 1ol JT 5k )
where

(5.9 o W)= 3 1Joun| B350, I BTT50,,— p01E,)-
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(I) Assume first that c#c0, 0. Let p=min{order(a,, ,(¥); 0=<:<m, 1<7<y;}.
Let a,, j(u)=a,, u’+(higher terms). Applying Lemma (2.15) and Lemma (5.3),
it is easy to see that

6.10) i 2T & S (xoin /it 0

vo-1 ) .

+ 12_0 o, {XP0)/7, 0)+ao,, (X*0)/vo !, ¢/| Jo])-
Let v be the vector defined by the right side of (5.10). As v is a linear com-
bination of the linearly independent vectors, y=[v]. Here is a problem. The

last vector (X ®(0)/v,!, ¢/|Js|) in the linear combination of the right side of
(5.10) is not necessarily contained in 7. In fact, by (5.6) we have

(6.11) (X 20)/(wo)!, ¢/IJWDET & | Jo] =2v,.

Thus we cannot conclude that y<T so easily as before. The following assertion
solves the problem.

ASSERTION (5.12). Assume that | Jo| #2v,. Then a,,,,=0.

Assuming this assertion for a while, we conclude from (5.10) that y<T if
c#00, 0,

Proof of (5.12). Assume that a,,,,#0. Let p’:min{order(m?,o,j); 175y,
and let p(u)%, ,=a;uf +(higher terms). Then by (5.9) we can write

o
a,, (u)= h2=‘,l | Jo.nlanlan—a,-1) -+ (@ap—a)u’*’ +(higher terms).
As order(ao,,,(#))=v,0’, the assumption that a,,,,#0 implies that p=v,0’ and
vo
(6.13) hz:l [Jorlan(an—a,-y) - (@p—a)=0, j=1, -, v—1.

By an inductive argument on j, we can easily see that (5.13) is equivalent to
the following:

vo
(5.14) = [Jo.nlab=0, j=I1, -, y—1.

Assume that a;#0, 1<7<y,. This implies that order(%Jo,j)zp’/Z for any j.
Thus we have

6.15) order(t(p@)/ I1 50, =5 2 1Joal =2v0) =21 1l =2v0).

As we have assumed that | J,| —2v,#0, this implies that ¢=0 or <o as J,—2y,
is positive or negative respectively. This is a contradiction to the assumption
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that ¢+#0, 0. Thus by changing the ordering if necessary, we may assume
that there exist B(1<B<w,) such that a,, ---, az#0 and a,=0 for B<j=<v,.
Thus (5.14) gives the following equlity

B .
(6.16) ’?;}1 alJonl=0, (G=1, -, B).
This gives another contradiction to the following.

LEMMA (5.17). Let a,, -+, ag be given non-zero complex numbers. Then the
equation

a; - ag

n, 0
a? .- az . X
(%) L .ﬁ =l
Do 0
af - ab np
has no strictly positive solutions. Here “(ny, -+, np) is strictly positive iff n,>0,
i=1, -, B.

Assuming Lemma (5.17) for a moment, we can conclude that a,,,,=0, com-
pleting the proof of Assertion (5.12) and the proof of the regularity in the case
(D).

Proof of Lemma (5.17). Assume that ‘(n,, ---, ng) is a strictly positive
solution of (x).

Step 1. Assume that a,#a, if i#5. Then (*) only has a trivial solution
n,=0@=1, ---, B) by the Vandermonde determinant formula.

Step. 2. In general, we consider the subdivision X={K,, ---, K,} of
{1, -+, B} with the property that a,=a,=3s;7, jeK,. Let ax,=a, for jEK..
Then (x) implies that

m, 0
(%) Do H e B

al. - a% m. 0

where m,=>;ex,;n,, As m,>0 by this expression, this gives a contradiction.
by Step 1. This completes the proof of Lemma (5.17).

(II) Assume that ¢=0. Then T is generated by (X“(3%), 0)(0=i<m,
1<7<y;). In particular, T contains (X®9(0), 0). We can see immediately from
(5.10) that yeT.

(II) Assume that ¢=oo. In this case, we know that e¢;,,&T. Let & be
the integer defined by

(5.18) order(p(u)y, Rt %30,5_1)<0rder H(p(u)Sorder(p(u)%, L %50.5)'

We first rewrite the second term in (5.8) using (ii) of Lemma (5.3) as follows.
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619) 3 an ) Z,0S0,1r > Do), (—17-1p@) /11l 11 5.,
J=1 h=1
0-1 I~ —~— ~
=3 0, @(Z @0, s -+ P, (1070 /1] T D@%,)
J—l h=1
BN Z DYy 1» -+ » DI, )0), 1)

+ 3 B, -, P, 0

where b(u):(l]o|H'j:lmJo,j)/(/—;{)"“t(p(u))/illd {B,(u)} are rational functions.

By the assumption, lim,.o(Zx(p)%,,,, -, D)%, Hb(w), =(c'X(0)/4!, 1) for
some ¢’C. Let

o:=min{order(a,, (u); 1<i<m, 1=<j=<y,;, or i=0, 1<;<d—1}

0= argiégo order(8;(w)),  p=min{p,, p,}.

Let a,, j(u)=a,, ju?+(higher terms) and B;(u)=pg;u”+(higher terms). Then by
(5.8) and (5.19), we obtain

.20 tim LTI - 8 5o (xo55)/71 04 S i (X001, 0
e XP0)/3), Dt S B XO0)/41, 0.

By the Generalized Vandermonde formula, the right side of (5.20) is non-zero.
Thus we conclude by (5.6) that y=T.

Case B-2. Assume that $°=g¢°=@. First by (iii) of Proposition (5.4), T
contains the following vectors:

_qy 2X9(5%) (1Y)
s={(==

As they are linearly independent, @ is a basis of 7. Now we consider the
regularity. Direct calculations seem to be complicated. We take the following
viewpoints. We consider the mapping & : C*'-C™"**, &, -+, §&,0)—&,, -, L1, 15).
As {{y, -, i, ti41(=1t?)} is a basis of the invariant polynomial ring of the Weyl
group W(B) of the B,,;-arrangement, we may consider the composition Z'-@
as the canonical quotient map of the B,;;-discriminant. Note that ¥ gives a
double covering on C'*'—{#;,;=0}. For a given ¥=¢j, we denote by V(|F|; B)
the stratum of |4 (B)|/W(B) which corresponds to . Then we have the
commutative diagram.

), 7=1, -, v;, =1, -+, m}
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v(gl) — V(<D

7| k4

V(gl; B)—>V(|9]; B)

We have already shown the regularity for the pair (V(|<|; B), V(|2|; B)) in
§4. Here we use the fact that the regularity does not depend on the choice
of the coordinate functions ([7]). As ¥ is locally a holomorphic diffeomorphism
near p(0)=gq, the regularity for (V|F|), V(| 2]|)) follows immediately. Thus we
have obtained

THEOREM (5.21). 3§ is a regular stratification. The unique tangential limits
property holds for the pair (V(|F|), V(| G|)) such that F°+0 or F°=g°=0.

Remark (5.22). Assume that ¢ and ¢ be as in Case B-1. We consider the
possible values of ¢ in (5.5). If (i) |/, ;| =2 for each 1<;7<y, we can see that

. m Vi S~ VO o~
c==lim(—1)"" IT TI p(u)yx/'+ II p(u) o7 ~*
u-0 1=1 y=1 vy 9=1 *J

{0 it 375 1/eil>2

(=D I g it Vi el =2.

Thus in this case, the unique tangential property holds. Assume that (ii)
| Jo.jl =2 for each 1<j7<y, and |/, ;|=1 for some j. Then ¢=co. Thus there
is no problem for the unique tangential property. In particular, let V(| <F|) be
the stratum of the dimension /. We may assume that F={{1, 2}, {3}, -,
{{+1}}. Then the condition (ii) is always satisfied for any V(|&|). Finally
assume that (iii) there exist a and b such that | ], .|=1 and |J, ;| >2. We
claim that

ASSERTION. ¢ can take any complex number or oo,

Proof. We consider the curve p(u) such that

~

(i) %Jo,a,:ul‘; mJo,b:euM_i_auM*-l’ p(u)Jo,j:u+afu2’ j#:ay b
p(u)k ‘—"%Jo,] if kejo,;

(i) pQs, ,=fs,ta,u 1=jSvi, 1<i<m and p(u)r=s/Nmwp)dW)y,
it kel.,,
where J, a, and a,,, are suitable complex numbers and the integer L and M

A~
are so chosen that order(t(p(u))=o_rder(l'[;°=lp(u)50, j). Then it is easy to see
that ¢=+(—1y0"'¢! 700! -2 XTI, 7,/¢. Thus ¢ can take any complex number
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by moving . The case ¢=c can be treated in a similar way by choosing
S~
the integers L and M which satisfy order #(p(u))<order(IT.p(u)%,, P
Though we have treated only A, Bi+1 and D;,-arrangements in this
paper, it is highly expected that the regularity will hold for the other cases.

Acknowledgement. Professor C.T.C. Wall wrote the author that the regu-
larity assertion for the other classes of the discriminant varieties also holds.
In fact, his proof seems much general.
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